]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: put memory map in AddressSpaceDispatch
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 typedef PhysPageEntry Node[L2_SIZE];
92
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
98 Node *nodes;
99 MemoryRegionSection *sections;
100 AddressSpace *as;
101 };
102
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
105 MemoryRegion iomem;
106 AddressSpace *as;
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109 } subpage_t;
110
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
115
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123 } PhysPageMap;
124
125 static PhysPageMap cur_map;
126 static PhysPageMap next_map;
127
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
133
134 static MemoryRegion io_mem_watch;
135 #endif
136
137 #if !defined(CONFIG_USER_ONLY)
138
139 static void phys_map_node_reserve(unsigned nodes)
140 {
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
148 }
149 }
150
151 static uint16_t phys_map_node_alloc(void)
152 {
153 unsigned i;
154 uint16_t ret;
155
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
162 }
163 return ret;
164 }
165
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
168 int level)
169 {
170 PhysPageEntry *p;
171 int i;
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
173
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
179 p[i].is_leaf = 1;
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
181 }
182 }
183 } else {
184 p = next_map.nodes[lp->ptr];
185 }
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
187
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
191 lp->ptr = leaf;
192 *index += step;
193 *nb -= step;
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
198 }
199 }
200
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
203 uint16_t leaf)
204 {
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
207
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
209 }
210
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
213 {
214 PhysPageEntry *p;
215 int i;
216
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return &sections[PHYS_SECTION_UNASSIGNED];
220 }
221 p = nodes[lp.ptr];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
223 }
224 return &sections[lp.ptr];
225 }
226
227 bool memory_region_is_unassigned(MemoryRegion *mr)
228 {
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
231 }
232
233 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
234 hwaddr addr,
235 bool resolve_subpage)
236 {
237 AddressSpaceDispatch *d = as->dispatch;
238 MemoryRegionSection *section;
239 subpage_t *subpage;
240
241 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
242 d->nodes, d->sections);
243 if (resolve_subpage && section->mr->subpage) {
244 subpage = container_of(section->mr, subpage_t, iomem);
245 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
246 }
247 return section;
248 }
249
250 static MemoryRegionSection *
251 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
252 hwaddr *plen, bool resolve_subpage)
253 {
254 MemoryRegionSection *section;
255 Int128 diff;
256
257 section = address_space_lookup_region(as, addr, resolve_subpage);
258 /* Compute offset within MemoryRegionSection */
259 addr -= section->offset_within_address_space;
260
261 /* Compute offset within MemoryRegion */
262 *xlat = addr + section->offset_within_region;
263
264 diff = int128_sub(section->mr->size, int128_make64(addr));
265 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
266 return section;
267 }
268
269 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
270 hwaddr *xlat, hwaddr *plen,
271 bool is_write)
272 {
273 IOMMUTLBEntry iotlb;
274 MemoryRegionSection *section;
275 MemoryRegion *mr;
276 hwaddr len = *plen;
277
278 for (;;) {
279 section = address_space_translate_internal(as, addr, &addr, plen, true);
280 mr = section->mr;
281
282 if (!mr->iommu_ops) {
283 break;
284 }
285
286 iotlb = mr->iommu_ops->translate(mr, addr);
287 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
288 | (addr & iotlb.addr_mask));
289 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
290 if (!(iotlb.perm & (1 << is_write))) {
291 mr = &io_mem_unassigned;
292 break;
293 }
294
295 as = iotlb.target_as;
296 }
297
298 *plen = len;
299 *xlat = addr;
300 return mr;
301 }
302
303 MemoryRegionSection *
304 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
305 hwaddr *plen)
306 {
307 MemoryRegionSection *section;
308 section = address_space_translate_internal(as, addr, xlat, plen, false);
309
310 assert(!section->mr->iommu_ops);
311 return section;
312 }
313 #endif
314
315 void cpu_exec_init_all(void)
316 {
317 #if !defined(CONFIG_USER_ONLY)
318 qemu_mutex_init(&ram_list.mutex);
319 memory_map_init();
320 io_mem_init();
321 #endif
322 }
323
324 #if !defined(CONFIG_USER_ONLY)
325
326 static int cpu_common_post_load(void *opaque, int version_id)
327 {
328 CPUState *cpu = opaque;
329
330 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
331 version_id is increased. */
332 cpu->interrupt_request &= ~0x01;
333 tlb_flush(cpu->env_ptr, 1);
334
335 return 0;
336 }
337
338 const VMStateDescription vmstate_cpu_common = {
339 .name = "cpu_common",
340 .version_id = 1,
341 .minimum_version_id = 1,
342 .minimum_version_id_old = 1,
343 .post_load = cpu_common_post_load,
344 .fields = (VMStateField []) {
345 VMSTATE_UINT32(halted, CPUState),
346 VMSTATE_UINT32(interrupt_request, CPUState),
347 VMSTATE_END_OF_LIST()
348 }
349 };
350
351 #endif
352
353 CPUState *qemu_get_cpu(int index)
354 {
355 CPUArchState *env = first_cpu;
356 CPUState *cpu = NULL;
357
358 while (env) {
359 cpu = ENV_GET_CPU(env);
360 if (cpu->cpu_index == index) {
361 break;
362 }
363 env = env->next_cpu;
364 }
365
366 return env ? cpu : NULL;
367 }
368
369 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
370 {
371 CPUArchState *env = first_cpu;
372
373 while (env) {
374 func(ENV_GET_CPU(env), data);
375 env = env->next_cpu;
376 }
377 }
378
379 void cpu_exec_init(CPUArchState *env)
380 {
381 CPUState *cpu = ENV_GET_CPU(env);
382 CPUClass *cc = CPU_GET_CLASS(cpu);
383 CPUArchState **penv;
384 int cpu_index;
385
386 #if defined(CONFIG_USER_ONLY)
387 cpu_list_lock();
388 #endif
389 env->next_cpu = NULL;
390 penv = &first_cpu;
391 cpu_index = 0;
392 while (*penv != NULL) {
393 penv = &(*penv)->next_cpu;
394 cpu_index++;
395 }
396 cpu->cpu_index = cpu_index;
397 cpu->numa_node = 0;
398 QTAILQ_INIT(&env->breakpoints);
399 QTAILQ_INIT(&env->watchpoints);
400 #ifndef CONFIG_USER_ONLY
401 cpu->thread_id = qemu_get_thread_id();
402 #endif
403 *penv = env;
404 #if defined(CONFIG_USER_ONLY)
405 cpu_list_unlock();
406 #endif
407 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
408 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
409 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
410 cpu_save, cpu_load, env);
411 assert(cc->vmsd == NULL);
412 #endif
413 if (cc->vmsd != NULL) {
414 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
415 }
416 }
417
418 #if defined(TARGET_HAS_ICE)
419 #if defined(CONFIG_USER_ONLY)
420 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
421 {
422 tb_invalidate_phys_page_range(pc, pc + 1, 0);
423 }
424 #else
425 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
426 {
427 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
428 (pc & ~TARGET_PAGE_MASK));
429 }
430 #endif
431 #endif /* TARGET_HAS_ICE */
432
433 #if defined(CONFIG_USER_ONLY)
434 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
435
436 {
437 }
438
439 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
440 int flags, CPUWatchpoint **watchpoint)
441 {
442 return -ENOSYS;
443 }
444 #else
445 /* Add a watchpoint. */
446 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
447 int flags, CPUWatchpoint **watchpoint)
448 {
449 target_ulong len_mask = ~(len - 1);
450 CPUWatchpoint *wp;
451
452 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
453 if ((len & (len - 1)) || (addr & ~len_mask) ||
454 len == 0 || len > TARGET_PAGE_SIZE) {
455 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
456 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
457 return -EINVAL;
458 }
459 wp = g_malloc(sizeof(*wp));
460
461 wp->vaddr = addr;
462 wp->len_mask = len_mask;
463 wp->flags = flags;
464
465 /* keep all GDB-injected watchpoints in front */
466 if (flags & BP_GDB)
467 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
468 else
469 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
470
471 tlb_flush_page(env, addr);
472
473 if (watchpoint)
474 *watchpoint = wp;
475 return 0;
476 }
477
478 /* Remove a specific watchpoint. */
479 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
480 int flags)
481 {
482 target_ulong len_mask = ~(len - 1);
483 CPUWatchpoint *wp;
484
485 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
486 if (addr == wp->vaddr && len_mask == wp->len_mask
487 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
488 cpu_watchpoint_remove_by_ref(env, wp);
489 return 0;
490 }
491 }
492 return -ENOENT;
493 }
494
495 /* Remove a specific watchpoint by reference. */
496 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
497 {
498 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
499
500 tlb_flush_page(env, watchpoint->vaddr);
501
502 g_free(watchpoint);
503 }
504
505 /* Remove all matching watchpoints. */
506 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
507 {
508 CPUWatchpoint *wp, *next;
509
510 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
511 if (wp->flags & mask)
512 cpu_watchpoint_remove_by_ref(env, wp);
513 }
514 }
515 #endif
516
517 /* Add a breakpoint. */
518 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
519 CPUBreakpoint **breakpoint)
520 {
521 #if defined(TARGET_HAS_ICE)
522 CPUBreakpoint *bp;
523
524 bp = g_malloc(sizeof(*bp));
525
526 bp->pc = pc;
527 bp->flags = flags;
528
529 /* keep all GDB-injected breakpoints in front */
530 if (flags & BP_GDB)
531 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
532 else
533 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
534
535 breakpoint_invalidate(env, pc);
536
537 if (breakpoint)
538 *breakpoint = bp;
539 return 0;
540 #else
541 return -ENOSYS;
542 #endif
543 }
544
545 /* Remove a specific breakpoint. */
546 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
547 {
548 #if defined(TARGET_HAS_ICE)
549 CPUBreakpoint *bp;
550
551 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
552 if (bp->pc == pc && bp->flags == flags) {
553 cpu_breakpoint_remove_by_ref(env, bp);
554 return 0;
555 }
556 }
557 return -ENOENT;
558 #else
559 return -ENOSYS;
560 #endif
561 }
562
563 /* Remove a specific breakpoint by reference. */
564 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
565 {
566 #if defined(TARGET_HAS_ICE)
567 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
568
569 breakpoint_invalidate(env, breakpoint->pc);
570
571 g_free(breakpoint);
572 #endif
573 }
574
575 /* Remove all matching breakpoints. */
576 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
577 {
578 #if defined(TARGET_HAS_ICE)
579 CPUBreakpoint *bp, *next;
580
581 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
582 if (bp->flags & mask)
583 cpu_breakpoint_remove_by_ref(env, bp);
584 }
585 #endif
586 }
587
588 /* enable or disable single step mode. EXCP_DEBUG is returned by the
589 CPU loop after each instruction */
590 void cpu_single_step(CPUArchState *env, int enabled)
591 {
592 #if defined(TARGET_HAS_ICE)
593 if (env->singlestep_enabled != enabled) {
594 env->singlestep_enabled = enabled;
595 if (kvm_enabled())
596 kvm_update_guest_debug(env, 0);
597 else {
598 /* must flush all the translated code to avoid inconsistencies */
599 /* XXX: only flush what is necessary */
600 tb_flush(env);
601 }
602 }
603 #endif
604 }
605
606 void cpu_abort(CPUArchState *env, const char *fmt, ...)
607 {
608 CPUState *cpu = ENV_GET_CPU(env);
609 va_list ap;
610 va_list ap2;
611
612 va_start(ap, fmt);
613 va_copy(ap2, ap);
614 fprintf(stderr, "qemu: fatal: ");
615 vfprintf(stderr, fmt, ap);
616 fprintf(stderr, "\n");
617 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
618 if (qemu_log_enabled()) {
619 qemu_log("qemu: fatal: ");
620 qemu_log_vprintf(fmt, ap2);
621 qemu_log("\n");
622 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
623 qemu_log_flush();
624 qemu_log_close();
625 }
626 va_end(ap2);
627 va_end(ap);
628 #if defined(CONFIG_USER_ONLY)
629 {
630 struct sigaction act;
631 sigfillset(&act.sa_mask);
632 act.sa_handler = SIG_DFL;
633 sigaction(SIGABRT, &act, NULL);
634 }
635 #endif
636 abort();
637 }
638
639 CPUArchState *cpu_copy(CPUArchState *env)
640 {
641 CPUArchState *new_env = cpu_init(env->cpu_model_str);
642 CPUArchState *next_cpu = new_env->next_cpu;
643 #if defined(TARGET_HAS_ICE)
644 CPUBreakpoint *bp;
645 CPUWatchpoint *wp;
646 #endif
647
648 memcpy(new_env, env, sizeof(CPUArchState));
649
650 /* Preserve chaining. */
651 new_env->next_cpu = next_cpu;
652
653 /* Clone all break/watchpoints.
654 Note: Once we support ptrace with hw-debug register access, make sure
655 BP_CPU break/watchpoints are handled correctly on clone. */
656 QTAILQ_INIT(&env->breakpoints);
657 QTAILQ_INIT(&env->watchpoints);
658 #if defined(TARGET_HAS_ICE)
659 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
660 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
661 }
662 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
663 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
664 wp->flags, NULL);
665 }
666 #endif
667
668 return new_env;
669 }
670
671 #if !defined(CONFIG_USER_ONLY)
672 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
673 uintptr_t length)
674 {
675 uintptr_t start1;
676
677 /* we modify the TLB cache so that the dirty bit will be set again
678 when accessing the range */
679 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
680 /* Check that we don't span multiple blocks - this breaks the
681 address comparisons below. */
682 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
683 != (end - 1) - start) {
684 abort();
685 }
686 cpu_tlb_reset_dirty_all(start1, length);
687
688 }
689
690 /* Note: start and end must be within the same ram block. */
691 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
692 int dirty_flags)
693 {
694 uintptr_t length;
695
696 start &= TARGET_PAGE_MASK;
697 end = TARGET_PAGE_ALIGN(end);
698
699 length = end - start;
700 if (length == 0)
701 return;
702 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
703
704 if (tcg_enabled()) {
705 tlb_reset_dirty_range_all(start, end, length);
706 }
707 }
708
709 static int cpu_physical_memory_set_dirty_tracking(int enable)
710 {
711 int ret = 0;
712 in_migration = enable;
713 return ret;
714 }
715
716 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
717 MemoryRegionSection *section,
718 target_ulong vaddr,
719 hwaddr paddr, hwaddr xlat,
720 int prot,
721 target_ulong *address)
722 {
723 hwaddr iotlb;
724 CPUWatchpoint *wp;
725
726 if (memory_region_is_ram(section->mr)) {
727 /* Normal RAM. */
728 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
729 + xlat;
730 if (!section->readonly) {
731 iotlb |= PHYS_SECTION_NOTDIRTY;
732 } else {
733 iotlb |= PHYS_SECTION_ROM;
734 }
735 } else {
736 iotlb = section - address_space_memory.dispatch->sections;
737 iotlb += xlat;
738 }
739
740 /* Make accesses to pages with watchpoints go via the
741 watchpoint trap routines. */
742 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
743 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
744 /* Avoid trapping reads of pages with a write breakpoint. */
745 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
746 iotlb = PHYS_SECTION_WATCH + paddr;
747 *address |= TLB_MMIO;
748 break;
749 }
750 }
751 }
752
753 return iotlb;
754 }
755 #endif /* defined(CONFIG_USER_ONLY) */
756
757 #if !defined(CONFIG_USER_ONLY)
758
759 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
760 uint16_t section);
761 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
762
763 static uint16_t phys_section_add(MemoryRegionSection *section)
764 {
765 /* The physical section number is ORed with a page-aligned
766 * pointer to produce the iotlb entries. Thus it should
767 * never overflow into the page-aligned value.
768 */
769 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
770
771 if (next_map.sections_nb == next_map.sections_nb_alloc) {
772 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
773 16);
774 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
775 next_map.sections_nb_alloc);
776 }
777 next_map.sections[next_map.sections_nb] = *section;
778 memory_region_ref(section->mr);
779 return next_map.sections_nb++;
780 }
781
782 static void phys_section_destroy(MemoryRegion *mr)
783 {
784 memory_region_unref(mr);
785
786 if (mr->subpage) {
787 subpage_t *subpage = container_of(mr, subpage_t, iomem);
788 memory_region_destroy(&subpage->iomem);
789 g_free(subpage);
790 }
791 }
792
793 static void phys_sections_clear(PhysPageMap *map)
794 {
795 while (map->sections_nb > 0) {
796 MemoryRegionSection *section = &map->sections[--map->sections_nb];
797 phys_section_destroy(section->mr);
798 }
799 g_free(map->sections);
800 g_free(map->nodes);
801 }
802
803 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
804 {
805 subpage_t *subpage;
806 hwaddr base = section->offset_within_address_space
807 & TARGET_PAGE_MASK;
808 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
809 next_map.nodes, next_map.sections);
810 MemoryRegionSection subsection = {
811 .offset_within_address_space = base,
812 .size = int128_make64(TARGET_PAGE_SIZE),
813 };
814 hwaddr start, end;
815
816 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
817
818 if (!(existing->mr->subpage)) {
819 subpage = subpage_init(d->as, base);
820 subsection.mr = &subpage->iomem;
821 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
822 phys_section_add(&subsection));
823 } else {
824 subpage = container_of(existing->mr, subpage_t, iomem);
825 }
826 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
827 end = start + int128_get64(section->size) - 1;
828 subpage_register(subpage, start, end, phys_section_add(section));
829 }
830
831
832 static void register_multipage(AddressSpaceDispatch *d,
833 MemoryRegionSection *section)
834 {
835 hwaddr start_addr = section->offset_within_address_space;
836 uint16_t section_index = phys_section_add(section);
837 uint64_t num_pages = int128_get64(int128_rshift(section->size,
838 TARGET_PAGE_BITS));
839
840 assert(num_pages);
841 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
842 }
843
844 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
845 {
846 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
847 AddressSpaceDispatch *d = as->next_dispatch;
848 MemoryRegionSection now = *section, remain = *section;
849 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
850
851 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
852 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
853 - now.offset_within_address_space;
854
855 now.size = int128_min(int128_make64(left), now.size);
856 register_subpage(d, &now);
857 } else {
858 now.size = int128_zero();
859 }
860 while (int128_ne(remain.size, now.size)) {
861 remain.size = int128_sub(remain.size, now.size);
862 remain.offset_within_address_space += int128_get64(now.size);
863 remain.offset_within_region += int128_get64(now.size);
864 now = remain;
865 if (int128_lt(remain.size, page_size)) {
866 register_subpage(d, &now);
867 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
868 now.size = page_size;
869 register_subpage(d, &now);
870 } else {
871 now.size = int128_and(now.size, int128_neg(page_size));
872 register_multipage(d, &now);
873 }
874 }
875 }
876
877 void qemu_flush_coalesced_mmio_buffer(void)
878 {
879 if (kvm_enabled())
880 kvm_flush_coalesced_mmio_buffer();
881 }
882
883 void qemu_mutex_lock_ramlist(void)
884 {
885 qemu_mutex_lock(&ram_list.mutex);
886 }
887
888 void qemu_mutex_unlock_ramlist(void)
889 {
890 qemu_mutex_unlock(&ram_list.mutex);
891 }
892
893 #if defined(__linux__) && !defined(TARGET_S390X)
894
895 #include <sys/vfs.h>
896
897 #define HUGETLBFS_MAGIC 0x958458f6
898
899 static long gethugepagesize(const char *path)
900 {
901 struct statfs fs;
902 int ret;
903
904 do {
905 ret = statfs(path, &fs);
906 } while (ret != 0 && errno == EINTR);
907
908 if (ret != 0) {
909 perror(path);
910 return 0;
911 }
912
913 if (fs.f_type != HUGETLBFS_MAGIC)
914 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
915
916 return fs.f_bsize;
917 }
918
919 static void *file_ram_alloc(RAMBlock *block,
920 ram_addr_t memory,
921 const char *path)
922 {
923 char *filename;
924 char *sanitized_name;
925 char *c;
926 void *area;
927 int fd;
928 #ifdef MAP_POPULATE
929 int flags;
930 #endif
931 unsigned long hpagesize;
932
933 hpagesize = gethugepagesize(path);
934 if (!hpagesize) {
935 return NULL;
936 }
937
938 if (memory < hpagesize) {
939 return NULL;
940 }
941
942 if (kvm_enabled() && !kvm_has_sync_mmu()) {
943 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
944 return NULL;
945 }
946
947 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
948 sanitized_name = g_strdup(block->mr->name);
949 for (c = sanitized_name; *c != '\0'; c++) {
950 if (*c == '/')
951 *c = '_';
952 }
953
954 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
955 sanitized_name);
956 g_free(sanitized_name);
957
958 fd = mkstemp(filename);
959 if (fd < 0) {
960 perror("unable to create backing store for hugepages");
961 g_free(filename);
962 return NULL;
963 }
964 unlink(filename);
965 g_free(filename);
966
967 memory = (memory+hpagesize-1) & ~(hpagesize-1);
968
969 /*
970 * ftruncate is not supported by hugetlbfs in older
971 * hosts, so don't bother bailing out on errors.
972 * If anything goes wrong with it under other filesystems,
973 * mmap will fail.
974 */
975 if (ftruncate(fd, memory))
976 perror("ftruncate");
977
978 #ifdef MAP_POPULATE
979 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
980 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
981 * to sidestep this quirk.
982 */
983 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
984 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
985 #else
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
987 #endif
988 if (area == MAP_FAILED) {
989 perror("file_ram_alloc: can't mmap RAM pages");
990 close(fd);
991 return (NULL);
992 }
993 block->fd = fd;
994 return area;
995 }
996 #endif
997
998 static ram_addr_t find_ram_offset(ram_addr_t size)
999 {
1000 RAMBlock *block, *next_block;
1001 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1002
1003 assert(size != 0); /* it would hand out same offset multiple times */
1004
1005 if (QTAILQ_EMPTY(&ram_list.blocks))
1006 return 0;
1007
1008 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1009 ram_addr_t end, next = RAM_ADDR_MAX;
1010
1011 end = block->offset + block->length;
1012
1013 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1014 if (next_block->offset >= end) {
1015 next = MIN(next, next_block->offset);
1016 }
1017 }
1018 if (next - end >= size && next - end < mingap) {
1019 offset = end;
1020 mingap = next - end;
1021 }
1022 }
1023
1024 if (offset == RAM_ADDR_MAX) {
1025 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1026 (uint64_t)size);
1027 abort();
1028 }
1029
1030 return offset;
1031 }
1032
1033 ram_addr_t last_ram_offset(void)
1034 {
1035 RAMBlock *block;
1036 ram_addr_t last = 0;
1037
1038 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1039 last = MAX(last, block->offset + block->length);
1040
1041 return last;
1042 }
1043
1044 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1045 {
1046 int ret;
1047 QemuOpts *machine_opts;
1048
1049 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1050 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1051 if (machine_opts &&
1052 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1053 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1054 if (ret) {
1055 perror("qemu_madvise");
1056 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1057 "but dump_guest_core=off specified\n");
1058 }
1059 }
1060 }
1061
1062 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1063 {
1064 RAMBlock *new_block, *block;
1065
1066 new_block = NULL;
1067 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1068 if (block->offset == addr) {
1069 new_block = block;
1070 break;
1071 }
1072 }
1073 assert(new_block);
1074 assert(!new_block->idstr[0]);
1075
1076 if (dev) {
1077 char *id = qdev_get_dev_path(dev);
1078 if (id) {
1079 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1080 g_free(id);
1081 }
1082 }
1083 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1084
1085 /* This assumes the iothread lock is taken here too. */
1086 qemu_mutex_lock_ramlist();
1087 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1088 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1089 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1090 new_block->idstr);
1091 abort();
1092 }
1093 }
1094 qemu_mutex_unlock_ramlist();
1095 }
1096
1097 static int memory_try_enable_merging(void *addr, size_t len)
1098 {
1099 QemuOpts *opts;
1100
1101 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1102 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1103 /* disabled by the user */
1104 return 0;
1105 }
1106
1107 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1108 }
1109
1110 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1111 MemoryRegion *mr)
1112 {
1113 RAMBlock *block, *new_block;
1114
1115 size = TARGET_PAGE_ALIGN(size);
1116 new_block = g_malloc0(sizeof(*new_block));
1117
1118 /* This assumes the iothread lock is taken here too. */
1119 qemu_mutex_lock_ramlist();
1120 new_block->mr = mr;
1121 new_block->offset = find_ram_offset(size);
1122 if (host) {
1123 new_block->host = host;
1124 new_block->flags |= RAM_PREALLOC_MASK;
1125 } else {
1126 if (mem_path) {
1127 #if defined (__linux__) && !defined(TARGET_S390X)
1128 new_block->host = file_ram_alloc(new_block, size, mem_path);
1129 if (!new_block->host) {
1130 new_block->host = qemu_anon_ram_alloc(size);
1131 memory_try_enable_merging(new_block->host, size);
1132 }
1133 #else
1134 fprintf(stderr, "-mem-path option unsupported\n");
1135 exit(1);
1136 #endif
1137 } else {
1138 if (xen_enabled()) {
1139 xen_ram_alloc(new_block->offset, size, mr);
1140 } else if (kvm_enabled()) {
1141 /* some s390/kvm configurations have special constraints */
1142 new_block->host = kvm_ram_alloc(size);
1143 } else {
1144 new_block->host = qemu_anon_ram_alloc(size);
1145 }
1146 memory_try_enable_merging(new_block->host, size);
1147 }
1148 }
1149 new_block->length = size;
1150
1151 /* Keep the list sorted from biggest to smallest block. */
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (block->length < new_block->length) {
1154 break;
1155 }
1156 }
1157 if (block) {
1158 QTAILQ_INSERT_BEFORE(block, new_block, next);
1159 } else {
1160 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1161 }
1162 ram_list.mru_block = NULL;
1163
1164 ram_list.version++;
1165 qemu_mutex_unlock_ramlist();
1166
1167 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1168 last_ram_offset() >> TARGET_PAGE_BITS);
1169 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1170 0, size >> TARGET_PAGE_BITS);
1171 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1172
1173 qemu_ram_setup_dump(new_block->host, size);
1174 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1175
1176 if (kvm_enabled())
1177 kvm_setup_guest_memory(new_block->host, size);
1178
1179 return new_block->offset;
1180 }
1181
1182 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1183 {
1184 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1185 }
1186
1187 void qemu_ram_free_from_ptr(ram_addr_t addr)
1188 {
1189 RAMBlock *block;
1190
1191 /* This assumes the iothread lock is taken here too. */
1192 qemu_mutex_lock_ramlist();
1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1194 if (addr == block->offset) {
1195 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1196 ram_list.mru_block = NULL;
1197 ram_list.version++;
1198 g_free(block);
1199 break;
1200 }
1201 }
1202 qemu_mutex_unlock_ramlist();
1203 }
1204
1205 void qemu_ram_free(ram_addr_t addr)
1206 {
1207 RAMBlock *block;
1208
1209 /* This assumes the iothread lock is taken here too. */
1210 qemu_mutex_lock_ramlist();
1211 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1212 if (addr == block->offset) {
1213 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1214 ram_list.mru_block = NULL;
1215 ram_list.version++;
1216 if (block->flags & RAM_PREALLOC_MASK) {
1217 ;
1218 } else if (mem_path) {
1219 #if defined (__linux__) && !defined(TARGET_S390X)
1220 if (block->fd) {
1221 munmap(block->host, block->length);
1222 close(block->fd);
1223 } else {
1224 qemu_anon_ram_free(block->host, block->length);
1225 }
1226 #else
1227 abort();
1228 #endif
1229 } else {
1230 if (xen_enabled()) {
1231 xen_invalidate_map_cache_entry(block->host);
1232 } else {
1233 qemu_anon_ram_free(block->host, block->length);
1234 }
1235 }
1236 g_free(block);
1237 break;
1238 }
1239 }
1240 qemu_mutex_unlock_ramlist();
1241
1242 }
1243
1244 #ifndef _WIN32
1245 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1246 {
1247 RAMBlock *block;
1248 ram_addr_t offset;
1249 int flags;
1250 void *area, *vaddr;
1251
1252 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1253 offset = addr - block->offset;
1254 if (offset < block->length) {
1255 vaddr = block->host + offset;
1256 if (block->flags & RAM_PREALLOC_MASK) {
1257 ;
1258 } else {
1259 flags = MAP_FIXED;
1260 munmap(vaddr, length);
1261 if (mem_path) {
1262 #if defined(__linux__) && !defined(TARGET_S390X)
1263 if (block->fd) {
1264 #ifdef MAP_POPULATE
1265 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1266 MAP_PRIVATE;
1267 #else
1268 flags |= MAP_PRIVATE;
1269 #endif
1270 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1271 flags, block->fd, offset);
1272 } else {
1273 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1274 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1275 flags, -1, 0);
1276 }
1277 #else
1278 abort();
1279 #endif
1280 } else {
1281 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1282 flags |= MAP_SHARED | MAP_ANONYMOUS;
1283 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1284 flags, -1, 0);
1285 #else
1286 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1287 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1288 flags, -1, 0);
1289 #endif
1290 }
1291 if (area != vaddr) {
1292 fprintf(stderr, "Could not remap addr: "
1293 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1294 length, addr);
1295 exit(1);
1296 }
1297 memory_try_enable_merging(vaddr, length);
1298 qemu_ram_setup_dump(vaddr, length);
1299 }
1300 return;
1301 }
1302 }
1303 }
1304 #endif /* !_WIN32 */
1305
1306 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1307 {
1308 RAMBlock *block;
1309
1310 /* The list is protected by the iothread lock here. */
1311 block = ram_list.mru_block;
1312 if (block && addr - block->offset < block->length) {
1313 goto found;
1314 }
1315 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1316 if (addr - block->offset < block->length) {
1317 goto found;
1318 }
1319 }
1320
1321 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1322 abort();
1323
1324 found:
1325 ram_list.mru_block = block;
1326 return block;
1327 }
1328
1329 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1330 With the exception of the softmmu code in this file, this should
1331 only be used for local memory (e.g. video ram) that the device owns,
1332 and knows it isn't going to access beyond the end of the block.
1333
1334 It should not be used for general purpose DMA.
1335 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1336 */
1337 void *qemu_get_ram_ptr(ram_addr_t addr)
1338 {
1339 RAMBlock *block = qemu_get_ram_block(addr);
1340
1341 if (xen_enabled()) {
1342 /* We need to check if the requested address is in the RAM
1343 * because we don't want to map the entire memory in QEMU.
1344 * In that case just map until the end of the page.
1345 */
1346 if (block->offset == 0) {
1347 return xen_map_cache(addr, 0, 0);
1348 } else if (block->host == NULL) {
1349 block->host =
1350 xen_map_cache(block->offset, block->length, 1);
1351 }
1352 }
1353 return block->host + (addr - block->offset);
1354 }
1355
1356 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1357 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1358 *
1359 * ??? Is this still necessary?
1360 */
1361 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1362 {
1363 RAMBlock *block;
1364
1365 /* The list is protected by the iothread lock here. */
1366 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1367 if (addr - block->offset < block->length) {
1368 if (xen_enabled()) {
1369 /* We need to check if the requested address is in the RAM
1370 * because we don't want to map the entire memory in QEMU.
1371 * In that case just map until the end of the page.
1372 */
1373 if (block->offset == 0) {
1374 return xen_map_cache(addr, 0, 0);
1375 } else if (block->host == NULL) {
1376 block->host =
1377 xen_map_cache(block->offset, block->length, 1);
1378 }
1379 }
1380 return block->host + (addr - block->offset);
1381 }
1382 }
1383
1384 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1385 abort();
1386
1387 return NULL;
1388 }
1389
1390 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1391 * but takes a size argument */
1392 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1393 {
1394 if (*size == 0) {
1395 return NULL;
1396 }
1397 if (xen_enabled()) {
1398 return xen_map_cache(addr, *size, 1);
1399 } else {
1400 RAMBlock *block;
1401
1402 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1403 if (addr - block->offset < block->length) {
1404 if (addr - block->offset + *size > block->length)
1405 *size = block->length - addr + block->offset;
1406 return block->host + (addr - block->offset);
1407 }
1408 }
1409
1410 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1411 abort();
1412 }
1413 }
1414
1415 /* Some of the softmmu routines need to translate from a host pointer
1416 (typically a TLB entry) back to a ram offset. */
1417 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1418 {
1419 RAMBlock *block;
1420 uint8_t *host = ptr;
1421
1422 if (xen_enabled()) {
1423 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1424 return qemu_get_ram_block(*ram_addr)->mr;
1425 }
1426
1427 block = ram_list.mru_block;
1428 if (block && block->host && host - block->host < block->length) {
1429 goto found;
1430 }
1431
1432 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1433 /* This case append when the block is not mapped. */
1434 if (block->host == NULL) {
1435 continue;
1436 }
1437 if (host - block->host < block->length) {
1438 goto found;
1439 }
1440 }
1441
1442 return NULL;
1443
1444 found:
1445 *ram_addr = block->offset + (host - block->host);
1446 return block->mr;
1447 }
1448
1449 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1450 uint64_t val, unsigned size)
1451 {
1452 int dirty_flags;
1453 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1454 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1455 tb_invalidate_phys_page_fast(ram_addr, size);
1456 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1457 }
1458 switch (size) {
1459 case 1:
1460 stb_p(qemu_get_ram_ptr(ram_addr), val);
1461 break;
1462 case 2:
1463 stw_p(qemu_get_ram_ptr(ram_addr), val);
1464 break;
1465 case 4:
1466 stl_p(qemu_get_ram_ptr(ram_addr), val);
1467 break;
1468 default:
1469 abort();
1470 }
1471 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1472 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1473 /* we remove the notdirty callback only if the code has been
1474 flushed */
1475 if (dirty_flags == 0xff)
1476 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1477 }
1478
1479 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1480 unsigned size, bool is_write)
1481 {
1482 return is_write;
1483 }
1484
1485 static const MemoryRegionOps notdirty_mem_ops = {
1486 .write = notdirty_mem_write,
1487 .valid.accepts = notdirty_mem_accepts,
1488 .endianness = DEVICE_NATIVE_ENDIAN,
1489 };
1490
1491 /* Generate a debug exception if a watchpoint has been hit. */
1492 static void check_watchpoint(int offset, int len_mask, int flags)
1493 {
1494 CPUArchState *env = cpu_single_env;
1495 target_ulong pc, cs_base;
1496 target_ulong vaddr;
1497 CPUWatchpoint *wp;
1498 int cpu_flags;
1499
1500 if (env->watchpoint_hit) {
1501 /* We re-entered the check after replacing the TB. Now raise
1502 * the debug interrupt so that is will trigger after the
1503 * current instruction. */
1504 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1505 return;
1506 }
1507 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1508 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1509 if ((vaddr == (wp->vaddr & len_mask) ||
1510 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1511 wp->flags |= BP_WATCHPOINT_HIT;
1512 if (!env->watchpoint_hit) {
1513 env->watchpoint_hit = wp;
1514 tb_check_watchpoint(env);
1515 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1516 env->exception_index = EXCP_DEBUG;
1517 cpu_loop_exit(env);
1518 } else {
1519 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1520 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1521 cpu_resume_from_signal(env, NULL);
1522 }
1523 }
1524 } else {
1525 wp->flags &= ~BP_WATCHPOINT_HIT;
1526 }
1527 }
1528 }
1529
1530 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1531 so these check for a hit then pass through to the normal out-of-line
1532 phys routines. */
1533 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1534 unsigned size)
1535 {
1536 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1537 switch (size) {
1538 case 1: return ldub_phys(addr);
1539 case 2: return lduw_phys(addr);
1540 case 4: return ldl_phys(addr);
1541 default: abort();
1542 }
1543 }
1544
1545 static void watch_mem_write(void *opaque, hwaddr addr,
1546 uint64_t val, unsigned size)
1547 {
1548 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1549 switch (size) {
1550 case 1:
1551 stb_phys(addr, val);
1552 break;
1553 case 2:
1554 stw_phys(addr, val);
1555 break;
1556 case 4:
1557 stl_phys(addr, val);
1558 break;
1559 default: abort();
1560 }
1561 }
1562
1563 static const MemoryRegionOps watch_mem_ops = {
1564 .read = watch_mem_read,
1565 .write = watch_mem_write,
1566 .endianness = DEVICE_NATIVE_ENDIAN,
1567 };
1568
1569 static uint64_t subpage_read(void *opaque, hwaddr addr,
1570 unsigned len)
1571 {
1572 subpage_t *subpage = opaque;
1573 uint8_t buf[4];
1574
1575 #if defined(DEBUG_SUBPAGE)
1576 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1577 subpage, len, addr);
1578 #endif
1579 address_space_read(subpage->as, addr + subpage->base, buf, len);
1580 switch (len) {
1581 case 1:
1582 return ldub_p(buf);
1583 case 2:
1584 return lduw_p(buf);
1585 case 4:
1586 return ldl_p(buf);
1587 default:
1588 abort();
1589 }
1590 }
1591
1592 static void subpage_write(void *opaque, hwaddr addr,
1593 uint64_t value, unsigned len)
1594 {
1595 subpage_t *subpage = opaque;
1596 uint8_t buf[4];
1597
1598 #if defined(DEBUG_SUBPAGE)
1599 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1600 " value %"PRIx64"\n",
1601 __func__, subpage, len, addr, value);
1602 #endif
1603 switch (len) {
1604 case 1:
1605 stb_p(buf, value);
1606 break;
1607 case 2:
1608 stw_p(buf, value);
1609 break;
1610 case 4:
1611 stl_p(buf, value);
1612 break;
1613 default:
1614 abort();
1615 }
1616 address_space_write(subpage->as, addr + subpage->base, buf, len);
1617 }
1618
1619 static bool subpage_accepts(void *opaque, hwaddr addr,
1620 unsigned size, bool is_write)
1621 {
1622 subpage_t *subpage = opaque;
1623 #if defined(DEBUG_SUBPAGE)
1624 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1625 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1626 #endif
1627
1628 return address_space_access_valid(subpage->as, addr + subpage->base,
1629 size, is_write);
1630 }
1631
1632 static const MemoryRegionOps subpage_ops = {
1633 .read = subpage_read,
1634 .write = subpage_write,
1635 .valid.accepts = subpage_accepts,
1636 .endianness = DEVICE_NATIVE_ENDIAN,
1637 };
1638
1639 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1640 uint16_t section)
1641 {
1642 int idx, eidx;
1643
1644 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1645 return -1;
1646 idx = SUBPAGE_IDX(start);
1647 eidx = SUBPAGE_IDX(end);
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1650 mmio, start, end, idx, eidx, memory);
1651 #endif
1652 for (; idx <= eidx; idx++) {
1653 mmio->sub_section[idx] = section;
1654 }
1655
1656 return 0;
1657 }
1658
1659 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1660 {
1661 subpage_t *mmio;
1662
1663 mmio = g_malloc0(sizeof(subpage_t));
1664
1665 mmio->as = as;
1666 mmio->base = base;
1667 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1668 "subpage", TARGET_PAGE_SIZE);
1669 mmio->iomem.subpage = true;
1670 #if defined(DEBUG_SUBPAGE)
1671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1673 #endif
1674 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1675
1676 return mmio;
1677 }
1678
1679 static uint16_t dummy_section(MemoryRegion *mr)
1680 {
1681 MemoryRegionSection section = {
1682 .mr = mr,
1683 .offset_within_address_space = 0,
1684 .offset_within_region = 0,
1685 .size = int128_2_64(),
1686 };
1687
1688 return phys_section_add(&section);
1689 }
1690
1691 MemoryRegion *iotlb_to_region(hwaddr index)
1692 {
1693 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1694 }
1695
1696 static void io_mem_init(void)
1697 {
1698 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1699 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1700 "unassigned", UINT64_MAX);
1701 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1702 "notdirty", UINT64_MAX);
1703 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1704 "watch", UINT64_MAX);
1705 }
1706
1707 static void mem_begin(MemoryListener *listener)
1708 {
1709 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1710 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1711
1712 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1713 d->as = as;
1714 as->next_dispatch = d;
1715 }
1716
1717 static void mem_commit(MemoryListener *listener)
1718 {
1719 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1720 AddressSpaceDispatch *cur = as->dispatch;
1721 AddressSpaceDispatch *next = as->next_dispatch;
1722
1723 next->nodes = next_map.nodes;
1724 next->sections = next_map.sections;
1725
1726 as->dispatch = next;
1727 g_free(cur);
1728 }
1729
1730 static void core_begin(MemoryListener *listener)
1731 {
1732 uint16_t n;
1733
1734 memset(&next_map, 0, sizeof(next_map));
1735 n = dummy_section(&io_mem_unassigned);
1736 assert(n == PHYS_SECTION_UNASSIGNED);
1737 n = dummy_section(&io_mem_notdirty);
1738 assert(n == PHYS_SECTION_NOTDIRTY);
1739 n = dummy_section(&io_mem_rom);
1740 assert(n == PHYS_SECTION_ROM);
1741 n = dummy_section(&io_mem_watch);
1742 assert(n == PHYS_SECTION_WATCH);
1743 }
1744
1745 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1746 * All AddressSpaceDispatch instances have switched to the next map.
1747 */
1748 static void core_commit(MemoryListener *listener)
1749 {
1750 PhysPageMap info = cur_map;
1751 cur_map = next_map;
1752 phys_sections_clear(&info);
1753 }
1754
1755 static void tcg_commit(MemoryListener *listener)
1756 {
1757 CPUArchState *env;
1758
1759 /* since each CPU stores ram addresses in its TLB cache, we must
1760 reset the modified entries */
1761 /* XXX: slow ! */
1762 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1763 tlb_flush(env, 1);
1764 }
1765 }
1766
1767 static void core_log_global_start(MemoryListener *listener)
1768 {
1769 cpu_physical_memory_set_dirty_tracking(1);
1770 }
1771
1772 static void core_log_global_stop(MemoryListener *listener)
1773 {
1774 cpu_physical_memory_set_dirty_tracking(0);
1775 }
1776
1777 static MemoryListener core_memory_listener = {
1778 .begin = core_begin,
1779 .commit = core_commit,
1780 .log_global_start = core_log_global_start,
1781 .log_global_stop = core_log_global_stop,
1782 .priority = 1,
1783 };
1784
1785 static MemoryListener tcg_memory_listener = {
1786 .commit = tcg_commit,
1787 };
1788
1789 void address_space_init_dispatch(AddressSpace *as)
1790 {
1791 as->dispatch = NULL;
1792 as->dispatch_listener = (MemoryListener) {
1793 .begin = mem_begin,
1794 .commit = mem_commit,
1795 .region_add = mem_add,
1796 .region_nop = mem_add,
1797 .priority = 0,
1798 };
1799 memory_listener_register(&as->dispatch_listener, as);
1800 }
1801
1802 void address_space_destroy_dispatch(AddressSpace *as)
1803 {
1804 AddressSpaceDispatch *d = as->dispatch;
1805
1806 memory_listener_unregister(&as->dispatch_listener);
1807 g_free(d);
1808 as->dispatch = NULL;
1809 }
1810
1811 static void memory_map_init(void)
1812 {
1813 system_memory = g_malloc(sizeof(*system_memory));
1814 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1815 address_space_init(&address_space_memory, system_memory, "memory");
1816
1817 system_io = g_malloc(sizeof(*system_io));
1818 memory_region_init(system_io, NULL, "io", 65536);
1819 address_space_init(&address_space_io, system_io, "I/O");
1820
1821 memory_listener_register(&core_memory_listener, &address_space_memory);
1822 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1823 }
1824
1825 MemoryRegion *get_system_memory(void)
1826 {
1827 return system_memory;
1828 }
1829
1830 MemoryRegion *get_system_io(void)
1831 {
1832 return system_io;
1833 }
1834
1835 #endif /* !defined(CONFIG_USER_ONLY) */
1836
1837 /* physical memory access (slow version, mainly for debug) */
1838 #if defined(CONFIG_USER_ONLY)
1839 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1840 uint8_t *buf, int len, int is_write)
1841 {
1842 int l, flags;
1843 target_ulong page;
1844 void * p;
1845
1846 while (len > 0) {
1847 page = addr & TARGET_PAGE_MASK;
1848 l = (page + TARGET_PAGE_SIZE) - addr;
1849 if (l > len)
1850 l = len;
1851 flags = page_get_flags(page);
1852 if (!(flags & PAGE_VALID))
1853 return -1;
1854 if (is_write) {
1855 if (!(flags & PAGE_WRITE))
1856 return -1;
1857 /* XXX: this code should not depend on lock_user */
1858 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1859 return -1;
1860 memcpy(p, buf, l);
1861 unlock_user(p, addr, l);
1862 } else {
1863 if (!(flags & PAGE_READ))
1864 return -1;
1865 /* XXX: this code should not depend on lock_user */
1866 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1867 return -1;
1868 memcpy(buf, p, l);
1869 unlock_user(p, addr, 0);
1870 }
1871 len -= l;
1872 buf += l;
1873 addr += l;
1874 }
1875 return 0;
1876 }
1877
1878 #else
1879
1880 static void invalidate_and_set_dirty(hwaddr addr,
1881 hwaddr length)
1882 {
1883 if (!cpu_physical_memory_is_dirty(addr)) {
1884 /* invalidate code */
1885 tb_invalidate_phys_page_range(addr, addr + length, 0);
1886 /* set dirty bit */
1887 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1888 }
1889 xen_modified_memory(addr, length);
1890 }
1891
1892 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1893 {
1894 if (memory_region_is_ram(mr)) {
1895 return !(is_write && mr->readonly);
1896 }
1897 if (memory_region_is_romd(mr)) {
1898 return !is_write;
1899 }
1900
1901 return false;
1902 }
1903
1904 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1905 {
1906 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1907 return 4;
1908 }
1909 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1910 return 2;
1911 }
1912 return 1;
1913 }
1914
1915 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1916 int len, bool is_write)
1917 {
1918 hwaddr l;
1919 uint8_t *ptr;
1920 uint64_t val;
1921 hwaddr addr1;
1922 MemoryRegion *mr;
1923 bool error = false;
1924
1925 while (len > 0) {
1926 l = len;
1927 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1928
1929 if (is_write) {
1930 if (!memory_access_is_direct(mr, is_write)) {
1931 l = memory_access_size(mr, l, addr1);
1932 /* XXX: could force cpu_single_env to NULL to avoid
1933 potential bugs */
1934 if (l == 4) {
1935 /* 32 bit write access */
1936 val = ldl_p(buf);
1937 error |= io_mem_write(mr, addr1, val, 4);
1938 } else if (l == 2) {
1939 /* 16 bit write access */
1940 val = lduw_p(buf);
1941 error |= io_mem_write(mr, addr1, val, 2);
1942 } else {
1943 /* 8 bit write access */
1944 val = ldub_p(buf);
1945 error |= io_mem_write(mr, addr1, val, 1);
1946 }
1947 } else {
1948 addr1 += memory_region_get_ram_addr(mr);
1949 /* RAM case */
1950 ptr = qemu_get_ram_ptr(addr1);
1951 memcpy(ptr, buf, l);
1952 invalidate_and_set_dirty(addr1, l);
1953 }
1954 } else {
1955 if (!memory_access_is_direct(mr, is_write)) {
1956 /* I/O case */
1957 l = memory_access_size(mr, l, addr1);
1958 if (l == 4) {
1959 /* 32 bit read access */
1960 error |= io_mem_read(mr, addr1, &val, 4);
1961 stl_p(buf, val);
1962 } else if (l == 2) {
1963 /* 16 bit read access */
1964 error |= io_mem_read(mr, addr1, &val, 2);
1965 stw_p(buf, val);
1966 } else {
1967 /* 8 bit read access */
1968 error |= io_mem_read(mr, addr1, &val, 1);
1969 stb_p(buf, val);
1970 }
1971 } else {
1972 /* RAM case */
1973 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1974 memcpy(buf, ptr, l);
1975 }
1976 }
1977 len -= l;
1978 buf += l;
1979 addr += l;
1980 }
1981
1982 return error;
1983 }
1984
1985 bool address_space_write(AddressSpace *as, hwaddr addr,
1986 const uint8_t *buf, int len)
1987 {
1988 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1989 }
1990
1991 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1992 {
1993 return address_space_rw(as, addr, buf, len, false);
1994 }
1995
1996
1997 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1998 int len, int is_write)
1999 {
2000 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2001 }
2002
2003 /* used for ROM loading : can write in RAM and ROM */
2004 void cpu_physical_memory_write_rom(hwaddr addr,
2005 const uint8_t *buf, int len)
2006 {
2007 hwaddr l;
2008 uint8_t *ptr;
2009 hwaddr addr1;
2010 MemoryRegion *mr;
2011
2012 while (len > 0) {
2013 l = len;
2014 mr = address_space_translate(&address_space_memory,
2015 addr, &addr1, &l, true);
2016
2017 if (!(memory_region_is_ram(mr) ||
2018 memory_region_is_romd(mr))) {
2019 /* do nothing */
2020 } else {
2021 addr1 += memory_region_get_ram_addr(mr);
2022 /* ROM/RAM case */
2023 ptr = qemu_get_ram_ptr(addr1);
2024 memcpy(ptr, buf, l);
2025 invalidate_and_set_dirty(addr1, l);
2026 }
2027 len -= l;
2028 buf += l;
2029 addr += l;
2030 }
2031 }
2032
2033 typedef struct {
2034 MemoryRegion *mr;
2035 void *buffer;
2036 hwaddr addr;
2037 hwaddr len;
2038 } BounceBuffer;
2039
2040 static BounceBuffer bounce;
2041
2042 typedef struct MapClient {
2043 void *opaque;
2044 void (*callback)(void *opaque);
2045 QLIST_ENTRY(MapClient) link;
2046 } MapClient;
2047
2048 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2049 = QLIST_HEAD_INITIALIZER(map_client_list);
2050
2051 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2052 {
2053 MapClient *client = g_malloc(sizeof(*client));
2054
2055 client->opaque = opaque;
2056 client->callback = callback;
2057 QLIST_INSERT_HEAD(&map_client_list, client, link);
2058 return client;
2059 }
2060
2061 static void cpu_unregister_map_client(void *_client)
2062 {
2063 MapClient *client = (MapClient *)_client;
2064
2065 QLIST_REMOVE(client, link);
2066 g_free(client);
2067 }
2068
2069 static void cpu_notify_map_clients(void)
2070 {
2071 MapClient *client;
2072
2073 while (!QLIST_EMPTY(&map_client_list)) {
2074 client = QLIST_FIRST(&map_client_list);
2075 client->callback(client->opaque);
2076 cpu_unregister_map_client(client);
2077 }
2078 }
2079
2080 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2081 {
2082 MemoryRegion *mr;
2083 hwaddr l, xlat;
2084
2085 while (len > 0) {
2086 l = len;
2087 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2088 if (!memory_access_is_direct(mr, is_write)) {
2089 l = memory_access_size(mr, l, addr);
2090 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2091 return false;
2092 }
2093 }
2094
2095 len -= l;
2096 addr += l;
2097 }
2098 return true;
2099 }
2100
2101 /* Map a physical memory region into a host virtual address.
2102 * May map a subset of the requested range, given by and returned in *plen.
2103 * May return NULL if resources needed to perform the mapping are exhausted.
2104 * Use only for reads OR writes - not for read-modify-write operations.
2105 * Use cpu_register_map_client() to know when retrying the map operation is
2106 * likely to succeed.
2107 */
2108 void *address_space_map(AddressSpace *as,
2109 hwaddr addr,
2110 hwaddr *plen,
2111 bool is_write)
2112 {
2113 hwaddr len = *plen;
2114 hwaddr done = 0;
2115 hwaddr l, xlat, base;
2116 MemoryRegion *mr, *this_mr;
2117 ram_addr_t raddr;
2118
2119 if (len == 0) {
2120 return NULL;
2121 }
2122
2123 l = len;
2124 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2125 if (!memory_access_is_direct(mr, is_write)) {
2126 if (bounce.buffer) {
2127 return NULL;
2128 }
2129 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2130 bounce.addr = addr;
2131 bounce.len = l;
2132
2133 memory_region_ref(mr);
2134 bounce.mr = mr;
2135 if (!is_write) {
2136 address_space_read(as, addr, bounce.buffer, l);
2137 }
2138
2139 *plen = l;
2140 return bounce.buffer;
2141 }
2142
2143 base = xlat;
2144 raddr = memory_region_get_ram_addr(mr);
2145
2146 for (;;) {
2147 len -= l;
2148 addr += l;
2149 done += l;
2150 if (len == 0) {
2151 break;
2152 }
2153
2154 l = len;
2155 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2156 if (this_mr != mr || xlat != base + done) {
2157 break;
2158 }
2159 }
2160
2161 memory_region_ref(mr);
2162 *plen = done;
2163 return qemu_ram_ptr_length(raddr + base, plen);
2164 }
2165
2166 /* Unmaps a memory region previously mapped by address_space_map().
2167 * Will also mark the memory as dirty if is_write == 1. access_len gives
2168 * the amount of memory that was actually read or written by the caller.
2169 */
2170 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2171 int is_write, hwaddr access_len)
2172 {
2173 if (buffer != bounce.buffer) {
2174 MemoryRegion *mr;
2175 ram_addr_t addr1;
2176
2177 mr = qemu_ram_addr_from_host(buffer, &addr1);
2178 assert(mr != NULL);
2179 if (is_write) {
2180 while (access_len) {
2181 unsigned l;
2182 l = TARGET_PAGE_SIZE;
2183 if (l > access_len)
2184 l = access_len;
2185 invalidate_and_set_dirty(addr1, l);
2186 addr1 += l;
2187 access_len -= l;
2188 }
2189 }
2190 if (xen_enabled()) {
2191 xen_invalidate_map_cache_entry(buffer);
2192 }
2193 memory_region_unref(mr);
2194 return;
2195 }
2196 if (is_write) {
2197 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2198 }
2199 qemu_vfree(bounce.buffer);
2200 bounce.buffer = NULL;
2201 memory_region_unref(bounce.mr);
2202 cpu_notify_map_clients();
2203 }
2204
2205 void *cpu_physical_memory_map(hwaddr addr,
2206 hwaddr *plen,
2207 int is_write)
2208 {
2209 return address_space_map(&address_space_memory, addr, plen, is_write);
2210 }
2211
2212 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2213 int is_write, hwaddr access_len)
2214 {
2215 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2216 }
2217
2218 /* warning: addr must be aligned */
2219 static inline uint32_t ldl_phys_internal(hwaddr addr,
2220 enum device_endian endian)
2221 {
2222 uint8_t *ptr;
2223 uint64_t val;
2224 MemoryRegion *mr;
2225 hwaddr l = 4;
2226 hwaddr addr1;
2227
2228 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2229 false);
2230 if (l < 4 || !memory_access_is_direct(mr, false)) {
2231 /* I/O case */
2232 io_mem_read(mr, addr1, &val, 4);
2233 #if defined(TARGET_WORDS_BIGENDIAN)
2234 if (endian == DEVICE_LITTLE_ENDIAN) {
2235 val = bswap32(val);
2236 }
2237 #else
2238 if (endian == DEVICE_BIG_ENDIAN) {
2239 val = bswap32(val);
2240 }
2241 #endif
2242 } else {
2243 /* RAM case */
2244 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2245 & TARGET_PAGE_MASK)
2246 + addr1);
2247 switch (endian) {
2248 case DEVICE_LITTLE_ENDIAN:
2249 val = ldl_le_p(ptr);
2250 break;
2251 case DEVICE_BIG_ENDIAN:
2252 val = ldl_be_p(ptr);
2253 break;
2254 default:
2255 val = ldl_p(ptr);
2256 break;
2257 }
2258 }
2259 return val;
2260 }
2261
2262 uint32_t ldl_phys(hwaddr addr)
2263 {
2264 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2265 }
2266
2267 uint32_t ldl_le_phys(hwaddr addr)
2268 {
2269 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2270 }
2271
2272 uint32_t ldl_be_phys(hwaddr addr)
2273 {
2274 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2275 }
2276
2277 /* warning: addr must be aligned */
2278 static inline uint64_t ldq_phys_internal(hwaddr addr,
2279 enum device_endian endian)
2280 {
2281 uint8_t *ptr;
2282 uint64_t val;
2283 MemoryRegion *mr;
2284 hwaddr l = 8;
2285 hwaddr addr1;
2286
2287 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2288 false);
2289 if (l < 8 || !memory_access_is_direct(mr, false)) {
2290 /* I/O case */
2291 io_mem_read(mr, addr1, &val, 8);
2292 #if defined(TARGET_WORDS_BIGENDIAN)
2293 if (endian == DEVICE_LITTLE_ENDIAN) {
2294 val = bswap64(val);
2295 }
2296 #else
2297 if (endian == DEVICE_BIG_ENDIAN) {
2298 val = bswap64(val);
2299 }
2300 #endif
2301 } else {
2302 /* RAM case */
2303 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2304 & TARGET_PAGE_MASK)
2305 + addr1);
2306 switch (endian) {
2307 case DEVICE_LITTLE_ENDIAN:
2308 val = ldq_le_p(ptr);
2309 break;
2310 case DEVICE_BIG_ENDIAN:
2311 val = ldq_be_p(ptr);
2312 break;
2313 default:
2314 val = ldq_p(ptr);
2315 break;
2316 }
2317 }
2318 return val;
2319 }
2320
2321 uint64_t ldq_phys(hwaddr addr)
2322 {
2323 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2324 }
2325
2326 uint64_t ldq_le_phys(hwaddr addr)
2327 {
2328 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2329 }
2330
2331 uint64_t ldq_be_phys(hwaddr addr)
2332 {
2333 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2334 }
2335
2336 /* XXX: optimize */
2337 uint32_t ldub_phys(hwaddr addr)
2338 {
2339 uint8_t val;
2340 cpu_physical_memory_read(addr, &val, 1);
2341 return val;
2342 }
2343
2344 /* warning: addr must be aligned */
2345 static inline uint32_t lduw_phys_internal(hwaddr addr,
2346 enum device_endian endian)
2347 {
2348 uint8_t *ptr;
2349 uint64_t val;
2350 MemoryRegion *mr;
2351 hwaddr l = 2;
2352 hwaddr addr1;
2353
2354 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2355 false);
2356 if (l < 2 || !memory_access_is_direct(mr, false)) {
2357 /* I/O case */
2358 io_mem_read(mr, addr1, &val, 2);
2359 #if defined(TARGET_WORDS_BIGENDIAN)
2360 if (endian == DEVICE_LITTLE_ENDIAN) {
2361 val = bswap16(val);
2362 }
2363 #else
2364 if (endian == DEVICE_BIG_ENDIAN) {
2365 val = bswap16(val);
2366 }
2367 #endif
2368 } else {
2369 /* RAM case */
2370 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2371 & TARGET_PAGE_MASK)
2372 + addr1);
2373 switch (endian) {
2374 case DEVICE_LITTLE_ENDIAN:
2375 val = lduw_le_p(ptr);
2376 break;
2377 case DEVICE_BIG_ENDIAN:
2378 val = lduw_be_p(ptr);
2379 break;
2380 default:
2381 val = lduw_p(ptr);
2382 break;
2383 }
2384 }
2385 return val;
2386 }
2387
2388 uint32_t lduw_phys(hwaddr addr)
2389 {
2390 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2391 }
2392
2393 uint32_t lduw_le_phys(hwaddr addr)
2394 {
2395 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2396 }
2397
2398 uint32_t lduw_be_phys(hwaddr addr)
2399 {
2400 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2401 }
2402
2403 /* warning: addr must be aligned. The ram page is not masked as dirty
2404 and the code inside is not invalidated. It is useful if the dirty
2405 bits are used to track modified PTEs */
2406 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2407 {
2408 uint8_t *ptr;
2409 MemoryRegion *mr;
2410 hwaddr l = 4;
2411 hwaddr addr1;
2412
2413 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2414 true);
2415 if (l < 4 || !memory_access_is_direct(mr, true)) {
2416 io_mem_write(mr, addr1, val, 4);
2417 } else {
2418 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2419 ptr = qemu_get_ram_ptr(addr1);
2420 stl_p(ptr, val);
2421
2422 if (unlikely(in_migration)) {
2423 if (!cpu_physical_memory_is_dirty(addr1)) {
2424 /* invalidate code */
2425 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2426 /* set dirty bit */
2427 cpu_physical_memory_set_dirty_flags(
2428 addr1, (0xff & ~CODE_DIRTY_FLAG));
2429 }
2430 }
2431 }
2432 }
2433
2434 /* warning: addr must be aligned */
2435 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2436 enum device_endian endian)
2437 {
2438 uint8_t *ptr;
2439 MemoryRegion *mr;
2440 hwaddr l = 4;
2441 hwaddr addr1;
2442
2443 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2444 true);
2445 if (l < 4 || !memory_access_is_direct(mr, true)) {
2446 #if defined(TARGET_WORDS_BIGENDIAN)
2447 if (endian == DEVICE_LITTLE_ENDIAN) {
2448 val = bswap32(val);
2449 }
2450 #else
2451 if (endian == DEVICE_BIG_ENDIAN) {
2452 val = bswap32(val);
2453 }
2454 #endif
2455 io_mem_write(mr, addr1, val, 4);
2456 } else {
2457 /* RAM case */
2458 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2459 ptr = qemu_get_ram_ptr(addr1);
2460 switch (endian) {
2461 case DEVICE_LITTLE_ENDIAN:
2462 stl_le_p(ptr, val);
2463 break;
2464 case DEVICE_BIG_ENDIAN:
2465 stl_be_p(ptr, val);
2466 break;
2467 default:
2468 stl_p(ptr, val);
2469 break;
2470 }
2471 invalidate_and_set_dirty(addr1, 4);
2472 }
2473 }
2474
2475 void stl_phys(hwaddr addr, uint32_t val)
2476 {
2477 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2478 }
2479
2480 void stl_le_phys(hwaddr addr, uint32_t val)
2481 {
2482 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2483 }
2484
2485 void stl_be_phys(hwaddr addr, uint32_t val)
2486 {
2487 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2488 }
2489
2490 /* XXX: optimize */
2491 void stb_phys(hwaddr addr, uint32_t val)
2492 {
2493 uint8_t v = val;
2494 cpu_physical_memory_write(addr, &v, 1);
2495 }
2496
2497 /* warning: addr must be aligned */
2498 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2499 enum device_endian endian)
2500 {
2501 uint8_t *ptr;
2502 MemoryRegion *mr;
2503 hwaddr l = 2;
2504 hwaddr addr1;
2505
2506 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2507 true);
2508 if (l < 2 || !memory_access_is_direct(mr, true)) {
2509 #if defined(TARGET_WORDS_BIGENDIAN)
2510 if (endian == DEVICE_LITTLE_ENDIAN) {
2511 val = bswap16(val);
2512 }
2513 #else
2514 if (endian == DEVICE_BIG_ENDIAN) {
2515 val = bswap16(val);
2516 }
2517 #endif
2518 io_mem_write(mr, addr1, val, 2);
2519 } else {
2520 /* RAM case */
2521 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2522 ptr = qemu_get_ram_ptr(addr1);
2523 switch (endian) {
2524 case DEVICE_LITTLE_ENDIAN:
2525 stw_le_p(ptr, val);
2526 break;
2527 case DEVICE_BIG_ENDIAN:
2528 stw_be_p(ptr, val);
2529 break;
2530 default:
2531 stw_p(ptr, val);
2532 break;
2533 }
2534 invalidate_and_set_dirty(addr1, 2);
2535 }
2536 }
2537
2538 void stw_phys(hwaddr addr, uint32_t val)
2539 {
2540 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2541 }
2542
2543 void stw_le_phys(hwaddr addr, uint32_t val)
2544 {
2545 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2546 }
2547
2548 void stw_be_phys(hwaddr addr, uint32_t val)
2549 {
2550 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2551 }
2552
2553 /* XXX: optimize */
2554 void stq_phys(hwaddr addr, uint64_t val)
2555 {
2556 val = tswap64(val);
2557 cpu_physical_memory_write(addr, &val, 8);
2558 }
2559
2560 void stq_le_phys(hwaddr addr, uint64_t val)
2561 {
2562 val = cpu_to_le64(val);
2563 cpu_physical_memory_write(addr, &val, 8);
2564 }
2565
2566 void stq_be_phys(hwaddr addr, uint64_t val)
2567 {
2568 val = cpu_to_be64(val);
2569 cpu_physical_memory_write(addr, &val, 8);
2570 }
2571
2572 /* virtual memory access for debug (includes writing to ROM) */
2573 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2574 uint8_t *buf, int len, int is_write)
2575 {
2576 int l;
2577 hwaddr phys_addr;
2578 target_ulong page;
2579
2580 while (len > 0) {
2581 page = addr & TARGET_PAGE_MASK;
2582 phys_addr = cpu_get_phys_page_debug(env, page);
2583 /* if no physical page mapped, return an error */
2584 if (phys_addr == -1)
2585 return -1;
2586 l = (page + TARGET_PAGE_SIZE) - addr;
2587 if (l > len)
2588 l = len;
2589 phys_addr += (addr & ~TARGET_PAGE_MASK);
2590 if (is_write)
2591 cpu_physical_memory_write_rom(phys_addr, buf, l);
2592 else
2593 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2594 len -= l;
2595 buf += l;
2596 addr += l;
2597 }
2598 return 0;
2599 }
2600 #endif
2601
2602 #if !defined(CONFIG_USER_ONLY)
2603
2604 /*
2605 * A helper function for the _utterly broken_ virtio device model to find out if
2606 * it's running on a big endian machine. Don't do this at home kids!
2607 */
2608 bool virtio_is_big_endian(void);
2609 bool virtio_is_big_endian(void)
2610 {
2611 #if defined(TARGET_WORDS_BIGENDIAN)
2612 return true;
2613 #else
2614 return false;
2615 #endif
2616 }
2617
2618 #endif
2619
2620 #ifndef CONFIG_USER_ONLY
2621 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2622 {
2623 MemoryRegion*mr;
2624 hwaddr l = 1;
2625
2626 mr = address_space_translate(&address_space_memory,
2627 phys_addr, &phys_addr, &l, false);
2628
2629 return !(memory_region_is_ram(mr) ||
2630 memory_region_is_romd(mr));
2631 }
2632
2633 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2634 {
2635 RAMBlock *block;
2636
2637 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2638 func(block->host, block->offset, block->length, opaque);
2639 }
2640 }
2641 #endif