]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: separate current radix tree from the one being built
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 AddressSpace *as;
97 };
98
99 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
100 typedef struct subpage_t {
101 MemoryRegion iomem;
102 AddressSpace *as;
103 hwaddr base;
104 uint16_t sub_section[TARGET_PAGE_SIZE];
105 } subpage_t;
106
107 #define PHYS_SECTION_UNASSIGNED 0
108 #define PHYS_SECTION_NOTDIRTY 1
109 #define PHYS_SECTION_ROM 2
110 #define PHYS_SECTION_WATCH 3
111
112 typedef PhysPageEntry Node[L2_SIZE];
113
114 typedef struct PhysPageMap {
115 unsigned sections_nb;
116 unsigned sections_nb_alloc;
117 unsigned nodes_nb;
118 unsigned nodes_nb_alloc;
119 Node *nodes;
120 MemoryRegionSection *sections;
121 } PhysPageMap;
122
123 static PhysPageMap cur_map;
124 static PhysPageMap next_map;
125
126 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
127
128 static void io_mem_init(void);
129 static void memory_map_init(void);
130 static void *qemu_safe_ram_ptr(ram_addr_t addr);
131
132 static MemoryRegion io_mem_watch;
133 #endif
134
135 #if !defined(CONFIG_USER_ONLY)
136
137 static void phys_map_node_reserve(unsigned nodes)
138 {
139 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
140 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
141 16);
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
143 next_map.nodes_nb + nodes);
144 next_map.nodes = g_renew(Node, next_map.nodes,
145 next_map.nodes_nb_alloc);
146 }
147 }
148
149 static uint16_t phys_map_node_alloc(void)
150 {
151 unsigned i;
152 uint16_t ret;
153
154 ret = next_map.nodes_nb++;
155 assert(ret != PHYS_MAP_NODE_NIL);
156 assert(ret != next_map.nodes_nb_alloc);
157 for (i = 0; i < L2_SIZE; ++i) {
158 next_map.nodes[ret][i].is_leaf = 0;
159 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
160 }
161 return ret;
162 }
163
164 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
165 hwaddr *nb, uint16_t leaf,
166 int level)
167 {
168 PhysPageEntry *p;
169 int i;
170 hwaddr step = (hwaddr)1 << (level * L2_BITS);
171
172 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
173 lp->ptr = phys_map_node_alloc();
174 p = next_map.nodes[lp->ptr];
175 if (level == 0) {
176 for (i = 0; i < L2_SIZE; i++) {
177 p[i].is_leaf = 1;
178 p[i].ptr = PHYS_SECTION_UNASSIGNED;
179 }
180 }
181 } else {
182 p = next_map.nodes[lp->ptr];
183 }
184 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
185
186 while (*nb && lp < &p[L2_SIZE]) {
187 if ((*index & (step - 1)) == 0 && *nb >= step) {
188 lp->is_leaf = true;
189 lp->ptr = leaf;
190 *index += step;
191 *nb -= step;
192 } else {
193 phys_page_set_level(lp, index, nb, leaf, level - 1);
194 }
195 ++lp;
196 }
197 }
198
199 static void phys_page_set(AddressSpaceDispatch *d,
200 hwaddr index, hwaddr nb,
201 uint16_t leaf)
202 {
203 /* Wildly overreserve - it doesn't matter much. */
204 phys_map_node_reserve(3 * P_L2_LEVELS);
205
206 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
207 }
208
209 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
210 Node *nodes, MemoryRegionSection *sections)
211 {
212 PhysPageEntry *p;
213 int i;
214
215 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
216 if (lp.ptr == PHYS_MAP_NODE_NIL) {
217 return &sections[PHYS_SECTION_UNASSIGNED];
218 }
219 p = nodes[lp.ptr];
220 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
221 }
222 return &sections[lp.ptr];
223 }
224
225 bool memory_region_is_unassigned(MemoryRegion *mr)
226 {
227 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
228 && mr != &io_mem_watch;
229 }
230
231 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
232 hwaddr addr,
233 bool resolve_subpage)
234 {
235 MemoryRegionSection *section;
236 subpage_t *subpage;
237
238 section = phys_page_find(as->dispatch->phys_map, addr >> TARGET_PAGE_BITS,
239 cur_map.nodes, cur_map.sections);
240 if (resolve_subpage && section->mr->subpage) {
241 subpage = container_of(section->mr, subpage_t, iomem);
242 section = &cur_map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
243 }
244 return section;
245 }
246
247 static MemoryRegionSection *
248 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
249 hwaddr *plen, bool resolve_subpage)
250 {
251 MemoryRegionSection *section;
252 Int128 diff;
253
254 section = address_space_lookup_region(as, addr, resolve_subpage);
255 /* Compute offset within MemoryRegionSection */
256 addr -= section->offset_within_address_space;
257
258 /* Compute offset within MemoryRegion */
259 *xlat = addr + section->offset_within_region;
260
261 diff = int128_sub(section->mr->size, int128_make64(addr));
262 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
263 return section;
264 }
265
266 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
267 hwaddr *xlat, hwaddr *plen,
268 bool is_write)
269 {
270 IOMMUTLBEntry iotlb;
271 MemoryRegionSection *section;
272 MemoryRegion *mr;
273 hwaddr len = *plen;
274
275 for (;;) {
276 section = address_space_translate_internal(as, addr, &addr, plen, true);
277 mr = section->mr;
278
279 if (!mr->iommu_ops) {
280 break;
281 }
282
283 iotlb = mr->iommu_ops->translate(mr, addr);
284 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
285 | (addr & iotlb.addr_mask));
286 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
287 if (!(iotlb.perm & (1 << is_write))) {
288 mr = &io_mem_unassigned;
289 break;
290 }
291
292 as = iotlb.target_as;
293 }
294
295 *plen = len;
296 *xlat = addr;
297 return mr;
298 }
299
300 MemoryRegionSection *
301 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
302 hwaddr *plen)
303 {
304 MemoryRegionSection *section;
305 section = address_space_translate_internal(as, addr, xlat, plen, false);
306
307 assert(!section->mr->iommu_ops);
308 return section;
309 }
310 #endif
311
312 void cpu_exec_init_all(void)
313 {
314 #if !defined(CONFIG_USER_ONLY)
315 qemu_mutex_init(&ram_list.mutex);
316 memory_map_init();
317 io_mem_init();
318 #endif
319 }
320
321 #if !defined(CONFIG_USER_ONLY)
322
323 static int cpu_common_post_load(void *opaque, int version_id)
324 {
325 CPUState *cpu = opaque;
326
327 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
328 version_id is increased. */
329 cpu->interrupt_request &= ~0x01;
330 tlb_flush(cpu->env_ptr, 1);
331
332 return 0;
333 }
334
335 const VMStateDescription vmstate_cpu_common = {
336 .name = "cpu_common",
337 .version_id = 1,
338 .minimum_version_id = 1,
339 .minimum_version_id_old = 1,
340 .post_load = cpu_common_post_load,
341 .fields = (VMStateField []) {
342 VMSTATE_UINT32(halted, CPUState),
343 VMSTATE_UINT32(interrupt_request, CPUState),
344 VMSTATE_END_OF_LIST()
345 }
346 };
347
348 #endif
349
350 CPUState *qemu_get_cpu(int index)
351 {
352 CPUArchState *env = first_cpu;
353 CPUState *cpu = NULL;
354
355 while (env) {
356 cpu = ENV_GET_CPU(env);
357 if (cpu->cpu_index == index) {
358 break;
359 }
360 env = env->next_cpu;
361 }
362
363 return env ? cpu : NULL;
364 }
365
366 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
367 {
368 CPUArchState *env = first_cpu;
369
370 while (env) {
371 func(ENV_GET_CPU(env), data);
372 env = env->next_cpu;
373 }
374 }
375
376 void cpu_exec_init(CPUArchState *env)
377 {
378 CPUState *cpu = ENV_GET_CPU(env);
379 CPUClass *cc = CPU_GET_CLASS(cpu);
380 CPUArchState **penv;
381 int cpu_index;
382
383 #if defined(CONFIG_USER_ONLY)
384 cpu_list_lock();
385 #endif
386 env->next_cpu = NULL;
387 penv = &first_cpu;
388 cpu_index = 0;
389 while (*penv != NULL) {
390 penv = &(*penv)->next_cpu;
391 cpu_index++;
392 }
393 cpu->cpu_index = cpu_index;
394 cpu->numa_node = 0;
395 QTAILQ_INIT(&env->breakpoints);
396 QTAILQ_INIT(&env->watchpoints);
397 #ifndef CONFIG_USER_ONLY
398 cpu->thread_id = qemu_get_thread_id();
399 #endif
400 *penv = env;
401 #if defined(CONFIG_USER_ONLY)
402 cpu_list_unlock();
403 #endif
404 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
405 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
406 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
407 cpu_save, cpu_load, env);
408 assert(cc->vmsd == NULL);
409 #endif
410 if (cc->vmsd != NULL) {
411 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
412 }
413 }
414
415 #if defined(TARGET_HAS_ICE)
416 #if defined(CONFIG_USER_ONLY)
417 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
418 {
419 tb_invalidate_phys_page_range(pc, pc + 1, 0);
420 }
421 #else
422 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
423 {
424 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
425 (pc & ~TARGET_PAGE_MASK));
426 }
427 #endif
428 #endif /* TARGET_HAS_ICE */
429
430 #if defined(CONFIG_USER_ONLY)
431 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
432
433 {
434 }
435
436 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
437 int flags, CPUWatchpoint **watchpoint)
438 {
439 return -ENOSYS;
440 }
441 #else
442 /* Add a watchpoint. */
443 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
444 int flags, CPUWatchpoint **watchpoint)
445 {
446 target_ulong len_mask = ~(len - 1);
447 CPUWatchpoint *wp;
448
449 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
450 if ((len & (len - 1)) || (addr & ~len_mask) ||
451 len == 0 || len > TARGET_PAGE_SIZE) {
452 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
453 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
454 return -EINVAL;
455 }
456 wp = g_malloc(sizeof(*wp));
457
458 wp->vaddr = addr;
459 wp->len_mask = len_mask;
460 wp->flags = flags;
461
462 /* keep all GDB-injected watchpoints in front */
463 if (flags & BP_GDB)
464 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
465 else
466 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
467
468 tlb_flush_page(env, addr);
469
470 if (watchpoint)
471 *watchpoint = wp;
472 return 0;
473 }
474
475 /* Remove a specific watchpoint. */
476 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
477 int flags)
478 {
479 target_ulong len_mask = ~(len - 1);
480 CPUWatchpoint *wp;
481
482 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
483 if (addr == wp->vaddr && len_mask == wp->len_mask
484 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
485 cpu_watchpoint_remove_by_ref(env, wp);
486 return 0;
487 }
488 }
489 return -ENOENT;
490 }
491
492 /* Remove a specific watchpoint by reference. */
493 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
494 {
495 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
496
497 tlb_flush_page(env, watchpoint->vaddr);
498
499 g_free(watchpoint);
500 }
501
502 /* Remove all matching watchpoints. */
503 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
504 {
505 CPUWatchpoint *wp, *next;
506
507 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
508 if (wp->flags & mask)
509 cpu_watchpoint_remove_by_ref(env, wp);
510 }
511 }
512 #endif
513
514 /* Add a breakpoint. */
515 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
516 CPUBreakpoint **breakpoint)
517 {
518 #if defined(TARGET_HAS_ICE)
519 CPUBreakpoint *bp;
520
521 bp = g_malloc(sizeof(*bp));
522
523 bp->pc = pc;
524 bp->flags = flags;
525
526 /* keep all GDB-injected breakpoints in front */
527 if (flags & BP_GDB)
528 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
529 else
530 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
531
532 breakpoint_invalidate(env, pc);
533
534 if (breakpoint)
535 *breakpoint = bp;
536 return 0;
537 #else
538 return -ENOSYS;
539 #endif
540 }
541
542 /* Remove a specific breakpoint. */
543 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
544 {
545 #if defined(TARGET_HAS_ICE)
546 CPUBreakpoint *bp;
547
548 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
549 if (bp->pc == pc && bp->flags == flags) {
550 cpu_breakpoint_remove_by_ref(env, bp);
551 return 0;
552 }
553 }
554 return -ENOENT;
555 #else
556 return -ENOSYS;
557 #endif
558 }
559
560 /* Remove a specific breakpoint by reference. */
561 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
562 {
563 #if defined(TARGET_HAS_ICE)
564 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
565
566 breakpoint_invalidate(env, breakpoint->pc);
567
568 g_free(breakpoint);
569 #endif
570 }
571
572 /* Remove all matching breakpoints. */
573 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
574 {
575 #if defined(TARGET_HAS_ICE)
576 CPUBreakpoint *bp, *next;
577
578 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
579 if (bp->flags & mask)
580 cpu_breakpoint_remove_by_ref(env, bp);
581 }
582 #endif
583 }
584
585 /* enable or disable single step mode. EXCP_DEBUG is returned by the
586 CPU loop after each instruction */
587 void cpu_single_step(CPUArchState *env, int enabled)
588 {
589 #if defined(TARGET_HAS_ICE)
590 if (env->singlestep_enabled != enabled) {
591 env->singlestep_enabled = enabled;
592 if (kvm_enabled())
593 kvm_update_guest_debug(env, 0);
594 else {
595 /* must flush all the translated code to avoid inconsistencies */
596 /* XXX: only flush what is necessary */
597 tb_flush(env);
598 }
599 }
600 #endif
601 }
602
603 void cpu_abort(CPUArchState *env, const char *fmt, ...)
604 {
605 CPUState *cpu = ENV_GET_CPU(env);
606 va_list ap;
607 va_list ap2;
608
609 va_start(ap, fmt);
610 va_copy(ap2, ap);
611 fprintf(stderr, "qemu: fatal: ");
612 vfprintf(stderr, fmt, ap);
613 fprintf(stderr, "\n");
614 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
615 if (qemu_log_enabled()) {
616 qemu_log("qemu: fatal: ");
617 qemu_log_vprintf(fmt, ap2);
618 qemu_log("\n");
619 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
620 qemu_log_flush();
621 qemu_log_close();
622 }
623 va_end(ap2);
624 va_end(ap);
625 #if defined(CONFIG_USER_ONLY)
626 {
627 struct sigaction act;
628 sigfillset(&act.sa_mask);
629 act.sa_handler = SIG_DFL;
630 sigaction(SIGABRT, &act, NULL);
631 }
632 #endif
633 abort();
634 }
635
636 CPUArchState *cpu_copy(CPUArchState *env)
637 {
638 CPUArchState *new_env = cpu_init(env->cpu_model_str);
639 CPUArchState *next_cpu = new_env->next_cpu;
640 #if defined(TARGET_HAS_ICE)
641 CPUBreakpoint *bp;
642 CPUWatchpoint *wp;
643 #endif
644
645 memcpy(new_env, env, sizeof(CPUArchState));
646
647 /* Preserve chaining. */
648 new_env->next_cpu = next_cpu;
649
650 /* Clone all break/watchpoints.
651 Note: Once we support ptrace with hw-debug register access, make sure
652 BP_CPU break/watchpoints are handled correctly on clone. */
653 QTAILQ_INIT(&env->breakpoints);
654 QTAILQ_INIT(&env->watchpoints);
655 #if defined(TARGET_HAS_ICE)
656 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
657 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
658 }
659 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
660 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
661 wp->flags, NULL);
662 }
663 #endif
664
665 return new_env;
666 }
667
668 #if !defined(CONFIG_USER_ONLY)
669 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
670 uintptr_t length)
671 {
672 uintptr_t start1;
673
674 /* we modify the TLB cache so that the dirty bit will be set again
675 when accessing the range */
676 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
677 /* Check that we don't span multiple blocks - this breaks the
678 address comparisons below. */
679 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
680 != (end - 1) - start) {
681 abort();
682 }
683 cpu_tlb_reset_dirty_all(start1, length);
684
685 }
686
687 /* Note: start and end must be within the same ram block. */
688 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
689 int dirty_flags)
690 {
691 uintptr_t length;
692
693 start &= TARGET_PAGE_MASK;
694 end = TARGET_PAGE_ALIGN(end);
695
696 length = end - start;
697 if (length == 0)
698 return;
699 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
700
701 if (tcg_enabled()) {
702 tlb_reset_dirty_range_all(start, end, length);
703 }
704 }
705
706 static int cpu_physical_memory_set_dirty_tracking(int enable)
707 {
708 int ret = 0;
709 in_migration = enable;
710 return ret;
711 }
712
713 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
714 MemoryRegionSection *section,
715 target_ulong vaddr,
716 hwaddr paddr, hwaddr xlat,
717 int prot,
718 target_ulong *address)
719 {
720 hwaddr iotlb;
721 CPUWatchpoint *wp;
722
723 if (memory_region_is_ram(section->mr)) {
724 /* Normal RAM. */
725 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
726 + xlat;
727 if (!section->readonly) {
728 iotlb |= PHYS_SECTION_NOTDIRTY;
729 } else {
730 iotlb |= PHYS_SECTION_ROM;
731 }
732 } else {
733 iotlb = section - cur_map.sections;
734 iotlb += xlat;
735 }
736
737 /* Make accesses to pages with watchpoints go via the
738 watchpoint trap routines. */
739 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
740 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
741 /* Avoid trapping reads of pages with a write breakpoint. */
742 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
743 iotlb = PHYS_SECTION_WATCH + paddr;
744 *address |= TLB_MMIO;
745 break;
746 }
747 }
748 }
749
750 return iotlb;
751 }
752 #endif /* defined(CONFIG_USER_ONLY) */
753
754 #if !defined(CONFIG_USER_ONLY)
755
756 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
757 uint16_t section);
758 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
759
760 static uint16_t phys_section_add(MemoryRegionSection *section)
761 {
762 /* The physical section number is ORed with a page-aligned
763 * pointer to produce the iotlb entries. Thus it should
764 * never overflow into the page-aligned value.
765 */
766 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
767
768 if (next_map.sections_nb == next_map.sections_nb_alloc) {
769 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
770 16);
771 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
772 next_map.sections_nb_alloc);
773 }
774 next_map.sections[next_map.sections_nb] = *section;
775 memory_region_ref(section->mr);
776 return next_map.sections_nb++;
777 }
778
779 static void phys_section_destroy(MemoryRegion *mr)
780 {
781 memory_region_unref(mr);
782
783 if (mr->subpage) {
784 subpage_t *subpage = container_of(mr, subpage_t, iomem);
785 memory_region_destroy(&subpage->iomem);
786 g_free(subpage);
787 }
788 }
789
790 static void phys_sections_clear(PhysPageMap *map)
791 {
792 while (map->sections_nb > 0) {
793 MemoryRegionSection *section = &map->sections[--map->sections_nb];
794 phys_section_destroy(section->mr);
795 }
796 g_free(map->sections);
797 g_free(map->nodes);
798 }
799
800 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
801 {
802 subpage_t *subpage;
803 hwaddr base = section->offset_within_address_space
804 & TARGET_PAGE_MASK;
805 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
806 next_map.nodes, next_map.sections);
807 MemoryRegionSection subsection = {
808 .offset_within_address_space = base,
809 .size = int128_make64(TARGET_PAGE_SIZE),
810 };
811 hwaddr start, end;
812
813 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
814
815 if (!(existing->mr->subpage)) {
816 subpage = subpage_init(d->as, base);
817 subsection.mr = &subpage->iomem;
818 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
819 phys_section_add(&subsection));
820 } else {
821 subpage = container_of(existing->mr, subpage_t, iomem);
822 }
823 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
824 end = start + int128_get64(section->size) - 1;
825 subpage_register(subpage, start, end, phys_section_add(section));
826 }
827
828
829 static void register_multipage(AddressSpaceDispatch *d,
830 MemoryRegionSection *section)
831 {
832 hwaddr start_addr = section->offset_within_address_space;
833 uint16_t section_index = phys_section_add(section);
834 uint64_t num_pages = int128_get64(int128_rshift(section->size,
835 TARGET_PAGE_BITS));
836
837 assert(num_pages);
838 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
839 }
840
841 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
842 {
843 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
844 AddressSpaceDispatch *d = as->next_dispatch;
845 MemoryRegionSection now = *section, remain = *section;
846 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
847
848 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
849 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
850 - now.offset_within_address_space;
851
852 now.size = int128_min(int128_make64(left), now.size);
853 register_subpage(d, &now);
854 } else {
855 now.size = int128_zero();
856 }
857 while (int128_ne(remain.size, now.size)) {
858 remain.size = int128_sub(remain.size, now.size);
859 remain.offset_within_address_space += int128_get64(now.size);
860 remain.offset_within_region += int128_get64(now.size);
861 now = remain;
862 if (int128_lt(remain.size, page_size)) {
863 register_subpage(d, &now);
864 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
865 now.size = page_size;
866 register_subpage(d, &now);
867 } else {
868 now.size = int128_and(now.size, int128_neg(page_size));
869 register_multipage(d, &now);
870 }
871 }
872 }
873
874 void qemu_flush_coalesced_mmio_buffer(void)
875 {
876 if (kvm_enabled())
877 kvm_flush_coalesced_mmio_buffer();
878 }
879
880 void qemu_mutex_lock_ramlist(void)
881 {
882 qemu_mutex_lock(&ram_list.mutex);
883 }
884
885 void qemu_mutex_unlock_ramlist(void)
886 {
887 qemu_mutex_unlock(&ram_list.mutex);
888 }
889
890 #if defined(__linux__) && !defined(TARGET_S390X)
891
892 #include <sys/vfs.h>
893
894 #define HUGETLBFS_MAGIC 0x958458f6
895
896 static long gethugepagesize(const char *path)
897 {
898 struct statfs fs;
899 int ret;
900
901 do {
902 ret = statfs(path, &fs);
903 } while (ret != 0 && errno == EINTR);
904
905 if (ret != 0) {
906 perror(path);
907 return 0;
908 }
909
910 if (fs.f_type != HUGETLBFS_MAGIC)
911 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
912
913 return fs.f_bsize;
914 }
915
916 static void *file_ram_alloc(RAMBlock *block,
917 ram_addr_t memory,
918 const char *path)
919 {
920 char *filename;
921 char *sanitized_name;
922 char *c;
923 void *area;
924 int fd;
925 #ifdef MAP_POPULATE
926 int flags;
927 #endif
928 unsigned long hpagesize;
929
930 hpagesize = gethugepagesize(path);
931 if (!hpagesize) {
932 return NULL;
933 }
934
935 if (memory < hpagesize) {
936 return NULL;
937 }
938
939 if (kvm_enabled() && !kvm_has_sync_mmu()) {
940 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
941 return NULL;
942 }
943
944 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
945 sanitized_name = g_strdup(block->mr->name);
946 for (c = sanitized_name; *c != '\0'; c++) {
947 if (*c == '/')
948 *c = '_';
949 }
950
951 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
952 sanitized_name);
953 g_free(sanitized_name);
954
955 fd = mkstemp(filename);
956 if (fd < 0) {
957 perror("unable to create backing store for hugepages");
958 g_free(filename);
959 return NULL;
960 }
961 unlink(filename);
962 g_free(filename);
963
964 memory = (memory+hpagesize-1) & ~(hpagesize-1);
965
966 /*
967 * ftruncate is not supported by hugetlbfs in older
968 * hosts, so don't bother bailing out on errors.
969 * If anything goes wrong with it under other filesystems,
970 * mmap will fail.
971 */
972 if (ftruncate(fd, memory))
973 perror("ftruncate");
974
975 #ifdef MAP_POPULATE
976 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
977 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
978 * to sidestep this quirk.
979 */
980 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
981 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
982 #else
983 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
984 #endif
985 if (area == MAP_FAILED) {
986 perror("file_ram_alloc: can't mmap RAM pages");
987 close(fd);
988 return (NULL);
989 }
990 block->fd = fd;
991 return area;
992 }
993 #endif
994
995 static ram_addr_t find_ram_offset(ram_addr_t size)
996 {
997 RAMBlock *block, *next_block;
998 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
999
1000 assert(size != 0); /* it would hand out same offset multiple times */
1001
1002 if (QTAILQ_EMPTY(&ram_list.blocks))
1003 return 0;
1004
1005 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1006 ram_addr_t end, next = RAM_ADDR_MAX;
1007
1008 end = block->offset + block->length;
1009
1010 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1011 if (next_block->offset >= end) {
1012 next = MIN(next, next_block->offset);
1013 }
1014 }
1015 if (next - end >= size && next - end < mingap) {
1016 offset = end;
1017 mingap = next - end;
1018 }
1019 }
1020
1021 if (offset == RAM_ADDR_MAX) {
1022 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1023 (uint64_t)size);
1024 abort();
1025 }
1026
1027 return offset;
1028 }
1029
1030 ram_addr_t last_ram_offset(void)
1031 {
1032 RAMBlock *block;
1033 ram_addr_t last = 0;
1034
1035 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1036 last = MAX(last, block->offset + block->length);
1037
1038 return last;
1039 }
1040
1041 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1042 {
1043 int ret;
1044 QemuOpts *machine_opts;
1045
1046 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1047 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1048 if (machine_opts &&
1049 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1050 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1051 if (ret) {
1052 perror("qemu_madvise");
1053 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1054 "but dump_guest_core=off specified\n");
1055 }
1056 }
1057 }
1058
1059 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1060 {
1061 RAMBlock *new_block, *block;
1062
1063 new_block = NULL;
1064 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1065 if (block->offset == addr) {
1066 new_block = block;
1067 break;
1068 }
1069 }
1070 assert(new_block);
1071 assert(!new_block->idstr[0]);
1072
1073 if (dev) {
1074 char *id = qdev_get_dev_path(dev);
1075 if (id) {
1076 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1077 g_free(id);
1078 }
1079 }
1080 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1081
1082 /* This assumes the iothread lock is taken here too. */
1083 qemu_mutex_lock_ramlist();
1084 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1085 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1086 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1087 new_block->idstr);
1088 abort();
1089 }
1090 }
1091 qemu_mutex_unlock_ramlist();
1092 }
1093
1094 static int memory_try_enable_merging(void *addr, size_t len)
1095 {
1096 QemuOpts *opts;
1097
1098 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1099 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1100 /* disabled by the user */
1101 return 0;
1102 }
1103
1104 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1105 }
1106
1107 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1108 MemoryRegion *mr)
1109 {
1110 RAMBlock *block, *new_block;
1111
1112 size = TARGET_PAGE_ALIGN(size);
1113 new_block = g_malloc0(sizeof(*new_block));
1114
1115 /* This assumes the iothread lock is taken here too. */
1116 qemu_mutex_lock_ramlist();
1117 new_block->mr = mr;
1118 new_block->offset = find_ram_offset(size);
1119 if (host) {
1120 new_block->host = host;
1121 new_block->flags |= RAM_PREALLOC_MASK;
1122 } else {
1123 if (mem_path) {
1124 #if defined (__linux__) && !defined(TARGET_S390X)
1125 new_block->host = file_ram_alloc(new_block, size, mem_path);
1126 if (!new_block->host) {
1127 new_block->host = qemu_anon_ram_alloc(size);
1128 memory_try_enable_merging(new_block->host, size);
1129 }
1130 #else
1131 fprintf(stderr, "-mem-path option unsupported\n");
1132 exit(1);
1133 #endif
1134 } else {
1135 if (xen_enabled()) {
1136 xen_ram_alloc(new_block->offset, size, mr);
1137 } else if (kvm_enabled()) {
1138 /* some s390/kvm configurations have special constraints */
1139 new_block->host = kvm_ram_alloc(size);
1140 } else {
1141 new_block->host = qemu_anon_ram_alloc(size);
1142 }
1143 memory_try_enable_merging(new_block->host, size);
1144 }
1145 }
1146 new_block->length = size;
1147
1148 /* Keep the list sorted from biggest to smallest block. */
1149 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1150 if (block->length < new_block->length) {
1151 break;
1152 }
1153 }
1154 if (block) {
1155 QTAILQ_INSERT_BEFORE(block, new_block, next);
1156 } else {
1157 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1158 }
1159 ram_list.mru_block = NULL;
1160
1161 ram_list.version++;
1162 qemu_mutex_unlock_ramlist();
1163
1164 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1165 last_ram_offset() >> TARGET_PAGE_BITS);
1166 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1167 0, size >> TARGET_PAGE_BITS);
1168 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1169
1170 qemu_ram_setup_dump(new_block->host, size);
1171 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1172
1173 if (kvm_enabled())
1174 kvm_setup_guest_memory(new_block->host, size);
1175
1176 return new_block->offset;
1177 }
1178
1179 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1180 {
1181 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1182 }
1183
1184 void qemu_ram_free_from_ptr(ram_addr_t addr)
1185 {
1186 RAMBlock *block;
1187
1188 /* This assumes the iothread lock is taken here too. */
1189 qemu_mutex_lock_ramlist();
1190 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1191 if (addr == block->offset) {
1192 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1193 ram_list.mru_block = NULL;
1194 ram_list.version++;
1195 g_free(block);
1196 break;
1197 }
1198 }
1199 qemu_mutex_unlock_ramlist();
1200 }
1201
1202 void qemu_ram_free(ram_addr_t addr)
1203 {
1204 RAMBlock *block;
1205
1206 /* This assumes the iothread lock is taken here too. */
1207 qemu_mutex_lock_ramlist();
1208 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1209 if (addr == block->offset) {
1210 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1211 ram_list.mru_block = NULL;
1212 ram_list.version++;
1213 if (block->flags & RAM_PREALLOC_MASK) {
1214 ;
1215 } else if (mem_path) {
1216 #if defined (__linux__) && !defined(TARGET_S390X)
1217 if (block->fd) {
1218 munmap(block->host, block->length);
1219 close(block->fd);
1220 } else {
1221 qemu_anon_ram_free(block->host, block->length);
1222 }
1223 #else
1224 abort();
1225 #endif
1226 } else {
1227 if (xen_enabled()) {
1228 xen_invalidate_map_cache_entry(block->host);
1229 } else {
1230 qemu_anon_ram_free(block->host, block->length);
1231 }
1232 }
1233 g_free(block);
1234 break;
1235 }
1236 }
1237 qemu_mutex_unlock_ramlist();
1238
1239 }
1240
1241 #ifndef _WIN32
1242 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1243 {
1244 RAMBlock *block;
1245 ram_addr_t offset;
1246 int flags;
1247 void *area, *vaddr;
1248
1249 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1250 offset = addr - block->offset;
1251 if (offset < block->length) {
1252 vaddr = block->host + offset;
1253 if (block->flags & RAM_PREALLOC_MASK) {
1254 ;
1255 } else {
1256 flags = MAP_FIXED;
1257 munmap(vaddr, length);
1258 if (mem_path) {
1259 #if defined(__linux__) && !defined(TARGET_S390X)
1260 if (block->fd) {
1261 #ifdef MAP_POPULATE
1262 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1263 MAP_PRIVATE;
1264 #else
1265 flags |= MAP_PRIVATE;
1266 #endif
1267 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1268 flags, block->fd, offset);
1269 } else {
1270 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1271 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1272 flags, -1, 0);
1273 }
1274 #else
1275 abort();
1276 #endif
1277 } else {
1278 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1279 flags |= MAP_SHARED | MAP_ANONYMOUS;
1280 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1281 flags, -1, 0);
1282 #else
1283 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1284 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1285 flags, -1, 0);
1286 #endif
1287 }
1288 if (area != vaddr) {
1289 fprintf(stderr, "Could not remap addr: "
1290 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1291 length, addr);
1292 exit(1);
1293 }
1294 memory_try_enable_merging(vaddr, length);
1295 qemu_ram_setup_dump(vaddr, length);
1296 }
1297 return;
1298 }
1299 }
1300 }
1301 #endif /* !_WIN32 */
1302
1303 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1304 {
1305 RAMBlock *block;
1306
1307 /* The list is protected by the iothread lock here. */
1308 block = ram_list.mru_block;
1309 if (block && addr - block->offset < block->length) {
1310 goto found;
1311 }
1312 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1313 if (addr - block->offset < block->length) {
1314 goto found;
1315 }
1316 }
1317
1318 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1319 abort();
1320
1321 found:
1322 ram_list.mru_block = block;
1323 return block;
1324 }
1325
1326 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1327 With the exception of the softmmu code in this file, this should
1328 only be used for local memory (e.g. video ram) that the device owns,
1329 and knows it isn't going to access beyond the end of the block.
1330
1331 It should not be used for general purpose DMA.
1332 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1333 */
1334 void *qemu_get_ram_ptr(ram_addr_t addr)
1335 {
1336 RAMBlock *block = qemu_get_ram_block(addr);
1337
1338 if (xen_enabled()) {
1339 /* We need to check if the requested address is in the RAM
1340 * because we don't want to map the entire memory in QEMU.
1341 * In that case just map until the end of the page.
1342 */
1343 if (block->offset == 0) {
1344 return xen_map_cache(addr, 0, 0);
1345 } else if (block->host == NULL) {
1346 block->host =
1347 xen_map_cache(block->offset, block->length, 1);
1348 }
1349 }
1350 return block->host + (addr - block->offset);
1351 }
1352
1353 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1354 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1355 *
1356 * ??? Is this still necessary?
1357 */
1358 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1359 {
1360 RAMBlock *block;
1361
1362 /* The list is protected by the iothread lock here. */
1363 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1364 if (addr - block->offset < block->length) {
1365 if (xen_enabled()) {
1366 /* We need to check if the requested address is in the RAM
1367 * because we don't want to map the entire memory in QEMU.
1368 * In that case just map until the end of the page.
1369 */
1370 if (block->offset == 0) {
1371 return xen_map_cache(addr, 0, 0);
1372 } else if (block->host == NULL) {
1373 block->host =
1374 xen_map_cache(block->offset, block->length, 1);
1375 }
1376 }
1377 return block->host + (addr - block->offset);
1378 }
1379 }
1380
1381 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1382 abort();
1383
1384 return NULL;
1385 }
1386
1387 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1388 * but takes a size argument */
1389 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1390 {
1391 if (*size == 0) {
1392 return NULL;
1393 }
1394 if (xen_enabled()) {
1395 return xen_map_cache(addr, *size, 1);
1396 } else {
1397 RAMBlock *block;
1398
1399 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1400 if (addr - block->offset < block->length) {
1401 if (addr - block->offset + *size > block->length)
1402 *size = block->length - addr + block->offset;
1403 return block->host + (addr - block->offset);
1404 }
1405 }
1406
1407 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1408 abort();
1409 }
1410 }
1411
1412 /* Some of the softmmu routines need to translate from a host pointer
1413 (typically a TLB entry) back to a ram offset. */
1414 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1415 {
1416 RAMBlock *block;
1417 uint8_t *host = ptr;
1418
1419 if (xen_enabled()) {
1420 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1421 return qemu_get_ram_block(*ram_addr)->mr;
1422 }
1423
1424 block = ram_list.mru_block;
1425 if (block && block->host && host - block->host < block->length) {
1426 goto found;
1427 }
1428
1429 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1430 /* This case append when the block is not mapped. */
1431 if (block->host == NULL) {
1432 continue;
1433 }
1434 if (host - block->host < block->length) {
1435 goto found;
1436 }
1437 }
1438
1439 return NULL;
1440
1441 found:
1442 *ram_addr = block->offset + (host - block->host);
1443 return block->mr;
1444 }
1445
1446 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1447 uint64_t val, unsigned size)
1448 {
1449 int dirty_flags;
1450 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1451 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1452 tb_invalidate_phys_page_fast(ram_addr, size);
1453 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1454 }
1455 switch (size) {
1456 case 1:
1457 stb_p(qemu_get_ram_ptr(ram_addr), val);
1458 break;
1459 case 2:
1460 stw_p(qemu_get_ram_ptr(ram_addr), val);
1461 break;
1462 case 4:
1463 stl_p(qemu_get_ram_ptr(ram_addr), val);
1464 break;
1465 default:
1466 abort();
1467 }
1468 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1469 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1470 /* we remove the notdirty callback only if the code has been
1471 flushed */
1472 if (dirty_flags == 0xff)
1473 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1474 }
1475
1476 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1477 unsigned size, bool is_write)
1478 {
1479 return is_write;
1480 }
1481
1482 static const MemoryRegionOps notdirty_mem_ops = {
1483 .write = notdirty_mem_write,
1484 .valid.accepts = notdirty_mem_accepts,
1485 .endianness = DEVICE_NATIVE_ENDIAN,
1486 };
1487
1488 /* Generate a debug exception if a watchpoint has been hit. */
1489 static void check_watchpoint(int offset, int len_mask, int flags)
1490 {
1491 CPUArchState *env = cpu_single_env;
1492 target_ulong pc, cs_base;
1493 target_ulong vaddr;
1494 CPUWatchpoint *wp;
1495 int cpu_flags;
1496
1497 if (env->watchpoint_hit) {
1498 /* We re-entered the check after replacing the TB. Now raise
1499 * the debug interrupt so that is will trigger after the
1500 * current instruction. */
1501 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1502 return;
1503 }
1504 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1505 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1506 if ((vaddr == (wp->vaddr & len_mask) ||
1507 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1508 wp->flags |= BP_WATCHPOINT_HIT;
1509 if (!env->watchpoint_hit) {
1510 env->watchpoint_hit = wp;
1511 tb_check_watchpoint(env);
1512 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1513 env->exception_index = EXCP_DEBUG;
1514 cpu_loop_exit(env);
1515 } else {
1516 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1517 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1518 cpu_resume_from_signal(env, NULL);
1519 }
1520 }
1521 } else {
1522 wp->flags &= ~BP_WATCHPOINT_HIT;
1523 }
1524 }
1525 }
1526
1527 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1528 so these check for a hit then pass through to the normal out-of-line
1529 phys routines. */
1530 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1531 unsigned size)
1532 {
1533 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1534 switch (size) {
1535 case 1: return ldub_phys(addr);
1536 case 2: return lduw_phys(addr);
1537 case 4: return ldl_phys(addr);
1538 default: abort();
1539 }
1540 }
1541
1542 static void watch_mem_write(void *opaque, hwaddr addr,
1543 uint64_t val, unsigned size)
1544 {
1545 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1546 switch (size) {
1547 case 1:
1548 stb_phys(addr, val);
1549 break;
1550 case 2:
1551 stw_phys(addr, val);
1552 break;
1553 case 4:
1554 stl_phys(addr, val);
1555 break;
1556 default: abort();
1557 }
1558 }
1559
1560 static const MemoryRegionOps watch_mem_ops = {
1561 .read = watch_mem_read,
1562 .write = watch_mem_write,
1563 .endianness = DEVICE_NATIVE_ENDIAN,
1564 };
1565
1566 static uint64_t subpage_read(void *opaque, hwaddr addr,
1567 unsigned len)
1568 {
1569 subpage_t *subpage = opaque;
1570 uint8_t buf[4];
1571
1572 #if defined(DEBUG_SUBPAGE)
1573 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1574 subpage, len, addr);
1575 #endif
1576 address_space_read(subpage->as, addr + subpage->base, buf, len);
1577 switch (len) {
1578 case 1:
1579 return ldub_p(buf);
1580 case 2:
1581 return lduw_p(buf);
1582 case 4:
1583 return ldl_p(buf);
1584 default:
1585 abort();
1586 }
1587 }
1588
1589 static void subpage_write(void *opaque, hwaddr addr,
1590 uint64_t value, unsigned len)
1591 {
1592 subpage_t *subpage = opaque;
1593 uint8_t buf[4];
1594
1595 #if defined(DEBUG_SUBPAGE)
1596 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1597 " value %"PRIx64"\n",
1598 __func__, subpage, len, addr, value);
1599 #endif
1600 switch (len) {
1601 case 1:
1602 stb_p(buf, value);
1603 break;
1604 case 2:
1605 stw_p(buf, value);
1606 break;
1607 case 4:
1608 stl_p(buf, value);
1609 break;
1610 default:
1611 abort();
1612 }
1613 address_space_write(subpage->as, addr + subpage->base, buf, len);
1614 }
1615
1616 static bool subpage_accepts(void *opaque, hwaddr addr,
1617 unsigned size, bool is_write)
1618 {
1619 subpage_t *subpage = opaque;
1620 #if defined(DEBUG_SUBPAGE)
1621 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1622 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1623 #endif
1624
1625 return address_space_access_valid(subpage->as, addr + subpage->base,
1626 size, is_write);
1627 }
1628
1629 static const MemoryRegionOps subpage_ops = {
1630 .read = subpage_read,
1631 .write = subpage_write,
1632 .valid.accepts = subpage_accepts,
1633 .endianness = DEVICE_NATIVE_ENDIAN,
1634 };
1635
1636 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1637 uint16_t section)
1638 {
1639 int idx, eidx;
1640
1641 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1642 return -1;
1643 idx = SUBPAGE_IDX(start);
1644 eidx = SUBPAGE_IDX(end);
1645 #if defined(DEBUG_SUBPAGE)
1646 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1647 mmio, start, end, idx, eidx, memory);
1648 #endif
1649 for (; idx <= eidx; idx++) {
1650 mmio->sub_section[idx] = section;
1651 }
1652
1653 return 0;
1654 }
1655
1656 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1657 {
1658 subpage_t *mmio;
1659
1660 mmio = g_malloc0(sizeof(subpage_t));
1661
1662 mmio->as = as;
1663 mmio->base = base;
1664 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1665 "subpage", TARGET_PAGE_SIZE);
1666 mmio->iomem.subpage = true;
1667 #if defined(DEBUG_SUBPAGE)
1668 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1669 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1670 #endif
1671 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1672
1673 return mmio;
1674 }
1675
1676 static uint16_t dummy_section(MemoryRegion *mr)
1677 {
1678 MemoryRegionSection section = {
1679 .mr = mr,
1680 .offset_within_address_space = 0,
1681 .offset_within_region = 0,
1682 .size = int128_2_64(),
1683 };
1684
1685 return phys_section_add(&section);
1686 }
1687
1688 MemoryRegion *iotlb_to_region(hwaddr index)
1689 {
1690 return cur_map.sections[index & ~TARGET_PAGE_MASK].mr;
1691 }
1692
1693 static void io_mem_init(void)
1694 {
1695 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1696 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1697 "unassigned", UINT64_MAX);
1698 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1699 "notdirty", UINT64_MAX);
1700 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1701 "watch", UINT64_MAX);
1702 }
1703
1704 static void mem_begin(MemoryListener *listener)
1705 {
1706 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1707 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1708
1709 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1710 d->as = as;
1711 as->next_dispatch = d;
1712 }
1713
1714 static void mem_commit(MemoryListener *listener)
1715 {
1716 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1717 AddressSpaceDispatch *d = as->dispatch;
1718
1719 /* cur_map will soon be switched to next_map, too. */
1720 as->dispatch = as->next_dispatch;
1721 g_free(d);
1722 }
1723
1724 static void core_begin(MemoryListener *listener)
1725 {
1726 uint16_t n;
1727
1728 memset(&next_map, 0, sizeof(next_map));
1729 n = dummy_section(&io_mem_unassigned);
1730 assert(n == PHYS_SECTION_UNASSIGNED);
1731 n = dummy_section(&io_mem_notdirty);
1732 assert(n == PHYS_SECTION_NOTDIRTY);
1733 n = dummy_section(&io_mem_rom);
1734 assert(n == PHYS_SECTION_ROM);
1735 n = dummy_section(&io_mem_watch);
1736 assert(n == PHYS_SECTION_WATCH);
1737 }
1738
1739 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1740 * All AddressSpaceDispatch instances have switched to the next map.
1741 */
1742 static void core_commit(MemoryListener *listener)
1743 {
1744 PhysPageMap info = cur_map;
1745 cur_map = next_map;
1746 phys_sections_clear(&info);
1747 }
1748
1749 static void tcg_commit(MemoryListener *listener)
1750 {
1751 CPUArchState *env;
1752
1753 /* since each CPU stores ram addresses in its TLB cache, we must
1754 reset the modified entries */
1755 /* XXX: slow ! */
1756 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1757 tlb_flush(env, 1);
1758 }
1759 }
1760
1761 static void core_log_global_start(MemoryListener *listener)
1762 {
1763 cpu_physical_memory_set_dirty_tracking(1);
1764 }
1765
1766 static void core_log_global_stop(MemoryListener *listener)
1767 {
1768 cpu_physical_memory_set_dirty_tracking(0);
1769 }
1770
1771 static MemoryListener core_memory_listener = {
1772 .begin = core_begin,
1773 .commit = core_commit,
1774 .log_global_start = core_log_global_start,
1775 .log_global_stop = core_log_global_stop,
1776 .priority = 1,
1777 };
1778
1779 static MemoryListener tcg_memory_listener = {
1780 .commit = tcg_commit,
1781 };
1782
1783 void address_space_init_dispatch(AddressSpace *as)
1784 {
1785 as->dispatch = NULL;
1786 as->dispatch_listener = (MemoryListener) {
1787 .begin = mem_begin,
1788 .commit = mem_commit,
1789 .region_add = mem_add,
1790 .region_nop = mem_add,
1791 .priority = 0,
1792 };
1793 memory_listener_register(&as->dispatch_listener, as);
1794 }
1795
1796 void address_space_destroy_dispatch(AddressSpace *as)
1797 {
1798 AddressSpaceDispatch *d = as->dispatch;
1799
1800 memory_listener_unregister(&as->dispatch_listener);
1801 g_free(d);
1802 as->dispatch = NULL;
1803 }
1804
1805 static void memory_map_init(void)
1806 {
1807 system_memory = g_malloc(sizeof(*system_memory));
1808 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1809 address_space_init(&address_space_memory, system_memory, "memory");
1810
1811 system_io = g_malloc(sizeof(*system_io));
1812 memory_region_init(system_io, NULL, "io", 65536);
1813 address_space_init(&address_space_io, system_io, "I/O");
1814
1815 memory_listener_register(&core_memory_listener, &address_space_memory);
1816 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1817 }
1818
1819 MemoryRegion *get_system_memory(void)
1820 {
1821 return system_memory;
1822 }
1823
1824 MemoryRegion *get_system_io(void)
1825 {
1826 return system_io;
1827 }
1828
1829 #endif /* !defined(CONFIG_USER_ONLY) */
1830
1831 /* physical memory access (slow version, mainly for debug) */
1832 #if defined(CONFIG_USER_ONLY)
1833 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1834 uint8_t *buf, int len, int is_write)
1835 {
1836 int l, flags;
1837 target_ulong page;
1838 void * p;
1839
1840 while (len > 0) {
1841 page = addr & TARGET_PAGE_MASK;
1842 l = (page + TARGET_PAGE_SIZE) - addr;
1843 if (l > len)
1844 l = len;
1845 flags = page_get_flags(page);
1846 if (!(flags & PAGE_VALID))
1847 return -1;
1848 if (is_write) {
1849 if (!(flags & PAGE_WRITE))
1850 return -1;
1851 /* XXX: this code should not depend on lock_user */
1852 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1853 return -1;
1854 memcpy(p, buf, l);
1855 unlock_user(p, addr, l);
1856 } else {
1857 if (!(flags & PAGE_READ))
1858 return -1;
1859 /* XXX: this code should not depend on lock_user */
1860 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1861 return -1;
1862 memcpy(buf, p, l);
1863 unlock_user(p, addr, 0);
1864 }
1865 len -= l;
1866 buf += l;
1867 addr += l;
1868 }
1869 return 0;
1870 }
1871
1872 #else
1873
1874 static void invalidate_and_set_dirty(hwaddr addr,
1875 hwaddr length)
1876 {
1877 if (!cpu_physical_memory_is_dirty(addr)) {
1878 /* invalidate code */
1879 tb_invalidate_phys_page_range(addr, addr + length, 0);
1880 /* set dirty bit */
1881 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1882 }
1883 xen_modified_memory(addr, length);
1884 }
1885
1886 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1887 {
1888 if (memory_region_is_ram(mr)) {
1889 return !(is_write && mr->readonly);
1890 }
1891 if (memory_region_is_romd(mr)) {
1892 return !is_write;
1893 }
1894
1895 return false;
1896 }
1897
1898 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1899 {
1900 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1901 return 4;
1902 }
1903 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1904 return 2;
1905 }
1906 return 1;
1907 }
1908
1909 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1910 int len, bool is_write)
1911 {
1912 hwaddr l;
1913 uint8_t *ptr;
1914 uint64_t val;
1915 hwaddr addr1;
1916 MemoryRegion *mr;
1917 bool error = false;
1918
1919 while (len > 0) {
1920 l = len;
1921 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1922
1923 if (is_write) {
1924 if (!memory_access_is_direct(mr, is_write)) {
1925 l = memory_access_size(mr, l, addr1);
1926 /* XXX: could force cpu_single_env to NULL to avoid
1927 potential bugs */
1928 if (l == 4) {
1929 /* 32 bit write access */
1930 val = ldl_p(buf);
1931 error |= io_mem_write(mr, addr1, val, 4);
1932 } else if (l == 2) {
1933 /* 16 bit write access */
1934 val = lduw_p(buf);
1935 error |= io_mem_write(mr, addr1, val, 2);
1936 } else {
1937 /* 8 bit write access */
1938 val = ldub_p(buf);
1939 error |= io_mem_write(mr, addr1, val, 1);
1940 }
1941 } else {
1942 addr1 += memory_region_get_ram_addr(mr);
1943 /* RAM case */
1944 ptr = qemu_get_ram_ptr(addr1);
1945 memcpy(ptr, buf, l);
1946 invalidate_and_set_dirty(addr1, l);
1947 }
1948 } else {
1949 if (!memory_access_is_direct(mr, is_write)) {
1950 /* I/O case */
1951 l = memory_access_size(mr, l, addr1);
1952 if (l == 4) {
1953 /* 32 bit read access */
1954 error |= io_mem_read(mr, addr1, &val, 4);
1955 stl_p(buf, val);
1956 } else if (l == 2) {
1957 /* 16 bit read access */
1958 error |= io_mem_read(mr, addr1, &val, 2);
1959 stw_p(buf, val);
1960 } else {
1961 /* 8 bit read access */
1962 error |= io_mem_read(mr, addr1, &val, 1);
1963 stb_p(buf, val);
1964 }
1965 } else {
1966 /* RAM case */
1967 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1968 memcpy(buf, ptr, l);
1969 }
1970 }
1971 len -= l;
1972 buf += l;
1973 addr += l;
1974 }
1975
1976 return error;
1977 }
1978
1979 bool address_space_write(AddressSpace *as, hwaddr addr,
1980 const uint8_t *buf, int len)
1981 {
1982 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1983 }
1984
1985 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1986 {
1987 return address_space_rw(as, addr, buf, len, false);
1988 }
1989
1990
1991 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1992 int len, int is_write)
1993 {
1994 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1995 }
1996
1997 /* used for ROM loading : can write in RAM and ROM */
1998 void cpu_physical_memory_write_rom(hwaddr addr,
1999 const uint8_t *buf, int len)
2000 {
2001 hwaddr l;
2002 uint8_t *ptr;
2003 hwaddr addr1;
2004 MemoryRegion *mr;
2005
2006 while (len > 0) {
2007 l = len;
2008 mr = address_space_translate(&address_space_memory,
2009 addr, &addr1, &l, true);
2010
2011 if (!(memory_region_is_ram(mr) ||
2012 memory_region_is_romd(mr))) {
2013 /* do nothing */
2014 } else {
2015 addr1 += memory_region_get_ram_addr(mr);
2016 /* ROM/RAM case */
2017 ptr = qemu_get_ram_ptr(addr1);
2018 memcpy(ptr, buf, l);
2019 invalidate_and_set_dirty(addr1, l);
2020 }
2021 len -= l;
2022 buf += l;
2023 addr += l;
2024 }
2025 }
2026
2027 typedef struct {
2028 MemoryRegion *mr;
2029 void *buffer;
2030 hwaddr addr;
2031 hwaddr len;
2032 } BounceBuffer;
2033
2034 static BounceBuffer bounce;
2035
2036 typedef struct MapClient {
2037 void *opaque;
2038 void (*callback)(void *opaque);
2039 QLIST_ENTRY(MapClient) link;
2040 } MapClient;
2041
2042 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2043 = QLIST_HEAD_INITIALIZER(map_client_list);
2044
2045 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2046 {
2047 MapClient *client = g_malloc(sizeof(*client));
2048
2049 client->opaque = opaque;
2050 client->callback = callback;
2051 QLIST_INSERT_HEAD(&map_client_list, client, link);
2052 return client;
2053 }
2054
2055 static void cpu_unregister_map_client(void *_client)
2056 {
2057 MapClient *client = (MapClient *)_client;
2058
2059 QLIST_REMOVE(client, link);
2060 g_free(client);
2061 }
2062
2063 static void cpu_notify_map_clients(void)
2064 {
2065 MapClient *client;
2066
2067 while (!QLIST_EMPTY(&map_client_list)) {
2068 client = QLIST_FIRST(&map_client_list);
2069 client->callback(client->opaque);
2070 cpu_unregister_map_client(client);
2071 }
2072 }
2073
2074 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2075 {
2076 MemoryRegion *mr;
2077 hwaddr l, xlat;
2078
2079 while (len > 0) {
2080 l = len;
2081 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2082 if (!memory_access_is_direct(mr, is_write)) {
2083 l = memory_access_size(mr, l, addr);
2084 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2085 return false;
2086 }
2087 }
2088
2089 len -= l;
2090 addr += l;
2091 }
2092 return true;
2093 }
2094
2095 /* Map a physical memory region into a host virtual address.
2096 * May map a subset of the requested range, given by and returned in *plen.
2097 * May return NULL if resources needed to perform the mapping are exhausted.
2098 * Use only for reads OR writes - not for read-modify-write operations.
2099 * Use cpu_register_map_client() to know when retrying the map operation is
2100 * likely to succeed.
2101 */
2102 void *address_space_map(AddressSpace *as,
2103 hwaddr addr,
2104 hwaddr *plen,
2105 bool is_write)
2106 {
2107 hwaddr len = *plen;
2108 hwaddr done = 0;
2109 hwaddr l, xlat, base;
2110 MemoryRegion *mr, *this_mr;
2111 ram_addr_t raddr;
2112
2113 if (len == 0) {
2114 return NULL;
2115 }
2116
2117 l = len;
2118 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2119 if (!memory_access_is_direct(mr, is_write)) {
2120 if (bounce.buffer) {
2121 return NULL;
2122 }
2123 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2124 bounce.addr = addr;
2125 bounce.len = l;
2126
2127 memory_region_ref(mr);
2128 bounce.mr = mr;
2129 if (!is_write) {
2130 address_space_read(as, addr, bounce.buffer, l);
2131 }
2132
2133 *plen = l;
2134 return bounce.buffer;
2135 }
2136
2137 base = xlat;
2138 raddr = memory_region_get_ram_addr(mr);
2139
2140 for (;;) {
2141 len -= l;
2142 addr += l;
2143 done += l;
2144 if (len == 0) {
2145 break;
2146 }
2147
2148 l = len;
2149 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2150 if (this_mr != mr || xlat != base + done) {
2151 break;
2152 }
2153 }
2154
2155 memory_region_ref(mr);
2156 *plen = done;
2157 return qemu_ram_ptr_length(raddr + base, plen);
2158 }
2159
2160 /* Unmaps a memory region previously mapped by address_space_map().
2161 * Will also mark the memory as dirty if is_write == 1. access_len gives
2162 * the amount of memory that was actually read or written by the caller.
2163 */
2164 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2165 int is_write, hwaddr access_len)
2166 {
2167 if (buffer != bounce.buffer) {
2168 MemoryRegion *mr;
2169 ram_addr_t addr1;
2170
2171 mr = qemu_ram_addr_from_host(buffer, &addr1);
2172 assert(mr != NULL);
2173 if (is_write) {
2174 while (access_len) {
2175 unsigned l;
2176 l = TARGET_PAGE_SIZE;
2177 if (l > access_len)
2178 l = access_len;
2179 invalidate_and_set_dirty(addr1, l);
2180 addr1 += l;
2181 access_len -= l;
2182 }
2183 }
2184 if (xen_enabled()) {
2185 xen_invalidate_map_cache_entry(buffer);
2186 }
2187 memory_region_unref(mr);
2188 return;
2189 }
2190 if (is_write) {
2191 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2192 }
2193 qemu_vfree(bounce.buffer);
2194 bounce.buffer = NULL;
2195 memory_region_unref(bounce.mr);
2196 cpu_notify_map_clients();
2197 }
2198
2199 void *cpu_physical_memory_map(hwaddr addr,
2200 hwaddr *plen,
2201 int is_write)
2202 {
2203 return address_space_map(&address_space_memory, addr, plen, is_write);
2204 }
2205
2206 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2207 int is_write, hwaddr access_len)
2208 {
2209 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2210 }
2211
2212 /* warning: addr must be aligned */
2213 static inline uint32_t ldl_phys_internal(hwaddr addr,
2214 enum device_endian endian)
2215 {
2216 uint8_t *ptr;
2217 uint64_t val;
2218 MemoryRegion *mr;
2219 hwaddr l = 4;
2220 hwaddr addr1;
2221
2222 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2223 false);
2224 if (l < 4 || !memory_access_is_direct(mr, false)) {
2225 /* I/O case */
2226 io_mem_read(mr, addr1, &val, 4);
2227 #if defined(TARGET_WORDS_BIGENDIAN)
2228 if (endian == DEVICE_LITTLE_ENDIAN) {
2229 val = bswap32(val);
2230 }
2231 #else
2232 if (endian == DEVICE_BIG_ENDIAN) {
2233 val = bswap32(val);
2234 }
2235 #endif
2236 } else {
2237 /* RAM case */
2238 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2239 & TARGET_PAGE_MASK)
2240 + addr1);
2241 switch (endian) {
2242 case DEVICE_LITTLE_ENDIAN:
2243 val = ldl_le_p(ptr);
2244 break;
2245 case DEVICE_BIG_ENDIAN:
2246 val = ldl_be_p(ptr);
2247 break;
2248 default:
2249 val = ldl_p(ptr);
2250 break;
2251 }
2252 }
2253 return val;
2254 }
2255
2256 uint32_t ldl_phys(hwaddr addr)
2257 {
2258 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2259 }
2260
2261 uint32_t ldl_le_phys(hwaddr addr)
2262 {
2263 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2264 }
2265
2266 uint32_t ldl_be_phys(hwaddr addr)
2267 {
2268 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2269 }
2270
2271 /* warning: addr must be aligned */
2272 static inline uint64_t ldq_phys_internal(hwaddr addr,
2273 enum device_endian endian)
2274 {
2275 uint8_t *ptr;
2276 uint64_t val;
2277 MemoryRegion *mr;
2278 hwaddr l = 8;
2279 hwaddr addr1;
2280
2281 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2282 false);
2283 if (l < 8 || !memory_access_is_direct(mr, false)) {
2284 /* I/O case */
2285 io_mem_read(mr, addr1, &val, 8);
2286 #if defined(TARGET_WORDS_BIGENDIAN)
2287 if (endian == DEVICE_LITTLE_ENDIAN) {
2288 val = bswap64(val);
2289 }
2290 #else
2291 if (endian == DEVICE_BIG_ENDIAN) {
2292 val = bswap64(val);
2293 }
2294 #endif
2295 } else {
2296 /* RAM case */
2297 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2298 & TARGET_PAGE_MASK)
2299 + addr1);
2300 switch (endian) {
2301 case DEVICE_LITTLE_ENDIAN:
2302 val = ldq_le_p(ptr);
2303 break;
2304 case DEVICE_BIG_ENDIAN:
2305 val = ldq_be_p(ptr);
2306 break;
2307 default:
2308 val = ldq_p(ptr);
2309 break;
2310 }
2311 }
2312 return val;
2313 }
2314
2315 uint64_t ldq_phys(hwaddr addr)
2316 {
2317 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2318 }
2319
2320 uint64_t ldq_le_phys(hwaddr addr)
2321 {
2322 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2323 }
2324
2325 uint64_t ldq_be_phys(hwaddr addr)
2326 {
2327 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2328 }
2329
2330 /* XXX: optimize */
2331 uint32_t ldub_phys(hwaddr addr)
2332 {
2333 uint8_t val;
2334 cpu_physical_memory_read(addr, &val, 1);
2335 return val;
2336 }
2337
2338 /* warning: addr must be aligned */
2339 static inline uint32_t lduw_phys_internal(hwaddr addr,
2340 enum device_endian endian)
2341 {
2342 uint8_t *ptr;
2343 uint64_t val;
2344 MemoryRegion *mr;
2345 hwaddr l = 2;
2346 hwaddr addr1;
2347
2348 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2349 false);
2350 if (l < 2 || !memory_access_is_direct(mr, false)) {
2351 /* I/O case */
2352 io_mem_read(mr, addr1, &val, 2);
2353 #if defined(TARGET_WORDS_BIGENDIAN)
2354 if (endian == DEVICE_LITTLE_ENDIAN) {
2355 val = bswap16(val);
2356 }
2357 #else
2358 if (endian == DEVICE_BIG_ENDIAN) {
2359 val = bswap16(val);
2360 }
2361 #endif
2362 } else {
2363 /* RAM case */
2364 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2365 & TARGET_PAGE_MASK)
2366 + addr1);
2367 switch (endian) {
2368 case DEVICE_LITTLE_ENDIAN:
2369 val = lduw_le_p(ptr);
2370 break;
2371 case DEVICE_BIG_ENDIAN:
2372 val = lduw_be_p(ptr);
2373 break;
2374 default:
2375 val = lduw_p(ptr);
2376 break;
2377 }
2378 }
2379 return val;
2380 }
2381
2382 uint32_t lduw_phys(hwaddr addr)
2383 {
2384 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2385 }
2386
2387 uint32_t lduw_le_phys(hwaddr addr)
2388 {
2389 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2390 }
2391
2392 uint32_t lduw_be_phys(hwaddr addr)
2393 {
2394 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2395 }
2396
2397 /* warning: addr must be aligned. The ram page is not masked as dirty
2398 and the code inside is not invalidated. It is useful if the dirty
2399 bits are used to track modified PTEs */
2400 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2401 {
2402 uint8_t *ptr;
2403 MemoryRegion *mr;
2404 hwaddr l = 4;
2405 hwaddr addr1;
2406
2407 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2408 true);
2409 if (l < 4 || !memory_access_is_direct(mr, true)) {
2410 io_mem_write(mr, addr1, val, 4);
2411 } else {
2412 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2413 ptr = qemu_get_ram_ptr(addr1);
2414 stl_p(ptr, val);
2415
2416 if (unlikely(in_migration)) {
2417 if (!cpu_physical_memory_is_dirty(addr1)) {
2418 /* invalidate code */
2419 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2420 /* set dirty bit */
2421 cpu_physical_memory_set_dirty_flags(
2422 addr1, (0xff & ~CODE_DIRTY_FLAG));
2423 }
2424 }
2425 }
2426 }
2427
2428 /* warning: addr must be aligned */
2429 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2430 enum device_endian endian)
2431 {
2432 uint8_t *ptr;
2433 MemoryRegion *mr;
2434 hwaddr l = 4;
2435 hwaddr addr1;
2436
2437 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2438 true);
2439 if (l < 4 || !memory_access_is_direct(mr, true)) {
2440 #if defined(TARGET_WORDS_BIGENDIAN)
2441 if (endian == DEVICE_LITTLE_ENDIAN) {
2442 val = bswap32(val);
2443 }
2444 #else
2445 if (endian == DEVICE_BIG_ENDIAN) {
2446 val = bswap32(val);
2447 }
2448 #endif
2449 io_mem_write(mr, addr1, val, 4);
2450 } else {
2451 /* RAM case */
2452 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2453 ptr = qemu_get_ram_ptr(addr1);
2454 switch (endian) {
2455 case DEVICE_LITTLE_ENDIAN:
2456 stl_le_p(ptr, val);
2457 break;
2458 case DEVICE_BIG_ENDIAN:
2459 stl_be_p(ptr, val);
2460 break;
2461 default:
2462 stl_p(ptr, val);
2463 break;
2464 }
2465 invalidate_and_set_dirty(addr1, 4);
2466 }
2467 }
2468
2469 void stl_phys(hwaddr addr, uint32_t val)
2470 {
2471 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2472 }
2473
2474 void stl_le_phys(hwaddr addr, uint32_t val)
2475 {
2476 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2477 }
2478
2479 void stl_be_phys(hwaddr addr, uint32_t val)
2480 {
2481 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2482 }
2483
2484 /* XXX: optimize */
2485 void stb_phys(hwaddr addr, uint32_t val)
2486 {
2487 uint8_t v = val;
2488 cpu_physical_memory_write(addr, &v, 1);
2489 }
2490
2491 /* warning: addr must be aligned */
2492 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2493 enum device_endian endian)
2494 {
2495 uint8_t *ptr;
2496 MemoryRegion *mr;
2497 hwaddr l = 2;
2498 hwaddr addr1;
2499
2500 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2501 true);
2502 if (l < 2 || !memory_access_is_direct(mr, true)) {
2503 #if defined(TARGET_WORDS_BIGENDIAN)
2504 if (endian == DEVICE_LITTLE_ENDIAN) {
2505 val = bswap16(val);
2506 }
2507 #else
2508 if (endian == DEVICE_BIG_ENDIAN) {
2509 val = bswap16(val);
2510 }
2511 #endif
2512 io_mem_write(mr, addr1, val, 2);
2513 } else {
2514 /* RAM case */
2515 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2516 ptr = qemu_get_ram_ptr(addr1);
2517 switch (endian) {
2518 case DEVICE_LITTLE_ENDIAN:
2519 stw_le_p(ptr, val);
2520 break;
2521 case DEVICE_BIG_ENDIAN:
2522 stw_be_p(ptr, val);
2523 break;
2524 default:
2525 stw_p(ptr, val);
2526 break;
2527 }
2528 invalidate_and_set_dirty(addr1, 2);
2529 }
2530 }
2531
2532 void stw_phys(hwaddr addr, uint32_t val)
2533 {
2534 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2535 }
2536
2537 void stw_le_phys(hwaddr addr, uint32_t val)
2538 {
2539 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2540 }
2541
2542 void stw_be_phys(hwaddr addr, uint32_t val)
2543 {
2544 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2545 }
2546
2547 /* XXX: optimize */
2548 void stq_phys(hwaddr addr, uint64_t val)
2549 {
2550 val = tswap64(val);
2551 cpu_physical_memory_write(addr, &val, 8);
2552 }
2553
2554 void stq_le_phys(hwaddr addr, uint64_t val)
2555 {
2556 val = cpu_to_le64(val);
2557 cpu_physical_memory_write(addr, &val, 8);
2558 }
2559
2560 void stq_be_phys(hwaddr addr, uint64_t val)
2561 {
2562 val = cpu_to_be64(val);
2563 cpu_physical_memory_write(addr, &val, 8);
2564 }
2565
2566 /* virtual memory access for debug (includes writing to ROM) */
2567 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2568 uint8_t *buf, int len, int is_write)
2569 {
2570 int l;
2571 hwaddr phys_addr;
2572 target_ulong page;
2573
2574 while (len > 0) {
2575 page = addr & TARGET_PAGE_MASK;
2576 phys_addr = cpu_get_phys_page_debug(env, page);
2577 /* if no physical page mapped, return an error */
2578 if (phys_addr == -1)
2579 return -1;
2580 l = (page + TARGET_PAGE_SIZE) - addr;
2581 if (l > len)
2582 l = len;
2583 phys_addr += (addr & ~TARGET_PAGE_MASK);
2584 if (is_write)
2585 cpu_physical_memory_write_rom(phys_addr, buf, l);
2586 else
2587 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2588 len -= l;
2589 buf += l;
2590 addr += l;
2591 }
2592 return 0;
2593 }
2594 #endif
2595
2596 #if !defined(CONFIG_USER_ONLY)
2597
2598 /*
2599 * A helper function for the _utterly broken_ virtio device model to find out if
2600 * it's running on a big endian machine. Don't do this at home kids!
2601 */
2602 bool virtio_is_big_endian(void);
2603 bool virtio_is_big_endian(void)
2604 {
2605 #if defined(TARGET_WORDS_BIGENDIAN)
2606 return true;
2607 #else
2608 return false;
2609 #endif
2610 }
2611
2612 #endif
2613
2614 #ifndef CONFIG_USER_ONLY
2615 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2616 {
2617 MemoryRegion*mr;
2618 hwaddr l = 1;
2619
2620 mr = address_space_translate(&address_space_memory,
2621 phys_addr, &phys_addr, &l, false);
2622
2623 return !(memory_region_is_ram(mr) ||
2624 memory_region_is_romd(mr));
2625 }
2626
2627 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2628 {
2629 RAMBlock *block;
2630
2631 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2632 func(block->host, block->offset, block->length, opaque);
2633 }
2634 }
2635 #endif