]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
memory: add ref/unref calls
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 MemoryListener listener;
97 AddressSpace *as;
98 };
99
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t {
102 MemoryRegion iomem;
103 AddressSpace *as;
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106 } subpage_t;
107
108 static MemoryRegionSection *phys_sections;
109 static unsigned phys_sections_nb, phys_sections_nb_alloc;
110 static uint16_t phys_section_unassigned;
111 static uint16_t phys_section_notdirty;
112 static uint16_t phys_section_rom;
113 static uint16_t phys_section_watch;
114
115 /* Simple allocator for PhysPageEntry nodes */
116 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
118
119 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
120
121 static void io_mem_init(void);
122 static void memory_map_init(void);
123 static void *qemu_safe_ram_ptr(ram_addr_t addr);
124
125 static MemoryRegion io_mem_watch;
126 #endif
127
128 #if !defined(CONFIG_USER_ONLY)
129
130 static void phys_map_node_reserve(unsigned nodes)
131 {
132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
139 }
140 }
141
142 static uint16_t phys_map_node_alloc(void)
143 {
144 unsigned i;
145 uint16_t ret;
146
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
150 for (i = 0; i < L2_SIZE; ++i) {
151 phys_map_nodes[ret][i].is_leaf = 0;
152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
153 }
154 return ret;
155 }
156
157 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
158 hwaddr *nb, uint16_t leaf,
159 int level)
160 {
161 PhysPageEntry *p;
162 int i;
163 hwaddr step = (hwaddr)1 << (level * L2_BITS);
164
165 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
166 lp->ptr = phys_map_node_alloc();
167 p = phys_map_nodes[lp->ptr];
168 if (level == 0) {
169 for (i = 0; i < L2_SIZE; i++) {
170 p[i].is_leaf = 1;
171 p[i].ptr = phys_section_unassigned;
172 }
173 }
174 } else {
175 p = phys_map_nodes[lp->ptr];
176 }
177 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
178
179 while (*nb && lp < &p[L2_SIZE]) {
180 if ((*index & (step - 1)) == 0 && *nb >= step) {
181 lp->is_leaf = true;
182 lp->ptr = leaf;
183 *index += step;
184 *nb -= step;
185 } else {
186 phys_page_set_level(lp, index, nb, leaf, level - 1);
187 }
188 ++lp;
189 }
190 }
191
192 static void phys_page_set(AddressSpaceDispatch *d,
193 hwaddr index, hwaddr nb,
194 uint16_t leaf)
195 {
196 /* Wildly overreserve - it doesn't matter much. */
197 phys_map_node_reserve(3 * P_L2_LEVELS);
198
199 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
200 }
201
202 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
203 {
204 PhysPageEntry lp = d->phys_map;
205 PhysPageEntry *p;
206 int i;
207
208 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
209 if (lp.ptr == PHYS_MAP_NODE_NIL) {
210 return &phys_sections[phys_section_unassigned];
211 }
212 p = phys_map_nodes[lp.ptr];
213 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
214 }
215 return &phys_sections[lp.ptr];
216 }
217
218 bool memory_region_is_unassigned(MemoryRegion *mr)
219 {
220 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
221 && mr != &io_mem_watch;
222 }
223
224 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
225 hwaddr addr,
226 bool resolve_subpage)
227 {
228 MemoryRegionSection *section;
229 subpage_t *subpage;
230
231 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
232 if (resolve_subpage && section->mr->subpage) {
233 subpage = container_of(section->mr, subpage_t, iomem);
234 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
235 }
236 return section;
237 }
238
239 static MemoryRegionSection *
240 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
241 hwaddr *plen, bool resolve_subpage)
242 {
243 MemoryRegionSection *section;
244 Int128 diff;
245
246 section = address_space_lookup_region(as, addr, resolve_subpage);
247 /* Compute offset within MemoryRegionSection */
248 addr -= section->offset_within_address_space;
249
250 /* Compute offset within MemoryRegion */
251 *xlat = addr + section->offset_within_region;
252
253 diff = int128_sub(section->mr->size, int128_make64(addr));
254 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
255 return section;
256 }
257
258 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
259 hwaddr *xlat, hwaddr *plen,
260 bool is_write)
261 {
262 IOMMUTLBEntry iotlb;
263 MemoryRegionSection *section;
264 MemoryRegion *mr;
265 hwaddr len = *plen;
266
267 for (;;) {
268 section = address_space_translate_internal(as, addr, &addr, plen, true);
269 mr = section->mr;
270
271 if (!mr->iommu_ops) {
272 break;
273 }
274
275 iotlb = mr->iommu_ops->translate(mr, addr);
276 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
277 | (addr & iotlb.addr_mask));
278 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
279 if (!(iotlb.perm & (1 << is_write))) {
280 mr = &io_mem_unassigned;
281 break;
282 }
283
284 as = iotlb.target_as;
285 }
286
287 *plen = len;
288 *xlat = addr;
289 return mr;
290 }
291
292 MemoryRegionSection *
293 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
294 hwaddr *plen)
295 {
296 MemoryRegionSection *section;
297 section = address_space_translate_internal(as, addr, xlat, plen, false);
298
299 assert(!section->mr->iommu_ops);
300 return section;
301 }
302 #endif
303
304 void cpu_exec_init_all(void)
305 {
306 #if !defined(CONFIG_USER_ONLY)
307 qemu_mutex_init(&ram_list.mutex);
308 memory_map_init();
309 io_mem_init();
310 #endif
311 }
312
313 #if !defined(CONFIG_USER_ONLY)
314
315 static int cpu_common_post_load(void *opaque, int version_id)
316 {
317 CPUState *cpu = opaque;
318
319 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
320 version_id is increased. */
321 cpu->interrupt_request &= ~0x01;
322 tlb_flush(cpu->env_ptr, 1);
323
324 return 0;
325 }
326
327 const VMStateDescription vmstate_cpu_common = {
328 .name = "cpu_common",
329 .version_id = 1,
330 .minimum_version_id = 1,
331 .minimum_version_id_old = 1,
332 .post_load = cpu_common_post_load,
333 .fields = (VMStateField []) {
334 VMSTATE_UINT32(halted, CPUState),
335 VMSTATE_UINT32(interrupt_request, CPUState),
336 VMSTATE_END_OF_LIST()
337 }
338 };
339
340 #endif
341
342 CPUState *qemu_get_cpu(int index)
343 {
344 CPUArchState *env = first_cpu;
345 CPUState *cpu = NULL;
346
347 while (env) {
348 cpu = ENV_GET_CPU(env);
349 if (cpu->cpu_index == index) {
350 break;
351 }
352 env = env->next_cpu;
353 }
354
355 return env ? cpu : NULL;
356 }
357
358 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
359 {
360 CPUArchState *env = first_cpu;
361
362 while (env) {
363 func(ENV_GET_CPU(env), data);
364 env = env->next_cpu;
365 }
366 }
367
368 void cpu_exec_init(CPUArchState *env)
369 {
370 CPUState *cpu = ENV_GET_CPU(env);
371 CPUClass *cc = CPU_GET_CLASS(cpu);
372 CPUArchState **penv;
373 int cpu_index;
374
375 #if defined(CONFIG_USER_ONLY)
376 cpu_list_lock();
377 #endif
378 env->next_cpu = NULL;
379 penv = &first_cpu;
380 cpu_index = 0;
381 while (*penv != NULL) {
382 penv = &(*penv)->next_cpu;
383 cpu_index++;
384 }
385 cpu->cpu_index = cpu_index;
386 cpu->numa_node = 0;
387 QTAILQ_INIT(&env->breakpoints);
388 QTAILQ_INIT(&env->watchpoints);
389 #ifndef CONFIG_USER_ONLY
390 cpu->thread_id = qemu_get_thread_id();
391 #endif
392 *penv = env;
393 #if defined(CONFIG_USER_ONLY)
394 cpu_list_unlock();
395 #endif
396 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
397 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
398 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
399 cpu_save, cpu_load, env);
400 assert(cc->vmsd == NULL);
401 #endif
402 if (cc->vmsd != NULL) {
403 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 }
405 }
406
407 #if defined(TARGET_HAS_ICE)
408 #if defined(CONFIG_USER_ONLY)
409 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
410 {
411 tb_invalidate_phys_page_range(pc, pc + 1, 0);
412 }
413 #else
414 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
415 {
416 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
417 (pc & ~TARGET_PAGE_MASK));
418 }
419 #endif
420 #endif /* TARGET_HAS_ICE */
421
422 #if defined(CONFIG_USER_ONLY)
423 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
424
425 {
426 }
427
428 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
429 int flags, CPUWatchpoint **watchpoint)
430 {
431 return -ENOSYS;
432 }
433 #else
434 /* Add a watchpoint. */
435 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
436 int flags, CPUWatchpoint **watchpoint)
437 {
438 target_ulong len_mask = ~(len - 1);
439 CPUWatchpoint *wp;
440
441 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
442 if ((len & (len - 1)) || (addr & ~len_mask) ||
443 len == 0 || len > TARGET_PAGE_SIZE) {
444 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
445 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
446 return -EINVAL;
447 }
448 wp = g_malloc(sizeof(*wp));
449
450 wp->vaddr = addr;
451 wp->len_mask = len_mask;
452 wp->flags = flags;
453
454 /* keep all GDB-injected watchpoints in front */
455 if (flags & BP_GDB)
456 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
457 else
458 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
459
460 tlb_flush_page(env, addr);
461
462 if (watchpoint)
463 *watchpoint = wp;
464 return 0;
465 }
466
467 /* Remove a specific watchpoint. */
468 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
469 int flags)
470 {
471 target_ulong len_mask = ~(len - 1);
472 CPUWatchpoint *wp;
473
474 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
475 if (addr == wp->vaddr && len_mask == wp->len_mask
476 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
477 cpu_watchpoint_remove_by_ref(env, wp);
478 return 0;
479 }
480 }
481 return -ENOENT;
482 }
483
484 /* Remove a specific watchpoint by reference. */
485 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
486 {
487 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
488
489 tlb_flush_page(env, watchpoint->vaddr);
490
491 g_free(watchpoint);
492 }
493
494 /* Remove all matching watchpoints. */
495 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
496 {
497 CPUWatchpoint *wp, *next;
498
499 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
500 if (wp->flags & mask)
501 cpu_watchpoint_remove_by_ref(env, wp);
502 }
503 }
504 #endif
505
506 /* Add a breakpoint. */
507 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
508 CPUBreakpoint **breakpoint)
509 {
510 #if defined(TARGET_HAS_ICE)
511 CPUBreakpoint *bp;
512
513 bp = g_malloc(sizeof(*bp));
514
515 bp->pc = pc;
516 bp->flags = flags;
517
518 /* keep all GDB-injected breakpoints in front */
519 if (flags & BP_GDB)
520 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
521 else
522 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
523
524 breakpoint_invalidate(env, pc);
525
526 if (breakpoint)
527 *breakpoint = bp;
528 return 0;
529 #else
530 return -ENOSYS;
531 #endif
532 }
533
534 /* Remove a specific breakpoint. */
535 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
536 {
537 #if defined(TARGET_HAS_ICE)
538 CPUBreakpoint *bp;
539
540 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
541 if (bp->pc == pc && bp->flags == flags) {
542 cpu_breakpoint_remove_by_ref(env, bp);
543 return 0;
544 }
545 }
546 return -ENOENT;
547 #else
548 return -ENOSYS;
549 #endif
550 }
551
552 /* Remove a specific breakpoint by reference. */
553 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
554 {
555 #if defined(TARGET_HAS_ICE)
556 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
557
558 breakpoint_invalidate(env, breakpoint->pc);
559
560 g_free(breakpoint);
561 #endif
562 }
563
564 /* Remove all matching breakpoints. */
565 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
566 {
567 #if defined(TARGET_HAS_ICE)
568 CPUBreakpoint *bp, *next;
569
570 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
571 if (bp->flags & mask)
572 cpu_breakpoint_remove_by_ref(env, bp);
573 }
574 #endif
575 }
576
577 /* enable or disable single step mode. EXCP_DEBUG is returned by the
578 CPU loop after each instruction */
579 void cpu_single_step(CPUArchState *env, int enabled)
580 {
581 #if defined(TARGET_HAS_ICE)
582 if (env->singlestep_enabled != enabled) {
583 env->singlestep_enabled = enabled;
584 if (kvm_enabled())
585 kvm_update_guest_debug(env, 0);
586 else {
587 /* must flush all the translated code to avoid inconsistencies */
588 /* XXX: only flush what is necessary */
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 CPUArchState *next_cpu = new_env->next_cpu;
632 #if defined(TARGET_HAS_ICE)
633 CPUBreakpoint *bp;
634 CPUWatchpoint *wp;
635 #endif
636
637 memcpy(new_env, env, sizeof(CPUArchState));
638
639 /* Preserve chaining. */
640 new_env->next_cpu = next_cpu;
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= phys_section_notdirty;
721 } else {
722 iotlb |= phys_section_rom;
723 }
724 } else {
725 iotlb = section - phys_sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = phys_section_watch + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static uint16_t phys_section_add(MemoryRegionSection *section)
753 {
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(phys_sections_nb < TARGET_PAGE_SIZE);
759
760 if (phys_sections_nb == phys_sections_nb_alloc) {
761 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
762 phys_sections = g_renew(MemoryRegionSection, phys_sections,
763 phys_sections_nb_alloc);
764 }
765 phys_sections[phys_sections_nb] = *section;
766 memory_region_ref(section->mr);
767 return phys_sections_nb++;
768 }
769
770 static void phys_section_destroy(MemoryRegion *mr)
771 {
772 memory_region_unref(mr);
773
774 if (mr->subpage) {
775 subpage_t *subpage = container_of(mr, subpage_t, iomem);
776 memory_region_destroy(&subpage->iomem);
777 g_free(subpage);
778 }
779 }
780
781 static void phys_sections_clear(void)
782 {
783 while (phys_sections_nb > 0) {
784 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
785 phys_section_destroy(section->mr);
786 }
787 phys_map_nodes_nb = 0;
788 }
789
790 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
791 {
792 subpage_t *subpage;
793 hwaddr base = section->offset_within_address_space
794 & TARGET_PAGE_MASK;
795 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
796 MemoryRegionSection subsection = {
797 .offset_within_address_space = base,
798 .size = int128_make64(TARGET_PAGE_SIZE),
799 };
800 hwaddr start, end;
801
802 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
803
804 if (!(existing->mr->subpage)) {
805 subpage = subpage_init(d->as, base);
806 subsection.mr = &subpage->iomem;
807 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
808 phys_section_add(&subsection));
809 } else {
810 subpage = container_of(existing->mr, subpage_t, iomem);
811 }
812 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
813 end = start + int128_get64(section->size) - 1;
814 subpage_register(subpage, start, end, phys_section_add(section));
815 }
816
817
818 static void register_multipage(AddressSpaceDispatch *d,
819 MemoryRegionSection *section)
820 {
821 hwaddr start_addr = section->offset_within_address_space;
822 uint16_t section_index = phys_section_add(section);
823 uint64_t num_pages = int128_get64(int128_rshift(section->size,
824 TARGET_PAGE_BITS));
825
826 assert(num_pages);
827 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
828 }
829
830 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
831 {
832 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
833 MemoryRegionSection now = *section, remain = *section;
834 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
835
836 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
837 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
838 - now.offset_within_address_space;
839
840 now.size = int128_min(int128_make64(left), now.size);
841 register_subpage(d, &now);
842 } else {
843 now.size = int128_zero();
844 }
845 while (int128_ne(remain.size, now.size)) {
846 remain.size = int128_sub(remain.size, now.size);
847 remain.offset_within_address_space += int128_get64(now.size);
848 remain.offset_within_region += int128_get64(now.size);
849 now = remain;
850 if (int128_lt(remain.size, page_size)) {
851 register_subpage(d, &now);
852 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
853 now.size = page_size;
854 register_subpage(d, &now);
855 } else {
856 now.size = int128_and(now.size, int128_neg(page_size));
857 register_multipage(d, &now);
858 }
859 }
860 }
861
862 void qemu_flush_coalesced_mmio_buffer(void)
863 {
864 if (kvm_enabled())
865 kvm_flush_coalesced_mmio_buffer();
866 }
867
868 void qemu_mutex_lock_ramlist(void)
869 {
870 qemu_mutex_lock(&ram_list.mutex);
871 }
872
873 void qemu_mutex_unlock_ramlist(void)
874 {
875 qemu_mutex_unlock(&ram_list.mutex);
876 }
877
878 #if defined(__linux__) && !defined(TARGET_S390X)
879
880 #include <sys/vfs.h>
881
882 #define HUGETLBFS_MAGIC 0x958458f6
883
884 static long gethugepagesize(const char *path)
885 {
886 struct statfs fs;
887 int ret;
888
889 do {
890 ret = statfs(path, &fs);
891 } while (ret != 0 && errno == EINTR);
892
893 if (ret != 0) {
894 perror(path);
895 return 0;
896 }
897
898 if (fs.f_type != HUGETLBFS_MAGIC)
899 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
900
901 return fs.f_bsize;
902 }
903
904 static void *file_ram_alloc(RAMBlock *block,
905 ram_addr_t memory,
906 const char *path)
907 {
908 char *filename;
909 char *sanitized_name;
910 char *c;
911 void *area;
912 int fd;
913 #ifdef MAP_POPULATE
914 int flags;
915 #endif
916 unsigned long hpagesize;
917
918 hpagesize = gethugepagesize(path);
919 if (!hpagesize) {
920 return NULL;
921 }
922
923 if (memory < hpagesize) {
924 return NULL;
925 }
926
927 if (kvm_enabled() && !kvm_has_sync_mmu()) {
928 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
929 return NULL;
930 }
931
932 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
933 sanitized_name = g_strdup(block->mr->name);
934 for (c = sanitized_name; *c != '\0'; c++) {
935 if (*c == '/')
936 *c = '_';
937 }
938
939 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
940 sanitized_name);
941 g_free(sanitized_name);
942
943 fd = mkstemp(filename);
944 if (fd < 0) {
945 perror("unable to create backing store for hugepages");
946 g_free(filename);
947 return NULL;
948 }
949 unlink(filename);
950 g_free(filename);
951
952 memory = (memory+hpagesize-1) & ~(hpagesize-1);
953
954 /*
955 * ftruncate is not supported by hugetlbfs in older
956 * hosts, so don't bother bailing out on errors.
957 * If anything goes wrong with it under other filesystems,
958 * mmap will fail.
959 */
960 if (ftruncate(fd, memory))
961 perror("ftruncate");
962
963 #ifdef MAP_POPULATE
964 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
965 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
966 * to sidestep this quirk.
967 */
968 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
969 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
970 #else
971 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
972 #endif
973 if (area == MAP_FAILED) {
974 perror("file_ram_alloc: can't mmap RAM pages");
975 close(fd);
976 return (NULL);
977 }
978 block->fd = fd;
979 return area;
980 }
981 #endif
982
983 static ram_addr_t find_ram_offset(ram_addr_t size)
984 {
985 RAMBlock *block, *next_block;
986 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
987
988 assert(size != 0); /* it would hand out same offset multiple times */
989
990 if (QTAILQ_EMPTY(&ram_list.blocks))
991 return 0;
992
993 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
994 ram_addr_t end, next = RAM_ADDR_MAX;
995
996 end = block->offset + block->length;
997
998 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
999 if (next_block->offset >= end) {
1000 next = MIN(next, next_block->offset);
1001 }
1002 }
1003 if (next - end >= size && next - end < mingap) {
1004 offset = end;
1005 mingap = next - end;
1006 }
1007 }
1008
1009 if (offset == RAM_ADDR_MAX) {
1010 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1011 (uint64_t)size);
1012 abort();
1013 }
1014
1015 return offset;
1016 }
1017
1018 ram_addr_t last_ram_offset(void)
1019 {
1020 RAMBlock *block;
1021 ram_addr_t last = 0;
1022
1023 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1024 last = MAX(last, block->offset + block->length);
1025
1026 return last;
1027 }
1028
1029 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1030 {
1031 int ret;
1032 QemuOpts *machine_opts;
1033
1034 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1035 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1036 if (machine_opts &&
1037 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1038 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1039 if (ret) {
1040 perror("qemu_madvise");
1041 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1042 "but dump_guest_core=off specified\n");
1043 }
1044 }
1045 }
1046
1047 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1048 {
1049 RAMBlock *new_block, *block;
1050
1051 new_block = NULL;
1052 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1053 if (block->offset == addr) {
1054 new_block = block;
1055 break;
1056 }
1057 }
1058 assert(new_block);
1059 assert(!new_block->idstr[0]);
1060
1061 if (dev) {
1062 char *id = qdev_get_dev_path(dev);
1063 if (id) {
1064 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1065 g_free(id);
1066 }
1067 }
1068 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1069
1070 /* This assumes the iothread lock is taken here too. */
1071 qemu_mutex_lock_ramlist();
1072 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1073 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1074 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1075 new_block->idstr);
1076 abort();
1077 }
1078 }
1079 qemu_mutex_unlock_ramlist();
1080 }
1081
1082 static int memory_try_enable_merging(void *addr, size_t len)
1083 {
1084 QemuOpts *opts;
1085
1086 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1087 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093 }
1094
1095 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097 {
1098 RAMBlock *block, *new_block;
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
1102
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
1105 new_block->mr = mr;
1106 new_block->offset = find_ram_offset(size);
1107 if (host) {
1108 new_block->host = host;
1109 new_block->flags |= RAM_PREALLOC_MASK;
1110 } else {
1111 if (mem_path) {
1112 #if defined (__linux__) && !defined(TARGET_S390X)
1113 new_block->host = file_ram_alloc(new_block, size, mem_path);
1114 if (!new_block->host) {
1115 new_block->host = qemu_anon_ram_alloc(size);
1116 memory_try_enable_merging(new_block->host, size);
1117 }
1118 #else
1119 fprintf(stderr, "-mem-path option unsupported\n");
1120 exit(1);
1121 #endif
1122 } else {
1123 if (xen_enabled()) {
1124 xen_ram_alloc(new_block->offset, size, mr);
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
1127 new_block->host = kvm_ram_alloc(size);
1128 } else {
1129 new_block->host = qemu_anon_ram_alloc(size);
1130 }
1131 memory_try_enable_merging(new_block->host, size);
1132 }
1133 }
1134 new_block->length = size;
1135
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1138 if (block->length < new_block->length) {
1139 break;
1140 }
1141 }
1142 if (block) {
1143 QTAILQ_INSERT_BEFORE(block, new_block, next);
1144 } else {
1145 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1146 }
1147 ram_list.mru_block = NULL;
1148
1149 ram_list.version++;
1150 qemu_mutex_unlock_ramlist();
1151
1152 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1153 last_ram_offset() >> TARGET_PAGE_BITS);
1154 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1155 0, size >> TARGET_PAGE_BITS);
1156 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1157
1158 qemu_ram_setup_dump(new_block->host, size);
1159 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1160
1161 if (kvm_enabled())
1162 kvm_setup_guest_memory(new_block->host, size);
1163
1164 return new_block->offset;
1165 }
1166
1167 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1168 {
1169 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1170 }
1171
1172 void qemu_ram_free_from_ptr(ram_addr_t addr)
1173 {
1174 RAMBlock *block;
1175
1176 /* This assumes the iothread lock is taken here too. */
1177 qemu_mutex_lock_ramlist();
1178 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1179 if (addr == block->offset) {
1180 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1181 ram_list.mru_block = NULL;
1182 ram_list.version++;
1183 g_free(block);
1184 break;
1185 }
1186 }
1187 qemu_mutex_unlock_ramlist();
1188 }
1189
1190 void qemu_ram_free(ram_addr_t addr)
1191 {
1192 RAMBlock *block;
1193
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1197 if (addr == block->offset) {
1198 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1199 ram_list.mru_block = NULL;
1200 ram_list.version++;
1201 if (block->flags & RAM_PREALLOC_MASK) {
1202 ;
1203 } else if (mem_path) {
1204 #if defined (__linux__) && !defined(TARGET_S390X)
1205 if (block->fd) {
1206 munmap(block->host, block->length);
1207 close(block->fd);
1208 } else {
1209 qemu_anon_ram_free(block->host, block->length);
1210 }
1211 #else
1212 abort();
1213 #endif
1214 } else {
1215 if (xen_enabled()) {
1216 xen_invalidate_map_cache_entry(block->host);
1217 } else {
1218 qemu_anon_ram_free(block->host, block->length);
1219 }
1220 }
1221 g_free(block);
1222 break;
1223 }
1224 }
1225 qemu_mutex_unlock_ramlist();
1226
1227 }
1228
1229 #ifndef _WIN32
1230 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1231 {
1232 RAMBlock *block;
1233 ram_addr_t offset;
1234 int flags;
1235 void *area, *vaddr;
1236
1237 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1238 offset = addr - block->offset;
1239 if (offset < block->length) {
1240 vaddr = block->host + offset;
1241 if (block->flags & RAM_PREALLOC_MASK) {
1242 ;
1243 } else {
1244 flags = MAP_FIXED;
1245 munmap(vaddr, length);
1246 if (mem_path) {
1247 #if defined(__linux__) && !defined(TARGET_S390X)
1248 if (block->fd) {
1249 #ifdef MAP_POPULATE
1250 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1251 MAP_PRIVATE;
1252 #else
1253 flags |= MAP_PRIVATE;
1254 #endif
1255 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1256 flags, block->fd, offset);
1257 } else {
1258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1260 flags, -1, 0);
1261 }
1262 #else
1263 abort();
1264 #endif
1265 } else {
1266 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1267 flags |= MAP_SHARED | MAP_ANONYMOUS;
1268 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1269 flags, -1, 0);
1270 #else
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1273 flags, -1, 0);
1274 #endif
1275 }
1276 if (area != vaddr) {
1277 fprintf(stderr, "Could not remap addr: "
1278 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1279 length, addr);
1280 exit(1);
1281 }
1282 memory_try_enable_merging(vaddr, length);
1283 qemu_ram_setup_dump(vaddr, length);
1284 }
1285 return;
1286 }
1287 }
1288 }
1289 #endif /* !_WIN32 */
1290
1291 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1292 With the exception of the softmmu code in this file, this should
1293 only be used for local memory (e.g. video ram) that the device owns,
1294 and knows it isn't going to access beyond the end of the block.
1295
1296 It should not be used for general purpose DMA.
1297 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1298 */
1299 void *qemu_get_ram_ptr(ram_addr_t addr)
1300 {
1301 RAMBlock *block;
1302
1303 /* The list is protected by the iothread lock here. */
1304 block = ram_list.mru_block;
1305 if (block && addr - block->offset < block->length) {
1306 goto found;
1307 }
1308 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1309 if (addr - block->offset < block->length) {
1310 goto found;
1311 }
1312 }
1313
1314 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1315 abort();
1316
1317 found:
1318 ram_list.mru_block = block;
1319 if (xen_enabled()) {
1320 /* We need to check if the requested address is in the RAM
1321 * because we don't want to map the entire memory in QEMU.
1322 * In that case just map until the end of the page.
1323 */
1324 if (block->offset == 0) {
1325 return xen_map_cache(addr, 0, 0);
1326 } else if (block->host == NULL) {
1327 block->host =
1328 xen_map_cache(block->offset, block->length, 1);
1329 }
1330 }
1331 return block->host + (addr - block->offset);
1332 }
1333
1334 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1335 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1336 *
1337 * ??? Is this still necessary?
1338 */
1339 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1340 {
1341 RAMBlock *block;
1342
1343 /* The list is protected by the iothread lock here. */
1344 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1345 if (addr - block->offset < block->length) {
1346 if (xen_enabled()) {
1347 /* We need to check if the requested address is in the RAM
1348 * because we don't want to map the entire memory in QEMU.
1349 * In that case just map until the end of the page.
1350 */
1351 if (block->offset == 0) {
1352 return xen_map_cache(addr, 0, 0);
1353 } else if (block->host == NULL) {
1354 block->host =
1355 xen_map_cache(block->offset, block->length, 1);
1356 }
1357 }
1358 return block->host + (addr - block->offset);
1359 }
1360 }
1361
1362 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1363 abort();
1364
1365 return NULL;
1366 }
1367
1368 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1369 * but takes a size argument */
1370 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1371 {
1372 if (*size == 0) {
1373 return NULL;
1374 }
1375 if (xen_enabled()) {
1376 return xen_map_cache(addr, *size, 1);
1377 } else {
1378 RAMBlock *block;
1379
1380 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1381 if (addr - block->offset < block->length) {
1382 if (addr - block->offset + *size > block->length)
1383 *size = block->length - addr + block->offset;
1384 return block->host + (addr - block->offset);
1385 }
1386 }
1387
1388 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1389 abort();
1390 }
1391 }
1392
1393 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1394 {
1395 RAMBlock *block;
1396 uint8_t *host = ptr;
1397
1398 if (xen_enabled()) {
1399 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1400 return 0;
1401 }
1402
1403 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1404 /* This case append when the block is not mapped. */
1405 if (block->host == NULL) {
1406 continue;
1407 }
1408 if (host - block->host < block->length) {
1409 *ram_addr = block->offset + (host - block->host);
1410 return 0;
1411 }
1412 }
1413
1414 return -1;
1415 }
1416
1417 /* Some of the softmmu routines need to translate from a host pointer
1418 (typically a TLB entry) back to a ram offset. */
1419 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1420 {
1421 ram_addr_t ram_addr;
1422
1423 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1424 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1425 abort();
1426 }
1427 return ram_addr;
1428 }
1429
1430 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1431 uint64_t val, unsigned size)
1432 {
1433 int dirty_flags;
1434 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1435 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1436 tb_invalidate_phys_page_fast(ram_addr, size);
1437 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1438 }
1439 switch (size) {
1440 case 1:
1441 stb_p(qemu_get_ram_ptr(ram_addr), val);
1442 break;
1443 case 2:
1444 stw_p(qemu_get_ram_ptr(ram_addr), val);
1445 break;
1446 case 4:
1447 stl_p(qemu_get_ram_ptr(ram_addr), val);
1448 break;
1449 default:
1450 abort();
1451 }
1452 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1453 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1454 /* we remove the notdirty callback only if the code has been
1455 flushed */
1456 if (dirty_flags == 0xff)
1457 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1458 }
1459
1460 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1461 unsigned size, bool is_write)
1462 {
1463 return is_write;
1464 }
1465
1466 static const MemoryRegionOps notdirty_mem_ops = {
1467 .write = notdirty_mem_write,
1468 .valid.accepts = notdirty_mem_accepts,
1469 .endianness = DEVICE_NATIVE_ENDIAN,
1470 };
1471
1472 /* Generate a debug exception if a watchpoint has been hit. */
1473 static void check_watchpoint(int offset, int len_mask, int flags)
1474 {
1475 CPUArchState *env = cpu_single_env;
1476 target_ulong pc, cs_base;
1477 target_ulong vaddr;
1478 CPUWatchpoint *wp;
1479 int cpu_flags;
1480
1481 if (env->watchpoint_hit) {
1482 /* We re-entered the check after replacing the TB. Now raise
1483 * the debug interrupt so that is will trigger after the
1484 * current instruction. */
1485 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1486 return;
1487 }
1488 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1489 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1490 if ((vaddr == (wp->vaddr & len_mask) ||
1491 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1492 wp->flags |= BP_WATCHPOINT_HIT;
1493 if (!env->watchpoint_hit) {
1494 env->watchpoint_hit = wp;
1495 tb_check_watchpoint(env);
1496 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1497 env->exception_index = EXCP_DEBUG;
1498 cpu_loop_exit(env);
1499 } else {
1500 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1501 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1502 cpu_resume_from_signal(env, NULL);
1503 }
1504 }
1505 } else {
1506 wp->flags &= ~BP_WATCHPOINT_HIT;
1507 }
1508 }
1509 }
1510
1511 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1512 so these check for a hit then pass through to the normal out-of-line
1513 phys routines. */
1514 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1515 unsigned size)
1516 {
1517 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1518 switch (size) {
1519 case 1: return ldub_phys(addr);
1520 case 2: return lduw_phys(addr);
1521 case 4: return ldl_phys(addr);
1522 default: abort();
1523 }
1524 }
1525
1526 static void watch_mem_write(void *opaque, hwaddr addr,
1527 uint64_t val, unsigned size)
1528 {
1529 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1530 switch (size) {
1531 case 1:
1532 stb_phys(addr, val);
1533 break;
1534 case 2:
1535 stw_phys(addr, val);
1536 break;
1537 case 4:
1538 stl_phys(addr, val);
1539 break;
1540 default: abort();
1541 }
1542 }
1543
1544 static const MemoryRegionOps watch_mem_ops = {
1545 .read = watch_mem_read,
1546 .write = watch_mem_write,
1547 .endianness = DEVICE_NATIVE_ENDIAN,
1548 };
1549
1550 static uint64_t subpage_read(void *opaque, hwaddr addr,
1551 unsigned len)
1552 {
1553 subpage_t *subpage = opaque;
1554 uint8_t buf[4];
1555
1556 #if defined(DEBUG_SUBPAGE)
1557 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1558 subpage, len, addr);
1559 #endif
1560 address_space_read(subpage->as, addr + subpage->base, buf, len);
1561 switch (len) {
1562 case 1:
1563 return ldub_p(buf);
1564 case 2:
1565 return lduw_p(buf);
1566 case 4:
1567 return ldl_p(buf);
1568 default:
1569 abort();
1570 }
1571 }
1572
1573 static void subpage_write(void *opaque, hwaddr addr,
1574 uint64_t value, unsigned len)
1575 {
1576 subpage_t *subpage = opaque;
1577 uint8_t buf[4];
1578
1579 #if defined(DEBUG_SUBPAGE)
1580 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1581 " value %"PRIx64"\n",
1582 __func__, subpage, len, addr, value);
1583 #endif
1584 switch (len) {
1585 case 1:
1586 stb_p(buf, value);
1587 break;
1588 case 2:
1589 stw_p(buf, value);
1590 break;
1591 case 4:
1592 stl_p(buf, value);
1593 break;
1594 default:
1595 abort();
1596 }
1597 address_space_write(subpage->as, addr + subpage->base, buf, len);
1598 }
1599
1600 static bool subpage_accepts(void *opaque, hwaddr addr,
1601 unsigned size, bool is_write)
1602 {
1603 subpage_t *subpage = opaque;
1604 #if defined(DEBUG_SUBPAGE)
1605 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1606 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1607 #endif
1608
1609 return address_space_access_valid(subpage->as, addr + subpage->base,
1610 size, is_write);
1611 }
1612
1613 static const MemoryRegionOps subpage_ops = {
1614 .read = subpage_read,
1615 .write = subpage_write,
1616 .valid.accepts = subpage_accepts,
1617 .endianness = DEVICE_NATIVE_ENDIAN,
1618 };
1619
1620 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1621 uint16_t section)
1622 {
1623 int idx, eidx;
1624
1625 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1626 return -1;
1627 idx = SUBPAGE_IDX(start);
1628 eidx = SUBPAGE_IDX(end);
1629 #if defined(DEBUG_SUBPAGE)
1630 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1631 mmio, start, end, idx, eidx, memory);
1632 #endif
1633 for (; idx <= eidx; idx++) {
1634 mmio->sub_section[idx] = section;
1635 }
1636
1637 return 0;
1638 }
1639
1640 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1641 {
1642 subpage_t *mmio;
1643
1644 mmio = g_malloc0(sizeof(subpage_t));
1645
1646 mmio->as = as;
1647 mmio->base = base;
1648 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1649 "subpage", TARGET_PAGE_SIZE);
1650 mmio->iomem.subpage = true;
1651 #if defined(DEBUG_SUBPAGE)
1652 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1653 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1654 #endif
1655 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1656
1657 return mmio;
1658 }
1659
1660 static uint16_t dummy_section(MemoryRegion *mr)
1661 {
1662 MemoryRegionSection section = {
1663 .mr = mr,
1664 .offset_within_address_space = 0,
1665 .offset_within_region = 0,
1666 .size = int128_2_64(),
1667 };
1668
1669 return phys_section_add(&section);
1670 }
1671
1672 MemoryRegion *iotlb_to_region(hwaddr index)
1673 {
1674 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1675 }
1676
1677 static void io_mem_init(void)
1678 {
1679 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1680 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1681 "unassigned", UINT64_MAX);
1682 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1683 "notdirty", UINT64_MAX);
1684 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1685 "watch", UINT64_MAX);
1686 }
1687
1688 static void mem_begin(MemoryListener *listener)
1689 {
1690 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1691
1692 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1693 }
1694
1695 static void core_begin(MemoryListener *listener)
1696 {
1697 phys_sections_clear();
1698 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1699 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1700 phys_section_rom = dummy_section(&io_mem_rom);
1701 phys_section_watch = dummy_section(&io_mem_watch);
1702 }
1703
1704 static void tcg_commit(MemoryListener *listener)
1705 {
1706 CPUArchState *env;
1707
1708 /* since each CPU stores ram addresses in its TLB cache, we must
1709 reset the modified entries */
1710 /* XXX: slow ! */
1711 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1712 tlb_flush(env, 1);
1713 }
1714 }
1715
1716 static void core_log_global_start(MemoryListener *listener)
1717 {
1718 cpu_physical_memory_set_dirty_tracking(1);
1719 }
1720
1721 static void core_log_global_stop(MemoryListener *listener)
1722 {
1723 cpu_physical_memory_set_dirty_tracking(0);
1724 }
1725
1726 static MemoryListener core_memory_listener = {
1727 .begin = core_begin,
1728 .log_global_start = core_log_global_start,
1729 .log_global_stop = core_log_global_stop,
1730 .priority = 1,
1731 };
1732
1733 static MemoryListener tcg_memory_listener = {
1734 .commit = tcg_commit,
1735 };
1736
1737 void address_space_init_dispatch(AddressSpace *as)
1738 {
1739 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1740
1741 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1742 d->listener = (MemoryListener) {
1743 .begin = mem_begin,
1744 .region_add = mem_add,
1745 .region_nop = mem_add,
1746 .priority = 0,
1747 };
1748 d->as = as;
1749 as->dispatch = d;
1750 memory_listener_register(&d->listener, as);
1751 }
1752
1753 void address_space_destroy_dispatch(AddressSpace *as)
1754 {
1755 AddressSpaceDispatch *d = as->dispatch;
1756
1757 memory_listener_unregister(&d->listener);
1758 g_free(d);
1759 as->dispatch = NULL;
1760 }
1761
1762 static void memory_map_init(void)
1763 {
1764 system_memory = g_malloc(sizeof(*system_memory));
1765 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1766 address_space_init(&address_space_memory, system_memory, "memory");
1767
1768 system_io = g_malloc(sizeof(*system_io));
1769 memory_region_init(system_io, NULL, "io", 65536);
1770 address_space_init(&address_space_io, system_io, "I/O");
1771
1772 memory_listener_register(&core_memory_listener, &address_space_memory);
1773 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1774 }
1775
1776 MemoryRegion *get_system_memory(void)
1777 {
1778 return system_memory;
1779 }
1780
1781 MemoryRegion *get_system_io(void)
1782 {
1783 return system_io;
1784 }
1785
1786 #endif /* !defined(CONFIG_USER_ONLY) */
1787
1788 /* physical memory access (slow version, mainly for debug) */
1789 #if defined(CONFIG_USER_ONLY)
1790 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1791 uint8_t *buf, int len, int is_write)
1792 {
1793 int l, flags;
1794 target_ulong page;
1795 void * p;
1796
1797 while (len > 0) {
1798 page = addr & TARGET_PAGE_MASK;
1799 l = (page + TARGET_PAGE_SIZE) - addr;
1800 if (l > len)
1801 l = len;
1802 flags = page_get_flags(page);
1803 if (!(flags & PAGE_VALID))
1804 return -1;
1805 if (is_write) {
1806 if (!(flags & PAGE_WRITE))
1807 return -1;
1808 /* XXX: this code should not depend on lock_user */
1809 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1810 return -1;
1811 memcpy(p, buf, l);
1812 unlock_user(p, addr, l);
1813 } else {
1814 if (!(flags & PAGE_READ))
1815 return -1;
1816 /* XXX: this code should not depend on lock_user */
1817 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1818 return -1;
1819 memcpy(buf, p, l);
1820 unlock_user(p, addr, 0);
1821 }
1822 len -= l;
1823 buf += l;
1824 addr += l;
1825 }
1826 return 0;
1827 }
1828
1829 #else
1830
1831 static void invalidate_and_set_dirty(hwaddr addr,
1832 hwaddr length)
1833 {
1834 if (!cpu_physical_memory_is_dirty(addr)) {
1835 /* invalidate code */
1836 tb_invalidate_phys_page_range(addr, addr + length, 0);
1837 /* set dirty bit */
1838 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1839 }
1840 xen_modified_memory(addr, length);
1841 }
1842
1843 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1844 {
1845 if (memory_region_is_ram(mr)) {
1846 return !(is_write && mr->readonly);
1847 }
1848 if (memory_region_is_romd(mr)) {
1849 return !is_write;
1850 }
1851
1852 return false;
1853 }
1854
1855 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1856 {
1857 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1858 return 4;
1859 }
1860 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1861 return 2;
1862 }
1863 return 1;
1864 }
1865
1866 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1867 int len, bool is_write)
1868 {
1869 hwaddr l;
1870 uint8_t *ptr;
1871 uint64_t val;
1872 hwaddr addr1;
1873 MemoryRegion *mr;
1874 bool error = false;
1875
1876 while (len > 0) {
1877 l = len;
1878 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1879
1880 if (is_write) {
1881 if (!memory_access_is_direct(mr, is_write)) {
1882 l = memory_access_size(mr, l, addr1);
1883 /* XXX: could force cpu_single_env to NULL to avoid
1884 potential bugs */
1885 if (l == 4) {
1886 /* 32 bit write access */
1887 val = ldl_p(buf);
1888 error |= io_mem_write(mr, addr1, val, 4);
1889 } else if (l == 2) {
1890 /* 16 bit write access */
1891 val = lduw_p(buf);
1892 error |= io_mem_write(mr, addr1, val, 2);
1893 } else {
1894 /* 8 bit write access */
1895 val = ldub_p(buf);
1896 error |= io_mem_write(mr, addr1, val, 1);
1897 }
1898 } else {
1899 addr1 += memory_region_get_ram_addr(mr);
1900 /* RAM case */
1901 ptr = qemu_get_ram_ptr(addr1);
1902 memcpy(ptr, buf, l);
1903 invalidate_and_set_dirty(addr1, l);
1904 }
1905 } else {
1906 if (!memory_access_is_direct(mr, is_write)) {
1907 /* I/O case */
1908 l = memory_access_size(mr, l, addr1);
1909 if (l == 4) {
1910 /* 32 bit read access */
1911 error |= io_mem_read(mr, addr1, &val, 4);
1912 stl_p(buf, val);
1913 } else if (l == 2) {
1914 /* 16 bit read access */
1915 error |= io_mem_read(mr, addr1, &val, 2);
1916 stw_p(buf, val);
1917 } else {
1918 /* 8 bit read access */
1919 error |= io_mem_read(mr, addr1, &val, 1);
1920 stb_p(buf, val);
1921 }
1922 } else {
1923 /* RAM case */
1924 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1925 memcpy(buf, ptr, l);
1926 }
1927 }
1928 len -= l;
1929 buf += l;
1930 addr += l;
1931 }
1932
1933 return error;
1934 }
1935
1936 bool address_space_write(AddressSpace *as, hwaddr addr,
1937 const uint8_t *buf, int len)
1938 {
1939 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1940 }
1941
1942 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1943 {
1944 return address_space_rw(as, addr, buf, len, false);
1945 }
1946
1947
1948 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1949 int len, int is_write)
1950 {
1951 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1952 }
1953
1954 /* used for ROM loading : can write in RAM and ROM */
1955 void cpu_physical_memory_write_rom(hwaddr addr,
1956 const uint8_t *buf, int len)
1957 {
1958 hwaddr l;
1959 uint8_t *ptr;
1960 hwaddr addr1;
1961 MemoryRegion *mr;
1962
1963 while (len > 0) {
1964 l = len;
1965 mr = address_space_translate(&address_space_memory,
1966 addr, &addr1, &l, true);
1967
1968 if (!(memory_region_is_ram(mr) ||
1969 memory_region_is_romd(mr))) {
1970 /* do nothing */
1971 } else {
1972 addr1 += memory_region_get_ram_addr(mr);
1973 /* ROM/RAM case */
1974 ptr = qemu_get_ram_ptr(addr1);
1975 memcpy(ptr, buf, l);
1976 invalidate_and_set_dirty(addr1, l);
1977 }
1978 len -= l;
1979 buf += l;
1980 addr += l;
1981 }
1982 }
1983
1984 typedef struct {
1985 void *buffer;
1986 hwaddr addr;
1987 hwaddr len;
1988 } BounceBuffer;
1989
1990 static BounceBuffer bounce;
1991
1992 typedef struct MapClient {
1993 void *opaque;
1994 void (*callback)(void *opaque);
1995 QLIST_ENTRY(MapClient) link;
1996 } MapClient;
1997
1998 static QLIST_HEAD(map_client_list, MapClient) map_client_list
1999 = QLIST_HEAD_INITIALIZER(map_client_list);
2000
2001 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2002 {
2003 MapClient *client = g_malloc(sizeof(*client));
2004
2005 client->opaque = opaque;
2006 client->callback = callback;
2007 QLIST_INSERT_HEAD(&map_client_list, client, link);
2008 return client;
2009 }
2010
2011 static void cpu_unregister_map_client(void *_client)
2012 {
2013 MapClient *client = (MapClient *)_client;
2014
2015 QLIST_REMOVE(client, link);
2016 g_free(client);
2017 }
2018
2019 static void cpu_notify_map_clients(void)
2020 {
2021 MapClient *client;
2022
2023 while (!QLIST_EMPTY(&map_client_list)) {
2024 client = QLIST_FIRST(&map_client_list);
2025 client->callback(client->opaque);
2026 cpu_unregister_map_client(client);
2027 }
2028 }
2029
2030 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2031 {
2032 MemoryRegion *mr;
2033 hwaddr l, xlat;
2034
2035 while (len > 0) {
2036 l = len;
2037 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2038 if (!memory_access_is_direct(mr, is_write)) {
2039 l = memory_access_size(mr, l, addr);
2040 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2041 return false;
2042 }
2043 }
2044
2045 len -= l;
2046 addr += l;
2047 }
2048 return true;
2049 }
2050
2051 /* Map a physical memory region into a host virtual address.
2052 * May map a subset of the requested range, given by and returned in *plen.
2053 * May return NULL if resources needed to perform the mapping are exhausted.
2054 * Use only for reads OR writes - not for read-modify-write operations.
2055 * Use cpu_register_map_client() to know when retrying the map operation is
2056 * likely to succeed.
2057 */
2058 void *address_space_map(AddressSpace *as,
2059 hwaddr addr,
2060 hwaddr *plen,
2061 bool is_write)
2062 {
2063 hwaddr len = *plen;
2064 hwaddr todo = 0;
2065 hwaddr l, xlat;
2066 MemoryRegion *mr;
2067 ram_addr_t raddr = RAM_ADDR_MAX;
2068 ram_addr_t rlen;
2069 void *ret;
2070
2071 while (len > 0) {
2072 l = len;
2073 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2074
2075 if (!memory_access_is_direct(mr, is_write)) {
2076 if (todo || bounce.buffer) {
2077 break;
2078 }
2079 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2080 bounce.addr = addr;
2081 bounce.len = l;
2082 if (!is_write) {
2083 address_space_read(as, addr, bounce.buffer, l);
2084 }
2085
2086 *plen = l;
2087 return bounce.buffer;
2088 }
2089 if (!todo) {
2090 raddr = memory_region_get_ram_addr(mr) + xlat;
2091 } else {
2092 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
2093 break;
2094 }
2095 }
2096
2097 len -= l;
2098 addr += l;
2099 todo += l;
2100 }
2101 rlen = todo;
2102 ret = qemu_ram_ptr_length(raddr, &rlen);
2103 *plen = rlen;
2104 return ret;
2105 }
2106
2107 /* Unmaps a memory region previously mapped by address_space_map().
2108 * Will also mark the memory as dirty if is_write == 1. access_len gives
2109 * the amount of memory that was actually read or written by the caller.
2110 */
2111 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2112 int is_write, hwaddr access_len)
2113 {
2114 if (buffer != bounce.buffer) {
2115 if (is_write) {
2116 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2117 while (access_len) {
2118 unsigned l;
2119 l = TARGET_PAGE_SIZE;
2120 if (l > access_len)
2121 l = access_len;
2122 invalidate_and_set_dirty(addr1, l);
2123 addr1 += l;
2124 access_len -= l;
2125 }
2126 }
2127 if (xen_enabled()) {
2128 xen_invalidate_map_cache_entry(buffer);
2129 }
2130 return;
2131 }
2132 if (is_write) {
2133 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2134 }
2135 qemu_vfree(bounce.buffer);
2136 bounce.buffer = NULL;
2137 cpu_notify_map_clients();
2138 }
2139
2140 void *cpu_physical_memory_map(hwaddr addr,
2141 hwaddr *plen,
2142 int is_write)
2143 {
2144 return address_space_map(&address_space_memory, addr, plen, is_write);
2145 }
2146
2147 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2148 int is_write, hwaddr access_len)
2149 {
2150 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2151 }
2152
2153 /* warning: addr must be aligned */
2154 static inline uint32_t ldl_phys_internal(hwaddr addr,
2155 enum device_endian endian)
2156 {
2157 uint8_t *ptr;
2158 uint64_t val;
2159 MemoryRegion *mr;
2160 hwaddr l = 4;
2161 hwaddr addr1;
2162
2163 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2164 false);
2165 if (l < 4 || !memory_access_is_direct(mr, false)) {
2166 /* I/O case */
2167 io_mem_read(mr, addr1, &val, 4);
2168 #if defined(TARGET_WORDS_BIGENDIAN)
2169 if (endian == DEVICE_LITTLE_ENDIAN) {
2170 val = bswap32(val);
2171 }
2172 #else
2173 if (endian == DEVICE_BIG_ENDIAN) {
2174 val = bswap32(val);
2175 }
2176 #endif
2177 } else {
2178 /* RAM case */
2179 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2180 & TARGET_PAGE_MASK)
2181 + addr1);
2182 switch (endian) {
2183 case DEVICE_LITTLE_ENDIAN:
2184 val = ldl_le_p(ptr);
2185 break;
2186 case DEVICE_BIG_ENDIAN:
2187 val = ldl_be_p(ptr);
2188 break;
2189 default:
2190 val = ldl_p(ptr);
2191 break;
2192 }
2193 }
2194 return val;
2195 }
2196
2197 uint32_t ldl_phys(hwaddr addr)
2198 {
2199 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2200 }
2201
2202 uint32_t ldl_le_phys(hwaddr addr)
2203 {
2204 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2205 }
2206
2207 uint32_t ldl_be_phys(hwaddr addr)
2208 {
2209 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2210 }
2211
2212 /* warning: addr must be aligned */
2213 static inline uint64_t ldq_phys_internal(hwaddr addr,
2214 enum device_endian endian)
2215 {
2216 uint8_t *ptr;
2217 uint64_t val;
2218 MemoryRegion *mr;
2219 hwaddr l = 8;
2220 hwaddr addr1;
2221
2222 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2223 false);
2224 if (l < 8 || !memory_access_is_direct(mr, false)) {
2225 /* I/O case */
2226 io_mem_read(mr, addr1, &val, 8);
2227 #if defined(TARGET_WORDS_BIGENDIAN)
2228 if (endian == DEVICE_LITTLE_ENDIAN) {
2229 val = bswap64(val);
2230 }
2231 #else
2232 if (endian == DEVICE_BIG_ENDIAN) {
2233 val = bswap64(val);
2234 }
2235 #endif
2236 } else {
2237 /* RAM case */
2238 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2239 & TARGET_PAGE_MASK)
2240 + addr1);
2241 switch (endian) {
2242 case DEVICE_LITTLE_ENDIAN:
2243 val = ldq_le_p(ptr);
2244 break;
2245 case DEVICE_BIG_ENDIAN:
2246 val = ldq_be_p(ptr);
2247 break;
2248 default:
2249 val = ldq_p(ptr);
2250 break;
2251 }
2252 }
2253 return val;
2254 }
2255
2256 uint64_t ldq_phys(hwaddr addr)
2257 {
2258 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2259 }
2260
2261 uint64_t ldq_le_phys(hwaddr addr)
2262 {
2263 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2264 }
2265
2266 uint64_t ldq_be_phys(hwaddr addr)
2267 {
2268 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2269 }
2270
2271 /* XXX: optimize */
2272 uint32_t ldub_phys(hwaddr addr)
2273 {
2274 uint8_t val;
2275 cpu_physical_memory_read(addr, &val, 1);
2276 return val;
2277 }
2278
2279 /* warning: addr must be aligned */
2280 static inline uint32_t lduw_phys_internal(hwaddr addr,
2281 enum device_endian endian)
2282 {
2283 uint8_t *ptr;
2284 uint64_t val;
2285 MemoryRegion *mr;
2286 hwaddr l = 2;
2287 hwaddr addr1;
2288
2289 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2290 false);
2291 if (l < 2 || !memory_access_is_direct(mr, false)) {
2292 /* I/O case */
2293 io_mem_read(mr, addr1, &val, 2);
2294 #if defined(TARGET_WORDS_BIGENDIAN)
2295 if (endian == DEVICE_LITTLE_ENDIAN) {
2296 val = bswap16(val);
2297 }
2298 #else
2299 if (endian == DEVICE_BIG_ENDIAN) {
2300 val = bswap16(val);
2301 }
2302 #endif
2303 } else {
2304 /* RAM case */
2305 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2306 & TARGET_PAGE_MASK)
2307 + addr1);
2308 switch (endian) {
2309 case DEVICE_LITTLE_ENDIAN:
2310 val = lduw_le_p(ptr);
2311 break;
2312 case DEVICE_BIG_ENDIAN:
2313 val = lduw_be_p(ptr);
2314 break;
2315 default:
2316 val = lduw_p(ptr);
2317 break;
2318 }
2319 }
2320 return val;
2321 }
2322
2323 uint32_t lduw_phys(hwaddr addr)
2324 {
2325 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2326 }
2327
2328 uint32_t lduw_le_phys(hwaddr addr)
2329 {
2330 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2331 }
2332
2333 uint32_t lduw_be_phys(hwaddr addr)
2334 {
2335 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2336 }
2337
2338 /* warning: addr must be aligned. The ram page is not masked as dirty
2339 and the code inside is not invalidated. It is useful if the dirty
2340 bits are used to track modified PTEs */
2341 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2342 {
2343 uint8_t *ptr;
2344 MemoryRegion *mr;
2345 hwaddr l = 4;
2346 hwaddr addr1;
2347
2348 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2349 true);
2350 if (l < 4 || !memory_access_is_direct(mr, true)) {
2351 io_mem_write(mr, addr1, val, 4);
2352 } else {
2353 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2354 ptr = qemu_get_ram_ptr(addr1);
2355 stl_p(ptr, val);
2356
2357 if (unlikely(in_migration)) {
2358 if (!cpu_physical_memory_is_dirty(addr1)) {
2359 /* invalidate code */
2360 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2361 /* set dirty bit */
2362 cpu_physical_memory_set_dirty_flags(
2363 addr1, (0xff & ~CODE_DIRTY_FLAG));
2364 }
2365 }
2366 }
2367 }
2368
2369 /* warning: addr must be aligned */
2370 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2371 enum device_endian endian)
2372 {
2373 uint8_t *ptr;
2374 MemoryRegion *mr;
2375 hwaddr l = 4;
2376 hwaddr addr1;
2377
2378 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2379 true);
2380 if (l < 4 || !memory_access_is_direct(mr, true)) {
2381 #if defined(TARGET_WORDS_BIGENDIAN)
2382 if (endian == DEVICE_LITTLE_ENDIAN) {
2383 val = bswap32(val);
2384 }
2385 #else
2386 if (endian == DEVICE_BIG_ENDIAN) {
2387 val = bswap32(val);
2388 }
2389 #endif
2390 io_mem_write(mr, addr1, val, 4);
2391 } else {
2392 /* RAM case */
2393 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2394 ptr = qemu_get_ram_ptr(addr1);
2395 switch (endian) {
2396 case DEVICE_LITTLE_ENDIAN:
2397 stl_le_p(ptr, val);
2398 break;
2399 case DEVICE_BIG_ENDIAN:
2400 stl_be_p(ptr, val);
2401 break;
2402 default:
2403 stl_p(ptr, val);
2404 break;
2405 }
2406 invalidate_and_set_dirty(addr1, 4);
2407 }
2408 }
2409
2410 void stl_phys(hwaddr addr, uint32_t val)
2411 {
2412 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2413 }
2414
2415 void stl_le_phys(hwaddr addr, uint32_t val)
2416 {
2417 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2418 }
2419
2420 void stl_be_phys(hwaddr addr, uint32_t val)
2421 {
2422 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2423 }
2424
2425 /* XXX: optimize */
2426 void stb_phys(hwaddr addr, uint32_t val)
2427 {
2428 uint8_t v = val;
2429 cpu_physical_memory_write(addr, &v, 1);
2430 }
2431
2432 /* warning: addr must be aligned */
2433 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2434 enum device_endian endian)
2435 {
2436 uint8_t *ptr;
2437 MemoryRegion *mr;
2438 hwaddr l = 2;
2439 hwaddr addr1;
2440
2441 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2442 true);
2443 if (l < 2 || !memory_access_is_direct(mr, true)) {
2444 #if defined(TARGET_WORDS_BIGENDIAN)
2445 if (endian == DEVICE_LITTLE_ENDIAN) {
2446 val = bswap16(val);
2447 }
2448 #else
2449 if (endian == DEVICE_BIG_ENDIAN) {
2450 val = bswap16(val);
2451 }
2452 #endif
2453 io_mem_write(mr, addr1, val, 2);
2454 } else {
2455 /* RAM case */
2456 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2457 ptr = qemu_get_ram_ptr(addr1);
2458 switch (endian) {
2459 case DEVICE_LITTLE_ENDIAN:
2460 stw_le_p(ptr, val);
2461 break;
2462 case DEVICE_BIG_ENDIAN:
2463 stw_be_p(ptr, val);
2464 break;
2465 default:
2466 stw_p(ptr, val);
2467 break;
2468 }
2469 invalidate_and_set_dirty(addr1, 2);
2470 }
2471 }
2472
2473 void stw_phys(hwaddr addr, uint32_t val)
2474 {
2475 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2476 }
2477
2478 void stw_le_phys(hwaddr addr, uint32_t val)
2479 {
2480 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2481 }
2482
2483 void stw_be_phys(hwaddr addr, uint32_t val)
2484 {
2485 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2486 }
2487
2488 /* XXX: optimize */
2489 void stq_phys(hwaddr addr, uint64_t val)
2490 {
2491 val = tswap64(val);
2492 cpu_physical_memory_write(addr, &val, 8);
2493 }
2494
2495 void stq_le_phys(hwaddr addr, uint64_t val)
2496 {
2497 val = cpu_to_le64(val);
2498 cpu_physical_memory_write(addr, &val, 8);
2499 }
2500
2501 void stq_be_phys(hwaddr addr, uint64_t val)
2502 {
2503 val = cpu_to_be64(val);
2504 cpu_physical_memory_write(addr, &val, 8);
2505 }
2506
2507 /* virtual memory access for debug (includes writing to ROM) */
2508 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2509 uint8_t *buf, int len, int is_write)
2510 {
2511 int l;
2512 hwaddr phys_addr;
2513 target_ulong page;
2514
2515 while (len > 0) {
2516 page = addr & TARGET_PAGE_MASK;
2517 phys_addr = cpu_get_phys_page_debug(env, page);
2518 /* if no physical page mapped, return an error */
2519 if (phys_addr == -1)
2520 return -1;
2521 l = (page + TARGET_PAGE_SIZE) - addr;
2522 if (l > len)
2523 l = len;
2524 phys_addr += (addr & ~TARGET_PAGE_MASK);
2525 if (is_write)
2526 cpu_physical_memory_write_rom(phys_addr, buf, l);
2527 else
2528 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2529 len -= l;
2530 buf += l;
2531 addr += l;
2532 }
2533 return 0;
2534 }
2535 #endif
2536
2537 #if !defined(CONFIG_USER_ONLY)
2538
2539 /*
2540 * A helper function for the _utterly broken_ virtio device model to find out if
2541 * it's running on a big endian machine. Don't do this at home kids!
2542 */
2543 bool virtio_is_big_endian(void);
2544 bool virtio_is_big_endian(void)
2545 {
2546 #if defined(TARGET_WORDS_BIGENDIAN)
2547 return true;
2548 #else
2549 return false;
2550 #endif
2551 }
2552
2553 #endif
2554
2555 #ifndef CONFIG_USER_ONLY
2556 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2557 {
2558 MemoryRegion*mr;
2559 hwaddr l = 1;
2560
2561 mr = address_space_translate(&address_space_memory,
2562 phys_addr, &phys_addr, &l, false);
2563
2564 return !(memory_region_is_ram(mr) ||
2565 memory_region_is_romd(mr));
2566 }
2567
2568 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2569 {
2570 RAMBlock *block;
2571
2572 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2573 func(block->host, block->offset, block->length, opaque);
2574 }
2575 }
2576 #endif