]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
target-sh4: mark a few helpers const and pure
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #include "cputlb.h"
61
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
64
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 //#define DEBUG_UNASSIGNED
68
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
116
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
119
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
122
123 #endif
124
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
161
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
182
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
186
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
189
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
196
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
201 };
202
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
208
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
212
213 static void io_mem_init(void);
214 static void memory_map_init(void);
215
216 static MemoryRegion io_mem_watch;
217 #endif
218
219 /* statistics */
220 static int tb_flush_count;
221 static int tb_phys_invalidate_count;
222
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
225 {
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230 }
231 #else
232 static void map_exec(void *addr, long size)
233 {
234 unsigned long start, end, page_size;
235
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
239
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246 }
247 #endif
248
249 static void page_init(void)
250 {
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
270 {
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
289 } else {
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 #endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300 #else
301 FILE *f;
302
303 last_brk = (unsigned long)sbrk(0);
304
305 f = fopen("/compat/linux/proc/self/maps", "r");
306 if (f) {
307 mmap_lock();
308
309 do {
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
324 }
325 } while (!feof(f));
326
327 fclose(f);
328 mmap_unlock();
329 }
330 #endif
331 }
332 #endif
333 }
334
335 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
336 {
337 PageDesc *pd;
338 void **lp;
339 int i;
340
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
347 } while (0)
348 #else
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
351 #endif
352
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
366 }
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
378 }
379
380 #undef ALLOC
381
382 return pd + (index & (L2_SIZE - 1));
383 }
384
385 static inline PageDesc *page_find(tb_page_addr_t index)
386 {
387 return page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391
392 static void phys_map_node_reserve(unsigned nodes)
393 {
394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
402 }
403
404 static uint16_t phys_map_node_alloc(void)
405 {
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
412 for (i = 0; i < L2_SIZE; ++i) {
413 phys_map_nodes[ret][i].is_leaf = 0;
414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
415 }
416 return ret;
417 }
418
419 static void phys_map_nodes_reset(void)
420 {
421 phys_map_nodes_nb = 0;
422 }
423
424
425 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
428 {
429 PhysPageEntry *p;
430 int i;
431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
432
433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
438 p[i].is_leaf = 1;
439 p[i].ptr = phys_section_unassigned;
440 }
441 }
442 } else {
443 p = phys_map_nodes[lp->ptr];
444 }
445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
446
447 while (*nb && lp < &p[L2_SIZE]) {
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
450 lp->ptr = leaf;
451 *index += step;
452 *nb -= step;
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
457 }
458 }
459
460 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
462 {
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS);
465
466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
467 }
468
469 MemoryRegionSection *phys_page_find(target_phys_addr_t index)
470 {
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
474 uint16_t s_index = phys_section_unassigned;
475
476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
478 goto not_found;
479 }
480 p = phys_map_nodes[lp.ptr];
481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
482 }
483
484 s_index = lp.ptr;
485 not_found:
486 return &phys_sections[s_index];
487 }
488
489 bool memory_region_is_unassigned(MemoryRegion *mr)
490 {
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494 }
495
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
498 #endif
499
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
506 #endif
507
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
511 #endif
512
513 static void code_gen_alloc(unsigned long tb_size)
514 {
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519 #else
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 #else
525 /* XXX: needs adjustments */
526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
527 #endif
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
534 {
535 int flags;
536 void *start = NULL;
537
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #elif defined(__sparc_v9__)
545 // Map the buffer below 2G, so we can use direct calls and branches
546 flags |= MAP_FIXED;
547 start = (void *) 0x60000000UL;
548 if (code_gen_buffer_size > (512 * 1024 * 1024))
549 code_gen_buffer_size = (512 * 1024 * 1024);
550 #elif defined(__arm__)
551 /* Keep the buffer no bigger than 16MB to branch between blocks */
552 if (code_gen_buffer_size > 16 * 1024 * 1024)
553 code_gen_buffer_size = 16 * 1024 * 1024;
554 #elif defined(__s390x__)
555 /* Map the buffer so that we can use direct calls and branches. */
556 /* We have a +- 4GB range on the branches; leave some slop. */
557 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
558 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
559 }
560 start = (void *)0x90000000UL;
561 #endif
562 code_gen_buffer = mmap(start, code_gen_buffer_size,
563 PROT_WRITE | PROT_READ | PROT_EXEC,
564 flags, -1, 0);
565 if (code_gen_buffer == MAP_FAILED) {
566 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
567 exit(1);
568 }
569 }
570 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
571 || defined(__DragonFly__) || defined(__OpenBSD__) \
572 || defined(__NetBSD__)
573 {
574 int flags;
575 void *addr = NULL;
576 flags = MAP_PRIVATE | MAP_ANONYMOUS;
577 #if defined(__x86_64__)
578 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
579 * 0x40000000 is free */
580 flags |= MAP_FIXED;
581 addr = (void *)0x40000000;
582 /* Cannot map more than that */
583 if (code_gen_buffer_size > (800 * 1024 * 1024))
584 code_gen_buffer_size = (800 * 1024 * 1024);
585 #elif defined(__sparc_v9__)
586 // Map the buffer below 2G, so we can use direct calls and branches
587 flags |= MAP_FIXED;
588 addr = (void *) 0x60000000UL;
589 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
590 code_gen_buffer_size = (512 * 1024 * 1024);
591 }
592 #endif
593 code_gen_buffer = mmap(addr, code_gen_buffer_size,
594 PROT_WRITE | PROT_READ | PROT_EXEC,
595 flags, -1, 0);
596 if (code_gen_buffer == MAP_FAILED) {
597 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
598 exit(1);
599 }
600 }
601 #else
602 code_gen_buffer = g_malloc(code_gen_buffer_size);
603 map_exec(code_gen_buffer, code_gen_buffer_size);
604 #endif
605 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
606 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
607 code_gen_buffer_max_size = code_gen_buffer_size -
608 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
609 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
610 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
611 }
612
613 /* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
615 size. */
616 void tcg_exec_init(unsigned long tb_size)
617 {
618 cpu_gen_init();
619 code_gen_alloc(tb_size);
620 code_gen_ptr = code_gen_buffer;
621 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
622 page_init();
623 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx);
627 #endif
628 }
629
630 bool tcg_enabled(void)
631 {
632 return code_gen_buffer != NULL;
633 }
634
635 void cpu_exec_init_all(void)
636 {
637 #if !defined(CONFIG_USER_ONLY)
638 memory_map_init();
639 io_mem_init();
640 #endif
641 }
642
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644
645 static int cpu_common_post_load(void *opaque, int version_id)
646 {
647 CPUArchState *env = opaque;
648
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env->interrupt_request &= ~0x01;
652 tlb_flush(env, 1);
653
654 return 0;
655 }
656
657 static const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField []) {
664 VMSTATE_UINT32(halted, CPUArchState),
665 VMSTATE_UINT32(interrupt_request, CPUArchState),
666 VMSTATE_END_OF_LIST()
667 }
668 };
669 #endif
670
671 CPUArchState *qemu_get_cpu(int cpu)
672 {
673 CPUArchState *env = first_cpu;
674
675 while (env) {
676 if (env->cpu_index == cpu)
677 break;
678 env = env->next_cpu;
679 }
680
681 return env;
682 }
683
684 void cpu_exec_init(CPUArchState *env)
685 {
686 CPUArchState **penv;
687 int cpu_index;
688
689 #if defined(CONFIG_USER_ONLY)
690 cpu_list_lock();
691 #endif
692 env->next_cpu = NULL;
693 penv = &first_cpu;
694 cpu_index = 0;
695 while (*penv != NULL) {
696 penv = &(*penv)->next_cpu;
697 cpu_index++;
698 }
699 env->cpu_index = cpu_index;
700 env->numa_node = 0;
701 QTAILQ_INIT(&env->breakpoints);
702 QTAILQ_INIT(&env->watchpoints);
703 #ifndef CONFIG_USER_ONLY
704 env->thread_id = qemu_get_thread_id();
705 #endif
706 *penv = env;
707 #if defined(CONFIG_USER_ONLY)
708 cpu_list_unlock();
709 #endif
710 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
711 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
712 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
713 cpu_save, cpu_load, env);
714 #endif
715 }
716
717 /* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719 static TranslationBlock *tb_alloc(target_ulong pc)
720 {
721 TranslationBlock *tb;
722
723 if (nb_tbs >= code_gen_max_blocks ||
724 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
725 return NULL;
726 tb = &tbs[nb_tbs++];
727 tb->pc = pc;
728 tb->cflags = 0;
729 return tb;
730 }
731
732 void tb_free(TranslationBlock *tb)
733 {
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
738 code_gen_ptr = tb->tc_ptr;
739 nb_tbs--;
740 }
741 }
742
743 static inline void invalidate_page_bitmap(PageDesc *p)
744 {
745 if (p->code_bitmap) {
746 g_free(p->code_bitmap);
747 p->code_bitmap = NULL;
748 }
749 p->code_write_count = 0;
750 }
751
752 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
753
754 static void page_flush_tb_1 (int level, void **lp)
755 {
756 int i;
757
758 if (*lp == NULL) {
759 return;
760 }
761 if (level == 0) {
762 PageDesc *pd = *lp;
763 for (i = 0; i < L2_SIZE; ++i) {
764 pd[i].first_tb = NULL;
765 invalidate_page_bitmap(pd + i);
766 }
767 } else {
768 void **pp = *lp;
769 for (i = 0; i < L2_SIZE; ++i) {
770 page_flush_tb_1 (level - 1, pp + i);
771 }
772 }
773 }
774
775 static void page_flush_tb(void)
776 {
777 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
780 }
781 }
782
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState *env1)
786 {
787 CPUArchState *env;
788 #if defined(DEBUG_FLUSH)
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr - code_gen_buffer),
791 nb_tbs, nb_tbs > 0 ?
792 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
793 #endif
794 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
795 cpu_abort(env1, "Internal error: code buffer overflow\n");
796
797 nb_tbs = 0;
798
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
801 }
802
803 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
804 page_flush_tb();
805
806 code_gen_ptr = code_gen_buffer;
807 /* XXX: flush processor icache at this point if cache flush is
808 expensive */
809 tb_flush_count++;
810 }
811
812 #ifdef DEBUG_TB_CHECK
813
814 static void tb_invalidate_check(target_ulong address)
815 {
816 TranslationBlock *tb;
817 int i;
818 address &= TARGET_PAGE_MASK;
819 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
820 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
821 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
822 address >= tb->pc + tb->size)) {
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
825 address, (long)tb->pc, tb->size);
826 }
827 }
828 }
829 }
830
831 /* verify that all the pages have correct rights for code */
832 static void tb_page_check(void)
833 {
834 TranslationBlock *tb;
835 int i, flags1, flags2;
836
837 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
838 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
839 flags1 = page_get_flags(tb->pc);
840 flags2 = page_get_flags(tb->pc + tb->size - 1);
841 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
843 (long)tb->pc, tb->size, flags1, flags2);
844 }
845 }
846 }
847 }
848
849 #endif
850
851 /* invalidate one TB */
852 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
853 int next_offset)
854 {
855 TranslationBlock *tb1;
856 for(;;) {
857 tb1 = *ptb;
858 if (tb1 == tb) {
859 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
860 break;
861 }
862 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
863 }
864 }
865
866 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
867 {
868 TranslationBlock *tb1;
869 unsigned int n1;
870
871 for(;;) {
872 tb1 = *ptb;
873 n1 = (uintptr_t)tb1 & 3;
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
875 if (tb1 == tb) {
876 *ptb = tb1->page_next[n1];
877 break;
878 }
879 ptb = &tb1->page_next[n1];
880 }
881 }
882
883 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
884 {
885 TranslationBlock *tb1, **ptb;
886 unsigned int n1;
887
888 ptb = &tb->jmp_next[n];
889 tb1 = *ptb;
890 if (tb1) {
891 /* find tb(n) in circular list */
892 for(;;) {
893 tb1 = *ptb;
894 n1 = (uintptr_t)tb1 & 3;
895 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
896 if (n1 == n && tb1 == tb)
897 break;
898 if (n1 == 2) {
899 ptb = &tb1->jmp_first;
900 } else {
901 ptb = &tb1->jmp_next[n1];
902 }
903 }
904 /* now we can suppress tb(n) from the list */
905 *ptb = tb->jmp_next[n];
906
907 tb->jmp_next[n] = NULL;
908 }
909 }
910
911 /* reset the jump entry 'n' of a TB so that it is not chained to
912 another TB */
913 static inline void tb_reset_jump(TranslationBlock *tb, int n)
914 {
915 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
916 }
917
918 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
919 {
920 CPUArchState *env;
921 PageDesc *p;
922 unsigned int h, n1;
923 tb_page_addr_t phys_pc;
924 TranslationBlock *tb1, *tb2;
925
926 /* remove the TB from the hash list */
927 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
928 h = tb_phys_hash_func(phys_pc);
929 tb_remove(&tb_phys_hash[h], tb,
930 offsetof(TranslationBlock, phys_hash_next));
931
932 /* remove the TB from the page list */
933 if (tb->page_addr[0] != page_addr) {
934 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
937 }
938 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
939 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943
944 tb_invalidated_flag = 1;
945
946 /* remove the TB from the hash list */
947 h = tb_jmp_cache_hash_func(tb->pc);
948 for(env = first_cpu; env != NULL; env = env->next_cpu) {
949 if (env->tb_jmp_cache[h] == tb)
950 env->tb_jmp_cache[h] = NULL;
951 }
952
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb, 0);
955 tb_jmp_remove(tb, 1);
956
957 /* suppress any remaining jumps to this TB */
958 tb1 = tb->jmp_first;
959 for(;;) {
960 n1 = (uintptr_t)tb1 & 3;
961 if (n1 == 2)
962 break;
963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
964 tb2 = tb1->jmp_next[n1];
965 tb_reset_jump(tb1, n1);
966 tb1->jmp_next[n1] = NULL;
967 tb1 = tb2;
968 }
969 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
970
971 tb_phys_invalidate_count++;
972 }
973
974 static inline void set_bits(uint8_t *tab, int start, int len)
975 {
976 int end, mask, end1;
977
978 end = start + len;
979 tab += start >> 3;
980 mask = 0xff << (start & 7);
981 if ((start & ~7) == (end & ~7)) {
982 if (start < end) {
983 mask &= ~(0xff << (end & 7));
984 *tab |= mask;
985 }
986 } else {
987 *tab++ |= mask;
988 start = (start + 8) & ~7;
989 end1 = end & ~7;
990 while (start < end1) {
991 *tab++ = 0xff;
992 start += 8;
993 }
994 if (start < end) {
995 mask = ~(0xff << (end & 7));
996 *tab |= mask;
997 }
998 }
999 }
1000
1001 static void build_page_bitmap(PageDesc *p)
1002 {
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
1005
1006 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1007
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE)
1019 tb_end = TARGET_PAGE_SIZE;
1020 } else {
1021 tb_start = 0;
1022 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1025 tb = tb->page_next[n];
1026 }
1027 }
1028
1029 TranslationBlock *tb_gen_code(CPUArchState *env,
1030 target_ulong pc, target_ulong cs_base,
1031 int flags, int cflags)
1032 {
1033 TranslationBlock *tb;
1034 uint8_t *tc_ptr;
1035 tb_page_addr_t phys_pc, phys_page2;
1036 target_ulong virt_page2;
1037 int code_gen_size;
1038
1039 phys_pc = get_page_addr_code(env, pc);
1040 tb = tb_alloc(pc);
1041 if (!tb) {
1042 /* flush must be done */
1043 tb_flush(env);
1044 /* cannot fail at this point */
1045 tb = tb_alloc(pc);
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag = 1;
1048 }
1049 tc_ptr = code_gen_ptr;
1050 tb->tc_ptr = tc_ptr;
1051 tb->cs_base = cs_base;
1052 tb->flags = flags;
1053 tb->cflags = cflags;
1054 cpu_gen_code(env, tb, &code_gen_size);
1055 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1056 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1057
1058 /* check next page if needed */
1059 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1060 phys_page2 = -1;
1061 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1062 phys_page2 = get_page_addr_code(env, virt_page2);
1063 }
1064 tb_link_page(tb, phys_pc, phys_page2);
1065 return tb;
1066 }
1067
1068 /*
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1073 * this TB.
1074 */
1075 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1076 int is_cpu_write_access)
1077 {
1078 while (start < end) {
1079 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1080 start &= TARGET_PAGE_MASK;
1081 start += TARGET_PAGE_SIZE;
1082 }
1083 }
1084
1085 /*
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1090 * this TB.
1091 */
1092 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1093 int is_cpu_write_access)
1094 {
1095 TranslationBlock *tb, *tb_next, *saved_tb;
1096 CPUArchState *env = cpu_single_env;
1097 tb_page_addr_t tb_start, tb_end;
1098 PageDesc *p;
1099 int n;
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found = is_cpu_write_access;
1102 TranslationBlock *current_tb = NULL;
1103 int current_tb_modified = 0;
1104 target_ulong current_pc = 0;
1105 target_ulong current_cs_base = 0;
1106 int current_flags = 0;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1108
1109 p = page_find(start >> TARGET_PAGE_BITS);
1110 if (!p)
1111 return;
1112 if (!p->code_bitmap &&
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1117 }
1118
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1121 tb = p->first_tb;
1122 while (tb != NULL) {
1123 n = (uintptr_t)tb & 3;
1124 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1125 tb_next = tb->page_next[n];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1131 tb_end = tb_start + tb->size;
1132 } else {
1133 tb_start = tb->page_addr[1];
1134 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1135 }
1136 if (!(tb_end <= start || tb_start >= end)) {
1137 #ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found) {
1139 current_tb_not_found = 0;
1140 current_tb = NULL;
1141 if (env->mem_io_pc) {
1142 /* now we have a real cpu fault */
1143 current_tb = tb_find_pc(env->mem_io_pc);
1144 }
1145 }
1146 if (current_tb == tb &&
1147 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
1153
1154 current_tb_modified = 1;
1155 cpu_restore_state(current_tb, env, env->mem_io_pc);
1156 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1157 &current_flags);
1158 }
1159 #endif /* TARGET_HAS_PRECISE_SMC */
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1162 saved_tb = NULL;
1163 if (env) {
1164 saved_tb = env->current_tb;
1165 env->current_tb = NULL;
1166 }
1167 tb_phys_invalidate(tb, -1);
1168 if (env) {
1169 env->current_tb = saved_tb;
1170 if (env->interrupt_request && env->current_tb)
1171 cpu_interrupt(env, env->interrupt_request);
1172 }
1173 }
1174 tb = tb_next;
1175 }
1176 #if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1178 if (!p->first_tb) {
1179 invalidate_page_bitmap(p);
1180 if (is_cpu_write_access) {
1181 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1182 }
1183 }
1184 #endif
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1189 itself */
1190 env->current_tb = NULL;
1191 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1192 cpu_resume_from_signal(env, NULL);
1193 }
1194 #endif
1195 }
1196
1197 /* len must be <= 8 and start must be a multiple of len */
1198 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1199 {
1200 PageDesc *p;
1201 int offset, b;
1202 #if 0
1203 if (1) {
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env->mem_io_vaddr, len,
1206 cpu_single_env->eip,
1207 cpu_single_env->eip +
1208 (intptr_t)cpu_single_env->segs[R_CS].base);
1209 }
1210 #endif
1211 p = page_find(start >> TARGET_PAGE_BITS);
1212 if (!p)
1213 return;
1214 if (p->code_bitmap) {
1215 offset = start & ~TARGET_PAGE_MASK;
1216 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1217 if (b & ((1 << len) - 1))
1218 goto do_invalidate;
1219 } else {
1220 do_invalidate:
1221 tb_invalidate_phys_page_range(start, start + len, 1);
1222 }
1223 }
1224
1225 #if !defined(CONFIG_SOFTMMU)
1226 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1227 uintptr_t pc, void *puc)
1228 {
1229 TranslationBlock *tb;
1230 PageDesc *p;
1231 int n;
1232 #ifdef TARGET_HAS_PRECISE_SMC
1233 TranslationBlock *current_tb = NULL;
1234 CPUArchState *env = cpu_single_env;
1235 int current_tb_modified = 0;
1236 target_ulong current_pc = 0;
1237 target_ulong current_cs_base = 0;
1238 int current_flags = 0;
1239 #endif
1240
1241 addr &= TARGET_PAGE_MASK;
1242 p = page_find(addr >> TARGET_PAGE_BITS);
1243 if (!p)
1244 return;
1245 tb = p->first_tb;
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb && pc != 0) {
1248 current_tb = tb_find_pc(pc);
1249 }
1250 #endif
1251 while (tb != NULL) {
1252 n = (uintptr_t)tb & 3;
1253 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb == tb &&
1256 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
1262
1263 current_tb_modified = 1;
1264 cpu_restore_state(current_tb, env, pc);
1265 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1266 &current_flags);
1267 }
1268 #endif /* TARGET_HAS_PRECISE_SMC */
1269 tb_phys_invalidate(tb, addr);
1270 tb = tb->page_next[n];
1271 }
1272 p->first_tb = NULL;
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1277 itself */
1278 env->current_tb = NULL;
1279 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1280 cpu_resume_from_signal(env, puc);
1281 }
1282 #endif
1283 }
1284 #endif
1285
1286 /* add the tb in the target page and protect it if necessary */
1287 static inline void tb_alloc_page(TranslationBlock *tb,
1288 unsigned int n, tb_page_addr_t page_addr)
1289 {
1290 PageDesc *p;
1291 #ifndef CONFIG_USER_ONLY
1292 bool page_already_protected;
1293 #endif
1294
1295 tb->page_addr[n] = page_addr;
1296 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1297 tb->page_next[n] = p->first_tb;
1298 #ifndef CONFIG_USER_ONLY
1299 page_already_protected = p->first_tb != NULL;
1300 #endif
1301 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1302 invalidate_page_bitmap(p);
1303
1304 #if defined(TARGET_HAS_SMC) || 1
1305
1306 #if defined(CONFIG_USER_ONLY)
1307 if (p->flags & PAGE_WRITE) {
1308 target_ulong addr;
1309 PageDesc *p2;
1310 int prot;
1311
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
1314 page_addr &= qemu_host_page_mask;
1315 prot = 0;
1316 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1317 addr += TARGET_PAGE_SIZE) {
1318
1319 p2 = page_find (addr >> TARGET_PAGE_BITS);
1320 if (!p2)
1321 continue;
1322 prot |= p2->flags;
1323 p2->flags &= ~PAGE_WRITE;
1324 }
1325 mprotect(g2h(page_addr), qemu_host_page_size,
1326 (prot & PAGE_BITS) & ~PAGE_WRITE);
1327 #ifdef DEBUG_TB_INVALIDATE
1328 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1329 page_addr);
1330 #endif
1331 }
1332 #else
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
1336 if (!page_already_protected) {
1337 tlb_protect_code(page_addr);
1338 }
1339 #endif
1340
1341 #endif /* TARGET_HAS_SMC */
1342 }
1343
1344 /* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
1346 void tb_link_page(TranslationBlock *tb,
1347 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1348 {
1349 unsigned int h;
1350 TranslationBlock **ptb;
1351
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1354 mmap_lock();
1355 /* add in the physical hash table */
1356 h = tb_phys_hash_func(phys_pc);
1357 ptb = &tb_phys_hash[h];
1358 tb->phys_hash_next = *ptb;
1359 *ptb = tb;
1360
1361 /* add in the page list */
1362 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1363 if (phys_page2 != -1)
1364 tb_alloc_page(tb, 1, phys_page2);
1365 else
1366 tb->page_addr[1] = -1;
1367
1368 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1369 tb->jmp_next[0] = NULL;
1370 tb->jmp_next[1] = NULL;
1371
1372 /* init original jump addresses */
1373 if (tb->tb_next_offset[0] != 0xffff)
1374 tb_reset_jump(tb, 0);
1375 if (tb->tb_next_offset[1] != 0xffff)
1376 tb_reset_jump(tb, 1);
1377
1378 #ifdef DEBUG_TB_CHECK
1379 tb_page_check();
1380 #endif
1381 mmap_unlock();
1382 }
1383
1384 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
1386 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1387 {
1388 int m_min, m_max, m;
1389 uintptr_t v;
1390 TranslationBlock *tb;
1391
1392 if (nb_tbs <= 0)
1393 return NULL;
1394 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1395 tc_ptr >= (uintptr_t)code_gen_ptr) {
1396 return NULL;
1397 }
1398 /* binary search (cf Knuth) */
1399 m_min = 0;
1400 m_max = nb_tbs - 1;
1401 while (m_min <= m_max) {
1402 m = (m_min + m_max) >> 1;
1403 tb = &tbs[m];
1404 v = (uintptr_t)tb->tc_ptr;
1405 if (v == tc_ptr)
1406 return tb;
1407 else if (tc_ptr < v) {
1408 m_max = m - 1;
1409 } else {
1410 m_min = m + 1;
1411 }
1412 }
1413 return &tbs[m_max];
1414 }
1415
1416 static void tb_reset_jump_recursive(TranslationBlock *tb);
1417
1418 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1419 {
1420 TranslationBlock *tb1, *tb_next, **ptb;
1421 unsigned int n1;
1422
1423 tb1 = tb->jmp_next[n];
1424 if (tb1 != NULL) {
1425 /* find head of list */
1426 for(;;) {
1427 n1 = (uintptr_t)tb1 & 3;
1428 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1429 if (n1 == 2)
1430 break;
1431 tb1 = tb1->jmp_next[n1];
1432 }
1433 /* we are now sure now that tb jumps to tb1 */
1434 tb_next = tb1;
1435
1436 /* remove tb from the jmp_first list */
1437 ptb = &tb_next->jmp_first;
1438 for(;;) {
1439 tb1 = *ptb;
1440 n1 = (uintptr_t)tb1 & 3;
1441 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1442 if (n1 == n && tb1 == tb)
1443 break;
1444 ptb = &tb1->jmp_next[n1];
1445 }
1446 *ptb = tb->jmp_next[n];
1447 tb->jmp_next[n] = NULL;
1448
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb, n);
1451
1452 /* suppress jumps in the tb on which we could have jumped */
1453 tb_reset_jump_recursive(tb_next);
1454 }
1455 }
1456
1457 static void tb_reset_jump_recursive(TranslationBlock *tb)
1458 {
1459 tb_reset_jump_recursive2(tb, 0);
1460 tb_reset_jump_recursive2(tb, 1);
1461 }
1462
1463 #if defined(TARGET_HAS_ICE)
1464 #if defined(CONFIG_USER_ONLY)
1465 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1466 {
1467 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1468 }
1469 #else
1470 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1471 {
1472 ram_addr_t ram_addr;
1473 MemoryRegionSection *section;
1474
1475 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1476 if (!(memory_region_is_ram(section->mr)
1477 || (section->mr->rom_device && section->mr->readable))) {
1478 return;
1479 }
1480 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1481 + memory_region_section_addr(section, addr);
1482 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1483 }
1484
1485 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1486 {
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1488 (pc & ~TARGET_PAGE_MASK));
1489 }
1490 #endif
1491 #endif /* TARGET_HAS_ICE */
1492
1493 #if defined(CONFIG_USER_ONLY)
1494 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1495
1496 {
1497 }
1498
1499 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1500 int flags, CPUWatchpoint **watchpoint)
1501 {
1502 return -ENOSYS;
1503 }
1504 #else
1505 /* Add a watchpoint. */
1506 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1507 int flags, CPUWatchpoint **watchpoint)
1508 {
1509 target_ulong len_mask = ~(len - 1);
1510 CPUWatchpoint *wp;
1511
1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1513 if ((len & (len - 1)) || (addr & ~len_mask) ||
1514 len == 0 || len > TARGET_PAGE_SIZE) {
1515 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1517 return -EINVAL;
1518 }
1519 wp = g_malloc(sizeof(*wp));
1520
1521 wp->vaddr = addr;
1522 wp->len_mask = len_mask;
1523 wp->flags = flags;
1524
1525 /* keep all GDB-injected watchpoints in front */
1526 if (flags & BP_GDB)
1527 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1528 else
1529 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1530
1531 tlb_flush_page(env, addr);
1532
1533 if (watchpoint)
1534 *watchpoint = wp;
1535 return 0;
1536 }
1537
1538 /* Remove a specific watchpoint. */
1539 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1540 int flags)
1541 {
1542 target_ulong len_mask = ~(len - 1);
1543 CPUWatchpoint *wp;
1544
1545 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1546 if (addr == wp->vaddr && len_mask == wp->len_mask
1547 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1548 cpu_watchpoint_remove_by_ref(env, wp);
1549 return 0;
1550 }
1551 }
1552 return -ENOENT;
1553 }
1554
1555 /* Remove a specific watchpoint by reference. */
1556 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1557 {
1558 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1559
1560 tlb_flush_page(env, watchpoint->vaddr);
1561
1562 g_free(watchpoint);
1563 }
1564
1565 /* Remove all matching watchpoints. */
1566 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1567 {
1568 CPUWatchpoint *wp, *next;
1569
1570 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1571 if (wp->flags & mask)
1572 cpu_watchpoint_remove_by_ref(env, wp);
1573 }
1574 }
1575 #endif
1576
1577 /* Add a breakpoint. */
1578 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1579 CPUBreakpoint **breakpoint)
1580 {
1581 #if defined(TARGET_HAS_ICE)
1582 CPUBreakpoint *bp;
1583
1584 bp = g_malloc(sizeof(*bp));
1585
1586 bp->pc = pc;
1587 bp->flags = flags;
1588
1589 /* keep all GDB-injected breakpoints in front */
1590 if (flags & BP_GDB)
1591 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1592 else
1593 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1594
1595 breakpoint_invalidate(env, pc);
1596
1597 if (breakpoint)
1598 *breakpoint = bp;
1599 return 0;
1600 #else
1601 return -ENOSYS;
1602 #endif
1603 }
1604
1605 /* Remove a specific breakpoint. */
1606 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1607 {
1608 #if defined(TARGET_HAS_ICE)
1609 CPUBreakpoint *bp;
1610
1611 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1612 if (bp->pc == pc && bp->flags == flags) {
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 return 0;
1615 }
1616 }
1617 return -ENOENT;
1618 #else
1619 return -ENOSYS;
1620 #endif
1621 }
1622
1623 /* Remove a specific breakpoint by reference. */
1624 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1625 {
1626 #if defined(TARGET_HAS_ICE)
1627 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1628
1629 breakpoint_invalidate(env, breakpoint->pc);
1630
1631 g_free(breakpoint);
1632 #endif
1633 }
1634
1635 /* Remove all matching breakpoints. */
1636 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1637 {
1638 #if defined(TARGET_HAS_ICE)
1639 CPUBreakpoint *bp, *next;
1640
1641 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1642 if (bp->flags & mask)
1643 cpu_breakpoint_remove_by_ref(env, bp);
1644 }
1645 #endif
1646 }
1647
1648 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
1650 void cpu_single_step(CPUArchState *env, int enabled)
1651 {
1652 #if defined(TARGET_HAS_ICE)
1653 if (env->singlestep_enabled != enabled) {
1654 env->singlestep_enabled = enabled;
1655 if (kvm_enabled())
1656 kvm_update_guest_debug(env, 0);
1657 else {
1658 /* must flush all the translated code to avoid inconsistencies */
1659 /* XXX: only flush what is necessary */
1660 tb_flush(env);
1661 }
1662 }
1663 #endif
1664 }
1665
1666 static void cpu_unlink_tb(CPUArchState *env)
1667 {
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
1672 TranslationBlock *tb;
1673 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1674
1675 spin_lock(&interrupt_lock);
1676 tb = env->current_tb;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
1679 if (tb) {
1680 env->current_tb = NULL;
1681 tb_reset_jump_recursive(tb);
1682 }
1683 spin_unlock(&interrupt_lock);
1684 }
1685
1686 #ifndef CONFIG_USER_ONLY
1687 /* mask must never be zero, except for A20 change call */
1688 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1689 {
1690 int old_mask;
1691
1692 old_mask = env->interrupt_request;
1693 env->interrupt_request |= mask;
1694
1695 /*
1696 * If called from iothread context, wake the target cpu in
1697 * case its halted.
1698 */
1699 if (!qemu_cpu_is_self(env)) {
1700 qemu_cpu_kick(env);
1701 return;
1702 }
1703
1704 if (use_icount) {
1705 env->icount_decr.u16.high = 0xffff;
1706 if (!can_do_io(env)
1707 && (mask & ~old_mask) != 0) {
1708 cpu_abort(env, "Raised interrupt while not in I/O function");
1709 }
1710 } else {
1711 cpu_unlink_tb(env);
1712 }
1713 }
1714
1715 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1716
1717 #else /* CONFIG_USER_ONLY */
1718
1719 void cpu_interrupt(CPUArchState *env, int mask)
1720 {
1721 env->interrupt_request |= mask;
1722 cpu_unlink_tb(env);
1723 }
1724 #endif /* CONFIG_USER_ONLY */
1725
1726 void cpu_reset_interrupt(CPUArchState *env, int mask)
1727 {
1728 env->interrupt_request &= ~mask;
1729 }
1730
1731 void cpu_exit(CPUArchState *env)
1732 {
1733 env->exit_request = 1;
1734 cpu_unlink_tb(env);
1735 }
1736
1737 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1738 {
1739 va_list ap;
1740 va_list ap2;
1741
1742 va_start(ap, fmt);
1743 va_copy(ap2, ap);
1744 fprintf(stderr, "qemu: fatal: ");
1745 vfprintf(stderr, fmt, ap);
1746 fprintf(stderr, "\n");
1747 #ifdef TARGET_I386
1748 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1749 #else
1750 cpu_dump_state(env, stderr, fprintf, 0);
1751 #endif
1752 if (qemu_log_enabled()) {
1753 qemu_log("qemu: fatal: ");
1754 qemu_log_vprintf(fmt, ap2);
1755 qemu_log("\n");
1756 #ifdef TARGET_I386
1757 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1758 #else
1759 log_cpu_state(env, 0);
1760 #endif
1761 qemu_log_flush();
1762 qemu_log_close();
1763 }
1764 va_end(ap2);
1765 va_end(ap);
1766 #if defined(CONFIG_USER_ONLY)
1767 {
1768 struct sigaction act;
1769 sigfillset(&act.sa_mask);
1770 act.sa_handler = SIG_DFL;
1771 sigaction(SIGABRT, &act, NULL);
1772 }
1773 #endif
1774 abort();
1775 }
1776
1777 CPUArchState *cpu_copy(CPUArchState *env)
1778 {
1779 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1780 CPUArchState *next_cpu = new_env->next_cpu;
1781 int cpu_index = new_env->cpu_index;
1782 #if defined(TARGET_HAS_ICE)
1783 CPUBreakpoint *bp;
1784 CPUWatchpoint *wp;
1785 #endif
1786
1787 memcpy(new_env, env, sizeof(CPUArchState));
1788
1789 /* Preserve chaining and index. */
1790 new_env->next_cpu = next_cpu;
1791 new_env->cpu_index = cpu_index;
1792
1793 /* Clone all break/watchpoints.
1794 Note: Once we support ptrace with hw-debug register access, make sure
1795 BP_CPU break/watchpoints are handled correctly on clone. */
1796 QTAILQ_INIT(&env->breakpoints);
1797 QTAILQ_INIT(&env->watchpoints);
1798 #if defined(TARGET_HAS_ICE)
1799 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1800 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1801 }
1802 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1803 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1804 wp->flags, NULL);
1805 }
1806 #endif
1807
1808 return new_env;
1809 }
1810
1811 #if !defined(CONFIG_USER_ONLY)
1812 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1813 {
1814 unsigned int i;
1815
1816 /* Discard jump cache entries for any tb which might potentially
1817 overlap the flushed page. */
1818 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1819 memset (&env->tb_jmp_cache[i], 0,
1820 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1821
1822 i = tb_jmp_cache_hash_page(addr);
1823 memset (&env->tb_jmp_cache[i], 0,
1824 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1825 }
1826
1827 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1828 uintptr_t length)
1829 {
1830 uintptr_t start1;
1831
1832 /* we modify the TLB cache so that the dirty bit will be set again
1833 when accessing the range */
1834 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1835 /* Check that we don't span multiple blocks - this breaks the
1836 address comparisons below. */
1837 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1838 != (end - 1) - start) {
1839 abort();
1840 }
1841 cpu_tlb_reset_dirty_all(start1, length);
1842
1843 }
1844
1845 /* Note: start and end must be within the same ram block. */
1846 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1847 int dirty_flags)
1848 {
1849 uintptr_t length;
1850
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1853
1854 length = end - start;
1855 if (length == 0)
1856 return;
1857 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1858
1859 if (tcg_enabled()) {
1860 tlb_reset_dirty_range_all(start, end, length);
1861 }
1862 }
1863
1864 int cpu_physical_memory_set_dirty_tracking(int enable)
1865 {
1866 int ret = 0;
1867 in_migration = enable;
1868 return ret;
1869 }
1870
1871 target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1872 MemoryRegionSection *section,
1873 target_ulong vaddr,
1874 target_phys_addr_t paddr,
1875 int prot,
1876 target_ulong *address)
1877 {
1878 target_phys_addr_t iotlb;
1879 CPUWatchpoint *wp;
1880
1881 if (memory_region_is_ram(section->mr)) {
1882 /* Normal RAM. */
1883 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1884 + memory_region_section_addr(section, paddr);
1885 if (!section->readonly) {
1886 iotlb |= phys_section_notdirty;
1887 } else {
1888 iotlb |= phys_section_rom;
1889 }
1890 } else {
1891 /* IO handlers are currently passed a physical address.
1892 It would be nice to pass an offset from the base address
1893 of that region. This would avoid having to special case RAM,
1894 and avoid full address decoding in every device.
1895 We can't use the high bits of pd for this because
1896 IO_MEM_ROMD uses these as a ram address. */
1897 iotlb = section - phys_sections;
1898 iotlb += memory_region_section_addr(section, paddr);
1899 }
1900
1901 /* Make accesses to pages with watchpoints go via the
1902 watchpoint trap routines. */
1903 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1904 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1905 /* Avoid trapping reads of pages with a write breakpoint. */
1906 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1907 iotlb = phys_section_watch + paddr;
1908 *address |= TLB_MMIO;
1909 break;
1910 }
1911 }
1912 }
1913
1914 return iotlb;
1915 }
1916
1917 #else
1918 /*
1919 * Walks guest process memory "regions" one by one
1920 * and calls callback function 'fn' for each region.
1921 */
1922
1923 struct walk_memory_regions_data
1924 {
1925 walk_memory_regions_fn fn;
1926 void *priv;
1927 uintptr_t start;
1928 int prot;
1929 };
1930
1931 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1932 abi_ulong end, int new_prot)
1933 {
1934 if (data->start != -1ul) {
1935 int rc = data->fn(data->priv, data->start, end, data->prot);
1936 if (rc != 0) {
1937 return rc;
1938 }
1939 }
1940
1941 data->start = (new_prot ? end : -1ul);
1942 data->prot = new_prot;
1943
1944 return 0;
1945 }
1946
1947 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1948 abi_ulong base, int level, void **lp)
1949 {
1950 abi_ulong pa;
1951 int i, rc;
1952
1953 if (*lp == NULL) {
1954 return walk_memory_regions_end(data, base, 0);
1955 }
1956
1957 if (level == 0) {
1958 PageDesc *pd = *lp;
1959 for (i = 0; i < L2_SIZE; ++i) {
1960 int prot = pd[i].flags;
1961
1962 pa = base | (i << TARGET_PAGE_BITS);
1963 if (prot != data->prot) {
1964 rc = walk_memory_regions_end(data, pa, prot);
1965 if (rc != 0) {
1966 return rc;
1967 }
1968 }
1969 }
1970 } else {
1971 void **pp = *lp;
1972 for (i = 0; i < L2_SIZE; ++i) {
1973 pa = base | ((abi_ulong)i <<
1974 (TARGET_PAGE_BITS + L2_BITS * level));
1975 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1976 if (rc != 0) {
1977 return rc;
1978 }
1979 }
1980 }
1981
1982 return 0;
1983 }
1984
1985 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1986 {
1987 struct walk_memory_regions_data data;
1988 uintptr_t i;
1989
1990 data.fn = fn;
1991 data.priv = priv;
1992 data.start = -1ul;
1993 data.prot = 0;
1994
1995 for (i = 0; i < V_L1_SIZE; i++) {
1996 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1997 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1998 if (rc != 0) {
1999 return rc;
2000 }
2001 }
2002
2003 return walk_memory_regions_end(&data, 0, 0);
2004 }
2005
2006 static int dump_region(void *priv, abi_ulong start,
2007 abi_ulong end, unsigned long prot)
2008 {
2009 FILE *f = (FILE *)priv;
2010
2011 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2012 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2013 start, end, end - start,
2014 ((prot & PAGE_READ) ? 'r' : '-'),
2015 ((prot & PAGE_WRITE) ? 'w' : '-'),
2016 ((prot & PAGE_EXEC) ? 'x' : '-'));
2017
2018 return (0);
2019 }
2020
2021 /* dump memory mappings */
2022 void page_dump(FILE *f)
2023 {
2024 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2025 "start", "end", "size", "prot");
2026 walk_memory_regions(f, dump_region);
2027 }
2028
2029 int page_get_flags(target_ulong address)
2030 {
2031 PageDesc *p;
2032
2033 p = page_find(address >> TARGET_PAGE_BITS);
2034 if (!p)
2035 return 0;
2036 return p->flags;
2037 }
2038
2039 /* Modify the flags of a page and invalidate the code if necessary.
2040 The flag PAGE_WRITE_ORG is positioned automatically depending
2041 on PAGE_WRITE. The mmap_lock should already be held. */
2042 void page_set_flags(target_ulong start, target_ulong end, int flags)
2043 {
2044 target_ulong addr, len;
2045
2046 /* This function should never be called with addresses outside the
2047 guest address space. If this assert fires, it probably indicates
2048 a missing call to h2g_valid. */
2049 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2050 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2051 #endif
2052 assert(start < end);
2053
2054 start = start & TARGET_PAGE_MASK;
2055 end = TARGET_PAGE_ALIGN(end);
2056
2057 if (flags & PAGE_WRITE) {
2058 flags |= PAGE_WRITE_ORG;
2059 }
2060
2061 for (addr = start, len = end - start;
2062 len != 0;
2063 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2064 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2065
2066 /* If the write protection bit is set, then we invalidate
2067 the code inside. */
2068 if (!(p->flags & PAGE_WRITE) &&
2069 (flags & PAGE_WRITE) &&
2070 p->first_tb) {
2071 tb_invalidate_phys_page(addr, 0, NULL);
2072 }
2073 p->flags = flags;
2074 }
2075 }
2076
2077 int page_check_range(target_ulong start, target_ulong len, int flags)
2078 {
2079 PageDesc *p;
2080 target_ulong end;
2081 target_ulong addr;
2082
2083 /* This function should never be called with addresses outside the
2084 guest address space. If this assert fires, it probably indicates
2085 a missing call to h2g_valid. */
2086 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2087 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2088 #endif
2089
2090 if (len == 0) {
2091 return 0;
2092 }
2093 if (start + len - 1 < start) {
2094 /* We've wrapped around. */
2095 return -1;
2096 }
2097
2098 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2099 start = start & TARGET_PAGE_MASK;
2100
2101 for (addr = start, len = end - start;
2102 len != 0;
2103 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2104 p = page_find(addr >> TARGET_PAGE_BITS);
2105 if( !p )
2106 return -1;
2107 if( !(p->flags & PAGE_VALID) )
2108 return -1;
2109
2110 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2111 return -1;
2112 if (flags & PAGE_WRITE) {
2113 if (!(p->flags & PAGE_WRITE_ORG))
2114 return -1;
2115 /* unprotect the page if it was put read-only because it
2116 contains translated code */
2117 if (!(p->flags & PAGE_WRITE)) {
2118 if (!page_unprotect(addr, 0, NULL))
2119 return -1;
2120 }
2121 return 0;
2122 }
2123 }
2124 return 0;
2125 }
2126
2127 /* called from signal handler: invalidate the code and unprotect the
2128 page. Return TRUE if the fault was successfully handled. */
2129 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2130 {
2131 unsigned int prot;
2132 PageDesc *p;
2133 target_ulong host_start, host_end, addr;
2134
2135 /* Technically this isn't safe inside a signal handler. However we
2136 know this only ever happens in a synchronous SEGV handler, so in
2137 practice it seems to be ok. */
2138 mmap_lock();
2139
2140 p = page_find(address >> TARGET_PAGE_BITS);
2141 if (!p) {
2142 mmap_unlock();
2143 return 0;
2144 }
2145
2146 /* if the page was really writable, then we change its
2147 protection back to writable */
2148 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2149 host_start = address & qemu_host_page_mask;
2150 host_end = host_start + qemu_host_page_size;
2151
2152 prot = 0;
2153 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2154 p = page_find(addr >> TARGET_PAGE_BITS);
2155 p->flags |= PAGE_WRITE;
2156 prot |= p->flags;
2157
2158 /* and since the content will be modified, we must invalidate
2159 the corresponding translated code. */
2160 tb_invalidate_phys_page(addr, pc, puc);
2161 #ifdef DEBUG_TB_CHECK
2162 tb_invalidate_check(addr);
2163 #endif
2164 }
2165 mprotect((void *)g2h(host_start), qemu_host_page_size,
2166 prot & PAGE_BITS);
2167
2168 mmap_unlock();
2169 return 1;
2170 }
2171 mmap_unlock();
2172 return 0;
2173 }
2174 #endif /* defined(CONFIG_USER_ONLY) */
2175
2176 #if !defined(CONFIG_USER_ONLY)
2177
2178 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2179 typedef struct subpage_t {
2180 MemoryRegion iomem;
2181 target_phys_addr_t base;
2182 uint16_t sub_section[TARGET_PAGE_SIZE];
2183 } subpage_t;
2184
2185 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2186 uint16_t section);
2187 static subpage_t *subpage_init(target_phys_addr_t base);
2188 static void destroy_page_desc(uint16_t section_index)
2189 {
2190 MemoryRegionSection *section = &phys_sections[section_index];
2191 MemoryRegion *mr = section->mr;
2192
2193 if (mr->subpage) {
2194 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2195 memory_region_destroy(&subpage->iomem);
2196 g_free(subpage);
2197 }
2198 }
2199
2200 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2201 {
2202 unsigned i;
2203 PhysPageEntry *p;
2204
2205 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2206 return;
2207 }
2208
2209 p = phys_map_nodes[lp->ptr];
2210 for (i = 0; i < L2_SIZE; ++i) {
2211 if (!p[i].is_leaf) {
2212 destroy_l2_mapping(&p[i], level - 1);
2213 } else {
2214 destroy_page_desc(p[i].ptr);
2215 }
2216 }
2217 lp->is_leaf = 0;
2218 lp->ptr = PHYS_MAP_NODE_NIL;
2219 }
2220
2221 static void destroy_all_mappings(void)
2222 {
2223 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2224 phys_map_nodes_reset();
2225 }
2226
2227 static uint16_t phys_section_add(MemoryRegionSection *section)
2228 {
2229 if (phys_sections_nb == phys_sections_nb_alloc) {
2230 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2231 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2232 phys_sections_nb_alloc);
2233 }
2234 phys_sections[phys_sections_nb] = *section;
2235 return phys_sections_nb++;
2236 }
2237
2238 static void phys_sections_clear(void)
2239 {
2240 phys_sections_nb = 0;
2241 }
2242
2243 static void register_subpage(MemoryRegionSection *section)
2244 {
2245 subpage_t *subpage;
2246 target_phys_addr_t base = section->offset_within_address_space
2247 & TARGET_PAGE_MASK;
2248 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2249 MemoryRegionSection subsection = {
2250 .offset_within_address_space = base,
2251 .size = TARGET_PAGE_SIZE,
2252 };
2253 target_phys_addr_t start, end;
2254
2255 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2256
2257 if (!(existing->mr->subpage)) {
2258 subpage = subpage_init(base);
2259 subsection.mr = &subpage->iomem;
2260 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2261 phys_section_add(&subsection));
2262 } else {
2263 subpage = container_of(existing->mr, subpage_t, iomem);
2264 }
2265 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2266 end = start + section->size - 1;
2267 subpage_register(subpage, start, end, phys_section_add(section));
2268 }
2269
2270
2271 static void register_multipage(MemoryRegionSection *section)
2272 {
2273 target_phys_addr_t start_addr = section->offset_within_address_space;
2274 ram_addr_t size = section->size;
2275 target_phys_addr_t addr;
2276 uint16_t section_index = phys_section_add(section);
2277
2278 assert(size);
2279
2280 addr = start_addr;
2281 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2282 section_index);
2283 }
2284
2285 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2286 bool readonly)
2287 {
2288 MemoryRegionSection now = *section, remain = *section;
2289
2290 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2291 || (now.size < TARGET_PAGE_SIZE)) {
2292 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2293 - now.offset_within_address_space,
2294 now.size);
2295 register_subpage(&now);
2296 remain.size -= now.size;
2297 remain.offset_within_address_space += now.size;
2298 remain.offset_within_region += now.size;
2299 }
2300 while (remain.size >= TARGET_PAGE_SIZE) {
2301 now = remain;
2302 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
2303 now.size = TARGET_PAGE_SIZE;
2304 register_subpage(&now);
2305 } else {
2306 now.size &= TARGET_PAGE_MASK;
2307 register_multipage(&now);
2308 }
2309 remain.size -= now.size;
2310 remain.offset_within_address_space += now.size;
2311 remain.offset_within_region += now.size;
2312 }
2313 now = remain;
2314 if (now.size) {
2315 register_subpage(&now);
2316 }
2317 }
2318
2319
2320 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2321 {
2322 if (kvm_enabled())
2323 kvm_coalesce_mmio_region(addr, size);
2324 }
2325
2326 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2327 {
2328 if (kvm_enabled())
2329 kvm_uncoalesce_mmio_region(addr, size);
2330 }
2331
2332 void qemu_flush_coalesced_mmio_buffer(void)
2333 {
2334 if (kvm_enabled())
2335 kvm_flush_coalesced_mmio_buffer();
2336 }
2337
2338 #if defined(__linux__) && !defined(TARGET_S390X)
2339
2340 #include <sys/vfs.h>
2341
2342 #define HUGETLBFS_MAGIC 0x958458f6
2343
2344 static long gethugepagesize(const char *path)
2345 {
2346 struct statfs fs;
2347 int ret;
2348
2349 do {
2350 ret = statfs(path, &fs);
2351 } while (ret != 0 && errno == EINTR);
2352
2353 if (ret != 0) {
2354 perror(path);
2355 return 0;
2356 }
2357
2358 if (fs.f_type != HUGETLBFS_MAGIC)
2359 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2360
2361 return fs.f_bsize;
2362 }
2363
2364 static void *file_ram_alloc(RAMBlock *block,
2365 ram_addr_t memory,
2366 const char *path)
2367 {
2368 char *filename;
2369 void *area;
2370 int fd;
2371 #ifdef MAP_POPULATE
2372 int flags;
2373 #endif
2374 unsigned long hpagesize;
2375
2376 hpagesize = gethugepagesize(path);
2377 if (!hpagesize) {
2378 return NULL;
2379 }
2380
2381 if (memory < hpagesize) {
2382 return NULL;
2383 }
2384
2385 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2386 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2387 return NULL;
2388 }
2389
2390 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2391 return NULL;
2392 }
2393
2394 fd = mkstemp(filename);
2395 if (fd < 0) {
2396 perror("unable to create backing store for hugepages");
2397 free(filename);
2398 return NULL;
2399 }
2400 unlink(filename);
2401 free(filename);
2402
2403 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2404
2405 /*
2406 * ftruncate is not supported by hugetlbfs in older
2407 * hosts, so don't bother bailing out on errors.
2408 * If anything goes wrong with it under other filesystems,
2409 * mmap will fail.
2410 */
2411 if (ftruncate(fd, memory))
2412 perror("ftruncate");
2413
2414 #ifdef MAP_POPULATE
2415 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2416 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2417 * to sidestep this quirk.
2418 */
2419 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2420 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2421 #else
2422 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2423 #endif
2424 if (area == MAP_FAILED) {
2425 perror("file_ram_alloc: can't mmap RAM pages");
2426 close(fd);
2427 return (NULL);
2428 }
2429 block->fd = fd;
2430 return area;
2431 }
2432 #endif
2433
2434 static ram_addr_t find_ram_offset(ram_addr_t size)
2435 {
2436 RAMBlock *block, *next_block;
2437 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2438
2439 if (QLIST_EMPTY(&ram_list.blocks))
2440 return 0;
2441
2442 QLIST_FOREACH(block, &ram_list.blocks, next) {
2443 ram_addr_t end, next = RAM_ADDR_MAX;
2444
2445 end = block->offset + block->length;
2446
2447 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2448 if (next_block->offset >= end) {
2449 next = MIN(next, next_block->offset);
2450 }
2451 }
2452 if (next - end >= size && next - end < mingap) {
2453 offset = end;
2454 mingap = next - end;
2455 }
2456 }
2457
2458 if (offset == RAM_ADDR_MAX) {
2459 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2460 (uint64_t)size);
2461 abort();
2462 }
2463
2464 return offset;
2465 }
2466
2467 static ram_addr_t last_ram_offset(void)
2468 {
2469 RAMBlock *block;
2470 ram_addr_t last = 0;
2471
2472 QLIST_FOREACH(block, &ram_list.blocks, next)
2473 last = MAX(last, block->offset + block->length);
2474
2475 return last;
2476 }
2477
2478 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2479 {
2480 int ret;
2481 QemuOpts *machine_opts;
2482
2483 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2484 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2485 if (machine_opts &&
2486 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
2487 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2488 if (ret) {
2489 perror("qemu_madvise");
2490 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2491 "but dump_guest_core=off specified\n");
2492 }
2493 }
2494 }
2495
2496 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2497 {
2498 RAMBlock *new_block, *block;
2499
2500 new_block = NULL;
2501 QLIST_FOREACH(block, &ram_list.blocks, next) {
2502 if (block->offset == addr) {
2503 new_block = block;
2504 break;
2505 }
2506 }
2507 assert(new_block);
2508 assert(!new_block->idstr[0]);
2509
2510 if (dev) {
2511 char *id = qdev_get_dev_path(dev);
2512 if (id) {
2513 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2514 g_free(id);
2515 }
2516 }
2517 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2518
2519 QLIST_FOREACH(block, &ram_list.blocks, next) {
2520 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2521 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2522 new_block->idstr);
2523 abort();
2524 }
2525 }
2526 }
2527
2528 static int memory_try_enable_merging(void *addr, size_t len)
2529 {
2530 QemuOpts *opts;
2531
2532 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2533 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
2534 /* disabled by the user */
2535 return 0;
2536 }
2537
2538 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2539 }
2540
2541 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2542 MemoryRegion *mr)
2543 {
2544 RAMBlock *new_block;
2545
2546 size = TARGET_PAGE_ALIGN(size);
2547 new_block = g_malloc0(sizeof(*new_block));
2548
2549 new_block->mr = mr;
2550 new_block->offset = find_ram_offset(size);
2551 if (host) {
2552 new_block->host = host;
2553 new_block->flags |= RAM_PREALLOC_MASK;
2554 } else {
2555 if (mem_path) {
2556 #if defined (__linux__) && !defined(TARGET_S390X)
2557 new_block->host = file_ram_alloc(new_block, size, mem_path);
2558 if (!new_block->host) {
2559 new_block->host = qemu_vmalloc(size);
2560 memory_try_enable_merging(new_block->host, size);
2561 }
2562 #else
2563 fprintf(stderr, "-mem-path option unsupported\n");
2564 exit(1);
2565 #endif
2566 } else {
2567 if (xen_enabled()) {
2568 xen_ram_alloc(new_block->offset, size, mr);
2569 } else if (kvm_enabled()) {
2570 /* some s390/kvm configurations have special constraints */
2571 new_block->host = kvm_vmalloc(size);
2572 } else {
2573 new_block->host = qemu_vmalloc(size);
2574 }
2575 memory_try_enable_merging(new_block->host, size);
2576 }
2577 }
2578 new_block->length = size;
2579
2580 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2581
2582 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2583 last_ram_offset() >> TARGET_PAGE_BITS);
2584 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2585 0, size >> TARGET_PAGE_BITS);
2586 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
2587
2588 qemu_ram_setup_dump(new_block->host, size);
2589
2590 if (kvm_enabled())
2591 kvm_setup_guest_memory(new_block->host, size);
2592
2593 return new_block->offset;
2594 }
2595
2596 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2597 {
2598 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2599 }
2600
2601 void qemu_ram_free_from_ptr(ram_addr_t addr)
2602 {
2603 RAMBlock *block;
2604
2605 QLIST_FOREACH(block, &ram_list.blocks, next) {
2606 if (addr == block->offset) {
2607 QLIST_REMOVE(block, next);
2608 g_free(block);
2609 return;
2610 }
2611 }
2612 }
2613
2614 void qemu_ram_free(ram_addr_t addr)
2615 {
2616 RAMBlock *block;
2617
2618 QLIST_FOREACH(block, &ram_list.blocks, next) {
2619 if (addr == block->offset) {
2620 QLIST_REMOVE(block, next);
2621 if (block->flags & RAM_PREALLOC_MASK) {
2622 ;
2623 } else if (mem_path) {
2624 #if defined (__linux__) && !defined(TARGET_S390X)
2625 if (block->fd) {
2626 munmap(block->host, block->length);
2627 close(block->fd);
2628 } else {
2629 qemu_vfree(block->host);
2630 }
2631 #else
2632 abort();
2633 #endif
2634 } else {
2635 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2636 munmap(block->host, block->length);
2637 #else
2638 if (xen_enabled()) {
2639 xen_invalidate_map_cache_entry(block->host);
2640 } else {
2641 qemu_vfree(block->host);
2642 }
2643 #endif
2644 }
2645 g_free(block);
2646 return;
2647 }
2648 }
2649
2650 }
2651
2652 #ifndef _WIN32
2653 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2654 {
2655 RAMBlock *block;
2656 ram_addr_t offset;
2657 int flags;
2658 void *area, *vaddr;
2659
2660 QLIST_FOREACH(block, &ram_list.blocks, next) {
2661 offset = addr - block->offset;
2662 if (offset < block->length) {
2663 vaddr = block->host + offset;
2664 if (block->flags & RAM_PREALLOC_MASK) {
2665 ;
2666 } else {
2667 flags = MAP_FIXED;
2668 munmap(vaddr, length);
2669 if (mem_path) {
2670 #if defined(__linux__) && !defined(TARGET_S390X)
2671 if (block->fd) {
2672 #ifdef MAP_POPULATE
2673 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2674 MAP_PRIVATE;
2675 #else
2676 flags |= MAP_PRIVATE;
2677 #endif
2678 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2679 flags, block->fd, offset);
2680 } else {
2681 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2682 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2683 flags, -1, 0);
2684 }
2685 #else
2686 abort();
2687 #endif
2688 } else {
2689 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2690 flags |= MAP_SHARED | MAP_ANONYMOUS;
2691 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2692 flags, -1, 0);
2693 #else
2694 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2695 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2696 flags, -1, 0);
2697 #endif
2698 }
2699 if (area != vaddr) {
2700 fprintf(stderr, "Could not remap addr: "
2701 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2702 length, addr);
2703 exit(1);
2704 }
2705 memory_try_enable_merging(vaddr, length);
2706 qemu_ram_setup_dump(vaddr, length);
2707 }
2708 return;
2709 }
2710 }
2711 }
2712 #endif /* !_WIN32 */
2713
2714 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2715 With the exception of the softmmu code in this file, this should
2716 only be used for local memory (e.g. video ram) that the device owns,
2717 and knows it isn't going to access beyond the end of the block.
2718
2719 It should not be used for general purpose DMA.
2720 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2721 */
2722 void *qemu_get_ram_ptr(ram_addr_t addr)
2723 {
2724 RAMBlock *block;
2725
2726 QLIST_FOREACH(block, &ram_list.blocks, next) {
2727 if (addr - block->offset < block->length) {
2728 /* Move this entry to to start of the list. */
2729 if (block != QLIST_FIRST(&ram_list.blocks)) {
2730 QLIST_REMOVE(block, next);
2731 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2732 }
2733 if (xen_enabled()) {
2734 /* We need to check if the requested address is in the RAM
2735 * because we don't want to map the entire memory in QEMU.
2736 * In that case just map until the end of the page.
2737 */
2738 if (block->offset == 0) {
2739 return xen_map_cache(addr, 0, 0);
2740 } else if (block->host == NULL) {
2741 block->host =
2742 xen_map_cache(block->offset, block->length, 1);
2743 }
2744 }
2745 return block->host + (addr - block->offset);
2746 }
2747 }
2748
2749 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2750 abort();
2751
2752 return NULL;
2753 }
2754
2755 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2756 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2757 */
2758 void *qemu_safe_ram_ptr(ram_addr_t addr)
2759 {
2760 RAMBlock *block;
2761
2762 QLIST_FOREACH(block, &ram_list.blocks, next) {
2763 if (addr - block->offset < block->length) {
2764 if (xen_enabled()) {
2765 /* We need to check if the requested address is in the RAM
2766 * because we don't want to map the entire memory in QEMU.
2767 * In that case just map until the end of the page.
2768 */
2769 if (block->offset == 0) {
2770 return xen_map_cache(addr, 0, 0);
2771 } else if (block->host == NULL) {
2772 block->host =
2773 xen_map_cache(block->offset, block->length, 1);
2774 }
2775 }
2776 return block->host + (addr - block->offset);
2777 }
2778 }
2779
2780 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2781 abort();
2782
2783 return NULL;
2784 }
2785
2786 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2787 * but takes a size argument */
2788 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
2789 {
2790 if (*size == 0) {
2791 return NULL;
2792 }
2793 if (xen_enabled()) {
2794 return xen_map_cache(addr, *size, 1);
2795 } else {
2796 RAMBlock *block;
2797
2798 QLIST_FOREACH(block, &ram_list.blocks, next) {
2799 if (addr - block->offset < block->length) {
2800 if (addr - block->offset + *size > block->length)
2801 *size = block->length - addr + block->offset;
2802 return block->host + (addr - block->offset);
2803 }
2804 }
2805
2806 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2807 abort();
2808 }
2809 }
2810
2811 void qemu_put_ram_ptr(void *addr)
2812 {
2813 trace_qemu_put_ram_ptr(addr);
2814 }
2815
2816 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2817 {
2818 RAMBlock *block;
2819 uint8_t *host = ptr;
2820
2821 if (xen_enabled()) {
2822 *ram_addr = xen_ram_addr_from_mapcache(ptr);
2823 return 0;
2824 }
2825
2826 QLIST_FOREACH(block, &ram_list.blocks, next) {
2827 /* This case append when the block is not mapped. */
2828 if (block->host == NULL) {
2829 continue;
2830 }
2831 if (host - block->host < block->length) {
2832 *ram_addr = block->offset + (host - block->host);
2833 return 0;
2834 }
2835 }
2836
2837 return -1;
2838 }
2839
2840 /* Some of the softmmu routines need to translate from a host pointer
2841 (typically a TLB entry) back to a ram offset. */
2842 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2843 {
2844 ram_addr_t ram_addr;
2845
2846 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2847 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2848 abort();
2849 }
2850 return ram_addr;
2851 }
2852
2853 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2854 unsigned size)
2855 {
2856 #ifdef DEBUG_UNASSIGNED
2857 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2858 #endif
2859 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2860 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
2861 #endif
2862 return 0;
2863 }
2864
2865 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2866 uint64_t val, unsigned size)
2867 {
2868 #ifdef DEBUG_UNASSIGNED
2869 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
2870 #endif
2871 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2872 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
2873 #endif
2874 }
2875
2876 static const MemoryRegionOps unassigned_mem_ops = {
2877 .read = unassigned_mem_read,
2878 .write = unassigned_mem_write,
2879 .endianness = DEVICE_NATIVE_ENDIAN,
2880 };
2881
2882 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2883 unsigned size)
2884 {
2885 abort();
2886 }
2887
2888 static void error_mem_write(void *opaque, target_phys_addr_t addr,
2889 uint64_t value, unsigned size)
2890 {
2891 abort();
2892 }
2893
2894 static const MemoryRegionOps error_mem_ops = {
2895 .read = error_mem_read,
2896 .write = error_mem_write,
2897 .endianness = DEVICE_NATIVE_ENDIAN,
2898 };
2899
2900 static const MemoryRegionOps rom_mem_ops = {
2901 .read = error_mem_read,
2902 .write = unassigned_mem_write,
2903 .endianness = DEVICE_NATIVE_ENDIAN,
2904 };
2905
2906 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2907 uint64_t val, unsigned size)
2908 {
2909 int dirty_flags;
2910 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2911 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2912 #if !defined(CONFIG_USER_ONLY)
2913 tb_invalidate_phys_page_fast(ram_addr, size);
2914 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2915 #endif
2916 }
2917 switch (size) {
2918 case 1:
2919 stb_p(qemu_get_ram_ptr(ram_addr), val);
2920 break;
2921 case 2:
2922 stw_p(qemu_get_ram_ptr(ram_addr), val);
2923 break;
2924 case 4:
2925 stl_p(qemu_get_ram_ptr(ram_addr), val);
2926 break;
2927 default:
2928 abort();
2929 }
2930 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2931 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2932 /* we remove the notdirty callback only if the code has been
2933 flushed */
2934 if (dirty_flags == 0xff)
2935 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2936 }
2937
2938 static const MemoryRegionOps notdirty_mem_ops = {
2939 .read = error_mem_read,
2940 .write = notdirty_mem_write,
2941 .endianness = DEVICE_NATIVE_ENDIAN,
2942 };
2943
2944 /* Generate a debug exception if a watchpoint has been hit. */
2945 static void check_watchpoint(int offset, int len_mask, int flags)
2946 {
2947 CPUArchState *env = cpu_single_env;
2948 target_ulong pc, cs_base;
2949 TranslationBlock *tb;
2950 target_ulong vaddr;
2951 CPUWatchpoint *wp;
2952 int cpu_flags;
2953
2954 if (env->watchpoint_hit) {
2955 /* We re-entered the check after replacing the TB. Now raise
2956 * the debug interrupt so that is will trigger after the
2957 * current instruction. */
2958 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2959 return;
2960 }
2961 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2962 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2963 if ((vaddr == (wp->vaddr & len_mask) ||
2964 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2965 wp->flags |= BP_WATCHPOINT_HIT;
2966 if (!env->watchpoint_hit) {
2967 env->watchpoint_hit = wp;
2968 tb = tb_find_pc(env->mem_io_pc);
2969 if (!tb) {
2970 cpu_abort(env, "check_watchpoint: could not find TB for "
2971 "pc=%p", (void *)env->mem_io_pc);
2972 }
2973 cpu_restore_state(tb, env, env->mem_io_pc);
2974 tb_phys_invalidate(tb, -1);
2975 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2976 env->exception_index = EXCP_DEBUG;
2977 cpu_loop_exit(env);
2978 } else {
2979 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2980 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2981 cpu_resume_from_signal(env, NULL);
2982 }
2983 }
2984 } else {
2985 wp->flags &= ~BP_WATCHPOINT_HIT;
2986 }
2987 }
2988 }
2989
2990 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2991 so these check for a hit then pass through to the normal out-of-line
2992 phys routines. */
2993 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2994 unsigned size)
2995 {
2996 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2997 switch (size) {
2998 case 1: return ldub_phys(addr);
2999 case 2: return lduw_phys(addr);
3000 case 4: return ldl_phys(addr);
3001 default: abort();
3002 }
3003 }
3004
3005 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3006 uint64_t val, unsigned size)
3007 {
3008 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3009 switch (size) {
3010 case 1:
3011 stb_phys(addr, val);
3012 break;
3013 case 2:
3014 stw_phys(addr, val);
3015 break;
3016 case 4:
3017 stl_phys(addr, val);
3018 break;
3019 default: abort();
3020 }
3021 }
3022
3023 static const MemoryRegionOps watch_mem_ops = {
3024 .read = watch_mem_read,
3025 .write = watch_mem_write,
3026 .endianness = DEVICE_NATIVE_ENDIAN,
3027 };
3028
3029 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3030 unsigned len)
3031 {
3032 subpage_t *mmio = opaque;
3033 unsigned int idx = SUBPAGE_IDX(addr);
3034 MemoryRegionSection *section;
3035 #if defined(DEBUG_SUBPAGE)
3036 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3037 mmio, len, addr, idx);
3038 #endif
3039
3040 section = &phys_sections[mmio->sub_section[idx]];
3041 addr += mmio->base;
3042 addr -= section->offset_within_address_space;
3043 addr += section->offset_within_region;
3044 return io_mem_read(section->mr, addr, len);
3045 }
3046
3047 static void subpage_write(void *opaque, target_phys_addr_t addr,
3048 uint64_t value, unsigned len)
3049 {
3050 subpage_t *mmio = opaque;
3051 unsigned int idx = SUBPAGE_IDX(addr);
3052 MemoryRegionSection *section;
3053 #if defined(DEBUG_SUBPAGE)
3054 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3055 " idx %d value %"PRIx64"\n",
3056 __func__, mmio, len, addr, idx, value);
3057 #endif
3058
3059 section = &phys_sections[mmio->sub_section[idx]];
3060 addr += mmio->base;
3061 addr -= section->offset_within_address_space;
3062 addr += section->offset_within_region;
3063 io_mem_write(section->mr, addr, value, len);
3064 }
3065
3066 static const MemoryRegionOps subpage_ops = {
3067 .read = subpage_read,
3068 .write = subpage_write,
3069 .endianness = DEVICE_NATIVE_ENDIAN,
3070 };
3071
3072 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3073 unsigned size)
3074 {
3075 ram_addr_t raddr = addr;
3076 void *ptr = qemu_get_ram_ptr(raddr);
3077 switch (size) {
3078 case 1: return ldub_p(ptr);
3079 case 2: return lduw_p(ptr);
3080 case 4: return ldl_p(ptr);
3081 default: abort();
3082 }
3083 }
3084
3085 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3086 uint64_t value, unsigned size)
3087 {
3088 ram_addr_t raddr = addr;
3089 void *ptr = qemu_get_ram_ptr(raddr);
3090 switch (size) {
3091 case 1: return stb_p(ptr, value);
3092 case 2: return stw_p(ptr, value);
3093 case 4: return stl_p(ptr, value);
3094 default: abort();
3095 }
3096 }
3097
3098 static const MemoryRegionOps subpage_ram_ops = {
3099 .read = subpage_ram_read,
3100 .write = subpage_ram_write,
3101 .endianness = DEVICE_NATIVE_ENDIAN,
3102 };
3103
3104 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3105 uint16_t section)
3106 {
3107 int idx, eidx;
3108
3109 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3110 return -1;
3111 idx = SUBPAGE_IDX(start);
3112 eidx = SUBPAGE_IDX(end);
3113 #if defined(DEBUG_SUBPAGE)
3114 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3115 mmio, start, end, idx, eidx, memory);
3116 #endif
3117 if (memory_region_is_ram(phys_sections[section].mr)) {
3118 MemoryRegionSection new_section = phys_sections[section];
3119 new_section.mr = &io_mem_subpage_ram;
3120 section = phys_section_add(&new_section);
3121 }
3122 for (; idx <= eidx; idx++) {
3123 mmio->sub_section[idx] = section;
3124 }
3125
3126 return 0;
3127 }
3128
3129 static subpage_t *subpage_init(target_phys_addr_t base)
3130 {
3131 subpage_t *mmio;
3132
3133 mmio = g_malloc0(sizeof(subpage_t));
3134
3135 mmio->base = base;
3136 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3137 "subpage", TARGET_PAGE_SIZE);
3138 mmio->iomem.subpage = true;
3139 #if defined(DEBUG_SUBPAGE)
3140 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3141 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3142 #endif
3143 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3144
3145 return mmio;
3146 }
3147
3148 static uint16_t dummy_section(MemoryRegion *mr)
3149 {
3150 MemoryRegionSection section = {
3151 .mr = mr,
3152 .offset_within_address_space = 0,
3153 .offset_within_region = 0,
3154 .size = UINT64_MAX,
3155 };
3156
3157 return phys_section_add(&section);
3158 }
3159
3160 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3161 {
3162 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3163 }
3164
3165 static void io_mem_init(void)
3166 {
3167 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3168 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3169 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3170 "unassigned", UINT64_MAX);
3171 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3172 "notdirty", UINT64_MAX);
3173 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3174 "subpage-ram", UINT64_MAX);
3175 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3176 "watch", UINT64_MAX);
3177 }
3178
3179 static void core_begin(MemoryListener *listener)
3180 {
3181 destroy_all_mappings();
3182 phys_sections_clear();
3183 phys_map.ptr = PHYS_MAP_NODE_NIL;
3184 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3185 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3186 phys_section_rom = dummy_section(&io_mem_rom);
3187 phys_section_watch = dummy_section(&io_mem_watch);
3188 }
3189
3190 static void core_commit(MemoryListener *listener)
3191 {
3192 CPUArchState *env;
3193
3194 /* since each CPU stores ram addresses in its TLB cache, we must
3195 reset the modified entries */
3196 /* XXX: slow ! */
3197 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3198 tlb_flush(env, 1);
3199 }
3200 }
3201
3202 static void core_region_add(MemoryListener *listener,
3203 MemoryRegionSection *section)
3204 {
3205 cpu_register_physical_memory_log(section, section->readonly);
3206 }
3207
3208 static void core_region_del(MemoryListener *listener,
3209 MemoryRegionSection *section)
3210 {
3211 }
3212
3213 static void core_region_nop(MemoryListener *listener,
3214 MemoryRegionSection *section)
3215 {
3216 cpu_register_physical_memory_log(section, section->readonly);
3217 }
3218
3219 static void core_log_start(MemoryListener *listener,
3220 MemoryRegionSection *section)
3221 {
3222 }
3223
3224 static void core_log_stop(MemoryListener *listener,
3225 MemoryRegionSection *section)
3226 {
3227 }
3228
3229 static void core_log_sync(MemoryListener *listener,
3230 MemoryRegionSection *section)
3231 {
3232 }
3233
3234 static void core_log_global_start(MemoryListener *listener)
3235 {
3236 cpu_physical_memory_set_dirty_tracking(1);
3237 }
3238
3239 static void core_log_global_stop(MemoryListener *listener)
3240 {
3241 cpu_physical_memory_set_dirty_tracking(0);
3242 }
3243
3244 static void core_eventfd_add(MemoryListener *listener,
3245 MemoryRegionSection *section,
3246 bool match_data, uint64_t data, EventNotifier *e)
3247 {
3248 }
3249
3250 static void core_eventfd_del(MemoryListener *listener,
3251 MemoryRegionSection *section,
3252 bool match_data, uint64_t data, EventNotifier *e)
3253 {
3254 }
3255
3256 static void io_begin(MemoryListener *listener)
3257 {
3258 }
3259
3260 static void io_commit(MemoryListener *listener)
3261 {
3262 }
3263
3264 static void io_region_add(MemoryListener *listener,
3265 MemoryRegionSection *section)
3266 {
3267 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3268
3269 mrio->mr = section->mr;
3270 mrio->offset = section->offset_within_region;
3271 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3272 section->offset_within_address_space, section->size);
3273 ioport_register(&mrio->iorange);
3274 }
3275
3276 static void io_region_del(MemoryListener *listener,
3277 MemoryRegionSection *section)
3278 {
3279 isa_unassign_ioport(section->offset_within_address_space, section->size);
3280 }
3281
3282 static void io_region_nop(MemoryListener *listener,
3283 MemoryRegionSection *section)
3284 {
3285 }
3286
3287 static void io_log_start(MemoryListener *listener,
3288 MemoryRegionSection *section)
3289 {
3290 }
3291
3292 static void io_log_stop(MemoryListener *listener,
3293 MemoryRegionSection *section)
3294 {
3295 }
3296
3297 static void io_log_sync(MemoryListener *listener,
3298 MemoryRegionSection *section)
3299 {
3300 }
3301
3302 static void io_log_global_start(MemoryListener *listener)
3303 {
3304 }
3305
3306 static void io_log_global_stop(MemoryListener *listener)
3307 {
3308 }
3309
3310 static void io_eventfd_add(MemoryListener *listener,
3311 MemoryRegionSection *section,
3312 bool match_data, uint64_t data, EventNotifier *e)
3313 {
3314 }
3315
3316 static void io_eventfd_del(MemoryListener *listener,
3317 MemoryRegionSection *section,
3318 bool match_data, uint64_t data, EventNotifier *e)
3319 {
3320 }
3321
3322 static MemoryListener core_memory_listener = {
3323 .begin = core_begin,
3324 .commit = core_commit,
3325 .region_add = core_region_add,
3326 .region_del = core_region_del,
3327 .region_nop = core_region_nop,
3328 .log_start = core_log_start,
3329 .log_stop = core_log_stop,
3330 .log_sync = core_log_sync,
3331 .log_global_start = core_log_global_start,
3332 .log_global_stop = core_log_global_stop,
3333 .eventfd_add = core_eventfd_add,
3334 .eventfd_del = core_eventfd_del,
3335 .priority = 0,
3336 };
3337
3338 static MemoryListener io_memory_listener = {
3339 .begin = io_begin,
3340 .commit = io_commit,
3341 .region_add = io_region_add,
3342 .region_del = io_region_del,
3343 .region_nop = io_region_nop,
3344 .log_start = io_log_start,
3345 .log_stop = io_log_stop,
3346 .log_sync = io_log_sync,
3347 .log_global_start = io_log_global_start,
3348 .log_global_stop = io_log_global_stop,
3349 .eventfd_add = io_eventfd_add,
3350 .eventfd_del = io_eventfd_del,
3351 .priority = 0,
3352 };
3353
3354 static void memory_map_init(void)
3355 {
3356 system_memory = g_malloc(sizeof(*system_memory));
3357 memory_region_init(system_memory, "system", INT64_MAX);
3358 set_system_memory_map(system_memory);
3359
3360 system_io = g_malloc(sizeof(*system_io));
3361 memory_region_init(system_io, "io", 65536);
3362 set_system_io_map(system_io);
3363
3364 memory_listener_register(&core_memory_listener, system_memory);
3365 memory_listener_register(&io_memory_listener, system_io);
3366 }
3367
3368 MemoryRegion *get_system_memory(void)
3369 {
3370 return system_memory;
3371 }
3372
3373 MemoryRegion *get_system_io(void)
3374 {
3375 return system_io;
3376 }
3377
3378 #endif /* !defined(CONFIG_USER_ONLY) */
3379
3380 /* physical memory access (slow version, mainly for debug) */
3381 #if defined(CONFIG_USER_ONLY)
3382 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3383 uint8_t *buf, int len, int is_write)
3384 {
3385 int l, flags;
3386 target_ulong page;
3387 void * p;
3388
3389 while (len > 0) {
3390 page = addr & TARGET_PAGE_MASK;
3391 l = (page + TARGET_PAGE_SIZE) - addr;
3392 if (l > len)
3393 l = len;
3394 flags = page_get_flags(page);
3395 if (!(flags & PAGE_VALID))
3396 return -1;
3397 if (is_write) {
3398 if (!(flags & PAGE_WRITE))
3399 return -1;
3400 /* XXX: this code should not depend on lock_user */
3401 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3402 return -1;
3403 memcpy(p, buf, l);
3404 unlock_user(p, addr, l);
3405 } else {
3406 if (!(flags & PAGE_READ))
3407 return -1;
3408 /* XXX: this code should not depend on lock_user */
3409 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3410 return -1;
3411 memcpy(buf, p, l);
3412 unlock_user(p, addr, 0);
3413 }
3414 len -= l;
3415 buf += l;
3416 addr += l;
3417 }
3418 return 0;
3419 }
3420
3421 #else
3422 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3423 int len, int is_write)
3424 {
3425 int l;
3426 uint8_t *ptr;
3427 uint32_t val;
3428 target_phys_addr_t page;
3429 MemoryRegionSection *section;
3430
3431 while (len > 0) {
3432 page = addr & TARGET_PAGE_MASK;
3433 l = (page + TARGET_PAGE_SIZE) - addr;
3434 if (l > len)
3435 l = len;
3436 section = phys_page_find(page >> TARGET_PAGE_BITS);
3437
3438 if (is_write) {
3439 if (!memory_region_is_ram(section->mr)) {
3440 target_phys_addr_t addr1;
3441 addr1 = memory_region_section_addr(section, addr);
3442 /* XXX: could force cpu_single_env to NULL to avoid
3443 potential bugs */
3444 if (l >= 4 && ((addr1 & 3) == 0)) {
3445 /* 32 bit write access */
3446 val = ldl_p(buf);
3447 io_mem_write(section->mr, addr1, val, 4);
3448 l = 4;
3449 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3450 /* 16 bit write access */
3451 val = lduw_p(buf);
3452 io_mem_write(section->mr, addr1, val, 2);
3453 l = 2;
3454 } else {
3455 /* 8 bit write access */
3456 val = ldub_p(buf);
3457 io_mem_write(section->mr, addr1, val, 1);
3458 l = 1;
3459 }
3460 } else if (!section->readonly) {
3461 ram_addr_t addr1;
3462 addr1 = memory_region_get_ram_addr(section->mr)
3463 + memory_region_section_addr(section, addr);
3464 /* RAM case */
3465 ptr = qemu_get_ram_ptr(addr1);
3466 memcpy(ptr, buf, l);
3467 if (!cpu_physical_memory_is_dirty(addr1)) {
3468 /* invalidate code */
3469 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3470 /* set dirty bit */
3471 cpu_physical_memory_set_dirty_flags(
3472 addr1, (0xff & ~CODE_DIRTY_FLAG));
3473 }
3474 qemu_put_ram_ptr(ptr);
3475 }
3476 } else {
3477 if (!(memory_region_is_ram(section->mr) ||
3478 memory_region_is_romd(section->mr))) {
3479 target_phys_addr_t addr1;
3480 /* I/O case */
3481 addr1 = memory_region_section_addr(section, addr);
3482 if (l >= 4 && ((addr1 & 3) == 0)) {
3483 /* 32 bit read access */
3484 val = io_mem_read(section->mr, addr1, 4);
3485 stl_p(buf, val);
3486 l = 4;
3487 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3488 /* 16 bit read access */
3489 val = io_mem_read(section->mr, addr1, 2);
3490 stw_p(buf, val);
3491 l = 2;
3492 } else {
3493 /* 8 bit read access */
3494 val = io_mem_read(section->mr, addr1, 1);
3495 stb_p(buf, val);
3496 l = 1;
3497 }
3498 } else {
3499 /* RAM case */
3500 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3501 + memory_region_section_addr(section,
3502 addr));
3503 memcpy(buf, ptr, l);
3504 qemu_put_ram_ptr(ptr);
3505 }
3506 }
3507 len -= l;
3508 buf += l;
3509 addr += l;
3510 }
3511 }
3512
3513 /* used for ROM loading : can write in RAM and ROM */
3514 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3515 const uint8_t *buf, int len)
3516 {
3517 int l;
3518 uint8_t *ptr;
3519 target_phys_addr_t page;
3520 MemoryRegionSection *section;
3521
3522 while (len > 0) {
3523 page = addr & TARGET_PAGE_MASK;
3524 l = (page + TARGET_PAGE_SIZE) - addr;
3525 if (l > len)
3526 l = len;
3527 section = phys_page_find(page >> TARGET_PAGE_BITS);
3528
3529 if (!(memory_region_is_ram(section->mr) ||
3530 memory_region_is_romd(section->mr))) {
3531 /* do nothing */
3532 } else {
3533 unsigned long addr1;
3534 addr1 = memory_region_get_ram_addr(section->mr)
3535 + memory_region_section_addr(section, addr);
3536 /* ROM/RAM case */
3537 ptr = qemu_get_ram_ptr(addr1);
3538 memcpy(ptr, buf, l);
3539 if (!cpu_physical_memory_is_dirty(addr1)) {
3540 /* invalidate code */
3541 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3542 /* set dirty bit */
3543 cpu_physical_memory_set_dirty_flags(
3544 addr1, (0xff & ~CODE_DIRTY_FLAG));
3545 }
3546 qemu_put_ram_ptr(ptr);
3547 }
3548 len -= l;
3549 buf += l;
3550 addr += l;
3551 }
3552 }
3553
3554 typedef struct {
3555 void *buffer;
3556 target_phys_addr_t addr;
3557 target_phys_addr_t len;
3558 } BounceBuffer;
3559
3560 static BounceBuffer bounce;
3561
3562 typedef struct MapClient {
3563 void *opaque;
3564 void (*callback)(void *opaque);
3565 QLIST_ENTRY(MapClient) link;
3566 } MapClient;
3567
3568 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3569 = QLIST_HEAD_INITIALIZER(map_client_list);
3570
3571 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3572 {
3573 MapClient *client = g_malloc(sizeof(*client));
3574
3575 client->opaque = opaque;
3576 client->callback = callback;
3577 QLIST_INSERT_HEAD(&map_client_list, client, link);
3578 return client;
3579 }
3580
3581 void cpu_unregister_map_client(void *_client)
3582 {
3583 MapClient *client = (MapClient *)_client;
3584
3585 QLIST_REMOVE(client, link);
3586 g_free(client);
3587 }
3588
3589 static void cpu_notify_map_clients(void)
3590 {
3591 MapClient *client;
3592
3593 while (!QLIST_EMPTY(&map_client_list)) {
3594 client = QLIST_FIRST(&map_client_list);
3595 client->callback(client->opaque);
3596 cpu_unregister_map_client(client);
3597 }
3598 }
3599
3600 /* Map a physical memory region into a host virtual address.
3601 * May map a subset of the requested range, given by and returned in *plen.
3602 * May return NULL if resources needed to perform the mapping are exhausted.
3603 * Use only for reads OR writes - not for read-modify-write operations.
3604 * Use cpu_register_map_client() to know when retrying the map operation is
3605 * likely to succeed.
3606 */
3607 void *cpu_physical_memory_map(target_phys_addr_t addr,
3608 target_phys_addr_t *plen,
3609 int is_write)
3610 {
3611 target_phys_addr_t len = *plen;
3612 target_phys_addr_t todo = 0;
3613 int l;
3614 target_phys_addr_t page;
3615 MemoryRegionSection *section;
3616 ram_addr_t raddr = RAM_ADDR_MAX;
3617 ram_addr_t rlen;
3618 void *ret;
3619
3620 while (len > 0) {
3621 page = addr & TARGET_PAGE_MASK;
3622 l = (page + TARGET_PAGE_SIZE) - addr;
3623 if (l > len)
3624 l = len;
3625 section = phys_page_find(page >> TARGET_PAGE_BITS);
3626
3627 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3628 if (todo || bounce.buffer) {
3629 break;
3630 }
3631 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3632 bounce.addr = addr;
3633 bounce.len = l;
3634 if (!is_write) {
3635 cpu_physical_memory_read(addr, bounce.buffer, l);
3636 }
3637
3638 *plen = l;
3639 return bounce.buffer;
3640 }
3641 if (!todo) {
3642 raddr = memory_region_get_ram_addr(section->mr)
3643 + memory_region_section_addr(section, addr);
3644 }
3645
3646 len -= l;
3647 addr += l;
3648 todo += l;
3649 }
3650 rlen = todo;
3651 ret = qemu_ram_ptr_length(raddr, &rlen);
3652 *plen = rlen;
3653 return ret;
3654 }
3655
3656 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3657 * Will also mark the memory as dirty if is_write == 1. access_len gives
3658 * the amount of memory that was actually read or written by the caller.
3659 */
3660 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3661 int is_write, target_phys_addr_t access_len)
3662 {
3663 if (buffer != bounce.buffer) {
3664 if (is_write) {
3665 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3666 while (access_len) {
3667 unsigned l;
3668 l = TARGET_PAGE_SIZE;
3669 if (l > access_len)
3670 l = access_len;
3671 if (!cpu_physical_memory_is_dirty(addr1)) {
3672 /* invalidate code */
3673 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3674 /* set dirty bit */
3675 cpu_physical_memory_set_dirty_flags(
3676 addr1, (0xff & ~CODE_DIRTY_FLAG));
3677 }
3678 addr1 += l;
3679 access_len -= l;
3680 }
3681 }
3682 if (xen_enabled()) {
3683 xen_invalidate_map_cache_entry(buffer);
3684 }
3685 return;
3686 }
3687 if (is_write) {
3688 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3689 }
3690 qemu_vfree(bounce.buffer);
3691 bounce.buffer = NULL;
3692 cpu_notify_map_clients();
3693 }
3694
3695 /* warning: addr must be aligned */
3696 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3697 enum device_endian endian)
3698 {
3699 uint8_t *ptr;
3700 uint32_t val;
3701 MemoryRegionSection *section;
3702
3703 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3704
3705 if (!(memory_region_is_ram(section->mr) ||
3706 memory_region_is_romd(section->mr))) {
3707 /* I/O case */
3708 addr = memory_region_section_addr(section, addr);
3709 val = io_mem_read(section->mr, addr, 4);
3710 #if defined(TARGET_WORDS_BIGENDIAN)
3711 if (endian == DEVICE_LITTLE_ENDIAN) {
3712 val = bswap32(val);
3713 }
3714 #else
3715 if (endian == DEVICE_BIG_ENDIAN) {
3716 val = bswap32(val);
3717 }
3718 #endif
3719 } else {
3720 /* RAM case */
3721 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3722 & TARGET_PAGE_MASK)
3723 + memory_region_section_addr(section, addr));
3724 switch (endian) {
3725 case DEVICE_LITTLE_ENDIAN:
3726 val = ldl_le_p(ptr);
3727 break;
3728 case DEVICE_BIG_ENDIAN:
3729 val = ldl_be_p(ptr);
3730 break;
3731 default:
3732 val = ldl_p(ptr);
3733 break;
3734 }
3735 }
3736 return val;
3737 }
3738
3739 uint32_t ldl_phys(target_phys_addr_t addr)
3740 {
3741 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3742 }
3743
3744 uint32_t ldl_le_phys(target_phys_addr_t addr)
3745 {
3746 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3747 }
3748
3749 uint32_t ldl_be_phys(target_phys_addr_t addr)
3750 {
3751 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3752 }
3753
3754 /* warning: addr must be aligned */
3755 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3756 enum device_endian endian)
3757 {
3758 uint8_t *ptr;
3759 uint64_t val;
3760 MemoryRegionSection *section;
3761
3762 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3763
3764 if (!(memory_region_is_ram(section->mr) ||
3765 memory_region_is_romd(section->mr))) {
3766 /* I/O case */
3767 addr = memory_region_section_addr(section, addr);
3768
3769 /* XXX This is broken when device endian != cpu endian.
3770 Fix and add "endian" variable check */
3771 #ifdef TARGET_WORDS_BIGENDIAN
3772 val = io_mem_read(section->mr, addr, 4) << 32;
3773 val |= io_mem_read(section->mr, addr + 4, 4);
3774 #else
3775 val = io_mem_read(section->mr, addr, 4);
3776 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
3777 #endif
3778 } else {
3779 /* RAM case */
3780 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3781 & TARGET_PAGE_MASK)
3782 + memory_region_section_addr(section, addr));
3783 switch (endian) {
3784 case DEVICE_LITTLE_ENDIAN:
3785 val = ldq_le_p(ptr);
3786 break;
3787 case DEVICE_BIG_ENDIAN:
3788 val = ldq_be_p(ptr);
3789 break;
3790 default:
3791 val = ldq_p(ptr);
3792 break;
3793 }
3794 }
3795 return val;
3796 }
3797
3798 uint64_t ldq_phys(target_phys_addr_t addr)
3799 {
3800 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3801 }
3802
3803 uint64_t ldq_le_phys(target_phys_addr_t addr)
3804 {
3805 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3806 }
3807
3808 uint64_t ldq_be_phys(target_phys_addr_t addr)
3809 {
3810 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3811 }
3812
3813 /* XXX: optimize */
3814 uint32_t ldub_phys(target_phys_addr_t addr)
3815 {
3816 uint8_t val;
3817 cpu_physical_memory_read(addr, &val, 1);
3818 return val;
3819 }
3820
3821 /* warning: addr must be aligned */
3822 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3823 enum device_endian endian)
3824 {
3825 uint8_t *ptr;
3826 uint64_t val;
3827 MemoryRegionSection *section;
3828
3829 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3830
3831 if (!(memory_region_is_ram(section->mr) ||
3832 memory_region_is_romd(section->mr))) {
3833 /* I/O case */
3834 addr = memory_region_section_addr(section, addr);
3835 val = io_mem_read(section->mr, addr, 2);
3836 #if defined(TARGET_WORDS_BIGENDIAN)
3837 if (endian == DEVICE_LITTLE_ENDIAN) {
3838 val = bswap16(val);
3839 }
3840 #else
3841 if (endian == DEVICE_BIG_ENDIAN) {
3842 val = bswap16(val);
3843 }
3844 #endif
3845 } else {
3846 /* RAM case */
3847 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3848 & TARGET_PAGE_MASK)
3849 + memory_region_section_addr(section, addr));
3850 switch (endian) {
3851 case DEVICE_LITTLE_ENDIAN:
3852 val = lduw_le_p(ptr);
3853 break;
3854 case DEVICE_BIG_ENDIAN:
3855 val = lduw_be_p(ptr);
3856 break;
3857 default:
3858 val = lduw_p(ptr);
3859 break;
3860 }
3861 }
3862 return val;
3863 }
3864
3865 uint32_t lduw_phys(target_phys_addr_t addr)
3866 {
3867 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3868 }
3869
3870 uint32_t lduw_le_phys(target_phys_addr_t addr)
3871 {
3872 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3873 }
3874
3875 uint32_t lduw_be_phys(target_phys_addr_t addr)
3876 {
3877 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3878 }
3879
3880 /* warning: addr must be aligned. The ram page is not masked as dirty
3881 and the code inside is not invalidated. It is useful if the dirty
3882 bits are used to track modified PTEs */
3883 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3884 {
3885 uint8_t *ptr;
3886 MemoryRegionSection *section;
3887
3888 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3889
3890 if (!memory_region_is_ram(section->mr) || section->readonly) {
3891 addr = memory_region_section_addr(section, addr);
3892 if (memory_region_is_ram(section->mr)) {
3893 section = &phys_sections[phys_section_rom];
3894 }
3895 io_mem_write(section->mr, addr, val, 4);
3896 } else {
3897 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
3898 & TARGET_PAGE_MASK)
3899 + memory_region_section_addr(section, addr);
3900 ptr = qemu_get_ram_ptr(addr1);
3901 stl_p(ptr, val);
3902
3903 if (unlikely(in_migration)) {
3904 if (!cpu_physical_memory_is_dirty(addr1)) {
3905 /* invalidate code */
3906 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3907 /* set dirty bit */
3908 cpu_physical_memory_set_dirty_flags(
3909 addr1, (0xff & ~CODE_DIRTY_FLAG));
3910 }
3911 }
3912 }
3913 }
3914
3915 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3916 {
3917 uint8_t *ptr;
3918 MemoryRegionSection *section;
3919
3920 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3921
3922 if (!memory_region_is_ram(section->mr) || section->readonly) {
3923 addr = memory_region_section_addr(section, addr);
3924 if (memory_region_is_ram(section->mr)) {
3925 section = &phys_sections[phys_section_rom];
3926 }
3927 #ifdef TARGET_WORDS_BIGENDIAN
3928 io_mem_write(section->mr, addr, val >> 32, 4);
3929 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
3930 #else
3931 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3932 io_mem_write(section->mr, addr + 4, val >> 32, 4);
3933 #endif
3934 } else {
3935 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3936 & TARGET_PAGE_MASK)
3937 + memory_region_section_addr(section, addr));
3938 stq_p(ptr, val);
3939 }
3940 }
3941
3942 /* warning: addr must be aligned */
3943 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3944 enum device_endian endian)
3945 {
3946 uint8_t *ptr;
3947 MemoryRegionSection *section;
3948
3949 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3950
3951 if (!memory_region_is_ram(section->mr) || section->readonly) {
3952 addr = memory_region_section_addr(section, addr);
3953 if (memory_region_is_ram(section->mr)) {
3954 section = &phys_sections[phys_section_rom];
3955 }
3956 #if defined(TARGET_WORDS_BIGENDIAN)
3957 if (endian == DEVICE_LITTLE_ENDIAN) {
3958 val = bswap32(val);
3959 }
3960 #else
3961 if (endian == DEVICE_BIG_ENDIAN) {
3962 val = bswap32(val);
3963 }
3964 #endif
3965 io_mem_write(section->mr, addr, val, 4);
3966 } else {
3967 unsigned long addr1;
3968 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3969 + memory_region_section_addr(section, addr);
3970 /* RAM case */
3971 ptr = qemu_get_ram_ptr(addr1);
3972 switch (endian) {
3973 case DEVICE_LITTLE_ENDIAN:
3974 stl_le_p(ptr, val);
3975 break;
3976 case DEVICE_BIG_ENDIAN:
3977 stl_be_p(ptr, val);
3978 break;
3979 default:
3980 stl_p(ptr, val);
3981 break;
3982 }
3983 if (!cpu_physical_memory_is_dirty(addr1)) {
3984 /* invalidate code */
3985 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3986 /* set dirty bit */
3987 cpu_physical_memory_set_dirty_flags(addr1,
3988 (0xff & ~CODE_DIRTY_FLAG));
3989 }
3990 }
3991 }
3992
3993 void stl_phys(target_phys_addr_t addr, uint32_t val)
3994 {
3995 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3996 }
3997
3998 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3999 {
4000 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4001 }
4002
4003 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4004 {
4005 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4006 }
4007
4008 /* XXX: optimize */
4009 void stb_phys(target_phys_addr_t addr, uint32_t val)
4010 {
4011 uint8_t v = val;
4012 cpu_physical_memory_write(addr, &v, 1);
4013 }
4014
4015 /* warning: addr must be aligned */
4016 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4017 enum device_endian endian)
4018 {
4019 uint8_t *ptr;
4020 MemoryRegionSection *section;
4021
4022 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4023
4024 if (!memory_region_is_ram(section->mr) || section->readonly) {
4025 addr = memory_region_section_addr(section, addr);
4026 if (memory_region_is_ram(section->mr)) {
4027 section = &phys_sections[phys_section_rom];
4028 }
4029 #if defined(TARGET_WORDS_BIGENDIAN)
4030 if (endian == DEVICE_LITTLE_ENDIAN) {
4031 val = bswap16(val);
4032 }
4033 #else
4034 if (endian == DEVICE_BIG_ENDIAN) {
4035 val = bswap16(val);
4036 }
4037 #endif
4038 io_mem_write(section->mr, addr, val, 2);
4039 } else {
4040 unsigned long addr1;
4041 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4042 + memory_region_section_addr(section, addr);
4043 /* RAM case */
4044 ptr = qemu_get_ram_ptr(addr1);
4045 switch (endian) {
4046 case DEVICE_LITTLE_ENDIAN:
4047 stw_le_p(ptr, val);
4048 break;
4049 case DEVICE_BIG_ENDIAN:
4050 stw_be_p(ptr, val);
4051 break;
4052 default:
4053 stw_p(ptr, val);
4054 break;
4055 }
4056 if (!cpu_physical_memory_is_dirty(addr1)) {
4057 /* invalidate code */
4058 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4059 /* set dirty bit */
4060 cpu_physical_memory_set_dirty_flags(addr1,
4061 (0xff & ~CODE_DIRTY_FLAG));
4062 }
4063 }
4064 }
4065
4066 void stw_phys(target_phys_addr_t addr, uint32_t val)
4067 {
4068 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4069 }
4070
4071 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4072 {
4073 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4074 }
4075
4076 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4077 {
4078 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4079 }
4080
4081 /* XXX: optimize */
4082 void stq_phys(target_phys_addr_t addr, uint64_t val)
4083 {
4084 val = tswap64(val);
4085 cpu_physical_memory_write(addr, &val, 8);
4086 }
4087
4088 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4089 {
4090 val = cpu_to_le64(val);
4091 cpu_physical_memory_write(addr, &val, 8);
4092 }
4093
4094 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4095 {
4096 val = cpu_to_be64(val);
4097 cpu_physical_memory_write(addr, &val, 8);
4098 }
4099
4100 /* virtual memory access for debug (includes writing to ROM) */
4101 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4102 uint8_t *buf, int len, int is_write)
4103 {
4104 int l;
4105 target_phys_addr_t phys_addr;
4106 target_ulong page;
4107
4108 while (len > 0) {
4109 page = addr & TARGET_PAGE_MASK;
4110 phys_addr = cpu_get_phys_page_debug(env, page);
4111 /* if no physical page mapped, return an error */
4112 if (phys_addr == -1)
4113 return -1;
4114 l = (page + TARGET_PAGE_SIZE) - addr;
4115 if (l > len)
4116 l = len;
4117 phys_addr += (addr & ~TARGET_PAGE_MASK);
4118 if (is_write)
4119 cpu_physical_memory_write_rom(phys_addr, buf, l);
4120 else
4121 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4122 len -= l;
4123 buf += l;
4124 addr += l;
4125 }
4126 return 0;
4127 }
4128 #endif
4129
4130 /* in deterministic execution mode, instructions doing device I/Os
4131 must be at the end of the TB */
4132 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4133 {
4134 TranslationBlock *tb;
4135 uint32_t n, cflags;
4136 target_ulong pc, cs_base;
4137 uint64_t flags;
4138
4139 tb = tb_find_pc(retaddr);
4140 if (!tb) {
4141 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4142 (void *)retaddr);
4143 }
4144 n = env->icount_decr.u16.low + tb->icount;
4145 cpu_restore_state(tb, env, retaddr);
4146 /* Calculate how many instructions had been executed before the fault
4147 occurred. */
4148 n = n - env->icount_decr.u16.low;
4149 /* Generate a new TB ending on the I/O insn. */
4150 n++;
4151 /* On MIPS and SH, delay slot instructions can only be restarted if
4152 they were already the first instruction in the TB. If this is not
4153 the first instruction in a TB then re-execute the preceding
4154 branch. */
4155 #if defined(TARGET_MIPS)
4156 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4157 env->active_tc.PC -= 4;
4158 env->icount_decr.u16.low++;
4159 env->hflags &= ~MIPS_HFLAG_BMASK;
4160 }
4161 #elif defined(TARGET_SH4)
4162 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4163 && n > 1) {
4164 env->pc -= 2;
4165 env->icount_decr.u16.low++;
4166 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4167 }
4168 #endif
4169 /* This should never happen. */
4170 if (n > CF_COUNT_MASK)
4171 cpu_abort(env, "TB too big during recompile");
4172
4173 cflags = n | CF_LAST_IO;
4174 pc = tb->pc;
4175 cs_base = tb->cs_base;
4176 flags = tb->flags;
4177 tb_phys_invalidate(tb, -1);
4178 /* FIXME: In theory this could raise an exception. In practice
4179 we have already translated the block once so it's probably ok. */
4180 tb_gen_code(env, pc, cs_base, flags, cflags);
4181 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4182 the first in the TB) then we end up generating a whole new TB and
4183 repeating the fault, which is horribly inefficient.
4184 Better would be to execute just this insn uncached, or generate a
4185 second new TB. */
4186 cpu_resume_from_signal(env, NULL);
4187 }
4188
4189 #if !defined(CONFIG_USER_ONLY)
4190
4191 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4192 {
4193 int i, target_code_size, max_target_code_size;
4194 int direct_jmp_count, direct_jmp2_count, cross_page;
4195 TranslationBlock *tb;
4196
4197 target_code_size = 0;
4198 max_target_code_size = 0;
4199 cross_page = 0;
4200 direct_jmp_count = 0;
4201 direct_jmp2_count = 0;
4202 for(i = 0; i < nb_tbs; i++) {
4203 tb = &tbs[i];
4204 target_code_size += tb->size;
4205 if (tb->size > max_target_code_size)
4206 max_target_code_size = tb->size;
4207 if (tb->page_addr[1] != -1)
4208 cross_page++;
4209 if (tb->tb_next_offset[0] != 0xffff) {
4210 direct_jmp_count++;
4211 if (tb->tb_next_offset[1] != 0xffff) {
4212 direct_jmp2_count++;
4213 }
4214 }
4215 }
4216 /* XXX: avoid using doubles ? */
4217 cpu_fprintf(f, "Translation buffer state:\n");
4218 cpu_fprintf(f, "gen code size %td/%ld\n",
4219 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4220 cpu_fprintf(f, "TB count %d/%d\n",
4221 nb_tbs, code_gen_max_blocks);
4222 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4223 nb_tbs ? target_code_size / nb_tbs : 0,
4224 max_target_code_size);
4225 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4226 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4227 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4228 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4229 cross_page,
4230 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4231 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4232 direct_jmp_count,
4233 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4234 direct_jmp2_count,
4235 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4236 cpu_fprintf(f, "\nStatistics:\n");
4237 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4238 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4239 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4240 tcg_dump_info(f, cpu_fprintf);
4241 }
4242
4243 /*
4244 * A helper function for the _utterly broken_ virtio device model to find out if
4245 * it's running on a big endian machine. Don't do this at home kids!
4246 */
4247 bool virtio_is_big_endian(void);
4248 bool virtio_is_big_endian(void)
4249 {
4250 #if defined(TARGET_WORDS_BIGENDIAN)
4251 return true;
4252 #else
4253 return false;
4254 #endif
4255 }
4256
4257 #endif
4258
4259 #ifndef CONFIG_USER_ONLY
4260 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4261 {
4262 MemoryRegionSection *section;
4263
4264 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4265
4266 return !(memory_region_is_ram(section->mr) ||
4267 memory_region_is_romd(section->mr));
4268 }
4269 #endif