]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
memory, xen: pass MemoryRegion to xen_ram_alloc()
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 //#define DEBUG_TLB
63 //#define DEBUG_UNASSIGNED
64
65 /* make various TB consistency checks */
66 //#define DEBUG_TB_CHECK
67 //#define DEBUG_TLB_CHECK
68
69 //#define DEBUG_IOPORT
70 //#define DEBUG_SUBPAGE
71
72 #if !defined(CONFIG_USER_ONLY)
73 /* TB consistency checks only implemented for usermode emulation. */
74 #undef DEBUG_TB_CHECK
75 #endif
76
77 #define SMC_BITMAP_USE_THRESHOLD 10
78
79 static TranslationBlock *tbs;
80 static int code_gen_max_blocks;
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 static int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
85
86 #if defined(__arm__) || defined(__sparc_v9__)
87 /* The prologue must be reachable with a direct jump. ARM and Sparc64
88 have limited branch ranges (possibly also PPC) so place it in a
89 section close to code segment. */
90 #define code_gen_section \
91 __attribute__((__section__(".gen_code"))) \
92 __attribute__((aligned (32)))
93 #elif defined(_WIN32)
94 /* Maximum alignment for Win32 is 16. */
95 #define code_gen_section \
96 __attribute__((aligned (16)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
101
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 static uint8_t *code_gen_ptr;
108
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 static int in_migration;
112
113 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
114
115 static MemoryRegion *system_memory;
116 static MemoryRegion *system_io;
117
118 #endif
119
120 CPUState *first_cpu;
121 /* current CPU in the current thread. It is only valid inside
122 cpu_exec() */
123 DEFINE_TLS(CPUState *,cpu_single_env);
124 /* 0 = Do not count executed instructions.
125 1 = Precise instruction counting.
126 2 = Adaptive rate instruction counting. */
127 int use_icount = 0;
128
129 typedef struct PageDesc {
130 /* list of TBs intersecting this ram page */
131 TranslationBlock *first_tb;
132 /* in order to optimize self modifying code, we count the number
133 of lookups we do to a given page to use a bitmap */
134 unsigned int code_write_count;
135 uint8_t *code_bitmap;
136 #if defined(CONFIG_USER_ONLY)
137 unsigned long flags;
138 #endif
139 } PageDesc;
140
141 /* In system mode we want L1_MAP to be based on ram offsets,
142 while in user mode we want it to be based on virtual addresses. */
143 #if !defined(CONFIG_USER_ONLY)
144 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
145 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
148 #endif
149 #else
150 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
151 #endif
152
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define L2_BITS 10
155 #define L2_SIZE (1 << L2_BITS)
156
157 /* The bits remaining after N lower levels of page tables. */
158 #define P_L1_BITS_REM \
159 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160 #define V_L1_BITS_REM \
161 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162
163 /* Size of the L1 page table. Avoid silly small sizes. */
164 #if P_L1_BITS_REM < 4
165 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
166 #else
167 #define P_L1_BITS P_L1_BITS_REM
168 #endif
169
170 #if V_L1_BITS_REM < 4
171 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #else
173 #define V_L1_BITS V_L1_BITS_REM
174 #endif
175
176 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
177 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
178
179 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
180 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
181
182 unsigned long qemu_real_host_page_size;
183 unsigned long qemu_host_page_size;
184 unsigned long qemu_host_page_mask;
185
186 /* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188 static void *l1_map[V_L1_SIZE];
189
190 #if !defined(CONFIG_USER_ONLY)
191 typedef struct PhysPageDesc {
192 /* offset in host memory of the page + io_index in the low bits */
193 ram_addr_t phys_offset;
194 ram_addr_t region_offset;
195 } PhysPageDesc;
196
197 /* This is a multi-level map on the physical address space.
198 The bottom level has pointers to PhysPageDesc. */
199 static void *l1_phys_map[P_L1_SIZE];
200
201 static void io_mem_init(void);
202 static void memory_map_init(void);
203
204 /* io memory support */
205 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
207 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
208 static char io_mem_used[IO_MEM_NB_ENTRIES];
209 static int io_mem_watch;
210 #endif
211
212 /* log support */
213 #ifdef WIN32
214 static const char *logfilename = "qemu.log";
215 #else
216 static const char *logfilename = "/tmp/qemu.log";
217 #endif
218 FILE *logfile;
219 int loglevel;
220 static int log_append = 0;
221
222 /* statistics */
223 #if !defined(CONFIG_USER_ONLY)
224 static int tlb_flush_count;
225 #endif
226 static int tb_flush_count;
227 static int tb_phys_invalidate_count;
228
229 #ifdef _WIN32
230 static void map_exec(void *addr, long size)
231 {
232 DWORD old_protect;
233 VirtualProtect(addr, size,
234 PAGE_EXECUTE_READWRITE, &old_protect);
235
236 }
237 #else
238 static void map_exec(void *addr, long size)
239 {
240 unsigned long start, end, page_size;
241
242 page_size = getpagesize();
243 start = (unsigned long)addr;
244 start &= ~(page_size - 1);
245
246 end = (unsigned long)addr + size;
247 end += page_size - 1;
248 end &= ~(page_size - 1);
249
250 mprotect((void *)start, end - start,
251 PROT_READ | PROT_WRITE | PROT_EXEC);
252 }
253 #endif
254
255 static void page_init(void)
256 {
257 /* NOTE: we can always suppose that qemu_host_page_size >=
258 TARGET_PAGE_SIZE */
259 #ifdef _WIN32
260 {
261 SYSTEM_INFO system_info;
262
263 GetSystemInfo(&system_info);
264 qemu_real_host_page_size = system_info.dwPageSize;
265 }
266 #else
267 qemu_real_host_page_size = getpagesize();
268 #endif
269 if (qemu_host_page_size == 0)
270 qemu_host_page_size = qemu_real_host_page_size;
271 if (qemu_host_page_size < TARGET_PAGE_SIZE)
272 qemu_host_page_size = TARGET_PAGE_SIZE;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
274
275 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
276 {
277 #ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
280
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
286
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
291
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
295 } else {
296 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
299 #endif
300 }
301 }
302 }
303 free(freep);
304 mmap_unlock();
305 }
306 #else
307 FILE *f;
308
309 last_brk = (unsigned long)sbrk(0);
310
311 f = fopen("/compat/linux/proc/self/maps", "r");
312 if (f) {
313 mmap_lock();
314
315 do {
316 unsigned long startaddr, endaddr;
317 int n;
318
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
320
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
323
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
328 }
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
330 }
331 } while (!feof(f));
332
333 fclose(f);
334 mmap_unlock();
335 }
336 #endif
337 }
338 #endif
339 }
340
341 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
342 {
343 PageDesc *pd;
344 void **lp;
345 int i;
346
347 #if defined(CONFIG_USER_ONLY)
348 /* We can't use g_malloc because it may recurse into a locked mutex. */
349 # define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 } while (0)
354 #else
355 # define ALLOC(P, SIZE) \
356 do { P = g_malloc0(SIZE); } while (0)
357 #endif
358
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
365
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
369 }
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
372 }
373
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 }
376
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
381 }
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
384 }
385
386 #undef ALLOC
387
388 return pd + (index & (L2_SIZE - 1));
389 }
390
391 static inline PageDesc *page_find(tb_page_addr_t index)
392 {
393 return page_find_alloc(index, 0);
394 }
395
396 #if !defined(CONFIG_USER_ONLY)
397 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
398 {
399 PhysPageDesc *pd;
400 void **lp;
401 int i;
402
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
405
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
413 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
414 }
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
416 }
417
418 pd = *lp;
419 if (pd == NULL) {
420 int i;
421 int first_index = index & ~(L2_SIZE - 1);
422
423 if (!alloc) {
424 return NULL;
425 }
426
427 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
428
429 for (i = 0; i < L2_SIZE; i++) {
430 pd[i].phys_offset = IO_MEM_UNASSIGNED;
431 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
432 }
433 }
434
435 return pd + (index & (L2_SIZE - 1));
436 }
437
438 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
439 {
440 return phys_page_find_alloc(index, 0);
441 }
442
443 static void tlb_protect_code(ram_addr_t ram_addr);
444 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
445 target_ulong vaddr);
446 #define mmap_lock() do { } while(0)
447 #define mmap_unlock() do { } while(0)
448 #endif
449
450 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
451
452 #if defined(CONFIG_USER_ONLY)
453 /* Currently it is not recommended to allocate big chunks of data in
454 user mode. It will change when a dedicated libc will be used */
455 #define USE_STATIC_CODE_GEN_BUFFER
456 #endif
457
458 #ifdef USE_STATIC_CODE_GEN_BUFFER
459 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
460 __attribute__((aligned (CODE_GEN_ALIGN)));
461 #endif
462
463 static void code_gen_alloc(unsigned long tb_size)
464 {
465 #ifdef USE_STATIC_CODE_GEN_BUFFER
466 code_gen_buffer = static_code_gen_buffer;
467 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
468 map_exec(code_gen_buffer, code_gen_buffer_size);
469 #else
470 code_gen_buffer_size = tb_size;
471 if (code_gen_buffer_size == 0) {
472 #if defined(CONFIG_USER_ONLY)
473 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
474 #else
475 /* XXX: needs adjustments */
476 code_gen_buffer_size = (unsigned long)(ram_size / 4);
477 #endif
478 }
479 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
480 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483 #if defined(__linux__)
484 {
485 int flags;
486 void *start = NULL;
487
488 flags = MAP_PRIVATE | MAP_ANONYMOUS;
489 #if defined(__x86_64__)
490 flags |= MAP_32BIT;
491 /* Cannot map more than that */
492 if (code_gen_buffer_size > (800 * 1024 * 1024))
493 code_gen_buffer_size = (800 * 1024 * 1024);
494 #elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
496 flags |= MAP_FIXED;
497 start = (void *) 0x60000000UL;
498 if (code_gen_buffer_size > (512 * 1024 * 1024))
499 code_gen_buffer_size = (512 * 1024 * 1024);
500 #elif defined(__arm__)
501 /* Keep the buffer no bigger than 16GB to branch between blocks */
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__) \
522 || defined(__NetBSD__)
523 {
524 int flags;
525 void *addr = NULL;
526 flags = MAP_PRIVATE | MAP_ANONYMOUS;
527 #if defined(__x86_64__)
528 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
529 * 0x40000000 is free */
530 flags |= MAP_FIXED;
531 addr = (void *)0x40000000;
532 /* Cannot map more than that */
533 if (code_gen_buffer_size > (800 * 1024 * 1024))
534 code_gen_buffer_size = (800 * 1024 * 1024);
535 #elif defined(__sparc_v9__)
536 // Map the buffer below 2G, so we can use direct calls and branches
537 flags |= MAP_FIXED;
538 addr = (void *) 0x60000000UL;
539 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
540 code_gen_buffer_size = (512 * 1024 * 1024);
541 }
542 #endif
543 code_gen_buffer = mmap(addr, code_gen_buffer_size,
544 PROT_WRITE | PROT_READ | PROT_EXEC,
545 flags, -1, 0);
546 if (code_gen_buffer == MAP_FAILED) {
547 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
548 exit(1);
549 }
550 }
551 #else
552 code_gen_buffer = g_malloc(code_gen_buffer_size);
553 map_exec(code_gen_buffer, code_gen_buffer_size);
554 #endif
555 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
556 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
557 code_gen_buffer_max_size = code_gen_buffer_size -
558 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
559 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
560 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
561 }
562
563 /* Must be called before using the QEMU cpus. 'tb_size' is the size
564 (in bytes) allocated to the translation buffer. Zero means default
565 size. */
566 void tcg_exec_init(unsigned long tb_size)
567 {
568 cpu_gen_init();
569 code_gen_alloc(tb_size);
570 code_gen_ptr = code_gen_buffer;
571 page_init();
572 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
573 /* There's no guest base to take into account, so go ahead and
574 initialize the prologue now. */
575 tcg_prologue_init(&tcg_ctx);
576 #endif
577 }
578
579 bool tcg_enabled(void)
580 {
581 return code_gen_buffer != NULL;
582 }
583
584 void cpu_exec_init_all(void)
585 {
586 #if !defined(CONFIG_USER_ONLY)
587 memory_map_init();
588 io_mem_init();
589 #endif
590 }
591
592 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
593
594 static int cpu_common_post_load(void *opaque, int version_id)
595 {
596 CPUState *env = opaque;
597
598 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
599 version_id is increased. */
600 env->interrupt_request &= ~0x01;
601 tlb_flush(env, 1);
602
603 return 0;
604 }
605
606 static const VMStateDescription vmstate_cpu_common = {
607 .name = "cpu_common",
608 .version_id = 1,
609 .minimum_version_id = 1,
610 .minimum_version_id_old = 1,
611 .post_load = cpu_common_post_load,
612 .fields = (VMStateField []) {
613 VMSTATE_UINT32(halted, CPUState),
614 VMSTATE_UINT32(interrupt_request, CPUState),
615 VMSTATE_END_OF_LIST()
616 }
617 };
618 #endif
619
620 CPUState *qemu_get_cpu(int cpu)
621 {
622 CPUState *env = first_cpu;
623
624 while (env) {
625 if (env->cpu_index == cpu)
626 break;
627 env = env->next_cpu;
628 }
629
630 return env;
631 }
632
633 void cpu_exec_init(CPUState *env)
634 {
635 CPUState **penv;
636 int cpu_index;
637
638 #if defined(CONFIG_USER_ONLY)
639 cpu_list_lock();
640 #endif
641 env->next_cpu = NULL;
642 penv = &first_cpu;
643 cpu_index = 0;
644 while (*penv != NULL) {
645 penv = &(*penv)->next_cpu;
646 cpu_index++;
647 }
648 env->cpu_index = cpu_index;
649 env->numa_node = 0;
650 QTAILQ_INIT(&env->breakpoints);
651 QTAILQ_INIT(&env->watchpoints);
652 #ifndef CONFIG_USER_ONLY
653 env->thread_id = qemu_get_thread_id();
654 #endif
655 *penv = env;
656 #if defined(CONFIG_USER_ONLY)
657 cpu_list_unlock();
658 #endif
659 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
660 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
661 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
662 cpu_save, cpu_load, env);
663 #endif
664 }
665
666 /* Allocate a new translation block. Flush the translation buffer if
667 too many translation blocks or too much generated code. */
668 static TranslationBlock *tb_alloc(target_ulong pc)
669 {
670 TranslationBlock *tb;
671
672 if (nb_tbs >= code_gen_max_blocks ||
673 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
674 return NULL;
675 tb = &tbs[nb_tbs++];
676 tb->pc = pc;
677 tb->cflags = 0;
678 return tb;
679 }
680
681 void tb_free(TranslationBlock *tb)
682 {
683 /* In practice this is mostly used for single use temporary TB
684 Ignore the hard cases and just back up if this TB happens to
685 be the last one generated. */
686 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
687 code_gen_ptr = tb->tc_ptr;
688 nb_tbs--;
689 }
690 }
691
692 static inline void invalidate_page_bitmap(PageDesc *p)
693 {
694 if (p->code_bitmap) {
695 g_free(p->code_bitmap);
696 p->code_bitmap = NULL;
697 }
698 p->code_write_count = 0;
699 }
700
701 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
702
703 static void page_flush_tb_1 (int level, void **lp)
704 {
705 int i;
706
707 if (*lp == NULL) {
708 return;
709 }
710 if (level == 0) {
711 PageDesc *pd = *lp;
712 for (i = 0; i < L2_SIZE; ++i) {
713 pd[i].first_tb = NULL;
714 invalidate_page_bitmap(pd + i);
715 }
716 } else {
717 void **pp = *lp;
718 for (i = 0; i < L2_SIZE; ++i) {
719 page_flush_tb_1 (level - 1, pp + i);
720 }
721 }
722 }
723
724 static void page_flush_tb(void)
725 {
726 int i;
727 for (i = 0; i < V_L1_SIZE; i++) {
728 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
729 }
730 }
731
732 /* flush all the translation blocks */
733 /* XXX: tb_flush is currently not thread safe */
734 void tb_flush(CPUState *env1)
735 {
736 CPUState *env;
737 #if defined(DEBUG_FLUSH)
738 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
739 (unsigned long)(code_gen_ptr - code_gen_buffer),
740 nb_tbs, nb_tbs > 0 ?
741 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
742 #endif
743 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
744 cpu_abort(env1, "Internal error: code buffer overflow\n");
745
746 nb_tbs = 0;
747
748 for(env = first_cpu; env != NULL; env = env->next_cpu) {
749 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
750 }
751
752 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
753 page_flush_tb();
754
755 code_gen_ptr = code_gen_buffer;
756 /* XXX: flush processor icache at this point if cache flush is
757 expensive */
758 tb_flush_count++;
759 }
760
761 #ifdef DEBUG_TB_CHECK
762
763 static void tb_invalidate_check(target_ulong address)
764 {
765 TranslationBlock *tb;
766 int i;
767 address &= TARGET_PAGE_MASK;
768 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
769 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
770 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
771 address >= tb->pc + tb->size)) {
772 printf("ERROR invalidate: address=" TARGET_FMT_lx
773 " PC=%08lx size=%04x\n",
774 address, (long)tb->pc, tb->size);
775 }
776 }
777 }
778 }
779
780 /* verify that all the pages have correct rights for code */
781 static void tb_page_check(void)
782 {
783 TranslationBlock *tb;
784 int i, flags1, flags2;
785
786 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
787 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
788 flags1 = page_get_flags(tb->pc);
789 flags2 = page_get_flags(tb->pc + tb->size - 1);
790 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
791 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
792 (long)tb->pc, tb->size, flags1, flags2);
793 }
794 }
795 }
796 }
797
798 #endif
799
800 /* invalidate one TB */
801 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
802 int next_offset)
803 {
804 TranslationBlock *tb1;
805 for(;;) {
806 tb1 = *ptb;
807 if (tb1 == tb) {
808 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
809 break;
810 }
811 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
812 }
813 }
814
815 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
816 {
817 TranslationBlock *tb1;
818 unsigned int n1;
819
820 for(;;) {
821 tb1 = *ptb;
822 n1 = (long)tb1 & 3;
823 tb1 = (TranslationBlock *)((long)tb1 & ~3);
824 if (tb1 == tb) {
825 *ptb = tb1->page_next[n1];
826 break;
827 }
828 ptb = &tb1->page_next[n1];
829 }
830 }
831
832 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
833 {
834 TranslationBlock *tb1, **ptb;
835 unsigned int n1;
836
837 ptb = &tb->jmp_next[n];
838 tb1 = *ptb;
839 if (tb1) {
840 /* find tb(n) in circular list */
841 for(;;) {
842 tb1 = *ptb;
843 n1 = (long)tb1 & 3;
844 tb1 = (TranslationBlock *)((long)tb1 & ~3);
845 if (n1 == n && tb1 == tb)
846 break;
847 if (n1 == 2) {
848 ptb = &tb1->jmp_first;
849 } else {
850 ptb = &tb1->jmp_next[n1];
851 }
852 }
853 /* now we can suppress tb(n) from the list */
854 *ptb = tb->jmp_next[n];
855
856 tb->jmp_next[n] = NULL;
857 }
858 }
859
860 /* reset the jump entry 'n' of a TB so that it is not chained to
861 another TB */
862 static inline void tb_reset_jump(TranslationBlock *tb, int n)
863 {
864 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
865 }
866
867 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
868 {
869 CPUState *env;
870 PageDesc *p;
871 unsigned int h, n1;
872 tb_page_addr_t phys_pc;
873 TranslationBlock *tb1, *tb2;
874
875 /* remove the TB from the hash list */
876 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
877 h = tb_phys_hash_func(phys_pc);
878 tb_remove(&tb_phys_hash[h], tb,
879 offsetof(TranslationBlock, phys_hash_next));
880
881 /* remove the TB from the page list */
882 if (tb->page_addr[0] != page_addr) {
883 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
884 tb_page_remove(&p->first_tb, tb);
885 invalidate_page_bitmap(p);
886 }
887 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
888 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
889 tb_page_remove(&p->first_tb, tb);
890 invalidate_page_bitmap(p);
891 }
892
893 tb_invalidated_flag = 1;
894
895 /* remove the TB from the hash list */
896 h = tb_jmp_cache_hash_func(tb->pc);
897 for(env = first_cpu; env != NULL; env = env->next_cpu) {
898 if (env->tb_jmp_cache[h] == tb)
899 env->tb_jmp_cache[h] = NULL;
900 }
901
902 /* suppress this TB from the two jump lists */
903 tb_jmp_remove(tb, 0);
904 tb_jmp_remove(tb, 1);
905
906 /* suppress any remaining jumps to this TB */
907 tb1 = tb->jmp_first;
908 for(;;) {
909 n1 = (long)tb1 & 3;
910 if (n1 == 2)
911 break;
912 tb1 = (TranslationBlock *)((long)tb1 & ~3);
913 tb2 = tb1->jmp_next[n1];
914 tb_reset_jump(tb1, n1);
915 tb1->jmp_next[n1] = NULL;
916 tb1 = tb2;
917 }
918 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
919
920 tb_phys_invalidate_count++;
921 }
922
923 static inline void set_bits(uint8_t *tab, int start, int len)
924 {
925 int end, mask, end1;
926
927 end = start + len;
928 tab += start >> 3;
929 mask = 0xff << (start & 7);
930 if ((start & ~7) == (end & ~7)) {
931 if (start < end) {
932 mask &= ~(0xff << (end & 7));
933 *tab |= mask;
934 }
935 } else {
936 *tab++ |= mask;
937 start = (start + 8) & ~7;
938 end1 = end & ~7;
939 while (start < end1) {
940 *tab++ = 0xff;
941 start += 8;
942 }
943 if (start < end) {
944 mask = ~(0xff << (end & 7));
945 *tab |= mask;
946 }
947 }
948 }
949
950 static void build_page_bitmap(PageDesc *p)
951 {
952 int n, tb_start, tb_end;
953 TranslationBlock *tb;
954
955 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
956
957 tb = p->first_tb;
958 while (tb != NULL) {
959 n = (long)tb & 3;
960 tb = (TranslationBlock *)((long)tb & ~3);
961 /* NOTE: this is subtle as a TB may span two physical pages */
962 if (n == 0) {
963 /* NOTE: tb_end may be after the end of the page, but
964 it is not a problem */
965 tb_start = tb->pc & ~TARGET_PAGE_MASK;
966 tb_end = tb_start + tb->size;
967 if (tb_end > TARGET_PAGE_SIZE)
968 tb_end = TARGET_PAGE_SIZE;
969 } else {
970 tb_start = 0;
971 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
972 }
973 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
974 tb = tb->page_next[n];
975 }
976 }
977
978 TranslationBlock *tb_gen_code(CPUState *env,
979 target_ulong pc, target_ulong cs_base,
980 int flags, int cflags)
981 {
982 TranslationBlock *tb;
983 uint8_t *tc_ptr;
984 tb_page_addr_t phys_pc, phys_page2;
985 target_ulong virt_page2;
986 int code_gen_size;
987
988 phys_pc = get_page_addr_code(env, pc);
989 tb = tb_alloc(pc);
990 if (!tb) {
991 /* flush must be done */
992 tb_flush(env);
993 /* cannot fail at this point */
994 tb = tb_alloc(pc);
995 /* Don't forget to invalidate previous TB info. */
996 tb_invalidated_flag = 1;
997 }
998 tc_ptr = code_gen_ptr;
999 tb->tc_ptr = tc_ptr;
1000 tb->cs_base = cs_base;
1001 tb->flags = flags;
1002 tb->cflags = cflags;
1003 cpu_gen_code(env, tb, &code_gen_size);
1004 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1005
1006 /* check next page if needed */
1007 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1008 phys_page2 = -1;
1009 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1010 phys_page2 = get_page_addr_code(env, virt_page2);
1011 }
1012 tb_link_page(tb, phys_pc, phys_page2);
1013 return tb;
1014 }
1015
1016 /* invalidate all TBs which intersect with the target physical page
1017 starting in range [start;end[. NOTE: start and end must refer to
1018 the same physical page. 'is_cpu_write_access' should be true if called
1019 from a real cpu write access: the virtual CPU will exit the current
1020 TB if code is modified inside this TB. */
1021 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1022 int is_cpu_write_access)
1023 {
1024 TranslationBlock *tb, *tb_next, *saved_tb;
1025 CPUState *env = cpu_single_env;
1026 tb_page_addr_t tb_start, tb_end;
1027 PageDesc *p;
1028 int n;
1029 #ifdef TARGET_HAS_PRECISE_SMC
1030 int current_tb_not_found = is_cpu_write_access;
1031 TranslationBlock *current_tb = NULL;
1032 int current_tb_modified = 0;
1033 target_ulong current_pc = 0;
1034 target_ulong current_cs_base = 0;
1035 int current_flags = 0;
1036 #endif /* TARGET_HAS_PRECISE_SMC */
1037
1038 p = page_find(start >> TARGET_PAGE_BITS);
1039 if (!p)
1040 return;
1041 if (!p->code_bitmap &&
1042 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1043 is_cpu_write_access) {
1044 /* build code bitmap */
1045 build_page_bitmap(p);
1046 }
1047
1048 /* we remove all the TBs in the range [start, end[ */
1049 /* XXX: see if in some cases it could be faster to invalidate all the code */
1050 tb = p->first_tb;
1051 while (tb != NULL) {
1052 n = (long)tb & 3;
1053 tb = (TranslationBlock *)((long)tb & ~3);
1054 tb_next = tb->page_next[n];
1055 /* NOTE: this is subtle as a TB may span two physical pages */
1056 if (n == 0) {
1057 /* NOTE: tb_end may be after the end of the page, but
1058 it is not a problem */
1059 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1060 tb_end = tb_start + tb->size;
1061 } else {
1062 tb_start = tb->page_addr[1];
1063 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1064 }
1065 if (!(tb_end <= start || tb_start >= end)) {
1066 #ifdef TARGET_HAS_PRECISE_SMC
1067 if (current_tb_not_found) {
1068 current_tb_not_found = 0;
1069 current_tb = NULL;
1070 if (env->mem_io_pc) {
1071 /* now we have a real cpu fault */
1072 current_tb = tb_find_pc(env->mem_io_pc);
1073 }
1074 }
1075 if (current_tb == tb &&
1076 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1077 /* If we are modifying the current TB, we must stop
1078 its execution. We could be more precise by checking
1079 that the modification is after the current PC, but it
1080 would require a specialized function to partially
1081 restore the CPU state */
1082
1083 current_tb_modified = 1;
1084 cpu_restore_state(current_tb, env, env->mem_io_pc);
1085 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1086 &current_flags);
1087 }
1088 #endif /* TARGET_HAS_PRECISE_SMC */
1089 /* we need to do that to handle the case where a signal
1090 occurs while doing tb_phys_invalidate() */
1091 saved_tb = NULL;
1092 if (env) {
1093 saved_tb = env->current_tb;
1094 env->current_tb = NULL;
1095 }
1096 tb_phys_invalidate(tb, -1);
1097 if (env) {
1098 env->current_tb = saved_tb;
1099 if (env->interrupt_request && env->current_tb)
1100 cpu_interrupt(env, env->interrupt_request);
1101 }
1102 }
1103 tb = tb_next;
1104 }
1105 #if !defined(CONFIG_USER_ONLY)
1106 /* if no code remaining, no need to continue to use slow writes */
1107 if (!p->first_tb) {
1108 invalidate_page_bitmap(p);
1109 if (is_cpu_write_access) {
1110 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1111 }
1112 }
1113 #endif
1114 #ifdef TARGET_HAS_PRECISE_SMC
1115 if (current_tb_modified) {
1116 /* we generate a block containing just the instruction
1117 modifying the memory. It will ensure that it cannot modify
1118 itself */
1119 env->current_tb = NULL;
1120 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1121 cpu_resume_from_signal(env, NULL);
1122 }
1123 #endif
1124 }
1125
1126 /* len must be <= 8 and start must be a multiple of len */
1127 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1128 {
1129 PageDesc *p;
1130 int offset, b;
1131 #if 0
1132 if (1) {
1133 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1134 cpu_single_env->mem_io_vaddr, len,
1135 cpu_single_env->eip,
1136 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1137 }
1138 #endif
1139 p = page_find(start >> TARGET_PAGE_BITS);
1140 if (!p)
1141 return;
1142 if (p->code_bitmap) {
1143 offset = start & ~TARGET_PAGE_MASK;
1144 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1145 if (b & ((1 << len) - 1))
1146 goto do_invalidate;
1147 } else {
1148 do_invalidate:
1149 tb_invalidate_phys_page_range(start, start + len, 1);
1150 }
1151 }
1152
1153 #if !defined(CONFIG_SOFTMMU)
1154 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1155 unsigned long pc, void *puc)
1156 {
1157 TranslationBlock *tb;
1158 PageDesc *p;
1159 int n;
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 TranslationBlock *current_tb = NULL;
1162 CPUState *env = cpu_single_env;
1163 int current_tb_modified = 0;
1164 target_ulong current_pc = 0;
1165 target_ulong current_cs_base = 0;
1166 int current_flags = 0;
1167 #endif
1168
1169 addr &= TARGET_PAGE_MASK;
1170 p = page_find(addr >> TARGET_PAGE_BITS);
1171 if (!p)
1172 return;
1173 tb = p->first_tb;
1174 #ifdef TARGET_HAS_PRECISE_SMC
1175 if (tb && pc != 0) {
1176 current_tb = tb_find_pc(pc);
1177 }
1178 #endif
1179 while (tb != NULL) {
1180 n = (long)tb & 3;
1181 tb = (TranslationBlock *)((long)tb & ~3);
1182 #ifdef TARGET_HAS_PRECISE_SMC
1183 if (current_tb == tb &&
1184 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1185 /* If we are modifying the current TB, we must stop
1186 its execution. We could be more precise by checking
1187 that the modification is after the current PC, but it
1188 would require a specialized function to partially
1189 restore the CPU state */
1190
1191 current_tb_modified = 1;
1192 cpu_restore_state(current_tb, env, pc);
1193 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1194 &current_flags);
1195 }
1196 #endif /* TARGET_HAS_PRECISE_SMC */
1197 tb_phys_invalidate(tb, addr);
1198 tb = tb->page_next[n];
1199 }
1200 p->first_tb = NULL;
1201 #ifdef TARGET_HAS_PRECISE_SMC
1202 if (current_tb_modified) {
1203 /* we generate a block containing just the instruction
1204 modifying the memory. It will ensure that it cannot modify
1205 itself */
1206 env->current_tb = NULL;
1207 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1208 cpu_resume_from_signal(env, puc);
1209 }
1210 #endif
1211 }
1212 #endif
1213
1214 /* add the tb in the target page and protect it if necessary */
1215 static inline void tb_alloc_page(TranslationBlock *tb,
1216 unsigned int n, tb_page_addr_t page_addr)
1217 {
1218 PageDesc *p;
1219 #ifndef CONFIG_USER_ONLY
1220 bool page_already_protected;
1221 #endif
1222
1223 tb->page_addr[n] = page_addr;
1224 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1225 tb->page_next[n] = p->first_tb;
1226 #ifndef CONFIG_USER_ONLY
1227 page_already_protected = p->first_tb != NULL;
1228 #endif
1229 p->first_tb = (TranslationBlock *)((long)tb | n);
1230 invalidate_page_bitmap(p);
1231
1232 #if defined(TARGET_HAS_SMC) || 1
1233
1234 #if defined(CONFIG_USER_ONLY)
1235 if (p->flags & PAGE_WRITE) {
1236 target_ulong addr;
1237 PageDesc *p2;
1238 int prot;
1239
1240 /* force the host page as non writable (writes will have a
1241 page fault + mprotect overhead) */
1242 page_addr &= qemu_host_page_mask;
1243 prot = 0;
1244 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1245 addr += TARGET_PAGE_SIZE) {
1246
1247 p2 = page_find (addr >> TARGET_PAGE_BITS);
1248 if (!p2)
1249 continue;
1250 prot |= p2->flags;
1251 p2->flags &= ~PAGE_WRITE;
1252 }
1253 mprotect(g2h(page_addr), qemu_host_page_size,
1254 (prot & PAGE_BITS) & ~PAGE_WRITE);
1255 #ifdef DEBUG_TB_INVALIDATE
1256 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1257 page_addr);
1258 #endif
1259 }
1260 #else
1261 /* if some code is already present, then the pages are already
1262 protected. So we handle the case where only the first TB is
1263 allocated in a physical page */
1264 if (!page_already_protected) {
1265 tlb_protect_code(page_addr);
1266 }
1267 #endif
1268
1269 #endif /* TARGET_HAS_SMC */
1270 }
1271
1272 /* add a new TB and link it to the physical page tables. phys_page2 is
1273 (-1) to indicate that only one page contains the TB. */
1274 void tb_link_page(TranslationBlock *tb,
1275 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1276 {
1277 unsigned int h;
1278 TranslationBlock **ptb;
1279
1280 /* Grab the mmap lock to stop another thread invalidating this TB
1281 before we are done. */
1282 mmap_lock();
1283 /* add in the physical hash table */
1284 h = tb_phys_hash_func(phys_pc);
1285 ptb = &tb_phys_hash[h];
1286 tb->phys_hash_next = *ptb;
1287 *ptb = tb;
1288
1289 /* add in the page list */
1290 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1291 if (phys_page2 != -1)
1292 tb_alloc_page(tb, 1, phys_page2);
1293 else
1294 tb->page_addr[1] = -1;
1295
1296 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1297 tb->jmp_next[0] = NULL;
1298 tb->jmp_next[1] = NULL;
1299
1300 /* init original jump addresses */
1301 if (tb->tb_next_offset[0] != 0xffff)
1302 tb_reset_jump(tb, 0);
1303 if (tb->tb_next_offset[1] != 0xffff)
1304 tb_reset_jump(tb, 1);
1305
1306 #ifdef DEBUG_TB_CHECK
1307 tb_page_check();
1308 #endif
1309 mmap_unlock();
1310 }
1311
1312 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1313 tb[1].tc_ptr. Return NULL if not found */
1314 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1315 {
1316 int m_min, m_max, m;
1317 unsigned long v;
1318 TranslationBlock *tb;
1319
1320 if (nb_tbs <= 0)
1321 return NULL;
1322 if (tc_ptr < (unsigned long)code_gen_buffer ||
1323 tc_ptr >= (unsigned long)code_gen_ptr)
1324 return NULL;
1325 /* binary search (cf Knuth) */
1326 m_min = 0;
1327 m_max = nb_tbs - 1;
1328 while (m_min <= m_max) {
1329 m = (m_min + m_max) >> 1;
1330 tb = &tbs[m];
1331 v = (unsigned long)tb->tc_ptr;
1332 if (v == tc_ptr)
1333 return tb;
1334 else if (tc_ptr < v) {
1335 m_max = m - 1;
1336 } else {
1337 m_min = m + 1;
1338 }
1339 }
1340 return &tbs[m_max];
1341 }
1342
1343 static void tb_reset_jump_recursive(TranslationBlock *tb);
1344
1345 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1346 {
1347 TranslationBlock *tb1, *tb_next, **ptb;
1348 unsigned int n1;
1349
1350 tb1 = tb->jmp_next[n];
1351 if (tb1 != NULL) {
1352 /* find head of list */
1353 for(;;) {
1354 n1 = (long)tb1 & 3;
1355 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1356 if (n1 == 2)
1357 break;
1358 tb1 = tb1->jmp_next[n1];
1359 }
1360 /* we are now sure now that tb jumps to tb1 */
1361 tb_next = tb1;
1362
1363 /* remove tb from the jmp_first list */
1364 ptb = &tb_next->jmp_first;
1365 for(;;) {
1366 tb1 = *ptb;
1367 n1 = (long)tb1 & 3;
1368 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1369 if (n1 == n && tb1 == tb)
1370 break;
1371 ptb = &tb1->jmp_next[n1];
1372 }
1373 *ptb = tb->jmp_next[n];
1374 tb->jmp_next[n] = NULL;
1375
1376 /* suppress the jump to next tb in generated code */
1377 tb_reset_jump(tb, n);
1378
1379 /* suppress jumps in the tb on which we could have jumped */
1380 tb_reset_jump_recursive(tb_next);
1381 }
1382 }
1383
1384 static void tb_reset_jump_recursive(TranslationBlock *tb)
1385 {
1386 tb_reset_jump_recursive2(tb, 0);
1387 tb_reset_jump_recursive2(tb, 1);
1388 }
1389
1390 #if defined(TARGET_HAS_ICE)
1391 #if defined(CONFIG_USER_ONLY)
1392 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1393 {
1394 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1395 }
1396 #else
1397 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1398 {
1399 target_phys_addr_t addr;
1400 target_ulong pd;
1401 ram_addr_t ram_addr;
1402 PhysPageDesc *p;
1403
1404 addr = cpu_get_phys_page_debug(env, pc);
1405 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1406 if (!p) {
1407 pd = IO_MEM_UNASSIGNED;
1408 } else {
1409 pd = p->phys_offset;
1410 }
1411 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1412 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1413 }
1414 #endif
1415 #endif /* TARGET_HAS_ICE */
1416
1417 #if defined(CONFIG_USER_ONLY)
1418 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1419
1420 {
1421 }
1422
1423 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1424 int flags, CPUWatchpoint **watchpoint)
1425 {
1426 return -ENOSYS;
1427 }
1428 #else
1429 /* Add a watchpoint. */
1430 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
1432 {
1433 target_ulong len_mask = ~(len - 1);
1434 CPUWatchpoint *wp;
1435
1436 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1437 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1438 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1439 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1440 return -EINVAL;
1441 }
1442 wp = g_malloc(sizeof(*wp));
1443
1444 wp->vaddr = addr;
1445 wp->len_mask = len_mask;
1446 wp->flags = flags;
1447
1448 /* keep all GDB-injected watchpoints in front */
1449 if (flags & BP_GDB)
1450 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1451 else
1452 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1453
1454 tlb_flush_page(env, addr);
1455
1456 if (watchpoint)
1457 *watchpoint = wp;
1458 return 0;
1459 }
1460
1461 /* Remove a specific watchpoint. */
1462 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1463 int flags)
1464 {
1465 target_ulong len_mask = ~(len - 1);
1466 CPUWatchpoint *wp;
1467
1468 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1469 if (addr == wp->vaddr && len_mask == wp->len_mask
1470 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1471 cpu_watchpoint_remove_by_ref(env, wp);
1472 return 0;
1473 }
1474 }
1475 return -ENOENT;
1476 }
1477
1478 /* Remove a specific watchpoint by reference. */
1479 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1480 {
1481 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1482
1483 tlb_flush_page(env, watchpoint->vaddr);
1484
1485 g_free(watchpoint);
1486 }
1487
1488 /* Remove all matching watchpoints. */
1489 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1490 {
1491 CPUWatchpoint *wp, *next;
1492
1493 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1494 if (wp->flags & mask)
1495 cpu_watchpoint_remove_by_ref(env, wp);
1496 }
1497 }
1498 #endif
1499
1500 /* Add a breakpoint. */
1501 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1502 CPUBreakpoint **breakpoint)
1503 {
1504 #if defined(TARGET_HAS_ICE)
1505 CPUBreakpoint *bp;
1506
1507 bp = g_malloc(sizeof(*bp));
1508
1509 bp->pc = pc;
1510 bp->flags = flags;
1511
1512 /* keep all GDB-injected breakpoints in front */
1513 if (flags & BP_GDB)
1514 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1515 else
1516 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1517
1518 breakpoint_invalidate(env, pc);
1519
1520 if (breakpoint)
1521 *breakpoint = bp;
1522 return 0;
1523 #else
1524 return -ENOSYS;
1525 #endif
1526 }
1527
1528 /* Remove a specific breakpoint. */
1529 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1530 {
1531 #if defined(TARGET_HAS_ICE)
1532 CPUBreakpoint *bp;
1533
1534 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1535 if (bp->pc == pc && bp->flags == flags) {
1536 cpu_breakpoint_remove_by_ref(env, bp);
1537 return 0;
1538 }
1539 }
1540 return -ENOENT;
1541 #else
1542 return -ENOSYS;
1543 #endif
1544 }
1545
1546 /* Remove a specific breakpoint by reference. */
1547 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1548 {
1549 #if defined(TARGET_HAS_ICE)
1550 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1551
1552 breakpoint_invalidate(env, breakpoint->pc);
1553
1554 g_free(breakpoint);
1555 #endif
1556 }
1557
1558 /* Remove all matching breakpoints. */
1559 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1560 {
1561 #if defined(TARGET_HAS_ICE)
1562 CPUBreakpoint *bp, *next;
1563
1564 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1565 if (bp->flags & mask)
1566 cpu_breakpoint_remove_by_ref(env, bp);
1567 }
1568 #endif
1569 }
1570
1571 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1572 CPU loop after each instruction */
1573 void cpu_single_step(CPUState *env, int enabled)
1574 {
1575 #if defined(TARGET_HAS_ICE)
1576 if (env->singlestep_enabled != enabled) {
1577 env->singlestep_enabled = enabled;
1578 if (kvm_enabled())
1579 kvm_update_guest_debug(env, 0);
1580 else {
1581 /* must flush all the translated code to avoid inconsistencies */
1582 /* XXX: only flush what is necessary */
1583 tb_flush(env);
1584 }
1585 }
1586 #endif
1587 }
1588
1589 /* enable or disable low levels log */
1590 void cpu_set_log(int log_flags)
1591 {
1592 loglevel = log_flags;
1593 if (loglevel && !logfile) {
1594 logfile = fopen(logfilename, log_append ? "a" : "w");
1595 if (!logfile) {
1596 perror(logfilename);
1597 _exit(1);
1598 }
1599 #if !defined(CONFIG_SOFTMMU)
1600 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1601 {
1602 static char logfile_buf[4096];
1603 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1604 }
1605 #elif defined(_WIN32)
1606 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1607 setvbuf(logfile, NULL, _IONBF, 0);
1608 #else
1609 setvbuf(logfile, NULL, _IOLBF, 0);
1610 #endif
1611 log_append = 1;
1612 }
1613 if (!loglevel && logfile) {
1614 fclose(logfile);
1615 logfile = NULL;
1616 }
1617 }
1618
1619 void cpu_set_log_filename(const char *filename)
1620 {
1621 logfilename = strdup(filename);
1622 if (logfile) {
1623 fclose(logfile);
1624 logfile = NULL;
1625 }
1626 cpu_set_log(loglevel);
1627 }
1628
1629 static void cpu_unlink_tb(CPUState *env)
1630 {
1631 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1632 problem and hope the cpu will stop of its own accord. For userspace
1633 emulation this often isn't actually as bad as it sounds. Often
1634 signals are used primarily to interrupt blocking syscalls. */
1635 TranslationBlock *tb;
1636 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1637
1638 spin_lock(&interrupt_lock);
1639 tb = env->current_tb;
1640 /* if the cpu is currently executing code, we must unlink it and
1641 all the potentially executing TB */
1642 if (tb) {
1643 env->current_tb = NULL;
1644 tb_reset_jump_recursive(tb);
1645 }
1646 spin_unlock(&interrupt_lock);
1647 }
1648
1649 #ifndef CONFIG_USER_ONLY
1650 /* mask must never be zero, except for A20 change call */
1651 static void tcg_handle_interrupt(CPUState *env, int mask)
1652 {
1653 int old_mask;
1654
1655 old_mask = env->interrupt_request;
1656 env->interrupt_request |= mask;
1657
1658 /*
1659 * If called from iothread context, wake the target cpu in
1660 * case its halted.
1661 */
1662 if (!qemu_cpu_is_self(env)) {
1663 qemu_cpu_kick(env);
1664 return;
1665 }
1666
1667 if (use_icount) {
1668 env->icount_decr.u16.high = 0xffff;
1669 if (!can_do_io(env)
1670 && (mask & ~old_mask) != 0) {
1671 cpu_abort(env, "Raised interrupt while not in I/O function");
1672 }
1673 } else {
1674 cpu_unlink_tb(env);
1675 }
1676 }
1677
1678 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1679
1680 #else /* CONFIG_USER_ONLY */
1681
1682 void cpu_interrupt(CPUState *env, int mask)
1683 {
1684 env->interrupt_request |= mask;
1685 cpu_unlink_tb(env);
1686 }
1687 #endif /* CONFIG_USER_ONLY */
1688
1689 void cpu_reset_interrupt(CPUState *env, int mask)
1690 {
1691 env->interrupt_request &= ~mask;
1692 }
1693
1694 void cpu_exit(CPUState *env)
1695 {
1696 env->exit_request = 1;
1697 cpu_unlink_tb(env);
1698 }
1699
1700 const CPULogItem cpu_log_items[] = {
1701 { CPU_LOG_TB_OUT_ASM, "out_asm",
1702 "show generated host assembly code for each compiled TB" },
1703 { CPU_LOG_TB_IN_ASM, "in_asm",
1704 "show target assembly code for each compiled TB" },
1705 { CPU_LOG_TB_OP, "op",
1706 "show micro ops for each compiled TB" },
1707 { CPU_LOG_TB_OP_OPT, "op_opt",
1708 "show micro ops "
1709 #ifdef TARGET_I386
1710 "before eflags optimization and "
1711 #endif
1712 "after liveness analysis" },
1713 { CPU_LOG_INT, "int",
1714 "show interrupts/exceptions in short format" },
1715 { CPU_LOG_EXEC, "exec",
1716 "show trace before each executed TB (lots of logs)" },
1717 { CPU_LOG_TB_CPU, "cpu",
1718 "show CPU state before block translation" },
1719 #ifdef TARGET_I386
1720 { CPU_LOG_PCALL, "pcall",
1721 "show protected mode far calls/returns/exceptions" },
1722 { CPU_LOG_RESET, "cpu_reset",
1723 "show CPU state before CPU resets" },
1724 #endif
1725 #ifdef DEBUG_IOPORT
1726 { CPU_LOG_IOPORT, "ioport",
1727 "show all i/o ports accesses" },
1728 #endif
1729 { 0, NULL, NULL },
1730 };
1731
1732 #ifndef CONFIG_USER_ONLY
1733 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1734 = QLIST_HEAD_INITIALIZER(memory_client_list);
1735
1736 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1737 ram_addr_t size,
1738 ram_addr_t phys_offset,
1739 bool log_dirty)
1740 {
1741 CPUPhysMemoryClient *client;
1742 QLIST_FOREACH(client, &memory_client_list, list) {
1743 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
1744 }
1745 }
1746
1747 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1748 target_phys_addr_t end)
1749 {
1750 CPUPhysMemoryClient *client;
1751 QLIST_FOREACH(client, &memory_client_list, list) {
1752 int r = client->sync_dirty_bitmap(client, start, end);
1753 if (r < 0)
1754 return r;
1755 }
1756 return 0;
1757 }
1758
1759 static int cpu_notify_migration_log(int enable)
1760 {
1761 CPUPhysMemoryClient *client;
1762 QLIST_FOREACH(client, &memory_client_list, list) {
1763 int r = client->migration_log(client, enable);
1764 if (r < 0)
1765 return r;
1766 }
1767 return 0;
1768 }
1769
1770 struct last_map {
1771 target_phys_addr_t start_addr;
1772 ram_addr_t size;
1773 ram_addr_t phys_offset;
1774 };
1775
1776 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1777 * address. Each intermediate table provides the next L2_BITs of guest
1778 * physical address space. The number of levels vary based on host and
1779 * guest configuration, making it efficient to build the final guest
1780 * physical address by seeding the L1 offset and shifting and adding in
1781 * each L2 offset as we recurse through them. */
1782 static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1783 void **lp, target_phys_addr_t addr,
1784 struct last_map *map)
1785 {
1786 int i;
1787
1788 if (*lp == NULL) {
1789 return;
1790 }
1791 if (level == 0) {
1792 PhysPageDesc *pd = *lp;
1793 addr <<= L2_BITS + TARGET_PAGE_BITS;
1794 for (i = 0; i < L2_SIZE; ++i) {
1795 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1796 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1797
1798 if (map->size &&
1799 start_addr == map->start_addr + map->size &&
1800 pd[i].phys_offset == map->phys_offset + map->size) {
1801
1802 map->size += TARGET_PAGE_SIZE;
1803 continue;
1804 } else if (map->size) {
1805 client->set_memory(client, map->start_addr,
1806 map->size, map->phys_offset, false);
1807 }
1808
1809 map->start_addr = start_addr;
1810 map->size = TARGET_PAGE_SIZE;
1811 map->phys_offset = pd[i].phys_offset;
1812 }
1813 }
1814 } else {
1815 void **pp = *lp;
1816 for (i = 0; i < L2_SIZE; ++i) {
1817 phys_page_for_each_1(client, level - 1, pp + i,
1818 (addr << L2_BITS) | i, map);
1819 }
1820 }
1821 }
1822
1823 static void phys_page_for_each(CPUPhysMemoryClient *client)
1824 {
1825 int i;
1826 struct last_map map = { };
1827
1828 for (i = 0; i < P_L1_SIZE; ++i) {
1829 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1830 l1_phys_map + i, i, &map);
1831 }
1832 if (map.size) {
1833 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1834 false);
1835 }
1836 }
1837
1838 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1839 {
1840 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1841 phys_page_for_each(client);
1842 }
1843
1844 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1845 {
1846 QLIST_REMOVE(client, list);
1847 }
1848 #endif
1849
1850 static int cmp1(const char *s1, int n, const char *s2)
1851 {
1852 if (strlen(s2) != n)
1853 return 0;
1854 return memcmp(s1, s2, n) == 0;
1855 }
1856
1857 /* takes a comma separated list of log masks. Return 0 if error. */
1858 int cpu_str_to_log_mask(const char *str)
1859 {
1860 const CPULogItem *item;
1861 int mask;
1862 const char *p, *p1;
1863
1864 p = str;
1865 mask = 0;
1866 for(;;) {
1867 p1 = strchr(p, ',');
1868 if (!p1)
1869 p1 = p + strlen(p);
1870 if(cmp1(p,p1-p,"all")) {
1871 for(item = cpu_log_items; item->mask != 0; item++) {
1872 mask |= item->mask;
1873 }
1874 } else {
1875 for(item = cpu_log_items; item->mask != 0; item++) {
1876 if (cmp1(p, p1 - p, item->name))
1877 goto found;
1878 }
1879 return 0;
1880 }
1881 found:
1882 mask |= item->mask;
1883 if (*p1 != ',')
1884 break;
1885 p = p1 + 1;
1886 }
1887 return mask;
1888 }
1889
1890 void cpu_abort(CPUState *env, const char *fmt, ...)
1891 {
1892 va_list ap;
1893 va_list ap2;
1894
1895 va_start(ap, fmt);
1896 va_copy(ap2, ap);
1897 fprintf(stderr, "qemu: fatal: ");
1898 vfprintf(stderr, fmt, ap);
1899 fprintf(stderr, "\n");
1900 #ifdef TARGET_I386
1901 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1902 #else
1903 cpu_dump_state(env, stderr, fprintf, 0);
1904 #endif
1905 if (qemu_log_enabled()) {
1906 qemu_log("qemu: fatal: ");
1907 qemu_log_vprintf(fmt, ap2);
1908 qemu_log("\n");
1909 #ifdef TARGET_I386
1910 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1911 #else
1912 log_cpu_state(env, 0);
1913 #endif
1914 qemu_log_flush();
1915 qemu_log_close();
1916 }
1917 va_end(ap2);
1918 va_end(ap);
1919 #if defined(CONFIG_USER_ONLY)
1920 {
1921 struct sigaction act;
1922 sigfillset(&act.sa_mask);
1923 act.sa_handler = SIG_DFL;
1924 sigaction(SIGABRT, &act, NULL);
1925 }
1926 #endif
1927 abort();
1928 }
1929
1930 CPUState *cpu_copy(CPUState *env)
1931 {
1932 CPUState *new_env = cpu_init(env->cpu_model_str);
1933 CPUState *next_cpu = new_env->next_cpu;
1934 int cpu_index = new_env->cpu_index;
1935 #if defined(TARGET_HAS_ICE)
1936 CPUBreakpoint *bp;
1937 CPUWatchpoint *wp;
1938 #endif
1939
1940 memcpy(new_env, env, sizeof(CPUState));
1941
1942 /* Preserve chaining and index. */
1943 new_env->next_cpu = next_cpu;
1944 new_env->cpu_index = cpu_index;
1945
1946 /* Clone all break/watchpoints.
1947 Note: Once we support ptrace with hw-debug register access, make sure
1948 BP_CPU break/watchpoints are handled correctly on clone. */
1949 QTAILQ_INIT(&env->breakpoints);
1950 QTAILQ_INIT(&env->watchpoints);
1951 #if defined(TARGET_HAS_ICE)
1952 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1953 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1954 }
1955 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1956 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1957 wp->flags, NULL);
1958 }
1959 #endif
1960
1961 return new_env;
1962 }
1963
1964 #if !defined(CONFIG_USER_ONLY)
1965
1966 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1967 {
1968 unsigned int i;
1969
1970 /* Discard jump cache entries for any tb which might potentially
1971 overlap the flushed page. */
1972 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1973 memset (&env->tb_jmp_cache[i], 0,
1974 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1975
1976 i = tb_jmp_cache_hash_page(addr);
1977 memset (&env->tb_jmp_cache[i], 0,
1978 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1979 }
1980
1981 static CPUTLBEntry s_cputlb_empty_entry = {
1982 .addr_read = -1,
1983 .addr_write = -1,
1984 .addr_code = -1,
1985 .addend = -1,
1986 };
1987
1988 /* NOTE: if flush_global is true, also flush global entries (not
1989 implemented yet) */
1990 void tlb_flush(CPUState *env, int flush_global)
1991 {
1992 int i;
1993
1994 #if defined(DEBUG_TLB)
1995 printf("tlb_flush:\n");
1996 #endif
1997 /* must reset current TB so that interrupts cannot modify the
1998 links while we are modifying them */
1999 env->current_tb = NULL;
2000
2001 for(i = 0; i < CPU_TLB_SIZE; i++) {
2002 int mmu_idx;
2003 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2004 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
2005 }
2006 }
2007
2008 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
2009
2010 env->tlb_flush_addr = -1;
2011 env->tlb_flush_mask = 0;
2012 tlb_flush_count++;
2013 }
2014
2015 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
2016 {
2017 if (addr == (tlb_entry->addr_read &
2018 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2019 addr == (tlb_entry->addr_write &
2020 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2021 addr == (tlb_entry->addr_code &
2022 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
2023 *tlb_entry = s_cputlb_empty_entry;
2024 }
2025 }
2026
2027 void tlb_flush_page(CPUState *env, target_ulong addr)
2028 {
2029 int i;
2030 int mmu_idx;
2031
2032 #if defined(DEBUG_TLB)
2033 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
2034 #endif
2035 /* Check if we need to flush due to large pages. */
2036 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2037 #if defined(DEBUG_TLB)
2038 printf("tlb_flush_page: forced full flush ("
2039 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2040 env->tlb_flush_addr, env->tlb_flush_mask);
2041 #endif
2042 tlb_flush(env, 1);
2043 return;
2044 }
2045 /* must reset current TB so that interrupts cannot modify the
2046 links while we are modifying them */
2047 env->current_tb = NULL;
2048
2049 addr &= TARGET_PAGE_MASK;
2050 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2052 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2053
2054 tlb_flush_jmp_cache(env, addr);
2055 }
2056
2057 /* update the TLBs so that writes to code in the virtual page 'addr'
2058 can be detected */
2059 static void tlb_protect_code(ram_addr_t ram_addr)
2060 {
2061 cpu_physical_memory_reset_dirty(ram_addr,
2062 ram_addr + TARGET_PAGE_SIZE,
2063 CODE_DIRTY_FLAG);
2064 }
2065
2066 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2067 tested for self modifying code */
2068 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2069 target_ulong vaddr)
2070 {
2071 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2072 }
2073
2074 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2075 unsigned long start, unsigned long length)
2076 {
2077 unsigned long addr;
2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2079 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2080 if ((addr - start) < length) {
2081 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2082 }
2083 }
2084 }
2085
2086 /* Note: start and end must be within the same ram block. */
2087 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2088 int dirty_flags)
2089 {
2090 CPUState *env;
2091 unsigned long length, start1;
2092 int i;
2093
2094 start &= TARGET_PAGE_MASK;
2095 end = TARGET_PAGE_ALIGN(end);
2096
2097 length = end - start;
2098 if (length == 0)
2099 return;
2100 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2101
2102 /* we modify the TLB cache so that the dirty bit will be set again
2103 when accessing the range */
2104 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2105 /* Check that we don't span multiple blocks - this breaks the
2106 address comparisons below. */
2107 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2108 != (end - 1) - start) {
2109 abort();
2110 }
2111
2112 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2113 int mmu_idx;
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2115 for(i = 0; i < CPU_TLB_SIZE; i++)
2116 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2117 start1, length);
2118 }
2119 }
2120 }
2121
2122 int cpu_physical_memory_set_dirty_tracking(int enable)
2123 {
2124 int ret = 0;
2125 in_migration = enable;
2126 ret = cpu_notify_migration_log(!!enable);
2127 return ret;
2128 }
2129
2130 int cpu_physical_memory_get_dirty_tracking(void)
2131 {
2132 return in_migration;
2133 }
2134
2135 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2136 target_phys_addr_t end_addr)
2137 {
2138 int ret;
2139
2140 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2141 return ret;
2142 }
2143
2144 int cpu_physical_log_start(target_phys_addr_t start_addr,
2145 ram_addr_t size)
2146 {
2147 CPUPhysMemoryClient *client;
2148 QLIST_FOREACH(client, &memory_client_list, list) {
2149 if (client->log_start) {
2150 int r = client->log_start(client, start_addr, size);
2151 if (r < 0) {
2152 return r;
2153 }
2154 }
2155 }
2156 return 0;
2157 }
2158
2159 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2160 ram_addr_t size)
2161 {
2162 CPUPhysMemoryClient *client;
2163 QLIST_FOREACH(client, &memory_client_list, list) {
2164 if (client->log_stop) {
2165 int r = client->log_stop(client, start_addr, size);
2166 if (r < 0) {
2167 return r;
2168 }
2169 }
2170 }
2171 return 0;
2172 }
2173
2174 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2175 {
2176 ram_addr_t ram_addr;
2177 void *p;
2178
2179 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2180 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2181 + tlb_entry->addend);
2182 ram_addr = qemu_ram_addr_from_host_nofail(p);
2183 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2184 tlb_entry->addr_write |= TLB_NOTDIRTY;
2185 }
2186 }
2187 }
2188
2189 /* update the TLB according to the current state of the dirty bits */
2190 void cpu_tlb_update_dirty(CPUState *env)
2191 {
2192 int i;
2193 int mmu_idx;
2194 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2195 for(i = 0; i < CPU_TLB_SIZE; i++)
2196 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2197 }
2198 }
2199
2200 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2201 {
2202 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2203 tlb_entry->addr_write = vaddr;
2204 }
2205
2206 /* update the TLB corresponding to virtual page vaddr
2207 so that it is no longer dirty */
2208 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2209 {
2210 int i;
2211 int mmu_idx;
2212
2213 vaddr &= TARGET_PAGE_MASK;
2214 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2215 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2216 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2217 }
2218
2219 /* Our TLB does not support large pages, so remember the area covered by
2220 large pages and trigger a full TLB flush if these are invalidated. */
2221 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2222 target_ulong size)
2223 {
2224 target_ulong mask = ~(size - 1);
2225
2226 if (env->tlb_flush_addr == (target_ulong)-1) {
2227 env->tlb_flush_addr = vaddr & mask;
2228 env->tlb_flush_mask = mask;
2229 return;
2230 }
2231 /* Extend the existing region to include the new page.
2232 This is a compromise between unnecessary flushes and the cost
2233 of maintaining a full variable size TLB. */
2234 mask &= env->tlb_flush_mask;
2235 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2236 mask <<= 1;
2237 }
2238 env->tlb_flush_addr &= mask;
2239 env->tlb_flush_mask = mask;
2240 }
2241
2242 /* Add a new TLB entry. At most one entry for a given virtual address
2243 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2244 supplied size is only used by tlb_flush_page. */
2245 void tlb_set_page(CPUState *env, target_ulong vaddr,
2246 target_phys_addr_t paddr, int prot,
2247 int mmu_idx, target_ulong size)
2248 {
2249 PhysPageDesc *p;
2250 unsigned long pd;
2251 unsigned int index;
2252 target_ulong address;
2253 target_ulong code_address;
2254 unsigned long addend;
2255 CPUTLBEntry *te;
2256 CPUWatchpoint *wp;
2257 target_phys_addr_t iotlb;
2258
2259 assert(size >= TARGET_PAGE_SIZE);
2260 if (size != TARGET_PAGE_SIZE) {
2261 tlb_add_large_page(env, vaddr, size);
2262 }
2263 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2264 if (!p) {
2265 pd = IO_MEM_UNASSIGNED;
2266 } else {
2267 pd = p->phys_offset;
2268 }
2269 #if defined(DEBUG_TLB)
2270 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2271 " prot=%x idx=%d pd=0x%08lx\n",
2272 vaddr, paddr, prot, mmu_idx, pd);
2273 #endif
2274
2275 address = vaddr;
2276 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2277 /* IO memory case (romd handled later) */
2278 address |= TLB_MMIO;
2279 }
2280 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2281 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2282 /* Normal RAM. */
2283 iotlb = pd & TARGET_PAGE_MASK;
2284 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2285 iotlb |= IO_MEM_NOTDIRTY;
2286 else
2287 iotlb |= IO_MEM_ROM;
2288 } else {
2289 /* IO handlers are currently passed a physical address.
2290 It would be nice to pass an offset from the base address
2291 of that region. This would avoid having to special case RAM,
2292 and avoid full address decoding in every device.
2293 We can't use the high bits of pd for this because
2294 IO_MEM_ROMD uses these as a ram address. */
2295 iotlb = (pd & ~TARGET_PAGE_MASK);
2296 if (p) {
2297 iotlb += p->region_offset;
2298 } else {
2299 iotlb += paddr;
2300 }
2301 }
2302
2303 code_address = address;
2304 /* Make accesses to pages with watchpoints go via the
2305 watchpoint trap routines. */
2306 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2307 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2308 /* Avoid trapping reads of pages with a write breakpoint. */
2309 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2310 iotlb = io_mem_watch + paddr;
2311 address |= TLB_MMIO;
2312 break;
2313 }
2314 }
2315 }
2316
2317 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2318 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2319 te = &env->tlb_table[mmu_idx][index];
2320 te->addend = addend - vaddr;
2321 if (prot & PAGE_READ) {
2322 te->addr_read = address;
2323 } else {
2324 te->addr_read = -1;
2325 }
2326
2327 if (prot & PAGE_EXEC) {
2328 te->addr_code = code_address;
2329 } else {
2330 te->addr_code = -1;
2331 }
2332 if (prot & PAGE_WRITE) {
2333 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2334 (pd & IO_MEM_ROMD)) {
2335 /* Write access calls the I/O callback. */
2336 te->addr_write = address | TLB_MMIO;
2337 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2338 !cpu_physical_memory_is_dirty(pd)) {
2339 te->addr_write = address | TLB_NOTDIRTY;
2340 } else {
2341 te->addr_write = address;
2342 }
2343 } else {
2344 te->addr_write = -1;
2345 }
2346 }
2347
2348 #else
2349
2350 void tlb_flush(CPUState *env, int flush_global)
2351 {
2352 }
2353
2354 void tlb_flush_page(CPUState *env, target_ulong addr)
2355 {
2356 }
2357
2358 /*
2359 * Walks guest process memory "regions" one by one
2360 * and calls callback function 'fn' for each region.
2361 */
2362
2363 struct walk_memory_regions_data
2364 {
2365 walk_memory_regions_fn fn;
2366 void *priv;
2367 unsigned long start;
2368 int prot;
2369 };
2370
2371 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2372 abi_ulong end, int new_prot)
2373 {
2374 if (data->start != -1ul) {
2375 int rc = data->fn(data->priv, data->start, end, data->prot);
2376 if (rc != 0) {
2377 return rc;
2378 }
2379 }
2380
2381 data->start = (new_prot ? end : -1ul);
2382 data->prot = new_prot;
2383
2384 return 0;
2385 }
2386
2387 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2388 abi_ulong base, int level, void **lp)
2389 {
2390 abi_ulong pa;
2391 int i, rc;
2392
2393 if (*lp == NULL) {
2394 return walk_memory_regions_end(data, base, 0);
2395 }
2396
2397 if (level == 0) {
2398 PageDesc *pd = *lp;
2399 for (i = 0; i < L2_SIZE; ++i) {
2400 int prot = pd[i].flags;
2401
2402 pa = base | (i << TARGET_PAGE_BITS);
2403 if (prot != data->prot) {
2404 rc = walk_memory_regions_end(data, pa, prot);
2405 if (rc != 0) {
2406 return rc;
2407 }
2408 }
2409 }
2410 } else {
2411 void **pp = *lp;
2412 for (i = 0; i < L2_SIZE; ++i) {
2413 pa = base | ((abi_ulong)i <<
2414 (TARGET_PAGE_BITS + L2_BITS * level));
2415 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2416 if (rc != 0) {
2417 return rc;
2418 }
2419 }
2420 }
2421
2422 return 0;
2423 }
2424
2425 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2426 {
2427 struct walk_memory_regions_data data;
2428 unsigned long i;
2429
2430 data.fn = fn;
2431 data.priv = priv;
2432 data.start = -1ul;
2433 data.prot = 0;
2434
2435 for (i = 0; i < V_L1_SIZE; i++) {
2436 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2437 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2438 if (rc != 0) {
2439 return rc;
2440 }
2441 }
2442
2443 return walk_memory_regions_end(&data, 0, 0);
2444 }
2445
2446 static int dump_region(void *priv, abi_ulong start,
2447 abi_ulong end, unsigned long prot)
2448 {
2449 FILE *f = (FILE *)priv;
2450
2451 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2452 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2453 start, end, end - start,
2454 ((prot & PAGE_READ) ? 'r' : '-'),
2455 ((prot & PAGE_WRITE) ? 'w' : '-'),
2456 ((prot & PAGE_EXEC) ? 'x' : '-'));
2457
2458 return (0);
2459 }
2460
2461 /* dump memory mappings */
2462 void page_dump(FILE *f)
2463 {
2464 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2465 "start", "end", "size", "prot");
2466 walk_memory_regions(f, dump_region);
2467 }
2468
2469 int page_get_flags(target_ulong address)
2470 {
2471 PageDesc *p;
2472
2473 p = page_find(address >> TARGET_PAGE_BITS);
2474 if (!p)
2475 return 0;
2476 return p->flags;
2477 }
2478
2479 /* Modify the flags of a page and invalidate the code if necessary.
2480 The flag PAGE_WRITE_ORG is positioned automatically depending
2481 on PAGE_WRITE. The mmap_lock should already be held. */
2482 void page_set_flags(target_ulong start, target_ulong end, int flags)
2483 {
2484 target_ulong addr, len;
2485
2486 /* This function should never be called with addresses outside the
2487 guest address space. If this assert fires, it probably indicates
2488 a missing call to h2g_valid. */
2489 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2490 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2491 #endif
2492 assert(start < end);
2493
2494 start = start & TARGET_PAGE_MASK;
2495 end = TARGET_PAGE_ALIGN(end);
2496
2497 if (flags & PAGE_WRITE) {
2498 flags |= PAGE_WRITE_ORG;
2499 }
2500
2501 for (addr = start, len = end - start;
2502 len != 0;
2503 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2504 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2505
2506 /* If the write protection bit is set, then we invalidate
2507 the code inside. */
2508 if (!(p->flags & PAGE_WRITE) &&
2509 (flags & PAGE_WRITE) &&
2510 p->first_tb) {
2511 tb_invalidate_phys_page(addr, 0, NULL);
2512 }
2513 p->flags = flags;
2514 }
2515 }
2516
2517 int page_check_range(target_ulong start, target_ulong len, int flags)
2518 {
2519 PageDesc *p;
2520 target_ulong end;
2521 target_ulong addr;
2522
2523 /* This function should never be called with addresses outside the
2524 guest address space. If this assert fires, it probably indicates
2525 a missing call to h2g_valid. */
2526 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2527 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2528 #endif
2529
2530 if (len == 0) {
2531 return 0;
2532 }
2533 if (start + len - 1 < start) {
2534 /* We've wrapped around. */
2535 return -1;
2536 }
2537
2538 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2539 start = start & TARGET_PAGE_MASK;
2540
2541 for (addr = start, len = end - start;
2542 len != 0;
2543 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2544 p = page_find(addr >> TARGET_PAGE_BITS);
2545 if( !p )
2546 return -1;
2547 if( !(p->flags & PAGE_VALID) )
2548 return -1;
2549
2550 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2551 return -1;
2552 if (flags & PAGE_WRITE) {
2553 if (!(p->flags & PAGE_WRITE_ORG))
2554 return -1;
2555 /* unprotect the page if it was put read-only because it
2556 contains translated code */
2557 if (!(p->flags & PAGE_WRITE)) {
2558 if (!page_unprotect(addr, 0, NULL))
2559 return -1;
2560 }
2561 return 0;
2562 }
2563 }
2564 return 0;
2565 }
2566
2567 /* called from signal handler: invalidate the code and unprotect the
2568 page. Return TRUE if the fault was successfully handled. */
2569 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2570 {
2571 unsigned int prot;
2572 PageDesc *p;
2573 target_ulong host_start, host_end, addr;
2574
2575 /* Technically this isn't safe inside a signal handler. However we
2576 know this only ever happens in a synchronous SEGV handler, so in
2577 practice it seems to be ok. */
2578 mmap_lock();
2579
2580 p = page_find(address >> TARGET_PAGE_BITS);
2581 if (!p) {
2582 mmap_unlock();
2583 return 0;
2584 }
2585
2586 /* if the page was really writable, then we change its
2587 protection back to writable */
2588 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2589 host_start = address & qemu_host_page_mask;
2590 host_end = host_start + qemu_host_page_size;
2591
2592 prot = 0;
2593 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2594 p = page_find(addr >> TARGET_PAGE_BITS);
2595 p->flags |= PAGE_WRITE;
2596 prot |= p->flags;
2597
2598 /* and since the content will be modified, we must invalidate
2599 the corresponding translated code. */
2600 tb_invalidate_phys_page(addr, pc, puc);
2601 #ifdef DEBUG_TB_CHECK
2602 tb_invalidate_check(addr);
2603 #endif
2604 }
2605 mprotect((void *)g2h(host_start), qemu_host_page_size,
2606 prot & PAGE_BITS);
2607
2608 mmap_unlock();
2609 return 1;
2610 }
2611 mmap_unlock();
2612 return 0;
2613 }
2614
2615 static inline void tlb_set_dirty(CPUState *env,
2616 unsigned long addr, target_ulong vaddr)
2617 {
2618 }
2619 #endif /* defined(CONFIG_USER_ONLY) */
2620
2621 #if !defined(CONFIG_USER_ONLY)
2622
2623 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2624 typedef struct subpage_t {
2625 target_phys_addr_t base;
2626 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2627 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2628 } subpage_t;
2629
2630 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2631 ram_addr_t memory, ram_addr_t region_offset);
2632 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2633 ram_addr_t orig_memory,
2634 ram_addr_t region_offset);
2635 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2636 need_subpage) \
2637 do { \
2638 if (addr > start_addr) \
2639 start_addr2 = 0; \
2640 else { \
2641 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2642 if (start_addr2 > 0) \
2643 need_subpage = 1; \
2644 } \
2645 \
2646 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2647 end_addr2 = TARGET_PAGE_SIZE - 1; \
2648 else { \
2649 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2650 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2651 need_subpage = 1; \
2652 } \
2653 } while (0)
2654
2655 /* register physical memory.
2656 For RAM, 'size' must be a multiple of the target page size.
2657 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2658 io memory page. The address used when calling the IO function is
2659 the offset from the start of the region, plus region_offset. Both
2660 start_addr and region_offset are rounded down to a page boundary
2661 before calculating this offset. This should not be a problem unless
2662 the low bits of start_addr and region_offset differ. */
2663 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
2664 ram_addr_t size,
2665 ram_addr_t phys_offset,
2666 ram_addr_t region_offset,
2667 bool log_dirty)
2668 {
2669 target_phys_addr_t addr, end_addr;
2670 PhysPageDesc *p;
2671 CPUState *env;
2672 ram_addr_t orig_size = size;
2673 subpage_t *subpage;
2674
2675 assert(size);
2676 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
2677
2678 if (phys_offset == IO_MEM_UNASSIGNED) {
2679 region_offset = start_addr;
2680 }
2681 region_offset &= TARGET_PAGE_MASK;
2682 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2683 end_addr = start_addr + (target_phys_addr_t)size;
2684
2685 addr = start_addr;
2686 do {
2687 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2688 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2689 ram_addr_t orig_memory = p->phys_offset;
2690 target_phys_addr_t start_addr2, end_addr2;
2691 int need_subpage = 0;
2692
2693 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2694 need_subpage);
2695 if (need_subpage) {
2696 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2697 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2698 &p->phys_offset, orig_memory,
2699 p->region_offset);
2700 } else {
2701 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2702 >> IO_MEM_SHIFT];
2703 }
2704 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2705 region_offset);
2706 p->region_offset = 0;
2707 } else {
2708 p->phys_offset = phys_offset;
2709 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2710 (phys_offset & IO_MEM_ROMD))
2711 phys_offset += TARGET_PAGE_SIZE;
2712 }
2713 } else {
2714 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2715 p->phys_offset = phys_offset;
2716 p->region_offset = region_offset;
2717 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2718 (phys_offset & IO_MEM_ROMD)) {
2719 phys_offset += TARGET_PAGE_SIZE;
2720 } else {
2721 target_phys_addr_t start_addr2, end_addr2;
2722 int need_subpage = 0;
2723
2724 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2725 end_addr2, need_subpage);
2726
2727 if (need_subpage) {
2728 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2729 &p->phys_offset, IO_MEM_UNASSIGNED,
2730 addr & TARGET_PAGE_MASK);
2731 subpage_register(subpage, start_addr2, end_addr2,
2732 phys_offset, region_offset);
2733 p->region_offset = 0;
2734 }
2735 }
2736 }
2737 region_offset += TARGET_PAGE_SIZE;
2738 addr += TARGET_PAGE_SIZE;
2739 } while (addr != end_addr);
2740
2741 /* since each CPU stores ram addresses in its TLB cache, we must
2742 reset the modified entries */
2743 /* XXX: slow ! */
2744 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2745 tlb_flush(env, 1);
2746 }
2747 }
2748
2749 /* XXX: temporary until new memory mapping API */
2750 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2751 {
2752 PhysPageDesc *p;
2753
2754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2755 if (!p)
2756 return IO_MEM_UNASSIGNED;
2757 return p->phys_offset;
2758 }
2759
2760 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2761 {
2762 if (kvm_enabled())
2763 kvm_coalesce_mmio_region(addr, size);
2764 }
2765
2766 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2767 {
2768 if (kvm_enabled())
2769 kvm_uncoalesce_mmio_region(addr, size);
2770 }
2771
2772 void qemu_flush_coalesced_mmio_buffer(void)
2773 {
2774 if (kvm_enabled())
2775 kvm_flush_coalesced_mmio_buffer();
2776 }
2777
2778 #if defined(__linux__) && !defined(TARGET_S390X)
2779
2780 #include <sys/vfs.h>
2781
2782 #define HUGETLBFS_MAGIC 0x958458f6
2783
2784 static long gethugepagesize(const char *path)
2785 {
2786 struct statfs fs;
2787 int ret;
2788
2789 do {
2790 ret = statfs(path, &fs);
2791 } while (ret != 0 && errno == EINTR);
2792
2793 if (ret != 0) {
2794 perror(path);
2795 return 0;
2796 }
2797
2798 if (fs.f_type != HUGETLBFS_MAGIC)
2799 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2800
2801 return fs.f_bsize;
2802 }
2803
2804 static void *file_ram_alloc(RAMBlock *block,
2805 ram_addr_t memory,
2806 const char *path)
2807 {
2808 char *filename;
2809 void *area;
2810 int fd;
2811 #ifdef MAP_POPULATE
2812 int flags;
2813 #endif
2814 unsigned long hpagesize;
2815
2816 hpagesize = gethugepagesize(path);
2817 if (!hpagesize) {
2818 return NULL;
2819 }
2820
2821 if (memory < hpagesize) {
2822 return NULL;
2823 }
2824
2825 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2826 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2827 return NULL;
2828 }
2829
2830 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2831 return NULL;
2832 }
2833
2834 fd = mkstemp(filename);
2835 if (fd < 0) {
2836 perror("unable to create backing store for hugepages");
2837 free(filename);
2838 return NULL;
2839 }
2840 unlink(filename);
2841 free(filename);
2842
2843 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2844
2845 /*
2846 * ftruncate is not supported by hugetlbfs in older
2847 * hosts, so don't bother bailing out on errors.
2848 * If anything goes wrong with it under other filesystems,
2849 * mmap will fail.
2850 */
2851 if (ftruncate(fd, memory))
2852 perror("ftruncate");
2853
2854 #ifdef MAP_POPULATE
2855 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2856 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2857 * to sidestep this quirk.
2858 */
2859 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2860 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2861 #else
2862 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2863 #endif
2864 if (area == MAP_FAILED) {
2865 perror("file_ram_alloc: can't mmap RAM pages");
2866 close(fd);
2867 return (NULL);
2868 }
2869 block->fd = fd;
2870 return area;
2871 }
2872 #endif
2873
2874 static ram_addr_t find_ram_offset(ram_addr_t size)
2875 {
2876 RAMBlock *block, *next_block;
2877 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2878
2879 if (QLIST_EMPTY(&ram_list.blocks))
2880 return 0;
2881
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
2883 ram_addr_t end, next = RAM_ADDR_MAX;
2884
2885 end = block->offset + block->length;
2886
2887 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2888 if (next_block->offset >= end) {
2889 next = MIN(next, next_block->offset);
2890 }
2891 }
2892 if (next - end >= size && next - end < mingap) {
2893 offset = end;
2894 mingap = next - end;
2895 }
2896 }
2897
2898 if (offset == RAM_ADDR_MAX) {
2899 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2900 (uint64_t)size);
2901 abort();
2902 }
2903
2904 return offset;
2905 }
2906
2907 static ram_addr_t last_ram_offset(void)
2908 {
2909 RAMBlock *block;
2910 ram_addr_t last = 0;
2911
2912 QLIST_FOREACH(block, &ram_list.blocks, next)
2913 last = MAX(last, block->offset + block->length);
2914
2915 return last;
2916 }
2917
2918 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2919 ram_addr_t size, void *host,
2920 MemoryRegion *mr)
2921 {
2922 RAMBlock *new_block, *block;
2923
2924 size = TARGET_PAGE_ALIGN(size);
2925 new_block = g_malloc0(sizeof(*new_block));
2926
2927 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2928 char *id = dev->parent_bus->info->get_dev_path(dev);
2929 if (id) {
2930 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2931 g_free(id);
2932 }
2933 }
2934 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2935
2936 QLIST_FOREACH(block, &ram_list.blocks, next) {
2937 if (!strcmp(block->idstr, new_block->idstr)) {
2938 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2939 new_block->idstr);
2940 abort();
2941 }
2942 }
2943
2944 new_block->offset = find_ram_offset(size);
2945 if (host) {
2946 new_block->host = host;
2947 new_block->flags |= RAM_PREALLOC_MASK;
2948 } else {
2949 if (mem_path) {
2950 #if defined (__linux__) && !defined(TARGET_S390X)
2951 new_block->host = file_ram_alloc(new_block, size, mem_path);
2952 if (!new_block->host) {
2953 new_block->host = qemu_vmalloc(size);
2954 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2955 }
2956 #else
2957 fprintf(stderr, "-mem-path option unsupported\n");
2958 exit(1);
2959 #endif
2960 } else {
2961 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2962 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2963 an system defined value, which is at least 256GB. Larger systems
2964 have larger values. We put the guest between the end of data
2965 segment (system break) and this value. We use 32GB as a base to
2966 have enough room for the system break to grow. */
2967 new_block->host = mmap((void*)0x800000000, size,
2968 PROT_EXEC|PROT_READ|PROT_WRITE,
2969 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2970 if (new_block->host == MAP_FAILED) {
2971 fprintf(stderr, "Allocating RAM failed\n");
2972 abort();
2973 }
2974 #else
2975 if (xen_enabled()) {
2976 xen_ram_alloc(new_block->offset, size, mr);
2977 } else {
2978 new_block->host = qemu_vmalloc(size);
2979 }
2980 #endif
2981 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2982 }
2983 }
2984 new_block->length = size;
2985
2986 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2987
2988 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2989 last_ram_offset() >> TARGET_PAGE_BITS);
2990 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2991 0xff, size >> TARGET_PAGE_BITS);
2992
2993 if (kvm_enabled())
2994 kvm_setup_guest_memory(new_block->host, size);
2995
2996 return new_block->offset;
2997 }
2998
2999 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size,
3000 MemoryRegion *mr)
3001 {
3002 return qemu_ram_alloc_from_ptr(dev, name, size, NULL, mr);
3003 }
3004
3005 void qemu_ram_free_from_ptr(ram_addr_t addr)
3006 {
3007 RAMBlock *block;
3008
3009 QLIST_FOREACH(block, &ram_list.blocks, next) {
3010 if (addr == block->offset) {
3011 QLIST_REMOVE(block, next);
3012 g_free(block);
3013 return;
3014 }
3015 }
3016 }
3017
3018 void qemu_ram_free(ram_addr_t addr)
3019 {
3020 RAMBlock *block;
3021
3022 QLIST_FOREACH(block, &ram_list.blocks, next) {
3023 if (addr == block->offset) {
3024 QLIST_REMOVE(block, next);
3025 if (block->flags & RAM_PREALLOC_MASK) {
3026 ;
3027 } else if (mem_path) {
3028 #if defined (__linux__) && !defined(TARGET_S390X)
3029 if (block->fd) {
3030 munmap(block->host, block->length);
3031 close(block->fd);
3032 } else {
3033 qemu_vfree(block->host);
3034 }
3035 #else
3036 abort();
3037 #endif
3038 } else {
3039 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3040 munmap(block->host, block->length);
3041 #else
3042 if (xen_enabled()) {
3043 xen_invalidate_map_cache_entry(block->host);
3044 } else {
3045 qemu_vfree(block->host);
3046 }
3047 #endif
3048 }
3049 g_free(block);
3050 return;
3051 }
3052 }
3053
3054 }
3055
3056 #ifndef _WIN32
3057 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3058 {
3059 RAMBlock *block;
3060 ram_addr_t offset;
3061 int flags;
3062 void *area, *vaddr;
3063
3064 QLIST_FOREACH(block, &ram_list.blocks, next) {
3065 offset = addr - block->offset;
3066 if (offset < block->length) {
3067 vaddr = block->host + offset;
3068 if (block->flags & RAM_PREALLOC_MASK) {
3069 ;
3070 } else {
3071 flags = MAP_FIXED;
3072 munmap(vaddr, length);
3073 if (mem_path) {
3074 #if defined(__linux__) && !defined(TARGET_S390X)
3075 if (block->fd) {
3076 #ifdef MAP_POPULATE
3077 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3078 MAP_PRIVATE;
3079 #else
3080 flags |= MAP_PRIVATE;
3081 #endif
3082 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3083 flags, block->fd, offset);
3084 } else {
3085 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3086 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3087 flags, -1, 0);
3088 }
3089 #else
3090 abort();
3091 #endif
3092 } else {
3093 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3094 flags |= MAP_SHARED | MAP_ANONYMOUS;
3095 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3096 flags, -1, 0);
3097 #else
3098 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3099 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3100 flags, -1, 0);
3101 #endif
3102 }
3103 if (area != vaddr) {
3104 fprintf(stderr, "Could not remap addr: "
3105 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3106 length, addr);
3107 exit(1);
3108 }
3109 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3110 }
3111 return;
3112 }
3113 }
3114 }
3115 #endif /* !_WIN32 */
3116
3117 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3118 With the exception of the softmmu code in this file, this should
3119 only be used for local memory (e.g. video ram) that the device owns,
3120 and knows it isn't going to access beyond the end of the block.
3121
3122 It should not be used for general purpose DMA.
3123 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3124 */
3125 void *qemu_get_ram_ptr(ram_addr_t addr)
3126 {
3127 RAMBlock *block;
3128
3129 QLIST_FOREACH(block, &ram_list.blocks, next) {
3130 if (addr - block->offset < block->length) {
3131 /* Move this entry to to start of the list. */
3132 if (block != QLIST_FIRST(&ram_list.blocks)) {
3133 QLIST_REMOVE(block, next);
3134 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3135 }
3136 if (xen_enabled()) {
3137 /* We need to check if the requested address is in the RAM
3138 * because we don't want to map the entire memory in QEMU.
3139 * In that case just map until the end of the page.
3140 */
3141 if (block->offset == 0) {
3142 return xen_map_cache(addr, 0, 0);
3143 } else if (block->host == NULL) {
3144 block->host =
3145 xen_map_cache(block->offset, block->length, 1);
3146 }
3147 }
3148 return block->host + (addr - block->offset);
3149 }
3150 }
3151
3152 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3153 abort();
3154
3155 return NULL;
3156 }
3157
3158 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3159 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3160 */
3161 void *qemu_safe_ram_ptr(ram_addr_t addr)
3162 {
3163 RAMBlock *block;
3164
3165 QLIST_FOREACH(block, &ram_list.blocks, next) {
3166 if (addr - block->offset < block->length) {
3167 if (xen_enabled()) {
3168 /* We need to check if the requested address is in the RAM
3169 * because we don't want to map the entire memory in QEMU.
3170 * In that case just map until the end of the page.
3171 */
3172 if (block->offset == 0) {
3173 return xen_map_cache(addr, 0, 0);
3174 } else if (block->host == NULL) {
3175 block->host =
3176 xen_map_cache(block->offset, block->length, 1);
3177 }
3178 }
3179 return block->host + (addr - block->offset);
3180 }
3181 }
3182
3183 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3184 abort();
3185
3186 return NULL;
3187 }
3188
3189 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3190 * but takes a size argument */
3191 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3192 {
3193 if (*size == 0) {
3194 return NULL;
3195 }
3196 if (xen_enabled()) {
3197 return xen_map_cache(addr, *size, 1);
3198 } else {
3199 RAMBlock *block;
3200
3201 QLIST_FOREACH(block, &ram_list.blocks, next) {
3202 if (addr - block->offset < block->length) {
3203 if (addr - block->offset + *size > block->length)
3204 *size = block->length - addr + block->offset;
3205 return block->host + (addr - block->offset);
3206 }
3207 }
3208
3209 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3210 abort();
3211 }
3212 }
3213
3214 void qemu_put_ram_ptr(void *addr)
3215 {
3216 trace_qemu_put_ram_ptr(addr);
3217 }
3218
3219 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3220 {
3221 RAMBlock *block;
3222 uint8_t *host = ptr;
3223
3224 if (xen_enabled()) {
3225 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3226 return 0;
3227 }
3228
3229 QLIST_FOREACH(block, &ram_list.blocks, next) {
3230 /* This case append when the block is not mapped. */
3231 if (block->host == NULL) {
3232 continue;
3233 }
3234 if (host - block->host < block->length) {
3235 *ram_addr = block->offset + (host - block->host);
3236 return 0;
3237 }
3238 }
3239
3240 return -1;
3241 }
3242
3243 /* Some of the softmmu routines need to translate from a host pointer
3244 (typically a TLB entry) back to a ram offset. */
3245 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3246 {
3247 ram_addr_t ram_addr;
3248
3249 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3250 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3251 abort();
3252 }
3253 return ram_addr;
3254 }
3255
3256 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3257 {
3258 #ifdef DEBUG_UNASSIGNED
3259 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3260 #endif
3261 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3262 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
3263 #endif
3264 return 0;
3265 }
3266
3267 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3268 {
3269 #ifdef DEBUG_UNASSIGNED
3270 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3271 #endif
3272 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3273 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
3274 #endif
3275 return 0;
3276 }
3277
3278 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3279 {
3280 #ifdef DEBUG_UNASSIGNED
3281 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3282 #endif
3283 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3284 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
3285 #endif
3286 return 0;
3287 }
3288
3289 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3290 {
3291 #ifdef DEBUG_UNASSIGNED
3292 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3293 #endif
3294 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3295 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
3296 #endif
3297 }
3298
3299 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3300 {
3301 #ifdef DEBUG_UNASSIGNED
3302 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3303 #endif
3304 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3305 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
3306 #endif
3307 }
3308
3309 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3310 {
3311 #ifdef DEBUG_UNASSIGNED
3312 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3313 #endif
3314 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3315 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
3316 #endif
3317 }
3318
3319 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3320 unassigned_mem_readb,
3321 unassigned_mem_readw,
3322 unassigned_mem_readl,
3323 };
3324
3325 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3326 unassigned_mem_writeb,
3327 unassigned_mem_writew,
3328 unassigned_mem_writel,
3329 };
3330
3331 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3332 uint32_t val)
3333 {
3334 int dirty_flags;
3335 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3336 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3337 #if !defined(CONFIG_USER_ONLY)
3338 tb_invalidate_phys_page_fast(ram_addr, 1);
3339 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3340 #endif
3341 }
3342 stb_p(qemu_get_ram_ptr(ram_addr), val);
3343 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3344 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3345 /* we remove the notdirty callback only if the code has been
3346 flushed */
3347 if (dirty_flags == 0xff)
3348 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3349 }
3350
3351 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3352 uint32_t val)
3353 {
3354 int dirty_flags;
3355 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3356 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3357 #if !defined(CONFIG_USER_ONLY)
3358 tb_invalidate_phys_page_fast(ram_addr, 2);
3359 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3360 #endif
3361 }
3362 stw_p(qemu_get_ram_ptr(ram_addr), val);
3363 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3364 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3365 /* we remove the notdirty callback only if the code has been
3366 flushed */
3367 if (dirty_flags == 0xff)
3368 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3369 }
3370
3371 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3372 uint32_t val)
3373 {
3374 int dirty_flags;
3375 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3376 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3377 #if !defined(CONFIG_USER_ONLY)
3378 tb_invalidate_phys_page_fast(ram_addr, 4);
3379 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3380 #endif
3381 }
3382 stl_p(qemu_get_ram_ptr(ram_addr), val);
3383 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3384 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3385 /* we remove the notdirty callback only if the code has been
3386 flushed */
3387 if (dirty_flags == 0xff)
3388 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3389 }
3390
3391 static CPUReadMemoryFunc * const error_mem_read[3] = {
3392 NULL, /* never used */
3393 NULL, /* never used */
3394 NULL, /* never used */
3395 };
3396
3397 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3398 notdirty_mem_writeb,
3399 notdirty_mem_writew,
3400 notdirty_mem_writel,
3401 };
3402
3403 /* Generate a debug exception if a watchpoint has been hit. */
3404 static void check_watchpoint(int offset, int len_mask, int flags)
3405 {
3406 CPUState *env = cpu_single_env;
3407 target_ulong pc, cs_base;
3408 TranslationBlock *tb;
3409 target_ulong vaddr;
3410 CPUWatchpoint *wp;
3411 int cpu_flags;
3412
3413 if (env->watchpoint_hit) {
3414 /* We re-entered the check after replacing the TB. Now raise
3415 * the debug interrupt so that is will trigger after the
3416 * current instruction. */
3417 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3418 return;
3419 }
3420 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3421 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3422 if ((vaddr == (wp->vaddr & len_mask) ||
3423 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3424 wp->flags |= BP_WATCHPOINT_HIT;
3425 if (!env->watchpoint_hit) {
3426 env->watchpoint_hit = wp;
3427 tb = tb_find_pc(env->mem_io_pc);
3428 if (!tb) {
3429 cpu_abort(env, "check_watchpoint: could not find TB for "
3430 "pc=%p", (void *)env->mem_io_pc);
3431 }
3432 cpu_restore_state(tb, env, env->mem_io_pc);
3433 tb_phys_invalidate(tb, -1);
3434 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3435 env->exception_index = EXCP_DEBUG;
3436 } else {
3437 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3438 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3439 }
3440 cpu_resume_from_signal(env, NULL);
3441 }
3442 } else {
3443 wp->flags &= ~BP_WATCHPOINT_HIT;
3444 }
3445 }
3446 }
3447
3448 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3449 so these check for a hit then pass through to the normal out-of-line
3450 phys routines. */
3451 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3452 {
3453 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3454 return ldub_phys(addr);
3455 }
3456
3457 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3458 {
3459 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3460 return lduw_phys(addr);
3461 }
3462
3463 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3464 {
3465 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3466 return ldl_phys(addr);
3467 }
3468
3469 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3470 uint32_t val)
3471 {
3472 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3473 stb_phys(addr, val);
3474 }
3475
3476 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3477 uint32_t val)
3478 {
3479 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3480 stw_phys(addr, val);
3481 }
3482
3483 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3484 uint32_t val)
3485 {
3486 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3487 stl_phys(addr, val);
3488 }
3489
3490 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3491 watch_mem_readb,
3492 watch_mem_readw,
3493 watch_mem_readl,
3494 };
3495
3496 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3497 watch_mem_writeb,
3498 watch_mem_writew,
3499 watch_mem_writel,
3500 };
3501
3502 static inline uint32_t subpage_readlen (subpage_t *mmio,
3503 target_phys_addr_t addr,
3504 unsigned int len)
3505 {
3506 unsigned int idx = SUBPAGE_IDX(addr);
3507 #if defined(DEBUG_SUBPAGE)
3508 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3509 mmio, len, addr, idx);
3510 #endif
3511
3512 addr += mmio->region_offset[idx];
3513 idx = mmio->sub_io_index[idx];
3514 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3515 }
3516
3517 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3518 uint32_t value, unsigned int len)
3519 {
3520 unsigned int idx = SUBPAGE_IDX(addr);
3521 #if defined(DEBUG_SUBPAGE)
3522 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3523 __func__, mmio, len, addr, idx, value);
3524 #endif
3525
3526 addr += mmio->region_offset[idx];
3527 idx = mmio->sub_io_index[idx];
3528 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3529 }
3530
3531 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3532 {
3533 return subpage_readlen(opaque, addr, 0);
3534 }
3535
3536 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3537 uint32_t value)
3538 {
3539 subpage_writelen(opaque, addr, value, 0);
3540 }
3541
3542 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3543 {
3544 return subpage_readlen(opaque, addr, 1);
3545 }
3546
3547 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3548 uint32_t value)
3549 {
3550 subpage_writelen(opaque, addr, value, 1);
3551 }
3552
3553 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3554 {
3555 return subpage_readlen(opaque, addr, 2);
3556 }
3557
3558 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3559 uint32_t value)
3560 {
3561 subpage_writelen(opaque, addr, value, 2);
3562 }
3563
3564 static CPUReadMemoryFunc * const subpage_read[] = {
3565 &subpage_readb,
3566 &subpage_readw,
3567 &subpage_readl,
3568 };
3569
3570 static CPUWriteMemoryFunc * const subpage_write[] = {
3571 &subpage_writeb,
3572 &subpage_writew,
3573 &subpage_writel,
3574 };
3575
3576 static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
3577 {
3578 ram_addr_t raddr = addr;
3579 void *ptr = qemu_get_ram_ptr(raddr);
3580 return ldub_p(ptr);
3581 }
3582
3583 static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
3584 uint32_t value)
3585 {
3586 ram_addr_t raddr = addr;
3587 void *ptr = qemu_get_ram_ptr(raddr);
3588 stb_p(ptr, value);
3589 }
3590
3591 static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
3592 {
3593 ram_addr_t raddr = addr;
3594 void *ptr = qemu_get_ram_ptr(raddr);
3595 return lduw_p(ptr);
3596 }
3597
3598 static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
3599 uint32_t value)
3600 {
3601 ram_addr_t raddr = addr;
3602 void *ptr = qemu_get_ram_ptr(raddr);
3603 stw_p(ptr, value);
3604 }
3605
3606 static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
3607 {
3608 ram_addr_t raddr = addr;
3609 void *ptr = qemu_get_ram_ptr(raddr);
3610 return ldl_p(ptr);
3611 }
3612
3613 static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
3614 uint32_t value)
3615 {
3616 ram_addr_t raddr = addr;
3617 void *ptr = qemu_get_ram_ptr(raddr);
3618 stl_p(ptr, value);
3619 }
3620
3621 static CPUReadMemoryFunc * const subpage_ram_read[] = {
3622 &subpage_ram_readb,
3623 &subpage_ram_readw,
3624 &subpage_ram_readl,
3625 };
3626
3627 static CPUWriteMemoryFunc * const subpage_ram_write[] = {
3628 &subpage_ram_writeb,
3629 &subpage_ram_writew,
3630 &subpage_ram_writel,
3631 };
3632
3633 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3634 ram_addr_t memory, ram_addr_t region_offset)
3635 {
3636 int idx, eidx;
3637
3638 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3639 return -1;
3640 idx = SUBPAGE_IDX(start);
3641 eidx = SUBPAGE_IDX(end);
3642 #if defined(DEBUG_SUBPAGE)
3643 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3644 mmio, start, end, idx, eidx, memory);
3645 #endif
3646 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
3647 memory = IO_MEM_SUBPAGE_RAM;
3648 }
3649 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3650 for (; idx <= eidx; idx++) {
3651 mmio->sub_io_index[idx] = memory;
3652 mmio->region_offset[idx] = region_offset;
3653 }
3654
3655 return 0;
3656 }
3657
3658 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3659 ram_addr_t orig_memory,
3660 ram_addr_t region_offset)
3661 {
3662 subpage_t *mmio;
3663 int subpage_memory;
3664
3665 mmio = g_malloc0(sizeof(subpage_t));
3666
3667 mmio->base = base;
3668 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3669 DEVICE_NATIVE_ENDIAN);
3670 #if defined(DEBUG_SUBPAGE)
3671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3673 #endif
3674 *phys = subpage_memory | IO_MEM_SUBPAGE;
3675 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3676
3677 return mmio;
3678 }
3679
3680 static int get_free_io_mem_idx(void)
3681 {
3682 int i;
3683
3684 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3685 if (!io_mem_used[i]) {
3686 io_mem_used[i] = 1;
3687 return i;
3688 }
3689 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3690 return -1;
3691 }
3692
3693 /*
3694 * Usually, devices operate in little endian mode. There are devices out
3695 * there that operate in big endian too. Each device gets byte swapped
3696 * mmio if plugged onto a CPU that does the other endianness.
3697 *
3698 * CPU Device swap?
3699 *
3700 * little little no
3701 * little big yes
3702 * big little yes
3703 * big big no
3704 */
3705
3706 typedef struct SwapEndianContainer {
3707 CPUReadMemoryFunc *read[3];
3708 CPUWriteMemoryFunc *write[3];
3709 void *opaque;
3710 } SwapEndianContainer;
3711
3712 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3713 {
3714 uint32_t val;
3715 SwapEndianContainer *c = opaque;
3716 val = c->read[0](c->opaque, addr);
3717 return val;
3718 }
3719
3720 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3721 {
3722 uint32_t val;
3723 SwapEndianContainer *c = opaque;
3724 val = bswap16(c->read[1](c->opaque, addr));
3725 return val;
3726 }
3727
3728 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3729 {
3730 uint32_t val;
3731 SwapEndianContainer *c = opaque;
3732 val = bswap32(c->read[2](c->opaque, addr));
3733 return val;
3734 }
3735
3736 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3737 swapendian_mem_readb,
3738 swapendian_mem_readw,
3739 swapendian_mem_readl
3740 };
3741
3742 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3743 uint32_t val)
3744 {
3745 SwapEndianContainer *c = opaque;
3746 c->write[0](c->opaque, addr, val);
3747 }
3748
3749 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3750 uint32_t val)
3751 {
3752 SwapEndianContainer *c = opaque;
3753 c->write[1](c->opaque, addr, bswap16(val));
3754 }
3755
3756 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3757 uint32_t val)
3758 {
3759 SwapEndianContainer *c = opaque;
3760 c->write[2](c->opaque, addr, bswap32(val));
3761 }
3762
3763 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3764 swapendian_mem_writeb,
3765 swapendian_mem_writew,
3766 swapendian_mem_writel
3767 };
3768
3769 static void swapendian_init(int io_index)
3770 {
3771 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
3772 int i;
3773
3774 /* Swap mmio for big endian targets */
3775 c->opaque = io_mem_opaque[io_index];
3776 for (i = 0; i < 3; i++) {
3777 c->read[i] = io_mem_read[io_index][i];
3778 c->write[i] = io_mem_write[io_index][i];
3779
3780 io_mem_read[io_index][i] = swapendian_readfn[i];
3781 io_mem_write[io_index][i] = swapendian_writefn[i];
3782 }
3783 io_mem_opaque[io_index] = c;
3784 }
3785
3786 static void swapendian_del(int io_index)
3787 {
3788 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3789 g_free(io_mem_opaque[io_index]);
3790 }
3791 }
3792
3793 /* mem_read and mem_write are arrays of functions containing the
3794 function to access byte (index 0), word (index 1) and dword (index
3795 2). Functions can be omitted with a NULL function pointer.
3796 If io_index is non zero, the corresponding io zone is
3797 modified. If it is zero, a new io zone is allocated. The return
3798 value can be used with cpu_register_physical_memory(). (-1) is
3799 returned if error. */
3800 static int cpu_register_io_memory_fixed(int io_index,
3801 CPUReadMemoryFunc * const *mem_read,
3802 CPUWriteMemoryFunc * const *mem_write,
3803 void *opaque, enum device_endian endian)
3804 {
3805 int i;
3806
3807 if (io_index <= 0) {
3808 io_index = get_free_io_mem_idx();
3809 if (io_index == -1)
3810 return io_index;
3811 } else {
3812 io_index >>= IO_MEM_SHIFT;
3813 if (io_index >= IO_MEM_NB_ENTRIES)
3814 return -1;
3815 }
3816
3817 for (i = 0; i < 3; ++i) {
3818 io_mem_read[io_index][i]
3819 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3820 }
3821 for (i = 0; i < 3; ++i) {
3822 io_mem_write[io_index][i]
3823 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3824 }
3825 io_mem_opaque[io_index] = opaque;
3826
3827 switch (endian) {
3828 case DEVICE_BIG_ENDIAN:
3829 #ifndef TARGET_WORDS_BIGENDIAN
3830 swapendian_init(io_index);
3831 #endif
3832 break;
3833 case DEVICE_LITTLE_ENDIAN:
3834 #ifdef TARGET_WORDS_BIGENDIAN
3835 swapendian_init(io_index);
3836 #endif
3837 break;
3838 case DEVICE_NATIVE_ENDIAN:
3839 default:
3840 break;
3841 }
3842
3843 return (io_index << IO_MEM_SHIFT);
3844 }
3845
3846 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3847 CPUWriteMemoryFunc * const *mem_write,
3848 void *opaque, enum device_endian endian)
3849 {
3850 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3851 }
3852
3853 void cpu_unregister_io_memory(int io_table_address)
3854 {
3855 int i;
3856 int io_index = io_table_address >> IO_MEM_SHIFT;
3857
3858 swapendian_del(io_index);
3859
3860 for (i=0;i < 3; i++) {
3861 io_mem_read[io_index][i] = unassigned_mem_read[i];
3862 io_mem_write[io_index][i] = unassigned_mem_write[i];
3863 }
3864 io_mem_opaque[io_index] = NULL;
3865 io_mem_used[io_index] = 0;
3866 }
3867
3868 static void io_mem_init(void)
3869 {
3870 int i;
3871
3872 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3873 unassigned_mem_write, NULL,
3874 DEVICE_NATIVE_ENDIAN);
3875 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3876 unassigned_mem_write, NULL,
3877 DEVICE_NATIVE_ENDIAN);
3878 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3879 notdirty_mem_write, NULL,
3880 DEVICE_NATIVE_ENDIAN);
3881 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
3882 subpage_ram_write, NULL,
3883 DEVICE_NATIVE_ENDIAN);
3884 for (i=0; i<5; i++)
3885 io_mem_used[i] = 1;
3886
3887 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3888 watch_mem_write, NULL,
3889 DEVICE_NATIVE_ENDIAN);
3890 }
3891
3892 static void memory_map_init(void)
3893 {
3894 system_memory = g_malloc(sizeof(*system_memory));
3895 memory_region_init(system_memory, "system", INT64_MAX);
3896 set_system_memory_map(system_memory);
3897
3898 system_io = g_malloc(sizeof(*system_io));
3899 memory_region_init(system_io, "io", 65536);
3900 set_system_io_map(system_io);
3901 }
3902
3903 MemoryRegion *get_system_memory(void)
3904 {
3905 return system_memory;
3906 }
3907
3908 MemoryRegion *get_system_io(void)
3909 {
3910 return system_io;
3911 }
3912
3913 #endif /* !defined(CONFIG_USER_ONLY) */
3914
3915 /* physical memory access (slow version, mainly for debug) */
3916 #if defined(CONFIG_USER_ONLY)
3917 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3918 uint8_t *buf, int len, int is_write)
3919 {
3920 int l, flags;
3921 target_ulong page;
3922 void * p;
3923
3924 while (len > 0) {
3925 page = addr & TARGET_PAGE_MASK;
3926 l = (page + TARGET_PAGE_SIZE) - addr;
3927 if (l > len)
3928 l = len;
3929 flags = page_get_flags(page);
3930 if (!(flags & PAGE_VALID))
3931 return -1;
3932 if (is_write) {
3933 if (!(flags & PAGE_WRITE))
3934 return -1;
3935 /* XXX: this code should not depend on lock_user */
3936 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3937 return -1;
3938 memcpy(p, buf, l);
3939 unlock_user(p, addr, l);
3940 } else {
3941 if (!(flags & PAGE_READ))
3942 return -1;
3943 /* XXX: this code should not depend on lock_user */
3944 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3945 return -1;
3946 memcpy(buf, p, l);
3947 unlock_user(p, addr, 0);
3948 }
3949 len -= l;
3950 buf += l;
3951 addr += l;
3952 }
3953 return 0;
3954 }
3955
3956 #else
3957 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3958 int len, int is_write)
3959 {
3960 int l, io_index;
3961 uint8_t *ptr;
3962 uint32_t val;
3963 target_phys_addr_t page;
3964 ram_addr_t pd;
3965 PhysPageDesc *p;
3966
3967 while (len > 0) {
3968 page = addr & TARGET_PAGE_MASK;
3969 l = (page + TARGET_PAGE_SIZE) - addr;
3970 if (l > len)
3971 l = len;
3972 p = phys_page_find(page >> TARGET_PAGE_BITS);
3973 if (!p) {
3974 pd = IO_MEM_UNASSIGNED;
3975 } else {
3976 pd = p->phys_offset;
3977 }
3978
3979 if (is_write) {
3980 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3981 target_phys_addr_t addr1 = addr;
3982 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3983 if (p)
3984 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3985 /* XXX: could force cpu_single_env to NULL to avoid
3986 potential bugs */
3987 if (l >= 4 && ((addr1 & 3) == 0)) {
3988 /* 32 bit write access */
3989 val = ldl_p(buf);
3990 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3991 l = 4;
3992 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3993 /* 16 bit write access */
3994 val = lduw_p(buf);
3995 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3996 l = 2;
3997 } else {
3998 /* 8 bit write access */
3999 val = ldub_p(buf);
4000 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
4001 l = 1;
4002 }
4003 } else {
4004 ram_addr_t addr1;
4005 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4006 /* RAM case */
4007 ptr = qemu_get_ram_ptr(addr1);
4008 memcpy(ptr, buf, l);
4009 if (!cpu_physical_memory_is_dirty(addr1)) {
4010 /* invalidate code */
4011 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4012 /* set dirty bit */
4013 cpu_physical_memory_set_dirty_flags(
4014 addr1, (0xff & ~CODE_DIRTY_FLAG));
4015 }
4016 qemu_put_ram_ptr(ptr);
4017 }
4018 } else {
4019 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4020 !(pd & IO_MEM_ROMD)) {
4021 target_phys_addr_t addr1 = addr;
4022 /* I/O case */
4023 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4024 if (p)
4025 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4026 if (l >= 4 && ((addr1 & 3) == 0)) {
4027 /* 32 bit read access */
4028 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
4029 stl_p(buf, val);
4030 l = 4;
4031 } else if (l >= 2 && ((addr1 & 1) == 0)) {
4032 /* 16 bit read access */
4033 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
4034 stw_p(buf, val);
4035 l = 2;
4036 } else {
4037 /* 8 bit read access */
4038 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
4039 stb_p(buf, val);
4040 l = 1;
4041 }
4042 } else {
4043 /* RAM case */
4044 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
4045 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
4046 qemu_put_ram_ptr(ptr);
4047 }
4048 }
4049 len -= l;
4050 buf += l;
4051 addr += l;
4052 }
4053 }
4054
4055 /* used for ROM loading : can write in RAM and ROM */
4056 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
4057 const uint8_t *buf, int len)
4058 {
4059 int l;
4060 uint8_t *ptr;
4061 target_phys_addr_t page;
4062 unsigned long pd;
4063 PhysPageDesc *p;
4064
4065 while (len > 0) {
4066 page = addr & TARGET_PAGE_MASK;
4067 l = (page + TARGET_PAGE_SIZE) - addr;
4068 if (l > len)
4069 l = len;
4070 p = phys_page_find(page >> TARGET_PAGE_BITS);
4071 if (!p) {
4072 pd = IO_MEM_UNASSIGNED;
4073 } else {
4074 pd = p->phys_offset;
4075 }
4076
4077 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
4078 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4079 !(pd & IO_MEM_ROMD)) {
4080 /* do nothing */
4081 } else {
4082 unsigned long addr1;
4083 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4084 /* ROM/RAM case */
4085 ptr = qemu_get_ram_ptr(addr1);
4086 memcpy(ptr, buf, l);
4087 qemu_put_ram_ptr(ptr);
4088 }
4089 len -= l;
4090 buf += l;
4091 addr += l;
4092 }
4093 }
4094
4095 typedef struct {
4096 void *buffer;
4097 target_phys_addr_t addr;
4098 target_phys_addr_t len;
4099 } BounceBuffer;
4100
4101 static BounceBuffer bounce;
4102
4103 typedef struct MapClient {
4104 void *opaque;
4105 void (*callback)(void *opaque);
4106 QLIST_ENTRY(MapClient) link;
4107 } MapClient;
4108
4109 static QLIST_HEAD(map_client_list, MapClient) map_client_list
4110 = QLIST_HEAD_INITIALIZER(map_client_list);
4111
4112 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4113 {
4114 MapClient *client = g_malloc(sizeof(*client));
4115
4116 client->opaque = opaque;
4117 client->callback = callback;
4118 QLIST_INSERT_HEAD(&map_client_list, client, link);
4119 return client;
4120 }
4121
4122 void cpu_unregister_map_client(void *_client)
4123 {
4124 MapClient *client = (MapClient *)_client;
4125
4126 QLIST_REMOVE(client, link);
4127 g_free(client);
4128 }
4129
4130 static void cpu_notify_map_clients(void)
4131 {
4132 MapClient *client;
4133
4134 while (!QLIST_EMPTY(&map_client_list)) {
4135 client = QLIST_FIRST(&map_client_list);
4136 client->callback(client->opaque);
4137 cpu_unregister_map_client(client);
4138 }
4139 }
4140
4141 /* Map a physical memory region into a host virtual address.
4142 * May map a subset of the requested range, given by and returned in *plen.
4143 * May return NULL if resources needed to perform the mapping are exhausted.
4144 * Use only for reads OR writes - not for read-modify-write operations.
4145 * Use cpu_register_map_client() to know when retrying the map operation is
4146 * likely to succeed.
4147 */
4148 void *cpu_physical_memory_map(target_phys_addr_t addr,
4149 target_phys_addr_t *plen,
4150 int is_write)
4151 {
4152 target_phys_addr_t len = *plen;
4153 target_phys_addr_t todo = 0;
4154 int l;
4155 target_phys_addr_t page;
4156 unsigned long pd;
4157 PhysPageDesc *p;
4158 ram_addr_t raddr = RAM_ADDR_MAX;
4159 ram_addr_t rlen;
4160 void *ret;
4161
4162 while (len > 0) {
4163 page = addr & TARGET_PAGE_MASK;
4164 l = (page + TARGET_PAGE_SIZE) - addr;
4165 if (l > len)
4166 l = len;
4167 p = phys_page_find(page >> TARGET_PAGE_BITS);
4168 if (!p) {
4169 pd = IO_MEM_UNASSIGNED;
4170 } else {
4171 pd = p->phys_offset;
4172 }
4173
4174 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4175 if (todo || bounce.buffer) {
4176 break;
4177 }
4178 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4179 bounce.addr = addr;
4180 bounce.len = l;
4181 if (!is_write) {
4182 cpu_physical_memory_read(addr, bounce.buffer, l);
4183 }
4184
4185 *plen = l;
4186 return bounce.buffer;
4187 }
4188 if (!todo) {
4189 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4190 }
4191
4192 len -= l;
4193 addr += l;
4194 todo += l;
4195 }
4196 rlen = todo;
4197 ret = qemu_ram_ptr_length(raddr, &rlen);
4198 *plen = rlen;
4199 return ret;
4200 }
4201
4202 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4203 * Will also mark the memory as dirty if is_write == 1. access_len gives
4204 * the amount of memory that was actually read or written by the caller.
4205 */
4206 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4207 int is_write, target_phys_addr_t access_len)
4208 {
4209 if (buffer != bounce.buffer) {
4210 if (is_write) {
4211 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4212 while (access_len) {
4213 unsigned l;
4214 l = TARGET_PAGE_SIZE;
4215 if (l > access_len)
4216 l = access_len;
4217 if (!cpu_physical_memory_is_dirty(addr1)) {
4218 /* invalidate code */
4219 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4220 /* set dirty bit */
4221 cpu_physical_memory_set_dirty_flags(
4222 addr1, (0xff & ~CODE_DIRTY_FLAG));
4223 }
4224 addr1 += l;
4225 access_len -= l;
4226 }
4227 }
4228 if (xen_enabled()) {
4229 xen_invalidate_map_cache_entry(buffer);
4230 }
4231 return;
4232 }
4233 if (is_write) {
4234 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4235 }
4236 qemu_vfree(bounce.buffer);
4237 bounce.buffer = NULL;
4238 cpu_notify_map_clients();
4239 }
4240
4241 /* warning: addr must be aligned */
4242 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4243 enum device_endian endian)
4244 {
4245 int io_index;
4246 uint8_t *ptr;
4247 uint32_t val;
4248 unsigned long pd;
4249 PhysPageDesc *p;
4250
4251 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4252 if (!p) {
4253 pd = IO_MEM_UNASSIGNED;
4254 } else {
4255 pd = p->phys_offset;
4256 }
4257
4258 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4259 !(pd & IO_MEM_ROMD)) {
4260 /* I/O case */
4261 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4262 if (p)
4263 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4264 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4265 #if defined(TARGET_WORDS_BIGENDIAN)
4266 if (endian == DEVICE_LITTLE_ENDIAN) {
4267 val = bswap32(val);
4268 }
4269 #else
4270 if (endian == DEVICE_BIG_ENDIAN) {
4271 val = bswap32(val);
4272 }
4273 #endif
4274 } else {
4275 /* RAM case */
4276 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4277 (addr & ~TARGET_PAGE_MASK);
4278 switch (endian) {
4279 case DEVICE_LITTLE_ENDIAN:
4280 val = ldl_le_p(ptr);
4281 break;
4282 case DEVICE_BIG_ENDIAN:
4283 val = ldl_be_p(ptr);
4284 break;
4285 default:
4286 val = ldl_p(ptr);
4287 break;
4288 }
4289 }
4290 return val;
4291 }
4292
4293 uint32_t ldl_phys(target_phys_addr_t addr)
4294 {
4295 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4296 }
4297
4298 uint32_t ldl_le_phys(target_phys_addr_t addr)
4299 {
4300 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4301 }
4302
4303 uint32_t ldl_be_phys(target_phys_addr_t addr)
4304 {
4305 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4306 }
4307
4308 /* warning: addr must be aligned */
4309 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4310 enum device_endian endian)
4311 {
4312 int io_index;
4313 uint8_t *ptr;
4314 uint64_t val;
4315 unsigned long pd;
4316 PhysPageDesc *p;
4317
4318 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4319 if (!p) {
4320 pd = IO_MEM_UNASSIGNED;
4321 } else {
4322 pd = p->phys_offset;
4323 }
4324
4325 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4326 !(pd & IO_MEM_ROMD)) {
4327 /* I/O case */
4328 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4329 if (p)
4330 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4331
4332 /* XXX This is broken when device endian != cpu endian.
4333 Fix and add "endian" variable check */
4334 #ifdef TARGET_WORDS_BIGENDIAN
4335 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4336 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4337 #else
4338 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4339 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4340 #endif
4341 } else {
4342 /* RAM case */
4343 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4344 (addr & ~TARGET_PAGE_MASK);
4345 switch (endian) {
4346 case DEVICE_LITTLE_ENDIAN:
4347 val = ldq_le_p(ptr);
4348 break;
4349 case DEVICE_BIG_ENDIAN:
4350 val = ldq_be_p(ptr);
4351 break;
4352 default:
4353 val = ldq_p(ptr);
4354 break;
4355 }
4356 }
4357 return val;
4358 }
4359
4360 uint64_t ldq_phys(target_phys_addr_t addr)
4361 {
4362 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4363 }
4364
4365 uint64_t ldq_le_phys(target_phys_addr_t addr)
4366 {
4367 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4368 }
4369
4370 uint64_t ldq_be_phys(target_phys_addr_t addr)
4371 {
4372 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4373 }
4374
4375 /* XXX: optimize */
4376 uint32_t ldub_phys(target_phys_addr_t addr)
4377 {
4378 uint8_t val;
4379 cpu_physical_memory_read(addr, &val, 1);
4380 return val;
4381 }
4382
4383 /* warning: addr must be aligned */
4384 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4385 enum device_endian endian)
4386 {
4387 int io_index;
4388 uint8_t *ptr;
4389 uint64_t val;
4390 unsigned long pd;
4391 PhysPageDesc *p;
4392
4393 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4394 if (!p) {
4395 pd = IO_MEM_UNASSIGNED;
4396 } else {
4397 pd = p->phys_offset;
4398 }
4399
4400 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4401 !(pd & IO_MEM_ROMD)) {
4402 /* I/O case */
4403 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4404 if (p)
4405 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4406 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4407 #if defined(TARGET_WORDS_BIGENDIAN)
4408 if (endian == DEVICE_LITTLE_ENDIAN) {
4409 val = bswap16(val);
4410 }
4411 #else
4412 if (endian == DEVICE_BIG_ENDIAN) {
4413 val = bswap16(val);
4414 }
4415 #endif
4416 } else {
4417 /* RAM case */
4418 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4419 (addr & ~TARGET_PAGE_MASK);
4420 switch (endian) {
4421 case DEVICE_LITTLE_ENDIAN:
4422 val = lduw_le_p(ptr);
4423 break;
4424 case DEVICE_BIG_ENDIAN:
4425 val = lduw_be_p(ptr);
4426 break;
4427 default:
4428 val = lduw_p(ptr);
4429 break;
4430 }
4431 }
4432 return val;
4433 }
4434
4435 uint32_t lduw_phys(target_phys_addr_t addr)
4436 {
4437 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4438 }
4439
4440 uint32_t lduw_le_phys(target_phys_addr_t addr)
4441 {
4442 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4443 }
4444
4445 uint32_t lduw_be_phys(target_phys_addr_t addr)
4446 {
4447 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4448 }
4449
4450 /* warning: addr must be aligned. The ram page is not masked as dirty
4451 and the code inside is not invalidated. It is useful if the dirty
4452 bits are used to track modified PTEs */
4453 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4454 {
4455 int io_index;
4456 uint8_t *ptr;
4457 unsigned long pd;
4458 PhysPageDesc *p;
4459
4460 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4461 if (!p) {
4462 pd = IO_MEM_UNASSIGNED;
4463 } else {
4464 pd = p->phys_offset;
4465 }
4466
4467 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4468 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4469 if (p)
4470 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4471 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4472 } else {
4473 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4474 ptr = qemu_get_ram_ptr(addr1);
4475 stl_p(ptr, val);
4476
4477 if (unlikely(in_migration)) {
4478 if (!cpu_physical_memory_is_dirty(addr1)) {
4479 /* invalidate code */
4480 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4481 /* set dirty bit */
4482 cpu_physical_memory_set_dirty_flags(
4483 addr1, (0xff & ~CODE_DIRTY_FLAG));
4484 }
4485 }
4486 }
4487 }
4488
4489 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4490 {
4491 int io_index;
4492 uint8_t *ptr;
4493 unsigned long pd;
4494 PhysPageDesc *p;
4495
4496 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4497 if (!p) {
4498 pd = IO_MEM_UNASSIGNED;
4499 } else {
4500 pd = p->phys_offset;
4501 }
4502
4503 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4504 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4505 if (p)
4506 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4507 #ifdef TARGET_WORDS_BIGENDIAN
4508 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4509 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4510 #else
4511 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4512 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4513 #endif
4514 } else {
4515 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4516 (addr & ~TARGET_PAGE_MASK);
4517 stq_p(ptr, val);
4518 }
4519 }
4520
4521 /* warning: addr must be aligned */
4522 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4523 enum device_endian endian)
4524 {
4525 int io_index;
4526 uint8_t *ptr;
4527 unsigned long pd;
4528 PhysPageDesc *p;
4529
4530 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4531 if (!p) {
4532 pd = IO_MEM_UNASSIGNED;
4533 } else {
4534 pd = p->phys_offset;
4535 }
4536
4537 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4538 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4539 if (p)
4540 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4541 #if defined(TARGET_WORDS_BIGENDIAN)
4542 if (endian == DEVICE_LITTLE_ENDIAN) {
4543 val = bswap32(val);
4544 }
4545 #else
4546 if (endian == DEVICE_BIG_ENDIAN) {
4547 val = bswap32(val);
4548 }
4549 #endif
4550 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4551 } else {
4552 unsigned long addr1;
4553 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4554 /* RAM case */
4555 ptr = qemu_get_ram_ptr(addr1);
4556 switch (endian) {
4557 case DEVICE_LITTLE_ENDIAN:
4558 stl_le_p(ptr, val);
4559 break;
4560 case DEVICE_BIG_ENDIAN:
4561 stl_be_p(ptr, val);
4562 break;
4563 default:
4564 stl_p(ptr, val);
4565 break;
4566 }
4567 if (!cpu_physical_memory_is_dirty(addr1)) {
4568 /* invalidate code */
4569 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4570 /* set dirty bit */
4571 cpu_physical_memory_set_dirty_flags(addr1,
4572 (0xff & ~CODE_DIRTY_FLAG));
4573 }
4574 }
4575 }
4576
4577 void stl_phys(target_phys_addr_t addr, uint32_t val)
4578 {
4579 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4580 }
4581
4582 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4583 {
4584 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4585 }
4586
4587 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4588 {
4589 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4590 }
4591
4592 /* XXX: optimize */
4593 void stb_phys(target_phys_addr_t addr, uint32_t val)
4594 {
4595 uint8_t v = val;
4596 cpu_physical_memory_write(addr, &v, 1);
4597 }
4598
4599 /* warning: addr must be aligned */
4600 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4601 enum device_endian endian)
4602 {
4603 int io_index;
4604 uint8_t *ptr;
4605 unsigned long pd;
4606 PhysPageDesc *p;
4607
4608 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4609 if (!p) {
4610 pd = IO_MEM_UNASSIGNED;
4611 } else {
4612 pd = p->phys_offset;
4613 }
4614
4615 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4616 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4617 if (p)
4618 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4619 #if defined(TARGET_WORDS_BIGENDIAN)
4620 if (endian == DEVICE_LITTLE_ENDIAN) {
4621 val = bswap16(val);
4622 }
4623 #else
4624 if (endian == DEVICE_BIG_ENDIAN) {
4625 val = bswap16(val);
4626 }
4627 #endif
4628 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4629 } else {
4630 unsigned long addr1;
4631 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4632 /* RAM case */
4633 ptr = qemu_get_ram_ptr(addr1);
4634 switch (endian) {
4635 case DEVICE_LITTLE_ENDIAN:
4636 stw_le_p(ptr, val);
4637 break;
4638 case DEVICE_BIG_ENDIAN:
4639 stw_be_p(ptr, val);
4640 break;
4641 default:
4642 stw_p(ptr, val);
4643 break;
4644 }
4645 if (!cpu_physical_memory_is_dirty(addr1)) {
4646 /* invalidate code */
4647 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4648 /* set dirty bit */
4649 cpu_physical_memory_set_dirty_flags(addr1,
4650 (0xff & ~CODE_DIRTY_FLAG));
4651 }
4652 }
4653 }
4654
4655 void stw_phys(target_phys_addr_t addr, uint32_t val)
4656 {
4657 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4658 }
4659
4660 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4661 {
4662 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4663 }
4664
4665 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4666 {
4667 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4668 }
4669
4670 /* XXX: optimize */
4671 void stq_phys(target_phys_addr_t addr, uint64_t val)
4672 {
4673 val = tswap64(val);
4674 cpu_physical_memory_write(addr, &val, 8);
4675 }
4676
4677 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4678 {
4679 val = cpu_to_le64(val);
4680 cpu_physical_memory_write(addr, &val, 8);
4681 }
4682
4683 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4684 {
4685 val = cpu_to_be64(val);
4686 cpu_physical_memory_write(addr, &val, 8);
4687 }
4688
4689 /* virtual memory access for debug (includes writing to ROM) */
4690 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4691 uint8_t *buf, int len, int is_write)
4692 {
4693 int l;
4694 target_phys_addr_t phys_addr;
4695 target_ulong page;
4696
4697 while (len > 0) {
4698 page = addr & TARGET_PAGE_MASK;
4699 phys_addr = cpu_get_phys_page_debug(env, page);
4700 /* if no physical page mapped, return an error */
4701 if (phys_addr == -1)
4702 return -1;
4703 l = (page + TARGET_PAGE_SIZE) - addr;
4704 if (l > len)
4705 l = len;
4706 phys_addr += (addr & ~TARGET_PAGE_MASK);
4707 if (is_write)
4708 cpu_physical_memory_write_rom(phys_addr, buf, l);
4709 else
4710 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4711 len -= l;
4712 buf += l;
4713 addr += l;
4714 }
4715 return 0;
4716 }
4717 #endif
4718
4719 /* in deterministic execution mode, instructions doing device I/Os
4720 must be at the end of the TB */
4721 void cpu_io_recompile(CPUState *env, void *retaddr)
4722 {
4723 TranslationBlock *tb;
4724 uint32_t n, cflags;
4725 target_ulong pc, cs_base;
4726 uint64_t flags;
4727
4728 tb = tb_find_pc((unsigned long)retaddr);
4729 if (!tb) {
4730 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4731 retaddr);
4732 }
4733 n = env->icount_decr.u16.low + tb->icount;
4734 cpu_restore_state(tb, env, (unsigned long)retaddr);
4735 /* Calculate how many instructions had been executed before the fault
4736 occurred. */
4737 n = n - env->icount_decr.u16.low;
4738 /* Generate a new TB ending on the I/O insn. */
4739 n++;
4740 /* On MIPS and SH, delay slot instructions can only be restarted if
4741 they were already the first instruction in the TB. If this is not
4742 the first instruction in a TB then re-execute the preceding
4743 branch. */
4744 #if defined(TARGET_MIPS)
4745 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4746 env->active_tc.PC -= 4;
4747 env->icount_decr.u16.low++;
4748 env->hflags &= ~MIPS_HFLAG_BMASK;
4749 }
4750 #elif defined(TARGET_SH4)
4751 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4752 && n > 1) {
4753 env->pc -= 2;
4754 env->icount_decr.u16.low++;
4755 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4756 }
4757 #endif
4758 /* This should never happen. */
4759 if (n > CF_COUNT_MASK)
4760 cpu_abort(env, "TB too big during recompile");
4761
4762 cflags = n | CF_LAST_IO;
4763 pc = tb->pc;
4764 cs_base = tb->cs_base;
4765 flags = tb->flags;
4766 tb_phys_invalidate(tb, -1);
4767 /* FIXME: In theory this could raise an exception. In practice
4768 we have already translated the block once so it's probably ok. */
4769 tb_gen_code(env, pc, cs_base, flags, cflags);
4770 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4771 the first in the TB) then we end up generating a whole new TB and
4772 repeating the fault, which is horribly inefficient.
4773 Better would be to execute just this insn uncached, or generate a
4774 second new TB. */
4775 cpu_resume_from_signal(env, NULL);
4776 }
4777
4778 #if !defined(CONFIG_USER_ONLY)
4779
4780 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4781 {
4782 int i, target_code_size, max_target_code_size;
4783 int direct_jmp_count, direct_jmp2_count, cross_page;
4784 TranslationBlock *tb;
4785
4786 target_code_size = 0;
4787 max_target_code_size = 0;
4788 cross_page = 0;
4789 direct_jmp_count = 0;
4790 direct_jmp2_count = 0;
4791 for(i = 0; i < nb_tbs; i++) {
4792 tb = &tbs[i];
4793 target_code_size += tb->size;
4794 if (tb->size > max_target_code_size)
4795 max_target_code_size = tb->size;
4796 if (tb->page_addr[1] != -1)
4797 cross_page++;
4798 if (tb->tb_next_offset[0] != 0xffff) {
4799 direct_jmp_count++;
4800 if (tb->tb_next_offset[1] != 0xffff) {
4801 direct_jmp2_count++;
4802 }
4803 }
4804 }
4805 /* XXX: avoid using doubles ? */
4806 cpu_fprintf(f, "Translation buffer state:\n");
4807 cpu_fprintf(f, "gen code size %td/%ld\n",
4808 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4809 cpu_fprintf(f, "TB count %d/%d\n",
4810 nb_tbs, code_gen_max_blocks);
4811 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4812 nb_tbs ? target_code_size / nb_tbs : 0,
4813 max_target_code_size);
4814 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4815 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4816 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4817 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4818 cross_page,
4819 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4820 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4821 direct_jmp_count,
4822 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4823 direct_jmp2_count,
4824 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4825 cpu_fprintf(f, "\nStatistics:\n");
4826 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4827 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4828 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4829 tcg_dump_info(f, cpu_fprintf);
4830 }
4831
4832 #define MMUSUFFIX _cmmu
4833 #undef GETPC
4834 #define GETPC() NULL
4835 #define env cpu_single_env
4836 #define SOFTMMU_CODE_ACCESS
4837
4838 #define SHIFT 0
4839 #include "softmmu_template.h"
4840
4841 #define SHIFT 1
4842 #include "softmmu_template.h"
4843
4844 #define SHIFT 2
4845 #include "softmmu_template.h"
4846
4847 #define SHIFT 3
4848 #include "softmmu_template.h"
4849
4850 #undef env
4851
4852 #endif