]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
find -type f | xargs sed -i 's/[\t ]$//g' # on most files
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
34
35 #include "cpu.h"
36 #include "exec-all.h"
37 #if defined(CONFIG_USER_ONLY)
38 #include <qemu.h>
39 #endif
40
41 //#define DEBUG_TB_INVALIDATE
42 //#define DEBUG_FLUSH
43 //#define DEBUG_TLB
44 //#define DEBUG_UNASSIGNED
45
46 /* make various TB consistency checks */
47 //#define DEBUG_TB_CHECK
48 //#define DEBUG_TLB_CHECK
49
50 //#define DEBUG_IOPORT
51 //#define DEBUG_SUBPAGE
52
53 #if !defined(CONFIG_USER_ONLY)
54 /* TB consistency checks only implemented for usermode emulation. */
55 #undef DEBUG_TB_CHECK
56 #endif
57
58 /* threshold to flush the translated code buffer */
59 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
60
61 #define SMC_BITMAP_USE_THRESHOLD 10
62
63 #define MMAP_AREA_START 0x00000000
64 #define MMAP_AREA_END 0xa8000000
65
66 #if defined(TARGET_SPARC64)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 41
68 #elif defined(TARGET_SPARC)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 36
70 #elif defined(TARGET_ALPHA)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 42
72 #define TARGET_VIRT_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_PPC64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #else
76 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
77 #define TARGET_PHYS_ADDR_SPACE_BITS 32
78 #endif
79
80 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
85
86 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
87 uint8_t *code_gen_ptr;
88
89 int phys_ram_size;
90 int phys_ram_fd;
91 uint8_t *phys_ram_base;
92 uint8_t *phys_ram_dirty;
93 static ram_addr_t phys_ram_alloc_offset = 0;
94
95 CPUState *first_cpu;
96 /* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
98 CPUState *cpu_single_env;
99
100 typedef struct PageDesc {
101 /* list of TBs intersecting this ram page */
102 TranslationBlock *first_tb;
103 /* in order to optimize self modifying code, we count the number
104 of lookups we do to a given page to use a bitmap */
105 unsigned int code_write_count;
106 uint8_t *code_bitmap;
107 #if defined(CONFIG_USER_ONLY)
108 unsigned long flags;
109 #endif
110 } PageDesc;
111
112 typedef struct PhysPageDesc {
113 /* offset in host memory of the page + io_index in the low 12 bits */
114 uint32_t phys_offset;
115 } PhysPageDesc;
116
117 #define L2_BITS 10
118 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
119 /* XXX: this is a temporary hack for alpha target.
120 * In the future, this is to be replaced by a multi-level table
121 * to actually be able to handle the complete 64 bits address space.
122 */
123 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
124 #else
125 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
126 #endif
127
128 #define L1_SIZE (1 << L1_BITS)
129 #define L2_SIZE (1 << L2_BITS)
130
131 static void io_mem_init(void);
132
133 unsigned long qemu_real_host_page_size;
134 unsigned long qemu_host_page_bits;
135 unsigned long qemu_host_page_size;
136 unsigned long qemu_host_page_mask;
137
138 /* XXX: for system emulation, it could just be an array */
139 static PageDesc *l1_map[L1_SIZE];
140 PhysPageDesc **l1_phys_map;
141
142 /* io memory support */
143 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
144 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
145 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
146 static int io_mem_nb;
147 #if defined(CONFIG_SOFTMMU)
148 static int io_mem_watch;
149 #endif
150
151 /* log support */
152 char *logfilename = "/tmp/qemu.log";
153 FILE *logfile;
154 int loglevel;
155 static int log_append = 0;
156
157 /* statistics */
158 static int tlb_flush_count;
159 static int tb_flush_count;
160 static int tb_phys_invalidate_count;
161
162 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
163 typedef struct subpage_t {
164 target_phys_addr_t base;
165 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE];
166 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE];
167 void *opaque[TARGET_PAGE_SIZE];
168 } subpage_t;
169
170 static void page_init(void)
171 {
172 /* NOTE: we can always suppose that qemu_host_page_size >=
173 TARGET_PAGE_SIZE */
174 #ifdef _WIN32
175 {
176 SYSTEM_INFO system_info;
177 DWORD old_protect;
178
179 GetSystemInfo(&system_info);
180 qemu_real_host_page_size = system_info.dwPageSize;
181
182 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
183 PAGE_EXECUTE_READWRITE, &old_protect);
184 }
185 #else
186 qemu_real_host_page_size = getpagesize();
187 {
188 unsigned long start, end;
189
190 start = (unsigned long)code_gen_buffer;
191 start &= ~(qemu_real_host_page_size - 1);
192
193 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
196
197 mprotect((void *)start, end - start,
198 PROT_READ | PROT_WRITE | PROT_EXEC);
199 }
200 #endif
201
202 if (qemu_host_page_size == 0)
203 qemu_host_page_size = qemu_real_host_page_size;
204 if (qemu_host_page_size < TARGET_PAGE_SIZE)
205 qemu_host_page_size = TARGET_PAGE_SIZE;
206 qemu_host_page_bits = 0;
207 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
208 qemu_host_page_bits++;
209 qemu_host_page_mask = ~(qemu_host_page_size - 1);
210 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
211 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
212 }
213
214 static inline PageDesc *page_find_alloc(unsigned int index)
215 {
216 PageDesc **lp, *p;
217
218 lp = &l1_map[index >> L2_BITS];
219 p = *lp;
220 if (!p) {
221 /* allocate if not found */
222 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
223 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
224 *lp = p;
225 }
226 return p + (index & (L2_SIZE - 1));
227 }
228
229 static inline PageDesc *page_find(unsigned int index)
230 {
231 PageDesc *p;
232
233 p = l1_map[index >> L2_BITS];
234 if (!p)
235 return 0;
236 return p + (index & (L2_SIZE - 1));
237 }
238
239 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
240 {
241 void **lp, **p;
242 PhysPageDesc *pd;
243
244 p = (void **)l1_phys_map;
245 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
246
247 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
248 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
249 #endif
250 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
251 p = *lp;
252 if (!p) {
253 /* allocate if not found */
254 if (!alloc)
255 return NULL;
256 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
257 memset(p, 0, sizeof(void *) * L1_SIZE);
258 *lp = p;
259 }
260 #endif
261 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
262 pd = *lp;
263 if (!pd) {
264 int i;
265 /* allocate if not found */
266 if (!alloc)
267 return NULL;
268 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
269 *lp = pd;
270 for (i = 0; i < L2_SIZE; i++)
271 pd[i].phys_offset = IO_MEM_UNASSIGNED;
272 }
273 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
274 }
275
276 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
277 {
278 return phys_page_find_alloc(index, 0);
279 }
280
281 #if !defined(CONFIG_USER_ONLY)
282 static void tlb_protect_code(ram_addr_t ram_addr);
283 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
284 target_ulong vaddr);
285 #endif
286
287 void cpu_exec_init(CPUState *env)
288 {
289 CPUState **penv;
290 int cpu_index;
291
292 if (!code_gen_ptr) {
293 code_gen_ptr = code_gen_buffer;
294 page_init();
295 io_mem_init();
296 }
297 env->next_cpu = NULL;
298 penv = &first_cpu;
299 cpu_index = 0;
300 while (*penv != NULL) {
301 penv = (CPUState **)&(*penv)->next_cpu;
302 cpu_index++;
303 }
304 env->cpu_index = cpu_index;
305 env->nb_watchpoints = 0;
306 *penv = env;
307 }
308
309 static inline void invalidate_page_bitmap(PageDesc *p)
310 {
311 if (p->code_bitmap) {
312 qemu_free(p->code_bitmap);
313 p->code_bitmap = NULL;
314 }
315 p->code_write_count = 0;
316 }
317
318 /* set to NULL all the 'first_tb' fields in all PageDescs */
319 static void page_flush_tb(void)
320 {
321 int i, j;
322 PageDesc *p;
323
324 for(i = 0; i < L1_SIZE; i++) {
325 p = l1_map[i];
326 if (p) {
327 for(j = 0; j < L2_SIZE; j++) {
328 p->first_tb = NULL;
329 invalidate_page_bitmap(p);
330 p++;
331 }
332 }
333 }
334 }
335
336 /* flush all the translation blocks */
337 /* XXX: tb_flush is currently not thread safe */
338 void tb_flush(CPUState *env1)
339 {
340 CPUState *env;
341 #if defined(DEBUG_FLUSH)
342 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
343 code_gen_ptr - code_gen_buffer,
344 nb_tbs,
345 nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
346 #endif
347 nb_tbs = 0;
348
349 for(env = first_cpu; env != NULL; env = env->next_cpu) {
350 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
351 }
352
353 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
354 page_flush_tb();
355
356 code_gen_ptr = code_gen_buffer;
357 /* XXX: flush processor icache at this point if cache flush is
358 expensive */
359 tb_flush_count++;
360 }
361
362 #ifdef DEBUG_TB_CHECK
363
364 static void tb_invalidate_check(target_ulong address)
365 {
366 TranslationBlock *tb;
367 int i;
368 address &= TARGET_PAGE_MASK;
369 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
370 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
371 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
372 address >= tb->pc + tb->size)) {
373 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
374 address, (long)tb->pc, tb->size);
375 }
376 }
377 }
378 }
379
380 /* verify that all the pages have correct rights for code */
381 static void tb_page_check(void)
382 {
383 TranslationBlock *tb;
384 int i, flags1, flags2;
385
386 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
387 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
388 flags1 = page_get_flags(tb->pc);
389 flags2 = page_get_flags(tb->pc + tb->size - 1);
390 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
391 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
392 (long)tb->pc, tb->size, flags1, flags2);
393 }
394 }
395 }
396 }
397
398 void tb_jmp_check(TranslationBlock *tb)
399 {
400 TranslationBlock *tb1;
401 unsigned int n1;
402
403 /* suppress any remaining jumps to this TB */
404 tb1 = tb->jmp_first;
405 for(;;) {
406 n1 = (long)tb1 & 3;
407 tb1 = (TranslationBlock *)((long)tb1 & ~3);
408 if (n1 == 2)
409 break;
410 tb1 = tb1->jmp_next[n1];
411 }
412 /* check end of list */
413 if (tb1 != tb) {
414 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
415 }
416 }
417
418 #endif
419
420 /* invalidate one TB */
421 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
422 int next_offset)
423 {
424 TranslationBlock *tb1;
425 for(;;) {
426 tb1 = *ptb;
427 if (tb1 == tb) {
428 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
429 break;
430 }
431 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
432 }
433 }
434
435 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
436 {
437 TranslationBlock *tb1;
438 unsigned int n1;
439
440 for(;;) {
441 tb1 = *ptb;
442 n1 = (long)tb1 & 3;
443 tb1 = (TranslationBlock *)((long)tb1 & ~3);
444 if (tb1 == tb) {
445 *ptb = tb1->page_next[n1];
446 break;
447 }
448 ptb = &tb1->page_next[n1];
449 }
450 }
451
452 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
453 {
454 TranslationBlock *tb1, **ptb;
455 unsigned int n1;
456
457 ptb = &tb->jmp_next[n];
458 tb1 = *ptb;
459 if (tb1) {
460 /* find tb(n) in circular list */
461 for(;;) {
462 tb1 = *ptb;
463 n1 = (long)tb1 & 3;
464 tb1 = (TranslationBlock *)((long)tb1 & ~3);
465 if (n1 == n && tb1 == tb)
466 break;
467 if (n1 == 2) {
468 ptb = &tb1->jmp_first;
469 } else {
470 ptb = &tb1->jmp_next[n1];
471 }
472 }
473 /* now we can suppress tb(n) from the list */
474 *ptb = tb->jmp_next[n];
475
476 tb->jmp_next[n] = NULL;
477 }
478 }
479
480 /* reset the jump entry 'n' of a TB so that it is not chained to
481 another TB */
482 static inline void tb_reset_jump(TranslationBlock *tb, int n)
483 {
484 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
485 }
486
487 static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
488 {
489 CPUState *env;
490 PageDesc *p;
491 unsigned int h, n1;
492 target_ulong phys_pc;
493 TranslationBlock *tb1, *tb2;
494
495 /* remove the TB from the hash list */
496 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
497 h = tb_phys_hash_func(phys_pc);
498 tb_remove(&tb_phys_hash[h], tb,
499 offsetof(TranslationBlock, phys_hash_next));
500
501 /* remove the TB from the page list */
502 if (tb->page_addr[0] != page_addr) {
503 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
504 tb_page_remove(&p->first_tb, tb);
505 invalidate_page_bitmap(p);
506 }
507 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
508 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
509 tb_page_remove(&p->first_tb, tb);
510 invalidate_page_bitmap(p);
511 }
512
513 tb_invalidated_flag = 1;
514
515 /* remove the TB from the hash list */
516 h = tb_jmp_cache_hash_func(tb->pc);
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 if (env->tb_jmp_cache[h] == tb)
519 env->tb_jmp_cache[h] = NULL;
520 }
521
522 /* suppress this TB from the two jump lists */
523 tb_jmp_remove(tb, 0);
524 tb_jmp_remove(tb, 1);
525
526 /* suppress any remaining jumps to this TB */
527 tb1 = tb->jmp_first;
528 for(;;) {
529 n1 = (long)tb1 & 3;
530 if (n1 == 2)
531 break;
532 tb1 = (TranslationBlock *)((long)tb1 & ~3);
533 tb2 = tb1->jmp_next[n1];
534 tb_reset_jump(tb1, n1);
535 tb1->jmp_next[n1] = NULL;
536 tb1 = tb2;
537 }
538 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
539
540 tb_phys_invalidate_count++;
541 }
542
543 static inline void set_bits(uint8_t *tab, int start, int len)
544 {
545 int end, mask, end1;
546
547 end = start + len;
548 tab += start >> 3;
549 mask = 0xff << (start & 7);
550 if ((start & ~7) == (end & ~7)) {
551 if (start < end) {
552 mask &= ~(0xff << (end & 7));
553 *tab |= mask;
554 }
555 } else {
556 *tab++ |= mask;
557 start = (start + 8) & ~7;
558 end1 = end & ~7;
559 while (start < end1) {
560 *tab++ = 0xff;
561 start += 8;
562 }
563 if (start < end) {
564 mask = ~(0xff << (end & 7));
565 *tab |= mask;
566 }
567 }
568 }
569
570 static void build_page_bitmap(PageDesc *p)
571 {
572 int n, tb_start, tb_end;
573 TranslationBlock *tb;
574
575 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
576 if (!p->code_bitmap)
577 return;
578 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
579
580 tb = p->first_tb;
581 while (tb != NULL) {
582 n = (long)tb & 3;
583 tb = (TranslationBlock *)((long)tb & ~3);
584 /* NOTE: this is subtle as a TB may span two physical pages */
585 if (n == 0) {
586 /* NOTE: tb_end may be after the end of the page, but
587 it is not a problem */
588 tb_start = tb->pc & ~TARGET_PAGE_MASK;
589 tb_end = tb_start + tb->size;
590 if (tb_end > TARGET_PAGE_SIZE)
591 tb_end = TARGET_PAGE_SIZE;
592 } else {
593 tb_start = 0;
594 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
595 }
596 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
597 tb = tb->page_next[n];
598 }
599 }
600
601 #ifdef TARGET_HAS_PRECISE_SMC
602
603 static void tb_gen_code(CPUState *env,
604 target_ulong pc, target_ulong cs_base, int flags,
605 int cflags)
606 {
607 TranslationBlock *tb;
608 uint8_t *tc_ptr;
609 target_ulong phys_pc, phys_page2, virt_page2;
610 int code_gen_size;
611
612 phys_pc = get_phys_addr_code(env, pc);
613 tb = tb_alloc(pc);
614 if (!tb) {
615 /* flush must be done */
616 tb_flush(env);
617 /* cannot fail at this point */
618 tb = tb_alloc(pc);
619 }
620 tc_ptr = code_gen_ptr;
621 tb->tc_ptr = tc_ptr;
622 tb->cs_base = cs_base;
623 tb->flags = flags;
624 tb->cflags = cflags;
625 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
626 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
627
628 /* check next page if needed */
629 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
630 phys_page2 = -1;
631 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
632 phys_page2 = get_phys_addr_code(env, virt_page2);
633 }
634 tb_link_phys(tb, phys_pc, phys_page2);
635 }
636 #endif
637
638 /* invalidate all TBs which intersect with the target physical page
639 starting in range [start;end[. NOTE: start and end must refer to
640 the same physical page. 'is_cpu_write_access' should be true if called
641 from a real cpu write access: the virtual CPU will exit the current
642 TB if code is modified inside this TB. */
643 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
644 int is_cpu_write_access)
645 {
646 int n, current_tb_modified, current_tb_not_found, current_flags;
647 CPUState *env = cpu_single_env;
648 PageDesc *p;
649 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
650 target_ulong tb_start, tb_end;
651 target_ulong current_pc, current_cs_base;
652
653 p = page_find(start >> TARGET_PAGE_BITS);
654 if (!p)
655 return;
656 if (!p->code_bitmap &&
657 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
658 is_cpu_write_access) {
659 /* build code bitmap */
660 build_page_bitmap(p);
661 }
662
663 /* we remove all the TBs in the range [start, end[ */
664 /* XXX: see if in some cases it could be faster to invalidate all the code */
665 current_tb_not_found = is_cpu_write_access;
666 current_tb_modified = 0;
667 current_tb = NULL; /* avoid warning */
668 current_pc = 0; /* avoid warning */
669 current_cs_base = 0; /* avoid warning */
670 current_flags = 0; /* avoid warning */
671 tb = p->first_tb;
672 while (tb != NULL) {
673 n = (long)tb & 3;
674 tb = (TranslationBlock *)((long)tb & ~3);
675 tb_next = tb->page_next[n];
676 /* NOTE: this is subtle as a TB may span two physical pages */
677 if (n == 0) {
678 /* NOTE: tb_end may be after the end of the page, but
679 it is not a problem */
680 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
681 tb_end = tb_start + tb->size;
682 } else {
683 tb_start = tb->page_addr[1];
684 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
685 }
686 if (!(tb_end <= start || tb_start >= end)) {
687 #ifdef TARGET_HAS_PRECISE_SMC
688 if (current_tb_not_found) {
689 current_tb_not_found = 0;
690 current_tb = NULL;
691 if (env->mem_write_pc) {
692 /* now we have a real cpu fault */
693 current_tb = tb_find_pc(env->mem_write_pc);
694 }
695 }
696 if (current_tb == tb &&
697 !(current_tb->cflags & CF_SINGLE_INSN)) {
698 /* If we are modifying the current TB, we must stop
699 its execution. We could be more precise by checking
700 that the modification is after the current PC, but it
701 would require a specialized function to partially
702 restore the CPU state */
703
704 current_tb_modified = 1;
705 cpu_restore_state(current_tb, env,
706 env->mem_write_pc, NULL);
707 #if defined(TARGET_I386)
708 current_flags = env->hflags;
709 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
710 current_cs_base = (target_ulong)env->segs[R_CS].base;
711 current_pc = current_cs_base + env->eip;
712 #else
713 #error unsupported CPU
714 #endif
715 }
716 #endif /* TARGET_HAS_PRECISE_SMC */
717 /* we need to do that to handle the case where a signal
718 occurs while doing tb_phys_invalidate() */
719 saved_tb = NULL;
720 if (env) {
721 saved_tb = env->current_tb;
722 env->current_tb = NULL;
723 }
724 tb_phys_invalidate(tb, -1);
725 if (env) {
726 env->current_tb = saved_tb;
727 if (env->interrupt_request && env->current_tb)
728 cpu_interrupt(env, env->interrupt_request);
729 }
730 }
731 tb = tb_next;
732 }
733 #if !defined(CONFIG_USER_ONLY)
734 /* if no code remaining, no need to continue to use slow writes */
735 if (!p->first_tb) {
736 invalidate_page_bitmap(p);
737 if (is_cpu_write_access) {
738 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
739 }
740 }
741 #endif
742 #ifdef TARGET_HAS_PRECISE_SMC
743 if (current_tb_modified) {
744 /* we generate a block containing just the instruction
745 modifying the memory. It will ensure that it cannot modify
746 itself */
747 env->current_tb = NULL;
748 tb_gen_code(env, current_pc, current_cs_base, current_flags,
749 CF_SINGLE_INSN);
750 cpu_resume_from_signal(env, NULL);
751 }
752 #endif
753 }
754
755 /* len must be <= 8 and start must be a multiple of len */
756 static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
757 {
758 PageDesc *p;
759 int offset, b;
760 #if 0
761 if (1) {
762 if (loglevel) {
763 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
764 cpu_single_env->mem_write_vaddr, len,
765 cpu_single_env->eip,
766 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
767 }
768 }
769 #endif
770 p = page_find(start >> TARGET_PAGE_BITS);
771 if (!p)
772 return;
773 if (p->code_bitmap) {
774 offset = start & ~TARGET_PAGE_MASK;
775 b = p->code_bitmap[offset >> 3] >> (offset & 7);
776 if (b & ((1 << len) - 1))
777 goto do_invalidate;
778 } else {
779 do_invalidate:
780 tb_invalidate_phys_page_range(start, start + len, 1);
781 }
782 }
783
784 #if !defined(CONFIG_SOFTMMU)
785 static void tb_invalidate_phys_page(target_ulong addr,
786 unsigned long pc, void *puc)
787 {
788 int n, current_flags, current_tb_modified;
789 target_ulong current_pc, current_cs_base;
790 PageDesc *p;
791 TranslationBlock *tb, *current_tb;
792 #ifdef TARGET_HAS_PRECISE_SMC
793 CPUState *env = cpu_single_env;
794 #endif
795
796 addr &= TARGET_PAGE_MASK;
797 p = page_find(addr >> TARGET_PAGE_BITS);
798 if (!p)
799 return;
800 tb = p->first_tb;
801 current_tb_modified = 0;
802 current_tb = NULL;
803 current_pc = 0; /* avoid warning */
804 current_cs_base = 0; /* avoid warning */
805 current_flags = 0; /* avoid warning */
806 #ifdef TARGET_HAS_PRECISE_SMC
807 if (tb && pc != 0) {
808 current_tb = tb_find_pc(pc);
809 }
810 #endif
811 while (tb != NULL) {
812 n = (long)tb & 3;
813 tb = (TranslationBlock *)((long)tb & ~3);
814 #ifdef TARGET_HAS_PRECISE_SMC
815 if (current_tb == tb &&
816 !(current_tb->cflags & CF_SINGLE_INSN)) {
817 /* If we are modifying the current TB, we must stop
818 its execution. We could be more precise by checking
819 that the modification is after the current PC, but it
820 would require a specialized function to partially
821 restore the CPU state */
822
823 current_tb_modified = 1;
824 cpu_restore_state(current_tb, env, pc, puc);
825 #if defined(TARGET_I386)
826 current_flags = env->hflags;
827 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
828 current_cs_base = (target_ulong)env->segs[R_CS].base;
829 current_pc = current_cs_base + env->eip;
830 #else
831 #error unsupported CPU
832 #endif
833 }
834 #endif /* TARGET_HAS_PRECISE_SMC */
835 tb_phys_invalidate(tb, addr);
836 tb = tb->page_next[n];
837 }
838 p->first_tb = NULL;
839 #ifdef TARGET_HAS_PRECISE_SMC
840 if (current_tb_modified) {
841 /* we generate a block containing just the instruction
842 modifying the memory. It will ensure that it cannot modify
843 itself */
844 env->current_tb = NULL;
845 tb_gen_code(env, current_pc, current_cs_base, current_flags,
846 CF_SINGLE_INSN);
847 cpu_resume_from_signal(env, puc);
848 }
849 #endif
850 }
851 #endif
852
853 /* add the tb in the target page and protect it if necessary */
854 static inline void tb_alloc_page(TranslationBlock *tb,
855 unsigned int n, target_ulong page_addr)
856 {
857 PageDesc *p;
858 TranslationBlock *last_first_tb;
859
860 tb->page_addr[n] = page_addr;
861 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
862 tb->page_next[n] = p->first_tb;
863 last_first_tb = p->first_tb;
864 p->first_tb = (TranslationBlock *)((long)tb | n);
865 invalidate_page_bitmap(p);
866
867 #if defined(TARGET_HAS_SMC) || 1
868
869 #if defined(CONFIG_USER_ONLY)
870 if (p->flags & PAGE_WRITE) {
871 target_ulong addr;
872 PageDesc *p2;
873 int prot;
874
875 /* force the host page as non writable (writes will have a
876 page fault + mprotect overhead) */
877 page_addr &= qemu_host_page_mask;
878 prot = 0;
879 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
880 addr += TARGET_PAGE_SIZE) {
881
882 p2 = page_find (addr >> TARGET_PAGE_BITS);
883 if (!p2)
884 continue;
885 prot |= p2->flags;
886 p2->flags &= ~PAGE_WRITE;
887 page_get_flags(addr);
888 }
889 mprotect(g2h(page_addr), qemu_host_page_size,
890 (prot & PAGE_BITS) & ~PAGE_WRITE);
891 #ifdef DEBUG_TB_INVALIDATE
892 printf("protecting code page: 0x%08lx\n",
893 page_addr);
894 #endif
895 }
896 #else
897 /* if some code is already present, then the pages are already
898 protected. So we handle the case where only the first TB is
899 allocated in a physical page */
900 if (!last_first_tb) {
901 tlb_protect_code(page_addr);
902 }
903 #endif
904
905 #endif /* TARGET_HAS_SMC */
906 }
907
908 /* Allocate a new translation block. Flush the translation buffer if
909 too many translation blocks or too much generated code. */
910 TranslationBlock *tb_alloc(target_ulong pc)
911 {
912 TranslationBlock *tb;
913
914 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
915 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
916 return NULL;
917 tb = &tbs[nb_tbs++];
918 tb->pc = pc;
919 tb->cflags = 0;
920 return tb;
921 }
922
923 /* add a new TB and link it to the physical page tables. phys_page2 is
924 (-1) to indicate that only one page contains the TB. */
925 void tb_link_phys(TranslationBlock *tb,
926 target_ulong phys_pc, target_ulong phys_page2)
927 {
928 unsigned int h;
929 TranslationBlock **ptb;
930
931 /* add in the physical hash table */
932 h = tb_phys_hash_func(phys_pc);
933 ptb = &tb_phys_hash[h];
934 tb->phys_hash_next = *ptb;
935 *ptb = tb;
936
937 /* add in the page list */
938 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
939 if (phys_page2 != -1)
940 tb_alloc_page(tb, 1, phys_page2);
941 else
942 tb->page_addr[1] = -1;
943
944 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
945 tb->jmp_next[0] = NULL;
946 tb->jmp_next[1] = NULL;
947 #ifdef USE_CODE_COPY
948 tb->cflags &= ~CF_FP_USED;
949 if (tb->cflags & CF_TB_FP_USED)
950 tb->cflags |= CF_FP_USED;
951 #endif
952
953 /* init original jump addresses */
954 if (tb->tb_next_offset[0] != 0xffff)
955 tb_reset_jump(tb, 0);
956 if (tb->tb_next_offset[1] != 0xffff)
957 tb_reset_jump(tb, 1);
958
959 #ifdef DEBUG_TB_CHECK
960 tb_page_check();
961 #endif
962 }
963
964 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
965 tb[1].tc_ptr. Return NULL if not found */
966 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
967 {
968 int m_min, m_max, m;
969 unsigned long v;
970 TranslationBlock *tb;
971
972 if (nb_tbs <= 0)
973 return NULL;
974 if (tc_ptr < (unsigned long)code_gen_buffer ||
975 tc_ptr >= (unsigned long)code_gen_ptr)
976 return NULL;
977 /* binary search (cf Knuth) */
978 m_min = 0;
979 m_max = nb_tbs - 1;
980 while (m_min <= m_max) {
981 m = (m_min + m_max) >> 1;
982 tb = &tbs[m];
983 v = (unsigned long)tb->tc_ptr;
984 if (v == tc_ptr)
985 return tb;
986 else if (tc_ptr < v) {
987 m_max = m - 1;
988 } else {
989 m_min = m + 1;
990 }
991 }
992 return &tbs[m_max];
993 }
994
995 static void tb_reset_jump_recursive(TranslationBlock *tb);
996
997 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
998 {
999 TranslationBlock *tb1, *tb_next, **ptb;
1000 unsigned int n1;
1001
1002 tb1 = tb->jmp_next[n];
1003 if (tb1 != NULL) {
1004 /* find head of list */
1005 for(;;) {
1006 n1 = (long)tb1 & 3;
1007 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1008 if (n1 == 2)
1009 break;
1010 tb1 = tb1->jmp_next[n1];
1011 }
1012 /* we are now sure now that tb jumps to tb1 */
1013 tb_next = tb1;
1014
1015 /* remove tb from the jmp_first list */
1016 ptb = &tb_next->jmp_first;
1017 for(;;) {
1018 tb1 = *ptb;
1019 n1 = (long)tb1 & 3;
1020 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1021 if (n1 == n && tb1 == tb)
1022 break;
1023 ptb = &tb1->jmp_next[n1];
1024 }
1025 *ptb = tb->jmp_next[n];
1026 tb->jmp_next[n] = NULL;
1027
1028 /* suppress the jump to next tb in generated code */
1029 tb_reset_jump(tb, n);
1030
1031 /* suppress jumps in the tb on which we could have jumped */
1032 tb_reset_jump_recursive(tb_next);
1033 }
1034 }
1035
1036 static void tb_reset_jump_recursive(TranslationBlock *tb)
1037 {
1038 tb_reset_jump_recursive2(tb, 0);
1039 tb_reset_jump_recursive2(tb, 1);
1040 }
1041
1042 #if defined(TARGET_HAS_ICE)
1043 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1044 {
1045 target_phys_addr_t addr;
1046 target_ulong pd;
1047 ram_addr_t ram_addr;
1048 PhysPageDesc *p;
1049
1050 addr = cpu_get_phys_page_debug(env, pc);
1051 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1052 if (!p) {
1053 pd = IO_MEM_UNASSIGNED;
1054 } else {
1055 pd = p->phys_offset;
1056 }
1057 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1058 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1059 }
1060 #endif
1061
1062 /* Add a watchpoint. */
1063 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1064 {
1065 int i;
1066
1067 for (i = 0; i < env->nb_watchpoints; i++) {
1068 if (addr == env->watchpoint[i].vaddr)
1069 return 0;
1070 }
1071 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1072 return -1;
1073
1074 i = env->nb_watchpoints++;
1075 env->watchpoint[i].vaddr = addr;
1076 tlb_flush_page(env, addr);
1077 /* FIXME: This flush is needed because of the hack to make memory ops
1078 terminate the TB. It can be removed once the proper IO trap and
1079 re-execute bits are in. */
1080 tb_flush(env);
1081 return i;
1082 }
1083
1084 /* Remove a watchpoint. */
1085 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1086 {
1087 int i;
1088
1089 for (i = 0; i < env->nb_watchpoints; i++) {
1090 if (addr == env->watchpoint[i].vaddr) {
1091 env->nb_watchpoints--;
1092 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1093 tlb_flush_page(env, addr);
1094 return 0;
1095 }
1096 }
1097 return -1;
1098 }
1099
1100 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1101 breakpoint is reached */
1102 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1103 {
1104 #if defined(TARGET_HAS_ICE)
1105 int i;
1106
1107 for(i = 0; i < env->nb_breakpoints; i++) {
1108 if (env->breakpoints[i] == pc)
1109 return 0;
1110 }
1111
1112 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1113 return -1;
1114 env->breakpoints[env->nb_breakpoints++] = pc;
1115
1116 breakpoint_invalidate(env, pc);
1117 return 0;
1118 #else
1119 return -1;
1120 #endif
1121 }
1122
1123 /* remove a breakpoint */
1124 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1125 {
1126 #if defined(TARGET_HAS_ICE)
1127 int i;
1128 for(i = 0; i < env->nb_breakpoints; i++) {
1129 if (env->breakpoints[i] == pc)
1130 goto found;
1131 }
1132 return -1;
1133 found:
1134 env->nb_breakpoints--;
1135 if (i < env->nb_breakpoints)
1136 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1137
1138 breakpoint_invalidate(env, pc);
1139 return 0;
1140 #else
1141 return -1;
1142 #endif
1143 }
1144
1145 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1146 CPU loop after each instruction */
1147 void cpu_single_step(CPUState *env, int enabled)
1148 {
1149 #if defined(TARGET_HAS_ICE)
1150 if (env->singlestep_enabled != enabled) {
1151 env->singlestep_enabled = enabled;
1152 /* must flush all the translated code to avoid inconsistancies */
1153 /* XXX: only flush what is necessary */
1154 tb_flush(env);
1155 }
1156 #endif
1157 }
1158
1159 /* enable or disable low levels log */
1160 void cpu_set_log(int log_flags)
1161 {
1162 loglevel = log_flags;
1163 if (loglevel && !logfile) {
1164 logfile = fopen(logfilename, log_append ? "a" : "w");
1165 if (!logfile) {
1166 perror(logfilename);
1167 _exit(1);
1168 }
1169 #if !defined(CONFIG_SOFTMMU)
1170 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1171 {
1172 static uint8_t logfile_buf[4096];
1173 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1174 }
1175 #else
1176 setvbuf(logfile, NULL, _IOLBF, 0);
1177 #endif
1178 log_append = 1;
1179 }
1180 if (!loglevel && logfile) {
1181 fclose(logfile);
1182 logfile = NULL;
1183 }
1184 }
1185
1186 void cpu_set_log_filename(const char *filename)
1187 {
1188 logfilename = strdup(filename);
1189 if (logfile) {
1190 fclose(logfile);
1191 logfile = NULL;
1192 }
1193 cpu_set_log(loglevel);
1194 }
1195
1196 /* mask must never be zero, except for A20 change call */
1197 void cpu_interrupt(CPUState *env, int mask)
1198 {
1199 TranslationBlock *tb;
1200 static int interrupt_lock;
1201
1202 env->interrupt_request |= mask;
1203 /* if the cpu is currently executing code, we must unlink it and
1204 all the potentially executing TB */
1205 tb = env->current_tb;
1206 if (tb && !testandset(&interrupt_lock)) {
1207 env->current_tb = NULL;
1208 tb_reset_jump_recursive(tb);
1209 interrupt_lock = 0;
1210 }
1211 }
1212
1213 void cpu_reset_interrupt(CPUState *env, int mask)
1214 {
1215 env->interrupt_request &= ~mask;
1216 }
1217
1218 CPULogItem cpu_log_items[] = {
1219 { CPU_LOG_TB_OUT_ASM, "out_asm",
1220 "show generated host assembly code for each compiled TB" },
1221 { CPU_LOG_TB_IN_ASM, "in_asm",
1222 "show target assembly code for each compiled TB" },
1223 { CPU_LOG_TB_OP, "op",
1224 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1225 #ifdef TARGET_I386
1226 { CPU_LOG_TB_OP_OPT, "op_opt",
1227 "show micro ops after optimization for each compiled TB" },
1228 #endif
1229 { CPU_LOG_INT, "int",
1230 "show interrupts/exceptions in short format" },
1231 { CPU_LOG_EXEC, "exec",
1232 "show trace before each executed TB (lots of logs)" },
1233 { CPU_LOG_TB_CPU, "cpu",
1234 "show CPU state before block translation" },
1235 #ifdef TARGET_I386
1236 { CPU_LOG_PCALL, "pcall",
1237 "show protected mode far calls/returns/exceptions" },
1238 #endif
1239 #ifdef DEBUG_IOPORT
1240 { CPU_LOG_IOPORT, "ioport",
1241 "show all i/o ports accesses" },
1242 #endif
1243 { 0, NULL, NULL },
1244 };
1245
1246 static int cmp1(const char *s1, int n, const char *s2)
1247 {
1248 if (strlen(s2) != n)
1249 return 0;
1250 return memcmp(s1, s2, n) == 0;
1251 }
1252
1253 /* takes a comma separated list of log masks. Return 0 if error. */
1254 int cpu_str_to_log_mask(const char *str)
1255 {
1256 CPULogItem *item;
1257 int mask;
1258 const char *p, *p1;
1259
1260 p = str;
1261 mask = 0;
1262 for(;;) {
1263 p1 = strchr(p, ',');
1264 if (!p1)
1265 p1 = p + strlen(p);
1266 if(cmp1(p,p1-p,"all")) {
1267 for(item = cpu_log_items; item->mask != 0; item++) {
1268 mask |= item->mask;
1269 }
1270 } else {
1271 for(item = cpu_log_items; item->mask != 0; item++) {
1272 if (cmp1(p, p1 - p, item->name))
1273 goto found;
1274 }
1275 return 0;
1276 }
1277 found:
1278 mask |= item->mask;
1279 if (*p1 != ',')
1280 break;
1281 p = p1 + 1;
1282 }
1283 return mask;
1284 }
1285
1286 void cpu_abort(CPUState *env, const char *fmt, ...)
1287 {
1288 va_list ap;
1289
1290 va_start(ap, fmt);
1291 fprintf(stderr, "qemu: fatal: ");
1292 vfprintf(stderr, fmt, ap);
1293 fprintf(stderr, "\n");
1294 #ifdef TARGET_I386
1295 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1296 #else
1297 cpu_dump_state(env, stderr, fprintf, 0);
1298 #endif
1299 va_end(ap);
1300 if (logfile) {
1301 fflush(logfile);
1302 fclose(logfile);
1303 }
1304 abort();
1305 }
1306
1307 CPUState *cpu_copy(CPUState *env)
1308 {
1309 CPUState *new_env = cpu_init();
1310 /* preserve chaining and index */
1311 CPUState *next_cpu = new_env->next_cpu;
1312 int cpu_index = new_env->cpu_index;
1313 memcpy(new_env, env, sizeof(CPUState));
1314 new_env->next_cpu = next_cpu;
1315 new_env->cpu_index = cpu_index;
1316 return new_env;
1317 }
1318
1319 #if !defined(CONFIG_USER_ONLY)
1320
1321 /* NOTE: if flush_global is true, also flush global entries (not
1322 implemented yet) */
1323 void tlb_flush(CPUState *env, int flush_global)
1324 {
1325 int i;
1326
1327 #if defined(DEBUG_TLB)
1328 printf("tlb_flush:\n");
1329 #endif
1330 /* must reset current TB so that interrupts cannot modify the
1331 links while we are modifying them */
1332 env->current_tb = NULL;
1333
1334 for(i = 0; i < CPU_TLB_SIZE; i++) {
1335 env->tlb_table[0][i].addr_read = -1;
1336 env->tlb_table[0][i].addr_write = -1;
1337 env->tlb_table[0][i].addr_code = -1;
1338 env->tlb_table[1][i].addr_read = -1;
1339 env->tlb_table[1][i].addr_write = -1;
1340 env->tlb_table[1][i].addr_code = -1;
1341 #if (NB_MMU_MODES >= 3)
1342 env->tlb_table[2][i].addr_read = -1;
1343 env->tlb_table[2][i].addr_write = -1;
1344 env->tlb_table[2][i].addr_code = -1;
1345 #if (NB_MMU_MODES == 4)
1346 env->tlb_table[3][i].addr_read = -1;
1347 env->tlb_table[3][i].addr_write = -1;
1348 env->tlb_table[3][i].addr_code = -1;
1349 #endif
1350 #endif
1351 }
1352
1353 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1354
1355 #if !defined(CONFIG_SOFTMMU)
1356 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1357 #endif
1358 #ifdef USE_KQEMU
1359 if (env->kqemu_enabled) {
1360 kqemu_flush(env, flush_global);
1361 }
1362 #endif
1363 tlb_flush_count++;
1364 }
1365
1366 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1367 {
1368 if (addr == (tlb_entry->addr_read &
1369 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1370 addr == (tlb_entry->addr_write &
1371 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1372 addr == (tlb_entry->addr_code &
1373 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1374 tlb_entry->addr_read = -1;
1375 tlb_entry->addr_write = -1;
1376 tlb_entry->addr_code = -1;
1377 }
1378 }
1379
1380 void tlb_flush_page(CPUState *env, target_ulong addr)
1381 {
1382 int i;
1383 TranslationBlock *tb;
1384
1385 #if defined(DEBUG_TLB)
1386 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1387 #endif
1388 /* must reset current TB so that interrupts cannot modify the
1389 links while we are modifying them */
1390 env->current_tb = NULL;
1391
1392 addr &= TARGET_PAGE_MASK;
1393 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1394 tlb_flush_entry(&env->tlb_table[0][i], addr);
1395 tlb_flush_entry(&env->tlb_table[1][i], addr);
1396 #if (NB_MMU_MODES >= 3)
1397 tlb_flush_entry(&env->tlb_table[2][i], addr);
1398 #if (NB_MMU_MODES == 4)
1399 tlb_flush_entry(&env->tlb_table[3][i], addr);
1400 #endif
1401 #endif
1402
1403 /* Discard jump cache entries for any tb which might potentially
1404 overlap the flushed page. */
1405 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1406 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1407
1408 i = tb_jmp_cache_hash_page(addr);
1409 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1410
1411 #if !defined(CONFIG_SOFTMMU)
1412 if (addr < MMAP_AREA_END)
1413 munmap((void *)addr, TARGET_PAGE_SIZE);
1414 #endif
1415 #ifdef USE_KQEMU
1416 if (env->kqemu_enabled) {
1417 kqemu_flush_page(env, addr);
1418 }
1419 #endif
1420 }
1421
1422 /* update the TLBs so that writes to code in the virtual page 'addr'
1423 can be detected */
1424 static void tlb_protect_code(ram_addr_t ram_addr)
1425 {
1426 cpu_physical_memory_reset_dirty(ram_addr,
1427 ram_addr + TARGET_PAGE_SIZE,
1428 CODE_DIRTY_FLAG);
1429 }
1430
1431 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1432 tested for self modifying code */
1433 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1434 target_ulong vaddr)
1435 {
1436 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1437 }
1438
1439 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1440 unsigned long start, unsigned long length)
1441 {
1442 unsigned long addr;
1443 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1444 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1445 if ((addr - start) < length) {
1446 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1447 }
1448 }
1449 }
1450
1451 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1452 int dirty_flags)
1453 {
1454 CPUState *env;
1455 unsigned long length, start1;
1456 int i, mask, len;
1457 uint8_t *p;
1458
1459 start &= TARGET_PAGE_MASK;
1460 end = TARGET_PAGE_ALIGN(end);
1461
1462 length = end - start;
1463 if (length == 0)
1464 return;
1465 len = length >> TARGET_PAGE_BITS;
1466 #ifdef USE_KQEMU
1467 /* XXX: should not depend on cpu context */
1468 env = first_cpu;
1469 if (env->kqemu_enabled) {
1470 ram_addr_t addr;
1471 addr = start;
1472 for(i = 0; i < len; i++) {
1473 kqemu_set_notdirty(env, addr);
1474 addr += TARGET_PAGE_SIZE;
1475 }
1476 }
1477 #endif
1478 mask = ~dirty_flags;
1479 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1480 for(i = 0; i < len; i++)
1481 p[i] &= mask;
1482
1483 /* we modify the TLB cache so that the dirty bit will be set again
1484 when accessing the range */
1485 start1 = start + (unsigned long)phys_ram_base;
1486 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1487 for(i = 0; i < CPU_TLB_SIZE; i++)
1488 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1489 for(i = 0; i < CPU_TLB_SIZE; i++)
1490 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1491 #if (NB_MMU_MODES >= 3)
1492 for(i = 0; i < CPU_TLB_SIZE; i++)
1493 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1494 #if (NB_MMU_MODES == 4)
1495 for(i = 0; i < CPU_TLB_SIZE; i++)
1496 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1497 #endif
1498 #endif
1499 }
1500
1501 #if !defined(CONFIG_SOFTMMU)
1502 /* XXX: this is expensive */
1503 {
1504 VirtPageDesc *p;
1505 int j;
1506 target_ulong addr;
1507
1508 for(i = 0; i < L1_SIZE; i++) {
1509 p = l1_virt_map[i];
1510 if (p) {
1511 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1512 for(j = 0; j < L2_SIZE; j++) {
1513 if (p->valid_tag == virt_valid_tag &&
1514 p->phys_addr >= start && p->phys_addr < end &&
1515 (p->prot & PROT_WRITE)) {
1516 if (addr < MMAP_AREA_END) {
1517 mprotect((void *)addr, TARGET_PAGE_SIZE,
1518 p->prot & ~PROT_WRITE);
1519 }
1520 }
1521 addr += TARGET_PAGE_SIZE;
1522 p++;
1523 }
1524 }
1525 }
1526 }
1527 #endif
1528 }
1529
1530 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1531 {
1532 ram_addr_t ram_addr;
1533
1534 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1535 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1536 tlb_entry->addend - (unsigned long)phys_ram_base;
1537 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1538 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1539 }
1540 }
1541 }
1542
1543 /* update the TLB according to the current state of the dirty bits */
1544 void cpu_tlb_update_dirty(CPUState *env)
1545 {
1546 int i;
1547 for(i = 0; i < CPU_TLB_SIZE; i++)
1548 tlb_update_dirty(&env->tlb_table[0][i]);
1549 for(i = 0; i < CPU_TLB_SIZE; i++)
1550 tlb_update_dirty(&env->tlb_table[1][i]);
1551 #if (NB_MMU_MODES >= 3)
1552 for(i = 0; i < CPU_TLB_SIZE; i++)
1553 tlb_update_dirty(&env->tlb_table[2][i]);
1554 #if (NB_MMU_MODES == 4)
1555 for(i = 0; i < CPU_TLB_SIZE; i++)
1556 tlb_update_dirty(&env->tlb_table[3][i]);
1557 #endif
1558 #endif
1559 }
1560
1561 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1562 unsigned long start)
1563 {
1564 unsigned long addr;
1565 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1566 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1567 if (addr == start) {
1568 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1569 }
1570 }
1571 }
1572
1573 /* update the TLB corresponding to virtual page vaddr and phys addr
1574 addr so that it is no longer dirty */
1575 static inline void tlb_set_dirty(CPUState *env,
1576 unsigned long addr, target_ulong vaddr)
1577 {
1578 int i;
1579
1580 addr &= TARGET_PAGE_MASK;
1581 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1582 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1583 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1584 #if (NB_MMU_MODES >= 3)
1585 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1586 #if (NB_MMU_MODES == 4)
1587 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1588 #endif
1589 #endif
1590 }
1591
1592 /* add a new TLB entry. At most one entry for a given virtual address
1593 is permitted. Return 0 if OK or 2 if the page could not be mapped
1594 (can only happen in non SOFTMMU mode for I/O pages or pages
1595 conflicting with the host address space). */
1596 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1597 target_phys_addr_t paddr, int prot,
1598 int is_user, int is_softmmu)
1599 {
1600 PhysPageDesc *p;
1601 unsigned long pd;
1602 unsigned int index;
1603 target_ulong address;
1604 target_phys_addr_t addend;
1605 int ret;
1606 CPUTLBEntry *te;
1607 int i;
1608
1609 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1610 if (!p) {
1611 pd = IO_MEM_UNASSIGNED;
1612 } else {
1613 pd = p->phys_offset;
1614 }
1615 #if defined(DEBUG_TLB)
1616 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x u=%d smmu=%d pd=0x%08lx\n",
1617 vaddr, (int)paddr, prot, is_user, is_softmmu, pd);
1618 #endif
1619
1620 ret = 0;
1621 #if !defined(CONFIG_SOFTMMU)
1622 if (is_softmmu)
1623 #endif
1624 {
1625 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1626 /* IO memory case */
1627 address = vaddr | pd;
1628 addend = paddr;
1629 } else {
1630 /* standard memory */
1631 address = vaddr;
1632 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1633 }
1634
1635 /* Make accesses to pages with watchpoints go via the
1636 watchpoint trap routines. */
1637 for (i = 0; i < env->nb_watchpoints; i++) {
1638 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1639 if (address & ~TARGET_PAGE_MASK) {
1640 env->watchpoint[i].addend = 0;
1641 address = vaddr | io_mem_watch;
1642 } else {
1643 env->watchpoint[i].addend = pd - paddr +
1644 (unsigned long) phys_ram_base;
1645 /* TODO: Figure out how to make read watchpoints coexist
1646 with code. */
1647 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1648 }
1649 }
1650 }
1651
1652 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1653 addend -= vaddr;
1654 te = &env->tlb_table[is_user][index];
1655 te->addend = addend;
1656 if (prot & PAGE_READ) {
1657 te->addr_read = address;
1658 } else {
1659 te->addr_read = -1;
1660 }
1661 if (prot & PAGE_EXEC) {
1662 te->addr_code = address;
1663 } else {
1664 te->addr_code = -1;
1665 }
1666 if (prot & PAGE_WRITE) {
1667 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1668 (pd & IO_MEM_ROMD)) {
1669 /* write access calls the I/O callback */
1670 te->addr_write = vaddr |
1671 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1672 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1673 !cpu_physical_memory_is_dirty(pd)) {
1674 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1675 } else {
1676 te->addr_write = address;
1677 }
1678 } else {
1679 te->addr_write = -1;
1680 }
1681 }
1682 #if !defined(CONFIG_SOFTMMU)
1683 else {
1684 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1685 /* IO access: no mapping is done as it will be handled by the
1686 soft MMU */
1687 if (!(env->hflags & HF_SOFTMMU_MASK))
1688 ret = 2;
1689 } else {
1690 void *map_addr;
1691
1692 if (vaddr >= MMAP_AREA_END) {
1693 ret = 2;
1694 } else {
1695 if (prot & PROT_WRITE) {
1696 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1697 #if defined(TARGET_HAS_SMC) || 1
1698 first_tb ||
1699 #endif
1700 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1701 !cpu_physical_memory_is_dirty(pd))) {
1702 /* ROM: we do as if code was inside */
1703 /* if code is present, we only map as read only and save the
1704 original mapping */
1705 VirtPageDesc *vp;
1706
1707 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1708 vp->phys_addr = pd;
1709 vp->prot = prot;
1710 vp->valid_tag = virt_valid_tag;
1711 prot &= ~PAGE_WRITE;
1712 }
1713 }
1714 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1715 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1716 if (map_addr == MAP_FAILED) {
1717 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1718 paddr, vaddr);
1719 }
1720 }
1721 }
1722 }
1723 #endif
1724 return ret;
1725 }
1726
1727 /* called from signal handler: invalidate the code and unprotect the
1728 page. Return TRUE if the fault was succesfully handled. */
1729 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1730 {
1731 #if !defined(CONFIG_SOFTMMU)
1732 VirtPageDesc *vp;
1733
1734 #if defined(DEBUG_TLB)
1735 printf("page_unprotect: addr=0x%08x\n", addr);
1736 #endif
1737 addr &= TARGET_PAGE_MASK;
1738
1739 /* if it is not mapped, no need to worry here */
1740 if (addr >= MMAP_AREA_END)
1741 return 0;
1742 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1743 if (!vp)
1744 return 0;
1745 /* NOTE: in this case, validate_tag is _not_ tested as it
1746 validates only the code TLB */
1747 if (vp->valid_tag != virt_valid_tag)
1748 return 0;
1749 if (!(vp->prot & PAGE_WRITE))
1750 return 0;
1751 #if defined(DEBUG_TLB)
1752 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1753 addr, vp->phys_addr, vp->prot);
1754 #endif
1755 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1756 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1757 (unsigned long)addr, vp->prot);
1758 /* set the dirty bit */
1759 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1760 /* flush the code inside */
1761 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1762 return 1;
1763 #else
1764 return 0;
1765 #endif
1766 }
1767
1768 #else
1769
1770 void tlb_flush(CPUState *env, int flush_global)
1771 {
1772 }
1773
1774 void tlb_flush_page(CPUState *env, target_ulong addr)
1775 {
1776 }
1777
1778 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1779 target_phys_addr_t paddr, int prot,
1780 int is_user, int is_softmmu)
1781 {
1782 return 0;
1783 }
1784
1785 /* dump memory mappings */
1786 void page_dump(FILE *f)
1787 {
1788 unsigned long start, end;
1789 int i, j, prot, prot1;
1790 PageDesc *p;
1791
1792 fprintf(f, "%-8s %-8s %-8s %s\n",
1793 "start", "end", "size", "prot");
1794 start = -1;
1795 end = -1;
1796 prot = 0;
1797 for(i = 0; i <= L1_SIZE; i++) {
1798 if (i < L1_SIZE)
1799 p = l1_map[i];
1800 else
1801 p = NULL;
1802 for(j = 0;j < L2_SIZE; j++) {
1803 if (!p)
1804 prot1 = 0;
1805 else
1806 prot1 = p[j].flags;
1807 if (prot1 != prot) {
1808 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1809 if (start != -1) {
1810 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1811 start, end, end - start,
1812 prot & PAGE_READ ? 'r' : '-',
1813 prot & PAGE_WRITE ? 'w' : '-',
1814 prot & PAGE_EXEC ? 'x' : '-');
1815 }
1816 if (prot1 != 0)
1817 start = end;
1818 else
1819 start = -1;
1820 prot = prot1;
1821 }
1822 if (!p)
1823 break;
1824 }
1825 }
1826 }
1827
1828 int page_get_flags(target_ulong address)
1829 {
1830 PageDesc *p;
1831
1832 p = page_find(address >> TARGET_PAGE_BITS);
1833 if (!p)
1834 return 0;
1835 return p->flags;
1836 }
1837
1838 /* modify the flags of a page and invalidate the code if
1839 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1840 depending on PAGE_WRITE */
1841 void page_set_flags(target_ulong start, target_ulong end, int flags)
1842 {
1843 PageDesc *p;
1844 target_ulong addr;
1845
1846 start = start & TARGET_PAGE_MASK;
1847 end = TARGET_PAGE_ALIGN(end);
1848 if (flags & PAGE_WRITE)
1849 flags |= PAGE_WRITE_ORG;
1850 spin_lock(&tb_lock);
1851 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1852 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1853 /* if the write protection is set, then we invalidate the code
1854 inside */
1855 if (!(p->flags & PAGE_WRITE) &&
1856 (flags & PAGE_WRITE) &&
1857 p->first_tb) {
1858 tb_invalidate_phys_page(addr, 0, NULL);
1859 }
1860 p->flags = flags;
1861 }
1862 spin_unlock(&tb_lock);
1863 }
1864
1865 /* called from signal handler: invalidate the code and unprotect the
1866 page. Return TRUE if the fault was succesfully handled. */
1867 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1868 {
1869 unsigned int page_index, prot, pindex;
1870 PageDesc *p, *p1;
1871 target_ulong host_start, host_end, addr;
1872
1873 host_start = address & qemu_host_page_mask;
1874 page_index = host_start >> TARGET_PAGE_BITS;
1875 p1 = page_find(page_index);
1876 if (!p1)
1877 return 0;
1878 host_end = host_start + qemu_host_page_size;
1879 p = p1;
1880 prot = 0;
1881 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1882 prot |= p->flags;
1883 p++;
1884 }
1885 /* if the page was really writable, then we change its
1886 protection back to writable */
1887 if (prot & PAGE_WRITE_ORG) {
1888 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1889 if (!(p1[pindex].flags & PAGE_WRITE)) {
1890 mprotect((void *)g2h(host_start), qemu_host_page_size,
1891 (prot & PAGE_BITS) | PAGE_WRITE);
1892 p1[pindex].flags |= PAGE_WRITE;
1893 /* and since the content will be modified, we must invalidate
1894 the corresponding translated code. */
1895 tb_invalidate_phys_page(address, pc, puc);
1896 #ifdef DEBUG_TB_CHECK
1897 tb_invalidate_check(address);
1898 #endif
1899 return 1;
1900 }
1901 }
1902 return 0;
1903 }
1904
1905 /* call this function when system calls directly modify a memory area */
1906 /* ??? This should be redundant now we have lock_user. */
1907 void page_unprotect_range(target_ulong data, target_ulong data_size)
1908 {
1909 target_ulong start, end, addr;
1910
1911 start = data;
1912 end = start + data_size;
1913 start &= TARGET_PAGE_MASK;
1914 end = TARGET_PAGE_ALIGN(end);
1915 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1916 page_unprotect(addr, 0, NULL);
1917 }
1918 }
1919
1920 static inline void tlb_set_dirty(CPUState *env,
1921 unsigned long addr, target_ulong vaddr)
1922 {
1923 }
1924 #endif /* defined(CONFIG_USER_ONLY) */
1925
1926 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1927 int memory);
1928 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
1929 int orig_memory);
1930 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
1931 need_subpage) \
1932 do { \
1933 if (addr > start_addr) \
1934 start_addr2 = 0; \
1935 else { \
1936 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
1937 if (start_addr2 > 0) \
1938 need_subpage = 1; \
1939 } \
1940 \
1941 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
1942 end_addr2 = TARGET_PAGE_SIZE - 1; \
1943 else { \
1944 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
1945 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
1946 need_subpage = 1; \
1947 } \
1948 } while (0)
1949
1950 /* register physical memory. 'size' must be a multiple of the target
1951 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1952 io memory page */
1953 void cpu_register_physical_memory(target_phys_addr_t start_addr,
1954 unsigned long size,
1955 unsigned long phys_offset)
1956 {
1957 target_phys_addr_t addr, end_addr;
1958 PhysPageDesc *p;
1959 CPUState *env;
1960 unsigned long orig_size = size;
1961 void *subpage;
1962
1963 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
1964 end_addr = start_addr + (target_phys_addr_t)size;
1965 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
1966 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1967 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
1968 unsigned long orig_memory = p->phys_offset;
1969 target_phys_addr_t start_addr2, end_addr2;
1970 int need_subpage = 0;
1971
1972 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
1973 need_subpage);
1974 if (need_subpage) {
1975 if (!(orig_memory & IO_MEM_SUBPAGE)) {
1976 subpage = subpage_init((addr & TARGET_PAGE_MASK),
1977 &p->phys_offset, orig_memory);
1978 } else {
1979 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
1980 >> IO_MEM_SHIFT];
1981 }
1982 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
1983 } else {
1984 p->phys_offset = phys_offset;
1985 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
1986 (phys_offset & IO_MEM_ROMD))
1987 phys_offset += TARGET_PAGE_SIZE;
1988 }
1989 } else {
1990 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1991 p->phys_offset = phys_offset;
1992 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
1993 (phys_offset & IO_MEM_ROMD))
1994 phys_offset += TARGET_PAGE_SIZE;
1995 else {
1996 target_phys_addr_t start_addr2, end_addr2;
1997 int need_subpage = 0;
1998
1999 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2000 end_addr2, need_subpage);
2001
2002 if (need_subpage) {
2003 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2004 &p->phys_offset, IO_MEM_UNASSIGNED);
2005 subpage_register(subpage, start_addr2, end_addr2,
2006 phys_offset);
2007 }
2008 }
2009 }
2010 }
2011
2012 /* since each CPU stores ram addresses in its TLB cache, we must
2013 reset the modified entries */
2014 /* XXX: slow ! */
2015 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2016 tlb_flush(env, 1);
2017 }
2018 }
2019
2020 /* XXX: temporary until new memory mapping API */
2021 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2022 {
2023 PhysPageDesc *p;
2024
2025 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2026 if (!p)
2027 return IO_MEM_UNASSIGNED;
2028 return p->phys_offset;
2029 }
2030
2031 /* XXX: better than nothing */
2032 ram_addr_t qemu_ram_alloc(unsigned int size)
2033 {
2034 ram_addr_t addr;
2035 if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
2036 fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
2037 size, phys_ram_size);
2038 abort();
2039 }
2040 addr = phys_ram_alloc_offset;
2041 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2042 return addr;
2043 }
2044
2045 void qemu_ram_free(ram_addr_t addr)
2046 {
2047 }
2048
2049 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2050 {
2051 #ifdef DEBUG_UNASSIGNED
2052 printf("Unassigned mem read " TARGET_FMT_lx "\n", addr);
2053 #endif
2054 #ifdef TARGET_SPARC
2055 do_unassigned_access(addr, 0, 0, 0);
2056 #endif
2057 return 0;
2058 }
2059
2060 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2061 {
2062 #ifdef DEBUG_UNASSIGNED
2063 printf("Unassigned mem write " TARGET_FMT_lx " = 0x%x\n", addr, val);
2064 #endif
2065 #ifdef TARGET_SPARC
2066 do_unassigned_access(addr, 1, 0, 0);
2067 #endif
2068 }
2069
2070 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2071 unassigned_mem_readb,
2072 unassigned_mem_readb,
2073 unassigned_mem_readb,
2074 };
2075
2076 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2077 unassigned_mem_writeb,
2078 unassigned_mem_writeb,
2079 unassigned_mem_writeb,
2080 };
2081
2082 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2083 {
2084 unsigned long ram_addr;
2085 int dirty_flags;
2086 ram_addr = addr - (unsigned long)phys_ram_base;
2087 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2088 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2089 #if !defined(CONFIG_USER_ONLY)
2090 tb_invalidate_phys_page_fast(ram_addr, 1);
2091 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2092 #endif
2093 }
2094 stb_p((uint8_t *)(long)addr, val);
2095 #ifdef USE_KQEMU
2096 if (cpu_single_env->kqemu_enabled &&
2097 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2098 kqemu_modify_page(cpu_single_env, ram_addr);
2099 #endif
2100 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2101 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2102 /* we remove the notdirty callback only if the code has been
2103 flushed */
2104 if (dirty_flags == 0xff)
2105 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2106 }
2107
2108 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2109 {
2110 unsigned long ram_addr;
2111 int dirty_flags;
2112 ram_addr = addr - (unsigned long)phys_ram_base;
2113 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2114 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2115 #if !defined(CONFIG_USER_ONLY)
2116 tb_invalidate_phys_page_fast(ram_addr, 2);
2117 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2118 #endif
2119 }
2120 stw_p((uint8_t *)(long)addr, val);
2121 #ifdef USE_KQEMU
2122 if (cpu_single_env->kqemu_enabled &&
2123 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2124 kqemu_modify_page(cpu_single_env, ram_addr);
2125 #endif
2126 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2127 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2128 /* we remove the notdirty callback only if the code has been
2129 flushed */
2130 if (dirty_flags == 0xff)
2131 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2132 }
2133
2134 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2135 {
2136 unsigned long ram_addr;
2137 int dirty_flags;
2138 ram_addr = addr - (unsigned long)phys_ram_base;
2139 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2140 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2141 #if !defined(CONFIG_USER_ONLY)
2142 tb_invalidate_phys_page_fast(ram_addr, 4);
2143 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2144 #endif
2145 }
2146 stl_p((uint8_t *)(long)addr, val);
2147 #ifdef USE_KQEMU
2148 if (cpu_single_env->kqemu_enabled &&
2149 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2150 kqemu_modify_page(cpu_single_env, ram_addr);
2151 #endif
2152 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2153 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2154 /* we remove the notdirty callback only if the code has been
2155 flushed */
2156 if (dirty_flags == 0xff)
2157 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2158 }
2159
2160 static CPUReadMemoryFunc *error_mem_read[3] = {
2161 NULL, /* never used */
2162 NULL, /* never used */
2163 NULL, /* never used */
2164 };
2165
2166 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2167 notdirty_mem_writeb,
2168 notdirty_mem_writew,
2169 notdirty_mem_writel,
2170 };
2171
2172 #if defined(CONFIG_SOFTMMU)
2173 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2174 so these check for a hit then pass through to the normal out-of-line
2175 phys routines. */
2176 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2177 {
2178 return ldub_phys(addr);
2179 }
2180
2181 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2182 {
2183 return lduw_phys(addr);
2184 }
2185
2186 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2187 {
2188 return ldl_phys(addr);
2189 }
2190
2191 /* Generate a debug exception if a watchpoint has been hit.
2192 Returns the real physical address of the access. addr will be a host
2193 address in case of a RAM location. */
2194 static target_ulong check_watchpoint(target_phys_addr_t addr)
2195 {
2196 CPUState *env = cpu_single_env;
2197 target_ulong watch;
2198 target_ulong retaddr;
2199 int i;
2200
2201 retaddr = addr;
2202 for (i = 0; i < env->nb_watchpoints; i++) {
2203 watch = env->watchpoint[i].vaddr;
2204 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2205 retaddr = addr - env->watchpoint[i].addend;
2206 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2207 cpu_single_env->watchpoint_hit = i + 1;
2208 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2209 break;
2210 }
2211 }
2212 }
2213 return retaddr;
2214 }
2215
2216 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2217 uint32_t val)
2218 {
2219 addr = check_watchpoint(addr);
2220 stb_phys(addr, val);
2221 }
2222
2223 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2224 uint32_t val)
2225 {
2226 addr = check_watchpoint(addr);
2227 stw_phys(addr, val);
2228 }
2229
2230 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2231 uint32_t val)
2232 {
2233 addr = check_watchpoint(addr);
2234 stl_phys(addr, val);
2235 }
2236
2237 static CPUReadMemoryFunc *watch_mem_read[3] = {
2238 watch_mem_readb,
2239 watch_mem_readw,
2240 watch_mem_readl,
2241 };
2242
2243 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2244 watch_mem_writeb,
2245 watch_mem_writew,
2246 watch_mem_writel,
2247 };
2248 #endif
2249
2250 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2251 unsigned int len)
2252 {
2253 CPUReadMemoryFunc **mem_read;
2254 uint32_t ret;
2255 unsigned int idx;
2256
2257 idx = SUBPAGE_IDX(addr - mmio->base);
2258 #if defined(DEBUG_SUBPAGE)
2259 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2260 mmio, len, addr, idx);
2261 #endif
2262 mem_read = mmio->mem_read[idx];
2263 ret = (*mem_read[len])(mmio->opaque[idx], addr);
2264
2265 return ret;
2266 }
2267
2268 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2269 uint32_t value, unsigned int len)
2270 {
2271 CPUWriteMemoryFunc **mem_write;
2272 unsigned int idx;
2273
2274 idx = SUBPAGE_IDX(addr - mmio->base);
2275 #if defined(DEBUG_SUBPAGE)
2276 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2277 mmio, len, addr, idx, value);
2278 #endif
2279 mem_write = mmio->mem_write[idx];
2280 (*mem_write[len])(mmio->opaque[idx], addr, value);
2281 }
2282
2283 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2284 {
2285 #if defined(DEBUG_SUBPAGE)
2286 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2287 #endif
2288
2289 return subpage_readlen(opaque, addr, 0);
2290 }
2291
2292 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2293 uint32_t value)
2294 {
2295 #if defined(DEBUG_SUBPAGE)
2296 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2297 #endif
2298 subpage_writelen(opaque, addr, value, 0);
2299 }
2300
2301 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2302 {
2303 #if defined(DEBUG_SUBPAGE)
2304 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2305 #endif
2306
2307 return subpage_readlen(opaque, addr, 1);
2308 }
2309
2310 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2311 uint32_t value)
2312 {
2313 #if defined(DEBUG_SUBPAGE)
2314 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2315 #endif
2316 subpage_writelen(opaque, addr, value, 1);
2317 }
2318
2319 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2320 {
2321 #if defined(DEBUG_SUBPAGE)
2322 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2323 #endif
2324
2325 return subpage_readlen(opaque, addr, 2);
2326 }
2327
2328 static void subpage_writel (void *opaque,
2329 target_phys_addr_t addr, uint32_t value)
2330 {
2331 #if defined(DEBUG_SUBPAGE)
2332 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2333 #endif
2334 subpage_writelen(opaque, addr, value, 2);
2335 }
2336
2337 static CPUReadMemoryFunc *subpage_read[] = {
2338 &subpage_readb,
2339 &subpage_readw,
2340 &subpage_readl,
2341 };
2342
2343 static CPUWriteMemoryFunc *subpage_write[] = {
2344 &subpage_writeb,
2345 &subpage_writew,
2346 &subpage_writel,
2347 };
2348
2349 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2350 int memory)
2351 {
2352 int idx, eidx;
2353
2354 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2355 return -1;
2356 idx = SUBPAGE_IDX(start);
2357 eidx = SUBPAGE_IDX(end);
2358 #if defined(DEBUG_SUBPAGE)
2359 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2360 mmio, start, end, idx, eidx, memory);
2361 #endif
2362 memory >>= IO_MEM_SHIFT;
2363 for (; idx <= eidx; idx++) {
2364 mmio->mem_read[idx] = io_mem_read[memory];
2365 mmio->mem_write[idx] = io_mem_write[memory];
2366 mmio->opaque[idx] = io_mem_opaque[memory];
2367 }
2368
2369 return 0;
2370 }
2371
2372 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
2373 int orig_memory)
2374 {
2375 subpage_t *mmio;
2376 int subpage_memory;
2377
2378 mmio = qemu_mallocz(sizeof(subpage_t));
2379 if (mmio != NULL) {
2380 mmio->base = base;
2381 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2382 #if defined(DEBUG_SUBPAGE)
2383 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2384 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2385 #endif
2386 *phys = subpage_memory | IO_MEM_SUBPAGE;
2387 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2388 }
2389
2390 return mmio;
2391 }
2392
2393 static void io_mem_init(void)
2394 {
2395 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2396 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2397 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2398 io_mem_nb = 5;
2399
2400 #if defined(CONFIG_SOFTMMU)
2401 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2402 watch_mem_write, NULL);
2403 #endif
2404 /* alloc dirty bits array */
2405 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2406 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2407 }
2408
2409 /* mem_read and mem_write are arrays of functions containing the
2410 function to access byte (index 0), word (index 1) and dword (index
2411 2). All functions must be supplied. If io_index is non zero, the
2412 corresponding io zone is modified. If it is zero, a new io zone is
2413 allocated. The return value can be used with
2414 cpu_register_physical_memory(). (-1) is returned if error. */
2415 int cpu_register_io_memory(int io_index,
2416 CPUReadMemoryFunc **mem_read,
2417 CPUWriteMemoryFunc **mem_write,
2418 void *opaque)
2419 {
2420 int i;
2421
2422 if (io_index <= 0) {
2423 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2424 return -1;
2425 io_index = io_mem_nb++;
2426 } else {
2427 if (io_index >= IO_MEM_NB_ENTRIES)
2428 return -1;
2429 }
2430
2431 for(i = 0;i < 3; i++) {
2432 io_mem_read[io_index][i] = mem_read[i];
2433 io_mem_write[io_index][i] = mem_write[i];
2434 }
2435 io_mem_opaque[io_index] = opaque;
2436 return io_index << IO_MEM_SHIFT;
2437 }
2438
2439 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2440 {
2441 return io_mem_write[io_index >> IO_MEM_SHIFT];
2442 }
2443
2444 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2445 {
2446 return io_mem_read[io_index >> IO_MEM_SHIFT];
2447 }
2448
2449 /* physical memory access (slow version, mainly for debug) */
2450 #if defined(CONFIG_USER_ONLY)
2451 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2452 int len, int is_write)
2453 {
2454 int l, flags;
2455 target_ulong page;
2456 void * p;
2457
2458 while (len > 0) {
2459 page = addr & TARGET_PAGE_MASK;
2460 l = (page + TARGET_PAGE_SIZE) - addr;
2461 if (l > len)
2462 l = len;
2463 flags = page_get_flags(page);
2464 if (!(flags & PAGE_VALID))
2465 return;
2466 if (is_write) {
2467 if (!(flags & PAGE_WRITE))
2468 return;
2469 p = lock_user(addr, len, 0);
2470 memcpy(p, buf, len);
2471 unlock_user(p, addr, len);
2472 } else {
2473 if (!(flags & PAGE_READ))
2474 return;
2475 p = lock_user(addr, len, 1);
2476 memcpy(buf, p, len);
2477 unlock_user(p, addr, 0);
2478 }
2479 len -= l;
2480 buf += l;
2481 addr += l;
2482 }
2483 }
2484
2485 #else
2486 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2487 int len, int is_write)
2488 {
2489 int l, io_index;
2490 uint8_t *ptr;
2491 uint32_t val;
2492 target_phys_addr_t page;
2493 unsigned long pd;
2494 PhysPageDesc *p;
2495
2496 while (len > 0) {
2497 page = addr & TARGET_PAGE_MASK;
2498 l = (page + TARGET_PAGE_SIZE) - addr;
2499 if (l > len)
2500 l = len;
2501 p = phys_page_find(page >> TARGET_PAGE_BITS);
2502 if (!p) {
2503 pd = IO_MEM_UNASSIGNED;
2504 } else {
2505 pd = p->phys_offset;
2506 }
2507
2508 if (is_write) {
2509 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2510 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2511 /* XXX: could force cpu_single_env to NULL to avoid
2512 potential bugs */
2513 if (l >= 4 && ((addr & 3) == 0)) {
2514 /* 32 bit write access */
2515 val = ldl_p(buf);
2516 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2517 l = 4;
2518 } else if (l >= 2 && ((addr & 1) == 0)) {
2519 /* 16 bit write access */
2520 val = lduw_p(buf);
2521 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2522 l = 2;
2523 } else {
2524 /* 8 bit write access */
2525 val = ldub_p(buf);
2526 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2527 l = 1;
2528 }
2529 } else {
2530 unsigned long addr1;
2531 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2532 /* RAM case */
2533 ptr = phys_ram_base + addr1;
2534 memcpy(ptr, buf, l);
2535 if (!cpu_physical_memory_is_dirty(addr1)) {
2536 /* invalidate code */
2537 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2538 /* set dirty bit */
2539 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2540 (0xff & ~CODE_DIRTY_FLAG);
2541 }
2542 }
2543 } else {
2544 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2545 !(pd & IO_MEM_ROMD)) {
2546 /* I/O case */
2547 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2548 if (l >= 4 && ((addr & 3) == 0)) {
2549 /* 32 bit read access */
2550 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2551 stl_p(buf, val);
2552 l = 4;
2553 } else if (l >= 2 && ((addr & 1) == 0)) {
2554 /* 16 bit read access */
2555 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2556 stw_p(buf, val);
2557 l = 2;
2558 } else {
2559 /* 8 bit read access */
2560 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2561 stb_p(buf, val);
2562 l = 1;
2563 }
2564 } else {
2565 /* RAM case */
2566 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2567 (addr & ~TARGET_PAGE_MASK);
2568 memcpy(buf, ptr, l);
2569 }
2570 }
2571 len -= l;
2572 buf += l;
2573 addr += l;
2574 }
2575 }
2576
2577 /* used for ROM loading : can write in RAM and ROM */
2578 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2579 const uint8_t *buf, int len)
2580 {
2581 int l;
2582 uint8_t *ptr;
2583 target_phys_addr_t page;
2584 unsigned long pd;
2585 PhysPageDesc *p;
2586
2587 while (len > 0) {
2588 page = addr & TARGET_PAGE_MASK;
2589 l = (page + TARGET_PAGE_SIZE) - addr;
2590 if (l > len)
2591 l = len;
2592 p = phys_page_find(page >> TARGET_PAGE_BITS);
2593 if (!p) {
2594 pd = IO_MEM_UNASSIGNED;
2595 } else {
2596 pd = p->phys_offset;
2597 }
2598
2599 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2600 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2601 !(pd & IO_MEM_ROMD)) {
2602 /* do nothing */
2603 } else {
2604 unsigned long addr1;
2605 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2606 /* ROM/RAM case */
2607 ptr = phys_ram_base + addr1;
2608 memcpy(ptr, buf, l);
2609 }
2610 len -= l;
2611 buf += l;
2612 addr += l;
2613 }
2614 }
2615
2616
2617 /* warning: addr must be aligned */
2618 uint32_t ldl_phys(target_phys_addr_t addr)
2619 {
2620 int io_index;
2621 uint8_t *ptr;
2622 uint32_t val;
2623 unsigned long pd;
2624 PhysPageDesc *p;
2625
2626 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2627 if (!p) {
2628 pd = IO_MEM_UNASSIGNED;
2629 } else {
2630 pd = p->phys_offset;
2631 }
2632
2633 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2634 !(pd & IO_MEM_ROMD)) {
2635 /* I/O case */
2636 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2637 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2638 } else {
2639 /* RAM case */
2640 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2641 (addr & ~TARGET_PAGE_MASK);
2642 val = ldl_p(ptr);
2643 }
2644 return val;
2645 }
2646
2647 /* warning: addr must be aligned */
2648 uint64_t ldq_phys(target_phys_addr_t addr)
2649 {
2650 int io_index;
2651 uint8_t *ptr;
2652 uint64_t val;
2653 unsigned long pd;
2654 PhysPageDesc *p;
2655
2656 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2657 if (!p) {
2658 pd = IO_MEM_UNASSIGNED;
2659 } else {
2660 pd = p->phys_offset;
2661 }
2662
2663 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2664 !(pd & IO_MEM_ROMD)) {
2665 /* I/O case */
2666 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2667 #ifdef TARGET_WORDS_BIGENDIAN
2668 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2669 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2670 #else
2671 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2672 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2673 #endif
2674 } else {
2675 /* RAM case */
2676 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2677 (addr & ~TARGET_PAGE_MASK);
2678 val = ldq_p(ptr);
2679 }
2680 return val;
2681 }
2682
2683 /* XXX: optimize */
2684 uint32_t ldub_phys(target_phys_addr_t addr)
2685 {
2686 uint8_t val;
2687 cpu_physical_memory_read(addr, &val, 1);
2688 return val;
2689 }
2690
2691 /* XXX: optimize */
2692 uint32_t lduw_phys(target_phys_addr_t addr)
2693 {
2694 uint16_t val;
2695 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2696 return tswap16(val);
2697 }
2698
2699 /* warning: addr must be aligned. The ram page is not masked as dirty
2700 and the code inside is not invalidated. It is useful if the dirty
2701 bits are used to track modified PTEs */
2702 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2703 {
2704 int io_index;
2705 uint8_t *ptr;
2706 unsigned long pd;
2707 PhysPageDesc *p;
2708
2709 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2710 if (!p) {
2711 pd = IO_MEM_UNASSIGNED;
2712 } else {
2713 pd = p->phys_offset;
2714 }
2715
2716 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2717 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2718 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2719 } else {
2720 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2721 (addr & ~TARGET_PAGE_MASK);
2722 stl_p(ptr, val);
2723 }
2724 }
2725
2726 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2727 {
2728 int io_index;
2729 uint8_t *ptr;
2730 unsigned long pd;
2731 PhysPageDesc *p;
2732
2733 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2734 if (!p) {
2735 pd = IO_MEM_UNASSIGNED;
2736 } else {
2737 pd = p->phys_offset;
2738 }
2739
2740 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2741 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2742 #ifdef TARGET_WORDS_BIGENDIAN
2743 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2744 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2745 #else
2746 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2747 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2748 #endif
2749 } else {
2750 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2751 (addr & ~TARGET_PAGE_MASK);
2752 stq_p(ptr, val);
2753 }
2754 }
2755
2756 /* warning: addr must be aligned */
2757 void stl_phys(target_phys_addr_t addr, uint32_t val)
2758 {
2759 int io_index;
2760 uint8_t *ptr;
2761 unsigned long pd;
2762 PhysPageDesc *p;
2763
2764 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2765 if (!p) {
2766 pd = IO_MEM_UNASSIGNED;
2767 } else {
2768 pd = p->phys_offset;
2769 }
2770
2771 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2772 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2773 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2774 } else {
2775 unsigned long addr1;
2776 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2777 /* RAM case */
2778 ptr = phys_ram_base + addr1;
2779 stl_p(ptr, val);
2780 if (!cpu_physical_memory_is_dirty(addr1)) {
2781 /* invalidate code */
2782 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2783 /* set dirty bit */
2784 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2785 (0xff & ~CODE_DIRTY_FLAG);
2786 }
2787 }
2788 }
2789
2790 /* XXX: optimize */
2791 void stb_phys(target_phys_addr_t addr, uint32_t val)
2792 {
2793 uint8_t v = val;
2794 cpu_physical_memory_write(addr, &v, 1);
2795 }
2796
2797 /* XXX: optimize */
2798 void stw_phys(target_phys_addr_t addr, uint32_t val)
2799 {
2800 uint16_t v = tswap16(val);
2801 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2802 }
2803
2804 /* XXX: optimize */
2805 void stq_phys(target_phys_addr_t addr, uint64_t val)
2806 {
2807 val = tswap64(val);
2808 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2809 }
2810
2811 #endif
2812
2813 /* virtual memory access for debug */
2814 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2815 uint8_t *buf, int len, int is_write)
2816 {
2817 int l;
2818 target_phys_addr_t phys_addr;
2819 target_ulong page;
2820
2821 while (len > 0) {
2822 page = addr & TARGET_PAGE_MASK;
2823 phys_addr = cpu_get_phys_page_debug(env, page);
2824 /* if no physical page mapped, return an error */
2825 if (phys_addr == -1)
2826 return -1;
2827 l = (page + TARGET_PAGE_SIZE) - addr;
2828 if (l > len)
2829 l = len;
2830 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2831 buf, l, is_write);
2832 len -= l;
2833 buf += l;
2834 addr += l;
2835 }
2836 return 0;
2837 }
2838
2839 void dump_exec_info(FILE *f,
2840 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2841 {
2842 int i, target_code_size, max_target_code_size;
2843 int direct_jmp_count, direct_jmp2_count, cross_page;
2844 TranslationBlock *tb;
2845
2846 target_code_size = 0;
2847 max_target_code_size = 0;
2848 cross_page = 0;
2849 direct_jmp_count = 0;
2850 direct_jmp2_count = 0;
2851 for(i = 0; i < nb_tbs; i++) {
2852 tb = &tbs[i];
2853 target_code_size += tb->size;
2854 if (tb->size > max_target_code_size)
2855 max_target_code_size = tb->size;
2856 if (tb->page_addr[1] != -1)
2857 cross_page++;
2858 if (tb->tb_next_offset[0] != 0xffff) {
2859 direct_jmp_count++;
2860 if (tb->tb_next_offset[1] != 0xffff) {
2861 direct_jmp2_count++;
2862 }
2863 }
2864 }
2865 /* XXX: avoid using doubles ? */
2866 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2867 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2868 nb_tbs ? target_code_size / nb_tbs : 0,
2869 max_target_code_size);
2870 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2871 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2872 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2873 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2874 cross_page,
2875 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2876 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2877 direct_jmp_count,
2878 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2879 direct_jmp2_count,
2880 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2881 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2882 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2883 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2884 }
2885
2886 #if !defined(CONFIG_USER_ONLY)
2887
2888 #define MMUSUFFIX _cmmu
2889 #define GETPC() NULL
2890 #define env cpu_single_env
2891 #define SOFTMMU_CODE_ACCESS
2892
2893 #define SHIFT 0
2894 #include "softmmu_template.h"
2895
2896 #define SHIFT 1
2897 #include "softmmu_template.h"
2898
2899 #define SHIFT 2
2900 #include "softmmu_template.h"
2901
2902 #define SHIFT 3
2903 #include "softmmu_template.h"
2904
2905 #undef env
2906
2907 #endif