]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec.c: Allow target CPUs to define multiple AddressSpaces
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifndef _WIN32
21 #include <sys/types.h>
22 #include <sys/mman.h>
23 #endif
24
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "tcg.h"
28 #include "hw/hw.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #endif
32 #include "hw/qdev.h"
33 #include "qemu/osdep.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/xen/xen.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "exec/memory.h"
41 #include "sysemu/dma.h"
42 #include "exec/address-spaces.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #else /* !CONFIG_USER_ONLY */
46 #include "sysemu/xen-mapcache.h"
47 #include "trace.h"
48 #endif
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
54
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
57
58 #include "qemu/range.h"
59 #ifndef _WIN32
60 #include "qemu/mmap-alloc.h"
61 #endif
62
63 //#define DEBUG_SUBPAGE
64
65 #if !defined(CONFIG_USER_ONLY)
66 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
67 * are protected by the ramlist lock.
68 */
69 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
70
71 static MemoryRegion *system_memory;
72 static MemoryRegion *system_io;
73
74 AddressSpace address_space_io;
75 AddressSpace address_space_memory;
76
77 MemoryRegion io_mem_rom, io_mem_notdirty;
78 static MemoryRegion io_mem_unassigned;
79
80 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
81 #define RAM_PREALLOC (1 << 0)
82
83 /* RAM is mmap-ed with MAP_SHARED */
84 #define RAM_SHARED (1 << 1)
85
86 /* Only a portion of RAM (used_length) is actually used, and migrated.
87 * This used_length size can change across reboots.
88 */
89 #define RAM_RESIZEABLE (1 << 2)
90
91 #endif
92
93 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
94 /* current CPU in the current thread. It is only valid inside
95 cpu_exec() */
96 __thread CPUState *current_cpu;
97 /* 0 = Do not count executed instructions.
98 1 = Precise instruction counting.
99 2 = Adaptive rate instruction counting. */
100 int use_icount;
101
102 #if !defined(CONFIG_USER_ONLY)
103
104 typedef struct PhysPageEntry PhysPageEntry;
105
106 struct PhysPageEntry {
107 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
108 uint32_t skip : 6;
109 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
110 uint32_t ptr : 26;
111 };
112
113 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114
115 /* Size of the L2 (and L3, etc) page tables. */
116 #define ADDR_SPACE_BITS 64
117
118 #define P_L2_BITS 9
119 #define P_L2_SIZE (1 << P_L2_BITS)
120
121 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122
123 typedef PhysPageEntry Node[P_L2_SIZE];
124
125 typedef struct PhysPageMap {
126 struct rcu_head rcu;
127
128 unsigned sections_nb;
129 unsigned sections_nb_alloc;
130 unsigned nodes_nb;
131 unsigned nodes_nb_alloc;
132 Node *nodes;
133 MemoryRegionSection *sections;
134 } PhysPageMap;
135
136 struct AddressSpaceDispatch {
137 struct rcu_head rcu;
138
139 /* This is a multi-level map on the physical address space.
140 * The bottom level has pointers to MemoryRegionSections.
141 */
142 PhysPageEntry phys_map;
143 PhysPageMap map;
144 AddressSpace *as;
145 };
146
147 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148 typedef struct subpage_t {
149 MemoryRegion iomem;
150 AddressSpace *as;
151 hwaddr base;
152 uint16_t sub_section[TARGET_PAGE_SIZE];
153 } subpage_t;
154
155 #define PHYS_SECTION_UNASSIGNED 0
156 #define PHYS_SECTION_NOTDIRTY 1
157 #define PHYS_SECTION_ROM 2
158 #define PHYS_SECTION_WATCH 3
159
160 static void io_mem_init(void);
161 static void memory_map_init(void);
162 static void tcg_commit(MemoryListener *listener);
163
164 static MemoryRegion io_mem_watch;
165
166 /**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173 struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178 };
179
180 #endif
181
182 #if !defined(CONFIG_USER_ONLY)
183
184 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
185 {
186 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
188 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
190 }
191 }
192
193 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
194 {
195 unsigned i;
196 uint32_t ret;
197 PhysPageEntry e;
198 PhysPageEntry *p;
199
200 ret = map->nodes_nb++;
201 p = map->nodes[ret];
202 assert(ret != PHYS_MAP_NODE_NIL);
203 assert(ret != map->nodes_nb_alloc);
204
205 e.skip = leaf ? 0 : 1;
206 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
207 for (i = 0; i < P_L2_SIZE; ++i) {
208 memcpy(&p[i], &e, sizeof(e));
209 }
210 return ret;
211 }
212
213 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
214 hwaddr *index, hwaddr *nb, uint16_t leaf,
215 int level)
216 {
217 PhysPageEntry *p;
218 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
219
220 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
221 lp->ptr = phys_map_node_alloc(map, level == 0);
222 }
223 p = map->nodes[lp->ptr];
224 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
225
226 while (*nb && lp < &p[P_L2_SIZE]) {
227 if ((*index & (step - 1)) == 0 && *nb >= step) {
228 lp->skip = 0;
229 lp->ptr = leaf;
230 *index += step;
231 *nb -= step;
232 } else {
233 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
234 }
235 ++lp;
236 }
237 }
238
239 static void phys_page_set(AddressSpaceDispatch *d,
240 hwaddr index, hwaddr nb,
241 uint16_t leaf)
242 {
243 /* Wildly overreserve - it doesn't matter much. */
244 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
245
246 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
247 }
248
249 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
251 */
252 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
253 {
254 unsigned valid_ptr = P_L2_SIZE;
255 int valid = 0;
256 PhysPageEntry *p;
257 int i;
258
259 if (lp->ptr == PHYS_MAP_NODE_NIL) {
260 return;
261 }
262
263 p = nodes[lp->ptr];
264 for (i = 0; i < P_L2_SIZE; i++) {
265 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
266 continue;
267 }
268
269 valid_ptr = i;
270 valid++;
271 if (p[i].skip) {
272 phys_page_compact(&p[i], nodes, compacted);
273 }
274 }
275
276 /* We can only compress if there's only one child. */
277 if (valid != 1) {
278 return;
279 }
280
281 assert(valid_ptr < P_L2_SIZE);
282
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
285 return;
286 }
287
288 lp->ptr = p[valid_ptr].ptr;
289 if (!p[valid_ptr].skip) {
290 /* If our only child is a leaf, make this a leaf. */
291 /* By design, we should have made this node a leaf to begin with so we
292 * should never reach here.
293 * But since it's so simple to handle this, let's do it just in case we
294 * change this rule.
295 */
296 lp->skip = 0;
297 } else {
298 lp->skip += p[valid_ptr].skip;
299 }
300 }
301
302 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
303 {
304 DECLARE_BITMAP(compacted, nodes_nb);
305
306 if (d->phys_map.skip) {
307 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
308 }
309 }
310
311 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
312 Node *nodes, MemoryRegionSection *sections)
313 {
314 PhysPageEntry *p;
315 hwaddr index = addr >> TARGET_PAGE_BITS;
316 int i;
317
318 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
319 if (lp.ptr == PHYS_MAP_NODE_NIL) {
320 return &sections[PHYS_SECTION_UNASSIGNED];
321 }
322 p = nodes[lp.ptr];
323 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
324 }
325
326 if (sections[lp.ptr].size.hi ||
327 range_covers_byte(sections[lp.ptr].offset_within_address_space,
328 sections[lp.ptr].size.lo, addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
333 }
334
335 bool memory_region_is_unassigned(MemoryRegion *mr)
336 {
337 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
338 && mr != &io_mem_watch;
339 }
340
341 /* Called from RCU critical section */
342 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
343 hwaddr addr,
344 bool resolve_subpage)
345 {
346 MemoryRegionSection *section;
347 subpage_t *subpage;
348
349 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
350 if (resolve_subpage && section->mr->subpage) {
351 subpage = container_of(section->mr, subpage_t, iomem);
352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353 }
354 return section;
355 }
356
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360 hwaddr *plen, bool resolve_subpage)
361 {
362 MemoryRegionSection *section;
363 MemoryRegion *mr;
364 Int128 diff;
365
366 section = address_space_lookup_region(d, addr, resolve_subpage);
367 /* Compute offset within MemoryRegionSection */
368 addr -= section->offset_within_address_space;
369
370 /* Compute offset within MemoryRegion */
371 *xlat = addr + section->offset_within_region;
372
373 mr = section->mr;
374
375 /* MMIO registers can be expected to perform full-width accesses based only
376 * on their address, without considering adjacent registers that could
377 * decode to completely different MemoryRegions. When such registers
378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379 * regions overlap wildly. For this reason we cannot clamp the accesses
380 * here.
381 *
382 * If the length is small (as is the case for address_space_ldl/stl),
383 * everything works fine. If the incoming length is large, however,
384 * the caller really has to do the clamping through memory_access_size.
385 */
386 if (memory_region_is_ram(mr)) {
387 diff = int128_sub(section->size, int128_make64(addr));
388 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 }
390 return section;
391 }
392
393 /* Called from RCU critical section */
394 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
395 hwaddr *xlat, hwaddr *plen,
396 bool is_write)
397 {
398 IOMMUTLBEntry iotlb;
399 MemoryRegionSection *section;
400 MemoryRegion *mr;
401
402 for (;;) {
403 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
404 section = address_space_translate_internal(d, addr, &addr, plen, true);
405 mr = section->mr;
406
407 if (!mr->iommu_ops) {
408 break;
409 }
410
411 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
412 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
413 | (addr & iotlb.addr_mask));
414 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
415 if (!(iotlb.perm & (1 << is_write))) {
416 mr = &io_mem_unassigned;
417 break;
418 }
419
420 as = iotlb.target_as;
421 }
422
423 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
424 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
425 *plen = MIN(page, *plen);
426 }
427
428 *xlat = addr;
429 return mr;
430 }
431
432 /* Called from RCU critical section */
433 MemoryRegionSection *
434 address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
435 hwaddr *xlat, hwaddr *plen)
436 {
437 MemoryRegionSection *section;
438 section = address_space_translate_internal(cpu->cpu_ases[0].memory_dispatch,
439 addr, xlat, plen, false);
440
441 assert(!section->mr->iommu_ops);
442 return section;
443 }
444 #endif
445
446 #if !defined(CONFIG_USER_ONLY)
447
448 static int cpu_common_post_load(void *opaque, int version_id)
449 {
450 CPUState *cpu = opaque;
451
452 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
453 version_id is increased. */
454 cpu->interrupt_request &= ~0x01;
455 tlb_flush(cpu, 1);
456
457 return 0;
458 }
459
460 static int cpu_common_pre_load(void *opaque)
461 {
462 CPUState *cpu = opaque;
463
464 cpu->exception_index = -1;
465
466 return 0;
467 }
468
469 static bool cpu_common_exception_index_needed(void *opaque)
470 {
471 CPUState *cpu = opaque;
472
473 return tcg_enabled() && cpu->exception_index != -1;
474 }
475
476 static const VMStateDescription vmstate_cpu_common_exception_index = {
477 .name = "cpu_common/exception_index",
478 .version_id = 1,
479 .minimum_version_id = 1,
480 .needed = cpu_common_exception_index_needed,
481 .fields = (VMStateField[]) {
482 VMSTATE_INT32(exception_index, CPUState),
483 VMSTATE_END_OF_LIST()
484 }
485 };
486
487 static bool cpu_common_crash_occurred_needed(void *opaque)
488 {
489 CPUState *cpu = opaque;
490
491 return cpu->crash_occurred;
492 }
493
494 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
495 .name = "cpu_common/crash_occurred",
496 .version_id = 1,
497 .minimum_version_id = 1,
498 .needed = cpu_common_crash_occurred_needed,
499 .fields = (VMStateField[]) {
500 VMSTATE_BOOL(crash_occurred, CPUState),
501 VMSTATE_END_OF_LIST()
502 }
503 };
504
505 const VMStateDescription vmstate_cpu_common = {
506 .name = "cpu_common",
507 .version_id = 1,
508 .minimum_version_id = 1,
509 .pre_load = cpu_common_pre_load,
510 .post_load = cpu_common_post_load,
511 .fields = (VMStateField[]) {
512 VMSTATE_UINT32(halted, CPUState),
513 VMSTATE_UINT32(interrupt_request, CPUState),
514 VMSTATE_END_OF_LIST()
515 },
516 .subsections = (const VMStateDescription*[]) {
517 &vmstate_cpu_common_exception_index,
518 &vmstate_cpu_common_crash_occurred,
519 NULL
520 }
521 };
522
523 #endif
524
525 CPUState *qemu_get_cpu(int index)
526 {
527 CPUState *cpu;
528
529 CPU_FOREACH(cpu) {
530 if (cpu->cpu_index == index) {
531 return cpu;
532 }
533 }
534
535 return NULL;
536 }
537
538 #if !defined(CONFIG_USER_ONLY)
539 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
540 {
541 CPUAddressSpace *newas;
542
543 /* Target code should have set num_ases before calling us */
544 assert(asidx < cpu->num_ases);
545
546 if (asidx == 0) {
547 /* address space 0 gets the convenience alias */
548 cpu->as = as;
549 }
550
551 /* KVM cannot currently support multiple address spaces. */
552 assert(asidx == 0 || !kvm_enabled());
553
554 if (!cpu->cpu_ases) {
555 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
556 }
557
558 newas = &cpu->cpu_ases[asidx];
559 newas->cpu = cpu;
560 newas->as = as;
561 if (tcg_enabled()) {
562 newas->tcg_as_listener.commit = tcg_commit;
563 memory_listener_register(&newas->tcg_as_listener, as);
564 }
565 }
566 #endif
567
568 #ifndef CONFIG_USER_ONLY
569 static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
570
571 static int cpu_get_free_index(Error **errp)
572 {
573 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
574
575 if (cpu >= MAX_CPUMASK_BITS) {
576 error_setg(errp, "Trying to use more CPUs than max of %d",
577 MAX_CPUMASK_BITS);
578 return -1;
579 }
580
581 bitmap_set(cpu_index_map, cpu, 1);
582 return cpu;
583 }
584
585 void cpu_exec_exit(CPUState *cpu)
586 {
587 if (cpu->cpu_index == -1) {
588 /* cpu_index was never allocated by this @cpu or was already freed. */
589 return;
590 }
591
592 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
593 cpu->cpu_index = -1;
594 }
595 #else
596
597 static int cpu_get_free_index(Error **errp)
598 {
599 CPUState *some_cpu;
600 int cpu_index = 0;
601
602 CPU_FOREACH(some_cpu) {
603 cpu_index++;
604 }
605 return cpu_index;
606 }
607
608 void cpu_exec_exit(CPUState *cpu)
609 {
610 }
611 #endif
612
613 void cpu_exec_init(CPUState *cpu, Error **errp)
614 {
615 CPUClass *cc = CPU_GET_CLASS(cpu);
616 int cpu_index;
617 Error *local_err = NULL;
618
619 cpu->as = NULL;
620 cpu->num_ases = 0;
621
622 #ifndef CONFIG_USER_ONLY
623 cpu->thread_id = qemu_get_thread_id();
624 #endif
625
626 #if defined(CONFIG_USER_ONLY)
627 cpu_list_lock();
628 #endif
629 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
630 if (local_err) {
631 error_propagate(errp, local_err);
632 #if defined(CONFIG_USER_ONLY)
633 cpu_list_unlock();
634 #endif
635 return;
636 }
637 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
638 #if defined(CONFIG_USER_ONLY)
639 cpu_list_unlock();
640 #endif
641 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
642 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
643 }
644 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
645 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, cpu->env_ptr);
647 assert(cc->vmsd == NULL);
648 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
649 #endif
650 if (cc->vmsd != NULL) {
651 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
652 }
653 }
654
655 #if defined(CONFIG_USER_ONLY)
656 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
657 {
658 tb_invalidate_phys_page_range(pc, pc + 1, 0);
659 }
660 #else
661 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
662 {
663 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
664 if (phys != -1) {
665 tb_invalidate_phys_addr(cpu->as,
666 phys | (pc & ~TARGET_PAGE_MASK));
667 }
668 }
669 #endif
670
671 #if defined(CONFIG_USER_ONLY)
672 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
673
674 {
675 }
676
677 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
678 int flags)
679 {
680 return -ENOSYS;
681 }
682
683 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
684 {
685 }
686
687 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
688 int flags, CPUWatchpoint **watchpoint)
689 {
690 return -ENOSYS;
691 }
692 #else
693 /* Add a watchpoint. */
694 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
695 int flags, CPUWatchpoint **watchpoint)
696 {
697 CPUWatchpoint *wp;
698
699 /* forbid ranges which are empty or run off the end of the address space */
700 if (len == 0 || (addr + len - 1) < addr) {
701 error_report("tried to set invalid watchpoint at %"
702 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
703 return -EINVAL;
704 }
705 wp = g_malloc(sizeof(*wp));
706
707 wp->vaddr = addr;
708 wp->len = len;
709 wp->flags = flags;
710
711 /* keep all GDB-injected watchpoints in front */
712 if (flags & BP_GDB) {
713 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
714 } else {
715 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
716 }
717
718 tlb_flush_page(cpu, addr);
719
720 if (watchpoint)
721 *watchpoint = wp;
722 return 0;
723 }
724
725 /* Remove a specific watchpoint. */
726 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
727 int flags)
728 {
729 CPUWatchpoint *wp;
730
731 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
732 if (addr == wp->vaddr && len == wp->len
733 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
734 cpu_watchpoint_remove_by_ref(cpu, wp);
735 return 0;
736 }
737 }
738 return -ENOENT;
739 }
740
741 /* Remove a specific watchpoint by reference. */
742 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
743 {
744 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
745
746 tlb_flush_page(cpu, watchpoint->vaddr);
747
748 g_free(watchpoint);
749 }
750
751 /* Remove all matching watchpoints. */
752 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
753 {
754 CPUWatchpoint *wp, *next;
755
756 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
757 if (wp->flags & mask) {
758 cpu_watchpoint_remove_by_ref(cpu, wp);
759 }
760 }
761 }
762
763 /* Return true if this watchpoint address matches the specified
764 * access (ie the address range covered by the watchpoint overlaps
765 * partially or completely with the address range covered by the
766 * access).
767 */
768 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
769 vaddr addr,
770 vaddr len)
771 {
772 /* We know the lengths are non-zero, but a little caution is
773 * required to avoid errors in the case where the range ends
774 * exactly at the top of the address space and so addr + len
775 * wraps round to zero.
776 */
777 vaddr wpend = wp->vaddr + wp->len - 1;
778 vaddr addrend = addr + len - 1;
779
780 return !(addr > wpend || wp->vaddr > addrend);
781 }
782
783 #endif
784
785 /* Add a breakpoint. */
786 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
787 CPUBreakpoint **breakpoint)
788 {
789 CPUBreakpoint *bp;
790
791 bp = g_malloc(sizeof(*bp));
792
793 bp->pc = pc;
794 bp->flags = flags;
795
796 /* keep all GDB-injected breakpoints in front */
797 if (flags & BP_GDB) {
798 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
799 } else {
800 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
801 }
802
803 breakpoint_invalidate(cpu, pc);
804
805 if (breakpoint) {
806 *breakpoint = bp;
807 }
808 return 0;
809 }
810
811 /* Remove a specific breakpoint. */
812 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
813 {
814 CPUBreakpoint *bp;
815
816 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
817 if (bp->pc == pc && bp->flags == flags) {
818 cpu_breakpoint_remove_by_ref(cpu, bp);
819 return 0;
820 }
821 }
822 return -ENOENT;
823 }
824
825 /* Remove a specific breakpoint by reference. */
826 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
827 {
828 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
829
830 breakpoint_invalidate(cpu, breakpoint->pc);
831
832 g_free(breakpoint);
833 }
834
835 /* Remove all matching breakpoints. */
836 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
837 {
838 CPUBreakpoint *bp, *next;
839
840 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
841 if (bp->flags & mask) {
842 cpu_breakpoint_remove_by_ref(cpu, bp);
843 }
844 }
845 }
846
847 /* enable or disable single step mode. EXCP_DEBUG is returned by the
848 CPU loop after each instruction */
849 void cpu_single_step(CPUState *cpu, int enabled)
850 {
851 if (cpu->singlestep_enabled != enabled) {
852 cpu->singlestep_enabled = enabled;
853 if (kvm_enabled()) {
854 kvm_update_guest_debug(cpu, 0);
855 } else {
856 /* must flush all the translated code to avoid inconsistencies */
857 /* XXX: only flush what is necessary */
858 tb_flush(cpu);
859 }
860 }
861 }
862
863 void cpu_abort(CPUState *cpu, const char *fmt, ...)
864 {
865 va_list ap;
866 va_list ap2;
867
868 va_start(ap, fmt);
869 va_copy(ap2, ap);
870 fprintf(stderr, "qemu: fatal: ");
871 vfprintf(stderr, fmt, ap);
872 fprintf(stderr, "\n");
873 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
874 if (qemu_log_separate()) {
875 qemu_log("qemu: fatal: ");
876 qemu_log_vprintf(fmt, ap2);
877 qemu_log("\n");
878 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
879 qemu_log_flush();
880 qemu_log_close();
881 }
882 va_end(ap2);
883 va_end(ap);
884 replay_finish();
885 #if defined(CONFIG_USER_ONLY)
886 {
887 struct sigaction act;
888 sigfillset(&act.sa_mask);
889 act.sa_handler = SIG_DFL;
890 sigaction(SIGABRT, &act, NULL);
891 }
892 #endif
893 abort();
894 }
895
896 #if !defined(CONFIG_USER_ONLY)
897 /* Called from RCU critical section */
898 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
899 {
900 RAMBlock *block;
901
902 block = atomic_rcu_read(&ram_list.mru_block);
903 if (block && addr - block->offset < block->max_length) {
904 return block;
905 }
906 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
907 if (addr - block->offset < block->max_length) {
908 goto found;
909 }
910 }
911
912 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
913 abort();
914
915 found:
916 /* It is safe to write mru_block outside the iothread lock. This
917 * is what happens:
918 *
919 * mru_block = xxx
920 * rcu_read_unlock()
921 * xxx removed from list
922 * rcu_read_lock()
923 * read mru_block
924 * mru_block = NULL;
925 * call_rcu(reclaim_ramblock, xxx);
926 * rcu_read_unlock()
927 *
928 * atomic_rcu_set is not needed here. The block was already published
929 * when it was placed into the list. Here we're just making an extra
930 * copy of the pointer.
931 */
932 ram_list.mru_block = block;
933 return block;
934 }
935
936 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
937 {
938 CPUState *cpu;
939 ram_addr_t start1;
940 RAMBlock *block;
941 ram_addr_t end;
942
943 end = TARGET_PAGE_ALIGN(start + length);
944 start &= TARGET_PAGE_MASK;
945
946 rcu_read_lock();
947 block = qemu_get_ram_block(start);
948 assert(block == qemu_get_ram_block(end - 1));
949 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
950 CPU_FOREACH(cpu) {
951 tlb_reset_dirty(cpu, start1, length);
952 }
953 rcu_read_unlock();
954 }
955
956 /* Note: start and end must be within the same ram block. */
957 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
958 ram_addr_t length,
959 unsigned client)
960 {
961 unsigned long end, page;
962 bool dirty;
963
964 if (length == 0) {
965 return false;
966 }
967
968 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
969 page = start >> TARGET_PAGE_BITS;
970 dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
971 page, end - page);
972
973 if (dirty && tcg_enabled()) {
974 tlb_reset_dirty_range_all(start, length);
975 }
976
977 return dirty;
978 }
979
980 /* Called from RCU critical section */
981 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
982 MemoryRegionSection *section,
983 target_ulong vaddr,
984 hwaddr paddr, hwaddr xlat,
985 int prot,
986 target_ulong *address)
987 {
988 hwaddr iotlb;
989 CPUWatchpoint *wp;
990
991 if (memory_region_is_ram(section->mr)) {
992 /* Normal RAM. */
993 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
994 + xlat;
995 if (!section->readonly) {
996 iotlb |= PHYS_SECTION_NOTDIRTY;
997 } else {
998 iotlb |= PHYS_SECTION_ROM;
999 }
1000 } else {
1001 AddressSpaceDispatch *d;
1002
1003 d = atomic_rcu_read(&section->address_space->dispatch);
1004 iotlb = section - d->map.sections;
1005 iotlb += xlat;
1006 }
1007
1008 /* Make accesses to pages with watchpoints go via the
1009 watchpoint trap routines. */
1010 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1011 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1012 /* Avoid trapping reads of pages with a write breakpoint. */
1013 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1014 iotlb = PHYS_SECTION_WATCH + paddr;
1015 *address |= TLB_MMIO;
1016 break;
1017 }
1018 }
1019 }
1020
1021 return iotlb;
1022 }
1023 #endif /* defined(CONFIG_USER_ONLY) */
1024
1025 #if !defined(CONFIG_USER_ONLY)
1026
1027 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1028 uint16_t section);
1029 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1030
1031 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1032 qemu_anon_ram_alloc;
1033
1034 /*
1035 * Set a custom physical guest memory alloator.
1036 * Accelerators with unusual needs may need this. Hopefully, we can
1037 * get rid of it eventually.
1038 */
1039 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1040 {
1041 phys_mem_alloc = alloc;
1042 }
1043
1044 static uint16_t phys_section_add(PhysPageMap *map,
1045 MemoryRegionSection *section)
1046 {
1047 /* The physical section number is ORed with a page-aligned
1048 * pointer to produce the iotlb entries. Thus it should
1049 * never overflow into the page-aligned value.
1050 */
1051 assert(map->sections_nb < TARGET_PAGE_SIZE);
1052
1053 if (map->sections_nb == map->sections_nb_alloc) {
1054 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1055 map->sections = g_renew(MemoryRegionSection, map->sections,
1056 map->sections_nb_alloc);
1057 }
1058 map->sections[map->sections_nb] = *section;
1059 memory_region_ref(section->mr);
1060 return map->sections_nb++;
1061 }
1062
1063 static void phys_section_destroy(MemoryRegion *mr)
1064 {
1065 bool have_sub_page = mr->subpage;
1066
1067 memory_region_unref(mr);
1068
1069 if (have_sub_page) {
1070 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1071 object_unref(OBJECT(&subpage->iomem));
1072 g_free(subpage);
1073 }
1074 }
1075
1076 static void phys_sections_free(PhysPageMap *map)
1077 {
1078 while (map->sections_nb > 0) {
1079 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1080 phys_section_destroy(section->mr);
1081 }
1082 g_free(map->sections);
1083 g_free(map->nodes);
1084 }
1085
1086 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1087 {
1088 subpage_t *subpage;
1089 hwaddr base = section->offset_within_address_space
1090 & TARGET_PAGE_MASK;
1091 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1092 d->map.nodes, d->map.sections);
1093 MemoryRegionSection subsection = {
1094 .offset_within_address_space = base,
1095 .size = int128_make64(TARGET_PAGE_SIZE),
1096 };
1097 hwaddr start, end;
1098
1099 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1100
1101 if (!(existing->mr->subpage)) {
1102 subpage = subpage_init(d->as, base);
1103 subsection.address_space = d->as;
1104 subsection.mr = &subpage->iomem;
1105 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1106 phys_section_add(&d->map, &subsection));
1107 } else {
1108 subpage = container_of(existing->mr, subpage_t, iomem);
1109 }
1110 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1111 end = start + int128_get64(section->size) - 1;
1112 subpage_register(subpage, start, end,
1113 phys_section_add(&d->map, section));
1114 }
1115
1116
1117 static void register_multipage(AddressSpaceDispatch *d,
1118 MemoryRegionSection *section)
1119 {
1120 hwaddr start_addr = section->offset_within_address_space;
1121 uint16_t section_index = phys_section_add(&d->map, section);
1122 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1123 TARGET_PAGE_BITS));
1124
1125 assert(num_pages);
1126 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1127 }
1128
1129 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1130 {
1131 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1132 AddressSpaceDispatch *d = as->next_dispatch;
1133 MemoryRegionSection now = *section, remain = *section;
1134 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1135
1136 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1137 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1138 - now.offset_within_address_space;
1139
1140 now.size = int128_min(int128_make64(left), now.size);
1141 register_subpage(d, &now);
1142 } else {
1143 now.size = int128_zero();
1144 }
1145 while (int128_ne(remain.size, now.size)) {
1146 remain.size = int128_sub(remain.size, now.size);
1147 remain.offset_within_address_space += int128_get64(now.size);
1148 remain.offset_within_region += int128_get64(now.size);
1149 now = remain;
1150 if (int128_lt(remain.size, page_size)) {
1151 register_subpage(d, &now);
1152 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1153 now.size = page_size;
1154 register_subpage(d, &now);
1155 } else {
1156 now.size = int128_and(now.size, int128_neg(page_size));
1157 register_multipage(d, &now);
1158 }
1159 }
1160 }
1161
1162 void qemu_flush_coalesced_mmio_buffer(void)
1163 {
1164 if (kvm_enabled())
1165 kvm_flush_coalesced_mmio_buffer();
1166 }
1167
1168 void qemu_mutex_lock_ramlist(void)
1169 {
1170 qemu_mutex_lock(&ram_list.mutex);
1171 }
1172
1173 void qemu_mutex_unlock_ramlist(void)
1174 {
1175 qemu_mutex_unlock(&ram_list.mutex);
1176 }
1177
1178 #ifdef __linux__
1179
1180 #include <sys/vfs.h>
1181
1182 #define HUGETLBFS_MAGIC 0x958458f6
1183
1184 static long gethugepagesize(const char *path, Error **errp)
1185 {
1186 struct statfs fs;
1187 int ret;
1188
1189 do {
1190 ret = statfs(path, &fs);
1191 } while (ret != 0 && errno == EINTR);
1192
1193 if (ret != 0) {
1194 error_setg_errno(errp, errno, "failed to get page size of file %s",
1195 path);
1196 return 0;
1197 }
1198
1199 return fs.f_bsize;
1200 }
1201
1202 static void *file_ram_alloc(RAMBlock *block,
1203 ram_addr_t memory,
1204 const char *path,
1205 Error **errp)
1206 {
1207 struct stat st;
1208 char *filename;
1209 char *sanitized_name;
1210 char *c;
1211 void *area;
1212 int fd;
1213 uint64_t hpagesize;
1214 Error *local_err = NULL;
1215
1216 hpagesize = gethugepagesize(path, &local_err);
1217 if (local_err) {
1218 error_propagate(errp, local_err);
1219 goto error;
1220 }
1221 block->mr->align = hpagesize;
1222
1223 if (memory < hpagesize) {
1224 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1225 "or larger than huge page size 0x%" PRIx64,
1226 memory, hpagesize);
1227 goto error;
1228 }
1229
1230 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1231 error_setg(errp,
1232 "host lacks kvm mmu notifiers, -mem-path unsupported");
1233 goto error;
1234 }
1235
1236 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1237 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1238 sanitized_name = g_strdup(memory_region_name(block->mr));
1239 for (c = sanitized_name; *c != '\0'; c++) {
1240 if (*c == '/') {
1241 *c = '_';
1242 }
1243 }
1244
1245 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1246 sanitized_name);
1247 g_free(sanitized_name);
1248
1249 fd = mkstemp(filename);
1250 if (fd >= 0) {
1251 unlink(filename);
1252 }
1253 g_free(filename);
1254 } else {
1255 fd = open(path, O_RDWR | O_CREAT, 0644);
1256 }
1257
1258 if (fd < 0) {
1259 error_setg_errno(errp, errno,
1260 "unable to create backing store for hugepages");
1261 goto error;
1262 }
1263
1264 memory = ROUND_UP(memory, hpagesize);
1265
1266 /*
1267 * ftruncate is not supported by hugetlbfs in older
1268 * hosts, so don't bother bailing out on errors.
1269 * If anything goes wrong with it under other filesystems,
1270 * mmap will fail.
1271 */
1272 if (ftruncate(fd, memory)) {
1273 perror("ftruncate");
1274 }
1275
1276 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
1277 if (area == MAP_FAILED) {
1278 error_setg_errno(errp, errno,
1279 "unable to map backing store for hugepages");
1280 close(fd);
1281 goto error;
1282 }
1283
1284 if (mem_prealloc) {
1285 os_mem_prealloc(fd, area, memory);
1286 }
1287
1288 block->fd = fd;
1289 return area;
1290
1291 error:
1292 return NULL;
1293 }
1294 #endif
1295
1296 /* Called with the ramlist lock held. */
1297 static ram_addr_t find_ram_offset(ram_addr_t size)
1298 {
1299 RAMBlock *block, *next_block;
1300 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1301
1302 assert(size != 0); /* it would hand out same offset multiple times */
1303
1304 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1305 return 0;
1306 }
1307
1308 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1309 ram_addr_t end, next = RAM_ADDR_MAX;
1310
1311 end = block->offset + block->max_length;
1312
1313 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1314 if (next_block->offset >= end) {
1315 next = MIN(next, next_block->offset);
1316 }
1317 }
1318 if (next - end >= size && next - end < mingap) {
1319 offset = end;
1320 mingap = next - end;
1321 }
1322 }
1323
1324 if (offset == RAM_ADDR_MAX) {
1325 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1326 (uint64_t)size);
1327 abort();
1328 }
1329
1330 return offset;
1331 }
1332
1333 ram_addr_t last_ram_offset(void)
1334 {
1335 RAMBlock *block;
1336 ram_addr_t last = 0;
1337
1338 rcu_read_lock();
1339 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1340 last = MAX(last, block->offset + block->max_length);
1341 }
1342 rcu_read_unlock();
1343 return last;
1344 }
1345
1346 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1347 {
1348 int ret;
1349
1350 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1351 if (!machine_dump_guest_core(current_machine)) {
1352 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1353 if (ret) {
1354 perror("qemu_madvise");
1355 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1356 "but dump_guest_core=off specified\n");
1357 }
1358 }
1359 }
1360
1361 /* Called within an RCU critical section, or while the ramlist lock
1362 * is held.
1363 */
1364 static RAMBlock *find_ram_block(ram_addr_t addr)
1365 {
1366 RAMBlock *block;
1367
1368 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1369 if (block->offset == addr) {
1370 return block;
1371 }
1372 }
1373
1374 return NULL;
1375 }
1376
1377 const char *qemu_ram_get_idstr(RAMBlock *rb)
1378 {
1379 return rb->idstr;
1380 }
1381
1382 /* Called with iothread lock held. */
1383 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1384 {
1385 RAMBlock *new_block, *block;
1386
1387 rcu_read_lock();
1388 new_block = find_ram_block(addr);
1389 assert(new_block);
1390 assert(!new_block->idstr[0]);
1391
1392 if (dev) {
1393 char *id = qdev_get_dev_path(dev);
1394 if (id) {
1395 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1396 g_free(id);
1397 }
1398 }
1399 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1400
1401 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1402 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1403 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1404 new_block->idstr);
1405 abort();
1406 }
1407 }
1408 rcu_read_unlock();
1409 }
1410
1411 /* Called with iothread lock held. */
1412 void qemu_ram_unset_idstr(ram_addr_t addr)
1413 {
1414 RAMBlock *block;
1415
1416 /* FIXME: arch_init.c assumes that this is not called throughout
1417 * migration. Ignore the problem since hot-unplug during migration
1418 * does not work anyway.
1419 */
1420
1421 rcu_read_lock();
1422 block = find_ram_block(addr);
1423 if (block) {
1424 memset(block->idstr, 0, sizeof(block->idstr));
1425 }
1426 rcu_read_unlock();
1427 }
1428
1429 static int memory_try_enable_merging(void *addr, size_t len)
1430 {
1431 if (!machine_mem_merge(current_machine)) {
1432 /* disabled by the user */
1433 return 0;
1434 }
1435
1436 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1437 }
1438
1439 /* Only legal before guest might have detected the memory size: e.g. on
1440 * incoming migration, or right after reset.
1441 *
1442 * As memory core doesn't know how is memory accessed, it is up to
1443 * resize callback to update device state and/or add assertions to detect
1444 * misuse, if necessary.
1445 */
1446 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1447 {
1448 RAMBlock *block = find_ram_block(base);
1449
1450 assert(block);
1451
1452 newsize = HOST_PAGE_ALIGN(newsize);
1453
1454 if (block->used_length == newsize) {
1455 return 0;
1456 }
1457
1458 if (!(block->flags & RAM_RESIZEABLE)) {
1459 error_setg_errno(errp, EINVAL,
1460 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1461 " in != 0x" RAM_ADDR_FMT, block->idstr,
1462 newsize, block->used_length);
1463 return -EINVAL;
1464 }
1465
1466 if (block->max_length < newsize) {
1467 error_setg_errno(errp, EINVAL,
1468 "Length too large: %s: 0x" RAM_ADDR_FMT
1469 " > 0x" RAM_ADDR_FMT, block->idstr,
1470 newsize, block->max_length);
1471 return -EINVAL;
1472 }
1473
1474 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1475 block->used_length = newsize;
1476 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1477 DIRTY_CLIENTS_ALL);
1478 memory_region_set_size(block->mr, newsize);
1479 if (block->resized) {
1480 block->resized(block->idstr, newsize, block->host);
1481 }
1482 return 0;
1483 }
1484
1485 static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
1486 {
1487 RAMBlock *block;
1488 RAMBlock *last_block = NULL;
1489 ram_addr_t old_ram_size, new_ram_size;
1490
1491 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1492
1493 qemu_mutex_lock_ramlist();
1494 new_block->offset = find_ram_offset(new_block->max_length);
1495
1496 if (!new_block->host) {
1497 if (xen_enabled()) {
1498 xen_ram_alloc(new_block->offset, new_block->max_length,
1499 new_block->mr);
1500 } else {
1501 new_block->host = phys_mem_alloc(new_block->max_length,
1502 &new_block->mr->align);
1503 if (!new_block->host) {
1504 error_setg_errno(errp, errno,
1505 "cannot set up guest memory '%s'",
1506 memory_region_name(new_block->mr));
1507 qemu_mutex_unlock_ramlist();
1508 return -1;
1509 }
1510 memory_try_enable_merging(new_block->host, new_block->max_length);
1511 }
1512 }
1513
1514 new_ram_size = MAX(old_ram_size,
1515 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1516 if (new_ram_size > old_ram_size) {
1517 migration_bitmap_extend(old_ram_size, new_ram_size);
1518 }
1519 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1520 * QLIST (which has an RCU-friendly variant) does not have insertion at
1521 * tail, so save the last element in last_block.
1522 */
1523 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1524 last_block = block;
1525 if (block->max_length < new_block->max_length) {
1526 break;
1527 }
1528 }
1529 if (block) {
1530 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1531 } else if (last_block) {
1532 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1533 } else { /* list is empty */
1534 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1535 }
1536 ram_list.mru_block = NULL;
1537
1538 /* Write list before version */
1539 smp_wmb();
1540 ram_list.version++;
1541 qemu_mutex_unlock_ramlist();
1542
1543 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1544
1545 if (new_ram_size > old_ram_size) {
1546 int i;
1547
1548 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1549 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1550 ram_list.dirty_memory[i] =
1551 bitmap_zero_extend(ram_list.dirty_memory[i],
1552 old_ram_size, new_ram_size);
1553 }
1554 }
1555 cpu_physical_memory_set_dirty_range(new_block->offset,
1556 new_block->used_length,
1557 DIRTY_CLIENTS_ALL);
1558
1559 if (new_block->host) {
1560 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1561 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1562 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1563 if (kvm_enabled()) {
1564 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1565 }
1566 }
1567
1568 return new_block->offset;
1569 }
1570
1571 #ifdef __linux__
1572 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1573 bool share, const char *mem_path,
1574 Error **errp)
1575 {
1576 RAMBlock *new_block;
1577 ram_addr_t addr;
1578 Error *local_err = NULL;
1579
1580 if (xen_enabled()) {
1581 error_setg(errp, "-mem-path not supported with Xen");
1582 return -1;
1583 }
1584
1585 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1586 /*
1587 * file_ram_alloc() needs to allocate just like
1588 * phys_mem_alloc, but we haven't bothered to provide
1589 * a hook there.
1590 */
1591 error_setg(errp,
1592 "-mem-path not supported with this accelerator");
1593 return -1;
1594 }
1595
1596 size = HOST_PAGE_ALIGN(size);
1597 new_block = g_malloc0(sizeof(*new_block));
1598 new_block->mr = mr;
1599 new_block->used_length = size;
1600 new_block->max_length = size;
1601 new_block->flags = share ? RAM_SHARED : 0;
1602 new_block->host = file_ram_alloc(new_block, size,
1603 mem_path, errp);
1604 if (!new_block->host) {
1605 g_free(new_block);
1606 return -1;
1607 }
1608
1609 addr = ram_block_add(new_block, &local_err);
1610 if (local_err) {
1611 g_free(new_block);
1612 error_propagate(errp, local_err);
1613 return -1;
1614 }
1615 return addr;
1616 }
1617 #endif
1618
1619 static
1620 ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1621 void (*resized)(const char*,
1622 uint64_t length,
1623 void *host),
1624 void *host, bool resizeable,
1625 MemoryRegion *mr, Error **errp)
1626 {
1627 RAMBlock *new_block;
1628 ram_addr_t addr;
1629 Error *local_err = NULL;
1630
1631 size = HOST_PAGE_ALIGN(size);
1632 max_size = HOST_PAGE_ALIGN(max_size);
1633 new_block = g_malloc0(sizeof(*new_block));
1634 new_block->mr = mr;
1635 new_block->resized = resized;
1636 new_block->used_length = size;
1637 new_block->max_length = max_size;
1638 assert(max_size >= size);
1639 new_block->fd = -1;
1640 new_block->host = host;
1641 if (host) {
1642 new_block->flags |= RAM_PREALLOC;
1643 }
1644 if (resizeable) {
1645 new_block->flags |= RAM_RESIZEABLE;
1646 }
1647 addr = ram_block_add(new_block, &local_err);
1648 if (local_err) {
1649 g_free(new_block);
1650 error_propagate(errp, local_err);
1651 return -1;
1652 }
1653 return addr;
1654 }
1655
1656 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1657 MemoryRegion *mr, Error **errp)
1658 {
1659 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1660 }
1661
1662 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1663 {
1664 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1665 }
1666
1667 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1668 void (*resized)(const char*,
1669 uint64_t length,
1670 void *host),
1671 MemoryRegion *mr, Error **errp)
1672 {
1673 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1674 }
1675
1676 static void reclaim_ramblock(RAMBlock *block)
1677 {
1678 if (block->flags & RAM_PREALLOC) {
1679 ;
1680 } else if (xen_enabled()) {
1681 xen_invalidate_map_cache_entry(block->host);
1682 #ifndef _WIN32
1683 } else if (block->fd >= 0) {
1684 qemu_ram_munmap(block->host, block->max_length);
1685 close(block->fd);
1686 #endif
1687 } else {
1688 qemu_anon_ram_free(block->host, block->max_length);
1689 }
1690 g_free(block);
1691 }
1692
1693 void qemu_ram_free(ram_addr_t addr)
1694 {
1695 RAMBlock *block;
1696
1697 qemu_mutex_lock_ramlist();
1698 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1699 if (addr == block->offset) {
1700 QLIST_REMOVE_RCU(block, next);
1701 ram_list.mru_block = NULL;
1702 /* Write list before version */
1703 smp_wmb();
1704 ram_list.version++;
1705 call_rcu(block, reclaim_ramblock, rcu);
1706 break;
1707 }
1708 }
1709 qemu_mutex_unlock_ramlist();
1710 }
1711
1712 #ifndef _WIN32
1713 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1714 {
1715 RAMBlock *block;
1716 ram_addr_t offset;
1717 int flags;
1718 void *area, *vaddr;
1719
1720 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1721 offset = addr - block->offset;
1722 if (offset < block->max_length) {
1723 vaddr = ramblock_ptr(block, offset);
1724 if (block->flags & RAM_PREALLOC) {
1725 ;
1726 } else if (xen_enabled()) {
1727 abort();
1728 } else {
1729 flags = MAP_FIXED;
1730 if (block->fd >= 0) {
1731 flags |= (block->flags & RAM_SHARED ?
1732 MAP_SHARED : MAP_PRIVATE);
1733 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1734 flags, block->fd, offset);
1735 } else {
1736 /*
1737 * Remap needs to match alloc. Accelerators that
1738 * set phys_mem_alloc never remap. If they did,
1739 * we'd need a remap hook here.
1740 */
1741 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1742
1743 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1744 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1745 flags, -1, 0);
1746 }
1747 if (area != vaddr) {
1748 fprintf(stderr, "Could not remap addr: "
1749 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1750 length, addr);
1751 exit(1);
1752 }
1753 memory_try_enable_merging(vaddr, length);
1754 qemu_ram_setup_dump(vaddr, length);
1755 }
1756 }
1757 }
1758 }
1759 #endif /* !_WIN32 */
1760
1761 int qemu_get_ram_fd(ram_addr_t addr)
1762 {
1763 RAMBlock *block;
1764 int fd;
1765
1766 rcu_read_lock();
1767 block = qemu_get_ram_block(addr);
1768 fd = block->fd;
1769 rcu_read_unlock();
1770 return fd;
1771 }
1772
1773 void qemu_set_ram_fd(ram_addr_t addr, int fd)
1774 {
1775 RAMBlock *block;
1776
1777 rcu_read_lock();
1778 block = qemu_get_ram_block(addr);
1779 block->fd = fd;
1780 rcu_read_unlock();
1781 }
1782
1783 void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1784 {
1785 RAMBlock *block;
1786 void *ptr;
1787
1788 rcu_read_lock();
1789 block = qemu_get_ram_block(addr);
1790 ptr = ramblock_ptr(block, 0);
1791 rcu_read_unlock();
1792 return ptr;
1793 }
1794
1795 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1796 * This should not be used for general purpose DMA. Use address_space_map
1797 * or address_space_rw instead. For local memory (e.g. video ram) that the
1798 * device owns, use memory_region_get_ram_ptr.
1799 *
1800 * Called within RCU critical section.
1801 */
1802 void *qemu_get_ram_ptr(ram_addr_t addr)
1803 {
1804 RAMBlock *block = qemu_get_ram_block(addr);
1805
1806 if (xen_enabled() && block->host == NULL) {
1807 /* We need to check if the requested address is in the RAM
1808 * because we don't want to map the entire memory in QEMU.
1809 * In that case just map until the end of the page.
1810 */
1811 if (block->offset == 0) {
1812 return xen_map_cache(addr, 0, 0);
1813 }
1814
1815 block->host = xen_map_cache(block->offset, block->max_length, 1);
1816 }
1817 return ramblock_ptr(block, addr - block->offset);
1818 }
1819
1820 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1821 * but takes a size argument.
1822 *
1823 * Called within RCU critical section.
1824 */
1825 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1826 {
1827 RAMBlock *block;
1828 ram_addr_t offset_inside_block;
1829 if (*size == 0) {
1830 return NULL;
1831 }
1832
1833 block = qemu_get_ram_block(addr);
1834 offset_inside_block = addr - block->offset;
1835 *size = MIN(*size, block->max_length - offset_inside_block);
1836
1837 if (xen_enabled() && block->host == NULL) {
1838 /* We need to check if the requested address is in the RAM
1839 * because we don't want to map the entire memory in QEMU.
1840 * In that case just map the requested area.
1841 */
1842 if (block->offset == 0) {
1843 return xen_map_cache(addr, *size, 1);
1844 }
1845
1846 block->host = xen_map_cache(block->offset, block->max_length, 1);
1847 }
1848
1849 return ramblock_ptr(block, offset_inside_block);
1850 }
1851
1852 /*
1853 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1854 * in that RAMBlock.
1855 *
1856 * ptr: Host pointer to look up
1857 * round_offset: If true round the result offset down to a page boundary
1858 * *ram_addr: set to result ram_addr
1859 * *offset: set to result offset within the RAMBlock
1860 *
1861 * Returns: RAMBlock (or NULL if not found)
1862 *
1863 * By the time this function returns, the returned pointer is not protected
1864 * by RCU anymore. If the caller is not within an RCU critical section and
1865 * does not hold the iothread lock, it must have other means of protecting the
1866 * pointer, such as a reference to the region that includes the incoming
1867 * ram_addr_t.
1868 */
1869 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1870 ram_addr_t *ram_addr,
1871 ram_addr_t *offset)
1872 {
1873 RAMBlock *block;
1874 uint8_t *host = ptr;
1875
1876 if (xen_enabled()) {
1877 rcu_read_lock();
1878 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1879 block = qemu_get_ram_block(*ram_addr);
1880 if (block) {
1881 *offset = (host - block->host);
1882 }
1883 rcu_read_unlock();
1884 return block;
1885 }
1886
1887 rcu_read_lock();
1888 block = atomic_rcu_read(&ram_list.mru_block);
1889 if (block && block->host && host - block->host < block->max_length) {
1890 goto found;
1891 }
1892
1893 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1894 /* This case append when the block is not mapped. */
1895 if (block->host == NULL) {
1896 continue;
1897 }
1898 if (host - block->host < block->max_length) {
1899 goto found;
1900 }
1901 }
1902
1903 rcu_read_unlock();
1904 return NULL;
1905
1906 found:
1907 *offset = (host - block->host);
1908 if (round_offset) {
1909 *offset &= TARGET_PAGE_MASK;
1910 }
1911 *ram_addr = block->offset + *offset;
1912 rcu_read_unlock();
1913 return block;
1914 }
1915
1916 /*
1917 * Finds the named RAMBlock
1918 *
1919 * name: The name of RAMBlock to find
1920 *
1921 * Returns: RAMBlock (or NULL if not found)
1922 */
1923 RAMBlock *qemu_ram_block_by_name(const char *name)
1924 {
1925 RAMBlock *block;
1926
1927 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1928 if (!strcmp(name, block->idstr)) {
1929 return block;
1930 }
1931 }
1932
1933 return NULL;
1934 }
1935
1936 /* Some of the softmmu routines need to translate from a host pointer
1937 (typically a TLB entry) back to a ram offset. */
1938 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1939 {
1940 RAMBlock *block;
1941 ram_addr_t offset; /* Not used */
1942
1943 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
1944
1945 if (!block) {
1946 return NULL;
1947 }
1948
1949 return block->mr;
1950 }
1951
1952 /* Called within RCU critical section. */
1953 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1954 uint64_t val, unsigned size)
1955 {
1956 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1957 tb_invalidate_phys_page_fast(ram_addr, size);
1958 }
1959 switch (size) {
1960 case 1:
1961 stb_p(qemu_get_ram_ptr(ram_addr), val);
1962 break;
1963 case 2:
1964 stw_p(qemu_get_ram_ptr(ram_addr), val);
1965 break;
1966 case 4:
1967 stl_p(qemu_get_ram_ptr(ram_addr), val);
1968 break;
1969 default:
1970 abort();
1971 }
1972 /* Set both VGA and migration bits for simplicity and to remove
1973 * the notdirty callback faster.
1974 */
1975 cpu_physical_memory_set_dirty_range(ram_addr, size,
1976 DIRTY_CLIENTS_NOCODE);
1977 /* we remove the notdirty callback only if the code has been
1978 flushed */
1979 if (!cpu_physical_memory_is_clean(ram_addr)) {
1980 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
1981 }
1982 }
1983
1984 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1985 unsigned size, bool is_write)
1986 {
1987 return is_write;
1988 }
1989
1990 static const MemoryRegionOps notdirty_mem_ops = {
1991 .write = notdirty_mem_write,
1992 .valid.accepts = notdirty_mem_accepts,
1993 .endianness = DEVICE_NATIVE_ENDIAN,
1994 };
1995
1996 /* Generate a debug exception if a watchpoint has been hit. */
1997 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
1998 {
1999 CPUState *cpu = current_cpu;
2000 CPUArchState *env = cpu->env_ptr;
2001 target_ulong pc, cs_base;
2002 target_ulong vaddr;
2003 CPUWatchpoint *wp;
2004 int cpu_flags;
2005
2006 if (cpu->watchpoint_hit) {
2007 /* We re-entered the check after replacing the TB. Now raise
2008 * the debug interrupt so that is will trigger after the
2009 * current instruction. */
2010 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2011 return;
2012 }
2013 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2014 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2015 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2016 && (wp->flags & flags)) {
2017 if (flags == BP_MEM_READ) {
2018 wp->flags |= BP_WATCHPOINT_HIT_READ;
2019 } else {
2020 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2021 }
2022 wp->hitaddr = vaddr;
2023 wp->hitattrs = attrs;
2024 if (!cpu->watchpoint_hit) {
2025 cpu->watchpoint_hit = wp;
2026 tb_check_watchpoint(cpu);
2027 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2028 cpu->exception_index = EXCP_DEBUG;
2029 cpu_loop_exit(cpu);
2030 } else {
2031 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2032 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2033 cpu_resume_from_signal(cpu, NULL);
2034 }
2035 }
2036 } else {
2037 wp->flags &= ~BP_WATCHPOINT_HIT;
2038 }
2039 }
2040 }
2041
2042 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2043 so these check for a hit then pass through to the normal out-of-line
2044 phys routines. */
2045 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2046 unsigned size, MemTxAttrs attrs)
2047 {
2048 MemTxResult res;
2049 uint64_t data;
2050
2051 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2052 switch (size) {
2053 case 1:
2054 data = address_space_ldub(&address_space_memory, addr, attrs, &res);
2055 break;
2056 case 2:
2057 data = address_space_lduw(&address_space_memory, addr, attrs, &res);
2058 break;
2059 case 4:
2060 data = address_space_ldl(&address_space_memory, addr, attrs, &res);
2061 break;
2062 default: abort();
2063 }
2064 *pdata = data;
2065 return res;
2066 }
2067
2068 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2069 uint64_t val, unsigned size,
2070 MemTxAttrs attrs)
2071 {
2072 MemTxResult res;
2073
2074 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2075 switch (size) {
2076 case 1:
2077 address_space_stb(&address_space_memory, addr, val, attrs, &res);
2078 break;
2079 case 2:
2080 address_space_stw(&address_space_memory, addr, val, attrs, &res);
2081 break;
2082 case 4:
2083 address_space_stl(&address_space_memory, addr, val, attrs, &res);
2084 break;
2085 default: abort();
2086 }
2087 return res;
2088 }
2089
2090 static const MemoryRegionOps watch_mem_ops = {
2091 .read_with_attrs = watch_mem_read,
2092 .write_with_attrs = watch_mem_write,
2093 .endianness = DEVICE_NATIVE_ENDIAN,
2094 };
2095
2096 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2097 unsigned len, MemTxAttrs attrs)
2098 {
2099 subpage_t *subpage = opaque;
2100 uint8_t buf[8];
2101 MemTxResult res;
2102
2103 #if defined(DEBUG_SUBPAGE)
2104 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2105 subpage, len, addr);
2106 #endif
2107 res = address_space_read(subpage->as, addr + subpage->base,
2108 attrs, buf, len);
2109 if (res) {
2110 return res;
2111 }
2112 switch (len) {
2113 case 1:
2114 *data = ldub_p(buf);
2115 return MEMTX_OK;
2116 case 2:
2117 *data = lduw_p(buf);
2118 return MEMTX_OK;
2119 case 4:
2120 *data = ldl_p(buf);
2121 return MEMTX_OK;
2122 case 8:
2123 *data = ldq_p(buf);
2124 return MEMTX_OK;
2125 default:
2126 abort();
2127 }
2128 }
2129
2130 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2131 uint64_t value, unsigned len, MemTxAttrs attrs)
2132 {
2133 subpage_t *subpage = opaque;
2134 uint8_t buf[8];
2135
2136 #if defined(DEBUG_SUBPAGE)
2137 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2138 " value %"PRIx64"\n",
2139 __func__, subpage, len, addr, value);
2140 #endif
2141 switch (len) {
2142 case 1:
2143 stb_p(buf, value);
2144 break;
2145 case 2:
2146 stw_p(buf, value);
2147 break;
2148 case 4:
2149 stl_p(buf, value);
2150 break;
2151 case 8:
2152 stq_p(buf, value);
2153 break;
2154 default:
2155 abort();
2156 }
2157 return address_space_write(subpage->as, addr + subpage->base,
2158 attrs, buf, len);
2159 }
2160
2161 static bool subpage_accepts(void *opaque, hwaddr addr,
2162 unsigned len, bool is_write)
2163 {
2164 subpage_t *subpage = opaque;
2165 #if defined(DEBUG_SUBPAGE)
2166 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2167 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2168 #endif
2169
2170 return address_space_access_valid(subpage->as, addr + subpage->base,
2171 len, is_write);
2172 }
2173
2174 static const MemoryRegionOps subpage_ops = {
2175 .read_with_attrs = subpage_read,
2176 .write_with_attrs = subpage_write,
2177 .impl.min_access_size = 1,
2178 .impl.max_access_size = 8,
2179 .valid.min_access_size = 1,
2180 .valid.max_access_size = 8,
2181 .valid.accepts = subpage_accepts,
2182 .endianness = DEVICE_NATIVE_ENDIAN,
2183 };
2184
2185 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2186 uint16_t section)
2187 {
2188 int idx, eidx;
2189
2190 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2191 return -1;
2192 idx = SUBPAGE_IDX(start);
2193 eidx = SUBPAGE_IDX(end);
2194 #if defined(DEBUG_SUBPAGE)
2195 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2196 __func__, mmio, start, end, idx, eidx, section);
2197 #endif
2198 for (; idx <= eidx; idx++) {
2199 mmio->sub_section[idx] = section;
2200 }
2201
2202 return 0;
2203 }
2204
2205 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2206 {
2207 subpage_t *mmio;
2208
2209 mmio = g_malloc0(sizeof(subpage_t));
2210
2211 mmio->as = as;
2212 mmio->base = base;
2213 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2214 NULL, TARGET_PAGE_SIZE);
2215 mmio->iomem.subpage = true;
2216 #if defined(DEBUG_SUBPAGE)
2217 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2218 mmio, base, TARGET_PAGE_SIZE);
2219 #endif
2220 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2221
2222 return mmio;
2223 }
2224
2225 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2226 MemoryRegion *mr)
2227 {
2228 assert(as);
2229 MemoryRegionSection section = {
2230 .address_space = as,
2231 .mr = mr,
2232 .offset_within_address_space = 0,
2233 .offset_within_region = 0,
2234 .size = int128_2_64(),
2235 };
2236
2237 return phys_section_add(map, &section);
2238 }
2239
2240 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
2241 {
2242 CPUAddressSpace *cpuas = &cpu->cpu_ases[0];
2243 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2244 MemoryRegionSection *sections = d->map.sections;
2245
2246 return sections[index & ~TARGET_PAGE_MASK].mr;
2247 }
2248
2249 static void io_mem_init(void)
2250 {
2251 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2252 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2253 NULL, UINT64_MAX);
2254 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2255 NULL, UINT64_MAX);
2256 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2257 NULL, UINT64_MAX);
2258 }
2259
2260 static void mem_begin(MemoryListener *listener)
2261 {
2262 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2263 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2264 uint16_t n;
2265
2266 n = dummy_section(&d->map, as, &io_mem_unassigned);
2267 assert(n == PHYS_SECTION_UNASSIGNED);
2268 n = dummy_section(&d->map, as, &io_mem_notdirty);
2269 assert(n == PHYS_SECTION_NOTDIRTY);
2270 n = dummy_section(&d->map, as, &io_mem_rom);
2271 assert(n == PHYS_SECTION_ROM);
2272 n = dummy_section(&d->map, as, &io_mem_watch);
2273 assert(n == PHYS_SECTION_WATCH);
2274
2275 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2276 d->as = as;
2277 as->next_dispatch = d;
2278 }
2279
2280 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2281 {
2282 phys_sections_free(&d->map);
2283 g_free(d);
2284 }
2285
2286 static void mem_commit(MemoryListener *listener)
2287 {
2288 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2289 AddressSpaceDispatch *cur = as->dispatch;
2290 AddressSpaceDispatch *next = as->next_dispatch;
2291
2292 phys_page_compact_all(next, next->map.nodes_nb);
2293
2294 atomic_rcu_set(&as->dispatch, next);
2295 if (cur) {
2296 call_rcu(cur, address_space_dispatch_free, rcu);
2297 }
2298 }
2299
2300 static void tcg_commit(MemoryListener *listener)
2301 {
2302 CPUAddressSpace *cpuas;
2303 AddressSpaceDispatch *d;
2304
2305 /* since each CPU stores ram addresses in its TLB cache, we must
2306 reset the modified entries */
2307 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2308 cpu_reloading_memory_map();
2309 /* The CPU and TLB are protected by the iothread lock.
2310 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2311 * may have split the RCU critical section.
2312 */
2313 d = atomic_rcu_read(&cpuas->as->dispatch);
2314 cpuas->memory_dispatch = d;
2315 tlb_flush(cpuas->cpu, 1);
2316 }
2317
2318 void address_space_init_dispatch(AddressSpace *as)
2319 {
2320 as->dispatch = NULL;
2321 as->dispatch_listener = (MemoryListener) {
2322 .begin = mem_begin,
2323 .commit = mem_commit,
2324 .region_add = mem_add,
2325 .region_nop = mem_add,
2326 .priority = 0,
2327 };
2328 memory_listener_register(&as->dispatch_listener, as);
2329 }
2330
2331 void address_space_unregister(AddressSpace *as)
2332 {
2333 memory_listener_unregister(&as->dispatch_listener);
2334 }
2335
2336 void address_space_destroy_dispatch(AddressSpace *as)
2337 {
2338 AddressSpaceDispatch *d = as->dispatch;
2339
2340 atomic_rcu_set(&as->dispatch, NULL);
2341 if (d) {
2342 call_rcu(d, address_space_dispatch_free, rcu);
2343 }
2344 }
2345
2346 static void memory_map_init(void)
2347 {
2348 system_memory = g_malloc(sizeof(*system_memory));
2349
2350 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2351 address_space_init(&address_space_memory, system_memory, "memory");
2352
2353 system_io = g_malloc(sizeof(*system_io));
2354 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2355 65536);
2356 address_space_init(&address_space_io, system_io, "I/O");
2357 }
2358
2359 MemoryRegion *get_system_memory(void)
2360 {
2361 return system_memory;
2362 }
2363
2364 MemoryRegion *get_system_io(void)
2365 {
2366 return system_io;
2367 }
2368
2369 #endif /* !defined(CONFIG_USER_ONLY) */
2370
2371 /* physical memory access (slow version, mainly for debug) */
2372 #if defined(CONFIG_USER_ONLY)
2373 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2374 uint8_t *buf, int len, int is_write)
2375 {
2376 int l, flags;
2377 target_ulong page;
2378 void * p;
2379
2380 while (len > 0) {
2381 page = addr & TARGET_PAGE_MASK;
2382 l = (page + TARGET_PAGE_SIZE) - addr;
2383 if (l > len)
2384 l = len;
2385 flags = page_get_flags(page);
2386 if (!(flags & PAGE_VALID))
2387 return -1;
2388 if (is_write) {
2389 if (!(flags & PAGE_WRITE))
2390 return -1;
2391 /* XXX: this code should not depend on lock_user */
2392 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2393 return -1;
2394 memcpy(p, buf, l);
2395 unlock_user(p, addr, l);
2396 } else {
2397 if (!(flags & PAGE_READ))
2398 return -1;
2399 /* XXX: this code should not depend on lock_user */
2400 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2401 return -1;
2402 memcpy(buf, p, l);
2403 unlock_user(p, addr, 0);
2404 }
2405 len -= l;
2406 buf += l;
2407 addr += l;
2408 }
2409 return 0;
2410 }
2411
2412 #else
2413
2414 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2415 hwaddr length)
2416 {
2417 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2418 /* No early return if dirty_log_mask is or becomes 0, because
2419 * cpu_physical_memory_set_dirty_range will still call
2420 * xen_modified_memory.
2421 */
2422 if (dirty_log_mask) {
2423 dirty_log_mask =
2424 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2425 }
2426 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2427 tb_invalidate_phys_range(addr, addr + length);
2428 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2429 }
2430 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2431 }
2432
2433 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2434 {
2435 unsigned access_size_max = mr->ops->valid.max_access_size;
2436
2437 /* Regions are assumed to support 1-4 byte accesses unless
2438 otherwise specified. */
2439 if (access_size_max == 0) {
2440 access_size_max = 4;
2441 }
2442
2443 /* Bound the maximum access by the alignment of the address. */
2444 if (!mr->ops->impl.unaligned) {
2445 unsigned align_size_max = addr & -addr;
2446 if (align_size_max != 0 && align_size_max < access_size_max) {
2447 access_size_max = align_size_max;
2448 }
2449 }
2450
2451 /* Don't attempt accesses larger than the maximum. */
2452 if (l > access_size_max) {
2453 l = access_size_max;
2454 }
2455 l = pow2floor(l);
2456
2457 return l;
2458 }
2459
2460 static bool prepare_mmio_access(MemoryRegion *mr)
2461 {
2462 bool unlocked = !qemu_mutex_iothread_locked();
2463 bool release_lock = false;
2464
2465 if (unlocked && mr->global_locking) {
2466 qemu_mutex_lock_iothread();
2467 unlocked = false;
2468 release_lock = true;
2469 }
2470 if (mr->flush_coalesced_mmio) {
2471 if (unlocked) {
2472 qemu_mutex_lock_iothread();
2473 }
2474 qemu_flush_coalesced_mmio_buffer();
2475 if (unlocked) {
2476 qemu_mutex_unlock_iothread();
2477 }
2478 }
2479
2480 return release_lock;
2481 }
2482
2483 /* Called within RCU critical section. */
2484 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2485 MemTxAttrs attrs,
2486 const uint8_t *buf,
2487 int len, hwaddr addr1,
2488 hwaddr l, MemoryRegion *mr)
2489 {
2490 uint8_t *ptr;
2491 uint64_t val;
2492 MemTxResult result = MEMTX_OK;
2493 bool release_lock = false;
2494
2495 for (;;) {
2496 if (!memory_access_is_direct(mr, true)) {
2497 release_lock |= prepare_mmio_access(mr);
2498 l = memory_access_size(mr, l, addr1);
2499 /* XXX: could force current_cpu to NULL to avoid
2500 potential bugs */
2501 switch (l) {
2502 case 8:
2503 /* 64 bit write access */
2504 val = ldq_p(buf);
2505 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2506 attrs);
2507 break;
2508 case 4:
2509 /* 32 bit write access */
2510 val = ldl_p(buf);
2511 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2512 attrs);
2513 break;
2514 case 2:
2515 /* 16 bit write access */
2516 val = lduw_p(buf);
2517 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2518 attrs);
2519 break;
2520 case 1:
2521 /* 8 bit write access */
2522 val = ldub_p(buf);
2523 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2524 attrs);
2525 break;
2526 default:
2527 abort();
2528 }
2529 } else {
2530 addr1 += memory_region_get_ram_addr(mr);
2531 /* RAM case */
2532 ptr = qemu_get_ram_ptr(addr1);
2533 memcpy(ptr, buf, l);
2534 invalidate_and_set_dirty(mr, addr1, l);
2535 }
2536
2537 if (release_lock) {
2538 qemu_mutex_unlock_iothread();
2539 release_lock = false;
2540 }
2541
2542 len -= l;
2543 buf += l;
2544 addr += l;
2545
2546 if (!len) {
2547 break;
2548 }
2549
2550 l = len;
2551 mr = address_space_translate(as, addr, &addr1, &l, true);
2552 }
2553
2554 return result;
2555 }
2556
2557 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2558 const uint8_t *buf, int len)
2559 {
2560 hwaddr l;
2561 hwaddr addr1;
2562 MemoryRegion *mr;
2563 MemTxResult result = MEMTX_OK;
2564
2565 if (len > 0) {
2566 rcu_read_lock();
2567 l = len;
2568 mr = address_space_translate(as, addr, &addr1, &l, true);
2569 result = address_space_write_continue(as, addr, attrs, buf, len,
2570 addr1, l, mr);
2571 rcu_read_unlock();
2572 }
2573
2574 return result;
2575 }
2576
2577 /* Called within RCU critical section. */
2578 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2579 MemTxAttrs attrs, uint8_t *buf,
2580 int len, hwaddr addr1, hwaddr l,
2581 MemoryRegion *mr)
2582 {
2583 uint8_t *ptr;
2584 uint64_t val;
2585 MemTxResult result = MEMTX_OK;
2586 bool release_lock = false;
2587
2588 for (;;) {
2589 if (!memory_access_is_direct(mr, false)) {
2590 /* I/O case */
2591 release_lock |= prepare_mmio_access(mr);
2592 l = memory_access_size(mr, l, addr1);
2593 switch (l) {
2594 case 8:
2595 /* 64 bit read access */
2596 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2597 attrs);
2598 stq_p(buf, val);
2599 break;
2600 case 4:
2601 /* 32 bit read access */
2602 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2603 attrs);
2604 stl_p(buf, val);
2605 break;
2606 case 2:
2607 /* 16 bit read access */
2608 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2609 attrs);
2610 stw_p(buf, val);
2611 break;
2612 case 1:
2613 /* 8 bit read access */
2614 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2615 attrs);
2616 stb_p(buf, val);
2617 break;
2618 default:
2619 abort();
2620 }
2621 } else {
2622 /* RAM case */
2623 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2624 memcpy(buf, ptr, l);
2625 }
2626
2627 if (release_lock) {
2628 qemu_mutex_unlock_iothread();
2629 release_lock = false;
2630 }
2631
2632 len -= l;
2633 buf += l;
2634 addr += l;
2635
2636 if (!len) {
2637 break;
2638 }
2639
2640 l = len;
2641 mr = address_space_translate(as, addr, &addr1, &l, false);
2642 }
2643
2644 return result;
2645 }
2646
2647 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2648 MemTxAttrs attrs, uint8_t *buf, int len)
2649 {
2650 hwaddr l;
2651 hwaddr addr1;
2652 MemoryRegion *mr;
2653 MemTxResult result = MEMTX_OK;
2654
2655 if (len > 0) {
2656 rcu_read_lock();
2657 l = len;
2658 mr = address_space_translate(as, addr, &addr1, &l, false);
2659 result = address_space_read_continue(as, addr, attrs, buf, len,
2660 addr1, l, mr);
2661 rcu_read_unlock();
2662 }
2663
2664 return result;
2665 }
2666
2667 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2668 uint8_t *buf, int len, bool is_write)
2669 {
2670 if (is_write) {
2671 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2672 } else {
2673 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2674 }
2675 }
2676
2677 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2678 int len, int is_write)
2679 {
2680 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2681 buf, len, is_write);
2682 }
2683
2684 enum write_rom_type {
2685 WRITE_DATA,
2686 FLUSH_CACHE,
2687 };
2688
2689 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2690 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2691 {
2692 hwaddr l;
2693 uint8_t *ptr;
2694 hwaddr addr1;
2695 MemoryRegion *mr;
2696
2697 rcu_read_lock();
2698 while (len > 0) {
2699 l = len;
2700 mr = address_space_translate(as, addr, &addr1, &l, true);
2701
2702 if (!(memory_region_is_ram(mr) ||
2703 memory_region_is_romd(mr))) {
2704 l = memory_access_size(mr, l, addr1);
2705 } else {
2706 addr1 += memory_region_get_ram_addr(mr);
2707 /* ROM/RAM case */
2708 ptr = qemu_get_ram_ptr(addr1);
2709 switch (type) {
2710 case WRITE_DATA:
2711 memcpy(ptr, buf, l);
2712 invalidate_and_set_dirty(mr, addr1, l);
2713 break;
2714 case FLUSH_CACHE:
2715 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2716 break;
2717 }
2718 }
2719 len -= l;
2720 buf += l;
2721 addr += l;
2722 }
2723 rcu_read_unlock();
2724 }
2725
2726 /* used for ROM loading : can write in RAM and ROM */
2727 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2728 const uint8_t *buf, int len)
2729 {
2730 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2731 }
2732
2733 void cpu_flush_icache_range(hwaddr start, int len)
2734 {
2735 /*
2736 * This function should do the same thing as an icache flush that was
2737 * triggered from within the guest. For TCG we are always cache coherent,
2738 * so there is no need to flush anything. For KVM / Xen we need to flush
2739 * the host's instruction cache at least.
2740 */
2741 if (tcg_enabled()) {
2742 return;
2743 }
2744
2745 cpu_physical_memory_write_rom_internal(&address_space_memory,
2746 start, NULL, len, FLUSH_CACHE);
2747 }
2748
2749 typedef struct {
2750 MemoryRegion *mr;
2751 void *buffer;
2752 hwaddr addr;
2753 hwaddr len;
2754 bool in_use;
2755 } BounceBuffer;
2756
2757 static BounceBuffer bounce;
2758
2759 typedef struct MapClient {
2760 QEMUBH *bh;
2761 QLIST_ENTRY(MapClient) link;
2762 } MapClient;
2763
2764 QemuMutex map_client_list_lock;
2765 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2766 = QLIST_HEAD_INITIALIZER(map_client_list);
2767
2768 static void cpu_unregister_map_client_do(MapClient *client)
2769 {
2770 QLIST_REMOVE(client, link);
2771 g_free(client);
2772 }
2773
2774 static void cpu_notify_map_clients_locked(void)
2775 {
2776 MapClient *client;
2777
2778 while (!QLIST_EMPTY(&map_client_list)) {
2779 client = QLIST_FIRST(&map_client_list);
2780 qemu_bh_schedule(client->bh);
2781 cpu_unregister_map_client_do(client);
2782 }
2783 }
2784
2785 void cpu_register_map_client(QEMUBH *bh)
2786 {
2787 MapClient *client = g_malloc(sizeof(*client));
2788
2789 qemu_mutex_lock(&map_client_list_lock);
2790 client->bh = bh;
2791 QLIST_INSERT_HEAD(&map_client_list, client, link);
2792 if (!atomic_read(&bounce.in_use)) {
2793 cpu_notify_map_clients_locked();
2794 }
2795 qemu_mutex_unlock(&map_client_list_lock);
2796 }
2797
2798 void cpu_exec_init_all(void)
2799 {
2800 qemu_mutex_init(&ram_list.mutex);
2801 io_mem_init();
2802 memory_map_init();
2803 qemu_mutex_init(&map_client_list_lock);
2804 }
2805
2806 void cpu_unregister_map_client(QEMUBH *bh)
2807 {
2808 MapClient *client;
2809
2810 qemu_mutex_lock(&map_client_list_lock);
2811 QLIST_FOREACH(client, &map_client_list, link) {
2812 if (client->bh == bh) {
2813 cpu_unregister_map_client_do(client);
2814 break;
2815 }
2816 }
2817 qemu_mutex_unlock(&map_client_list_lock);
2818 }
2819
2820 static void cpu_notify_map_clients(void)
2821 {
2822 qemu_mutex_lock(&map_client_list_lock);
2823 cpu_notify_map_clients_locked();
2824 qemu_mutex_unlock(&map_client_list_lock);
2825 }
2826
2827 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2828 {
2829 MemoryRegion *mr;
2830 hwaddr l, xlat;
2831
2832 rcu_read_lock();
2833 while (len > 0) {
2834 l = len;
2835 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2836 if (!memory_access_is_direct(mr, is_write)) {
2837 l = memory_access_size(mr, l, addr);
2838 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2839 return false;
2840 }
2841 }
2842
2843 len -= l;
2844 addr += l;
2845 }
2846 rcu_read_unlock();
2847 return true;
2848 }
2849
2850 /* Map a physical memory region into a host virtual address.
2851 * May map a subset of the requested range, given by and returned in *plen.
2852 * May return NULL if resources needed to perform the mapping are exhausted.
2853 * Use only for reads OR writes - not for read-modify-write operations.
2854 * Use cpu_register_map_client() to know when retrying the map operation is
2855 * likely to succeed.
2856 */
2857 void *address_space_map(AddressSpace *as,
2858 hwaddr addr,
2859 hwaddr *plen,
2860 bool is_write)
2861 {
2862 hwaddr len = *plen;
2863 hwaddr done = 0;
2864 hwaddr l, xlat, base;
2865 MemoryRegion *mr, *this_mr;
2866 ram_addr_t raddr;
2867 void *ptr;
2868
2869 if (len == 0) {
2870 return NULL;
2871 }
2872
2873 l = len;
2874 rcu_read_lock();
2875 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2876
2877 if (!memory_access_is_direct(mr, is_write)) {
2878 if (atomic_xchg(&bounce.in_use, true)) {
2879 rcu_read_unlock();
2880 return NULL;
2881 }
2882 /* Avoid unbounded allocations */
2883 l = MIN(l, TARGET_PAGE_SIZE);
2884 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2885 bounce.addr = addr;
2886 bounce.len = l;
2887
2888 memory_region_ref(mr);
2889 bounce.mr = mr;
2890 if (!is_write) {
2891 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2892 bounce.buffer, l);
2893 }
2894
2895 rcu_read_unlock();
2896 *plen = l;
2897 return bounce.buffer;
2898 }
2899
2900 base = xlat;
2901 raddr = memory_region_get_ram_addr(mr);
2902
2903 for (;;) {
2904 len -= l;
2905 addr += l;
2906 done += l;
2907 if (len == 0) {
2908 break;
2909 }
2910
2911 l = len;
2912 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2913 if (this_mr != mr || xlat != base + done) {
2914 break;
2915 }
2916 }
2917
2918 memory_region_ref(mr);
2919 *plen = done;
2920 ptr = qemu_ram_ptr_length(raddr + base, plen);
2921 rcu_read_unlock();
2922
2923 return ptr;
2924 }
2925
2926 /* Unmaps a memory region previously mapped by address_space_map().
2927 * Will also mark the memory as dirty if is_write == 1. access_len gives
2928 * the amount of memory that was actually read or written by the caller.
2929 */
2930 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2931 int is_write, hwaddr access_len)
2932 {
2933 if (buffer != bounce.buffer) {
2934 MemoryRegion *mr;
2935 ram_addr_t addr1;
2936
2937 mr = qemu_ram_addr_from_host(buffer, &addr1);
2938 assert(mr != NULL);
2939 if (is_write) {
2940 invalidate_and_set_dirty(mr, addr1, access_len);
2941 }
2942 if (xen_enabled()) {
2943 xen_invalidate_map_cache_entry(buffer);
2944 }
2945 memory_region_unref(mr);
2946 return;
2947 }
2948 if (is_write) {
2949 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2950 bounce.buffer, access_len);
2951 }
2952 qemu_vfree(bounce.buffer);
2953 bounce.buffer = NULL;
2954 memory_region_unref(bounce.mr);
2955 atomic_mb_set(&bounce.in_use, false);
2956 cpu_notify_map_clients();
2957 }
2958
2959 void *cpu_physical_memory_map(hwaddr addr,
2960 hwaddr *plen,
2961 int is_write)
2962 {
2963 return address_space_map(&address_space_memory, addr, plen, is_write);
2964 }
2965
2966 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2967 int is_write, hwaddr access_len)
2968 {
2969 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2970 }
2971
2972 /* warning: addr must be aligned */
2973 static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
2974 MemTxAttrs attrs,
2975 MemTxResult *result,
2976 enum device_endian endian)
2977 {
2978 uint8_t *ptr;
2979 uint64_t val;
2980 MemoryRegion *mr;
2981 hwaddr l = 4;
2982 hwaddr addr1;
2983 MemTxResult r;
2984 bool release_lock = false;
2985
2986 rcu_read_lock();
2987 mr = address_space_translate(as, addr, &addr1, &l, false);
2988 if (l < 4 || !memory_access_is_direct(mr, false)) {
2989 release_lock |= prepare_mmio_access(mr);
2990
2991 /* I/O case */
2992 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
2993 #if defined(TARGET_WORDS_BIGENDIAN)
2994 if (endian == DEVICE_LITTLE_ENDIAN) {
2995 val = bswap32(val);
2996 }
2997 #else
2998 if (endian == DEVICE_BIG_ENDIAN) {
2999 val = bswap32(val);
3000 }
3001 #endif
3002 } else {
3003 /* RAM case */
3004 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3005 & TARGET_PAGE_MASK)
3006 + addr1);
3007 switch (endian) {
3008 case DEVICE_LITTLE_ENDIAN:
3009 val = ldl_le_p(ptr);
3010 break;
3011 case DEVICE_BIG_ENDIAN:
3012 val = ldl_be_p(ptr);
3013 break;
3014 default:
3015 val = ldl_p(ptr);
3016 break;
3017 }
3018 r = MEMTX_OK;
3019 }
3020 if (result) {
3021 *result = r;
3022 }
3023 if (release_lock) {
3024 qemu_mutex_unlock_iothread();
3025 }
3026 rcu_read_unlock();
3027 return val;
3028 }
3029
3030 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3031 MemTxAttrs attrs, MemTxResult *result)
3032 {
3033 return address_space_ldl_internal(as, addr, attrs, result,
3034 DEVICE_NATIVE_ENDIAN);
3035 }
3036
3037 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3038 MemTxAttrs attrs, MemTxResult *result)
3039 {
3040 return address_space_ldl_internal(as, addr, attrs, result,
3041 DEVICE_LITTLE_ENDIAN);
3042 }
3043
3044 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3045 MemTxAttrs attrs, MemTxResult *result)
3046 {
3047 return address_space_ldl_internal(as, addr, attrs, result,
3048 DEVICE_BIG_ENDIAN);
3049 }
3050
3051 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
3052 {
3053 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3054 }
3055
3056 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
3057 {
3058 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3059 }
3060
3061 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
3062 {
3063 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3064 }
3065
3066 /* warning: addr must be aligned */
3067 static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3068 MemTxAttrs attrs,
3069 MemTxResult *result,
3070 enum device_endian endian)
3071 {
3072 uint8_t *ptr;
3073 uint64_t val;
3074 MemoryRegion *mr;
3075 hwaddr l = 8;
3076 hwaddr addr1;
3077 MemTxResult r;
3078 bool release_lock = false;
3079
3080 rcu_read_lock();
3081 mr = address_space_translate(as, addr, &addr1, &l,
3082 false);
3083 if (l < 8 || !memory_access_is_direct(mr, false)) {
3084 release_lock |= prepare_mmio_access(mr);
3085
3086 /* I/O case */
3087 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
3088 #if defined(TARGET_WORDS_BIGENDIAN)
3089 if (endian == DEVICE_LITTLE_ENDIAN) {
3090 val = bswap64(val);
3091 }
3092 #else
3093 if (endian == DEVICE_BIG_ENDIAN) {
3094 val = bswap64(val);
3095 }
3096 #endif
3097 } else {
3098 /* RAM case */
3099 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3100 & TARGET_PAGE_MASK)
3101 + addr1);
3102 switch (endian) {
3103 case DEVICE_LITTLE_ENDIAN:
3104 val = ldq_le_p(ptr);
3105 break;
3106 case DEVICE_BIG_ENDIAN:
3107 val = ldq_be_p(ptr);
3108 break;
3109 default:
3110 val = ldq_p(ptr);
3111 break;
3112 }
3113 r = MEMTX_OK;
3114 }
3115 if (result) {
3116 *result = r;
3117 }
3118 if (release_lock) {
3119 qemu_mutex_unlock_iothread();
3120 }
3121 rcu_read_unlock();
3122 return val;
3123 }
3124
3125 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3126 MemTxAttrs attrs, MemTxResult *result)
3127 {
3128 return address_space_ldq_internal(as, addr, attrs, result,
3129 DEVICE_NATIVE_ENDIAN);
3130 }
3131
3132 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3133 MemTxAttrs attrs, MemTxResult *result)
3134 {
3135 return address_space_ldq_internal(as, addr, attrs, result,
3136 DEVICE_LITTLE_ENDIAN);
3137 }
3138
3139 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3140 MemTxAttrs attrs, MemTxResult *result)
3141 {
3142 return address_space_ldq_internal(as, addr, attrs, result,
3143 DEVICE_BIG_ENDIAN);
3144 }
3145
3146 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
3147 {
3148 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3149 }
3150
3151 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
3152 {
3153 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3154 }
3155
3156 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
3157 {
3158 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3159 }
3160
3161 /* XXX: optimize */
3162 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3163 MemTxAttrs attrs, MemTxResult *result)
3164 {
3165 uint8_t val;
3166 MemTxResult r;
3167
3168 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3169 if (result) {
3170 *result = r;
3171 }
3172 return val;
3173 }
3174
3175 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3176 {
3177 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3178 }
3179
3180 /* warning: addr must be aligned */
3181 static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3182 hwaddr addr,
3183 MemTxAttrs attrs,
3184 MemTxResult *result,
3185 enum device_endian endian)
3186 {
3187 uint8_t *ptr;
3188 uint64_t val;
3189 MemoryRegion *mr;
3190 hwaddr l = 2;
3191 hwaddr addr1;
3192 MemTxResult r;
3193 bool release_lock = false;
3194
3195 rcu_read_lock();
3196 mr = address_space_translate(as, addr, &addr1, &l,
3197 false);
3198 if (l < 2 || !memory_access_is_direct(mr, false)) {
3199 release_lock |= prepare_mmio_access(mr);
3200
3201 /* I/O case */
3202 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
3203 #if defined(TARGET_WORDS_BIGENDIAN)
3204 if (endian == DEVICE_LITTLE_ENDIAN) {
3205 val = bswap16(val);
3206 }
3207 #else
3208 if (endian == DEVICE_BIG_ENDIAN) {
3209 val = bswap16(val);
3210 }
3211 #endif
3212 } else {
3213 /* RAM case */
3214 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3215 & TARGET_PAGE_MASK)
3216 + addr1);
3217 switch (endian) {
3218 case DEVICE_LITTLE_ENDIAN:
3219 val = lduw_le_p(ptr);
3220 break;
3221 case DEVICE_BIG_ENDIAN:
3222 val = lduw_be_p(ptr);
3223 break;
3224 default:
3225 val = lduw_p(ptr);
3226 break;
3227 }
3228 r = MEMTX_OK;
3229 }
3230 if (result) {
3231 *result = r;
3232 }
3233 if (release_lock) {
3234 qemu_mutex_unlock_iothread();
3235 }
3236 rcu_read_unlock();
3237 return val;
3238 }
3239
3240 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3241 MemTxAttrs attrs, MemTxResult *result)
3242 {
3243 return address_space_lduw_internal(as, addr, attrs, result,
3244 DEVICE_NATIVE_ENDIAN);
3245 }
3246
3247 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3248 MemTxAttrs attrs, MemTxResult *result)
3249 {
3250 return address_space_lduw_internal(as, addr, attrs, result,
3251 DEVICE_LITTLE_ENDIAN);
3252 }
3253
3254 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3255 MemTxAttrs attrs, MemTxResult *result)
3256 {
3257 return address_space_lduw_internal(as, addr, attrs, result,
3258 DEVICE_BIG_ENDIAN);
3259 }
3260
3261 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
3262 {
3263 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3264 }
3265
3266 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
3267 {
3268 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3269 }
3270
3271 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
3272 {
3273 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3274 }
3275
3276 /* warning: addr must be aligned. The ram page is not masked as dirty
3277 and the code inside is not invalidated. It is useful if the dirty
3278 bits are used to track modified PTEs */
3279 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3280 MemTxAttrs attrs, MemTxResult *result)
3281 {
3282 uint8_t *ptr;
3283 MemoryRegion *mr;
3284 hwaddr l = 4;
3285 hwaddr addr1;
3286 MemTxResult r;
3287 uint8_t dirty_log_mask;
3288 bool release_lock = false;
3289
3290 rcu_read_lock();
3291 mr = address_space_translate(as, addr, &addr1, &l,
3292 true);
3293 if (l < 4 || !memory_access_is_direct(mr, true)) {
3294 release_lock |= prepare_mmio_access(mr);
3295
3296 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3297 } else {
3298 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3299 ptr = qemu_get_ram_ptr(addr1);
3300 stl_p(ptr, val);
3301
3302 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3303 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3304 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
3305 r = MEMTX_OK;
3306 }
3307 if (result) {
3308 *result = r;
3309 }
3310 if (release_lock) {
3311 qemu_mutex_unlock_iothread();
3312 }
3313 rcu_read_unlock();
3314 }
3315
3316 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3317 {
3318 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3319 }
3320
3321 /* warning: addr must be aligned */
3322 static inline void address_space_stl_internal(AddressSpace *as,
3323 hwaddr addr, uint32_t val,
3324 MemTxAttrs attrs,
3325 MemTxResult *result,
3326 enum device_endian endian)
3327 {
3328 uint8_t *ptr;
3329 MemoryRegion *mr;
3330 hwaddr l = 4;
3331 hwaddr addr1;
3332 MemTxResult r;
3333 bool release_lock = false;
3334
3335 rcu_read_lock();
3336 mr = address_space_translate(as, addr, &addr1, &l,
3337 true);
3338 if (l < 4 || !memory_access_is_direct(mr, true)) {
3339 release_lock |= prepare_mmio_access(mr);
3340
3341 #if defined(TARGET_WORDS_BIGENDIAN)
3342 if (endian == DEVICE_LITTLE_ENDIAN) {
3343 val = bswap32(val);
3344 }
3345 #else
3346 if (endian == DEVICE_BIG_ENDIAN) {
3347 val = bswap32(val);
3348 }
3349 #endif
3350 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3351 } else {
3352 /* RAM case */
3353 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3354 ptr = qemu_get_ram_ptr(addr1);
3355 switch (endian) {
3356 case DEVICE_LITTLE_ENDIAN:
3357 stl_le_p(ptr, val);
3358 break;
3359 case DEVICE_BIG_ENDIAN:
3360 stl_be_p(ptr, val);
3361 break;
3362 default:
3363 stl_p(ptr, val);
3364 break;
3365 }
3366 invalidate_and_set_dirty(mr, addr1, 4);
3367 r = MEMTX_OK;
3368 }
3369 if (result) {
3370 *result = r;
3371 }
3372 if (release_lock) {
3373 qemu_mutex_unlock_iothread();
3374 }
3375 rcu_read_unlock();
3376 }
3377
3378 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3379 MemTxAttrs attrs, MemTxResult *result)
3380 {
3381 address_space_stl_internal(as, addr, val, attrs, result,
3382 DEVICE_NATIVE_ENDIAN);
3383 }
3384
3385 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3386 MemTxAttrs attrs, MemTxResult *result)
3387 {
3388 address_space_stl_internal(as, addr, val, attrs, result,
3389 DEVICE_LITTLE_ENDIAN);
3390 }
3391
3392 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3393 MemTxAttrs attrs, MemTxResult *result)
3394 {
3395 address_space_stl_internal(as, addr, val, attrs, result,
3396 DEVICE_BIG_ENDIAN);
3397 }
3398
3399 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3400 {
3401 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3402 }
3403
3404 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3405 {
3406 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3407 }
3408
3409 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3410 {
3411 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3412 }
3413
3414 /* XXX: optimize */
3415 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3416 MemTxAttrs attrs, MemTxResult *result)
3417 {
3418 uint8_t v = val;
3419 MemTxResult r;
3420
3421 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3422 if (result) {
3423 *result = r;
3424 }
3425 }
3426
3427 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3428 {
3429 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3430 }
3431
3432 /* warning: addr must be aligned */
3433 static inline void address_space_stw_internal(AddressSpace *as,
3434 hwaddr addr, uint32_t val,
3435 MemTxAttrs attrs,
3436 MemTxResult *result,
3437 enum device_endian endian)
3438 {
3439 uint8_t *ptr;
3440 MemoryRegion *mr;
3441 hwaddr l = 2;
3442 hwaddr addr1;
3443 MemTxResult r;
3444 bool release_lock = false;
3445
3446 rcu_read_lock();
3447 mr = address_space_translate(as, addr, &addr1, &l, true);
3448 if (l < 2 || !memory_access_is_direct(mr, true)) {
3449 release_lock |= prepare_mmio_access(mr);
3450
3451 #if defined(TARGET_WORDS_BIGENDIAN)
3452 if (endian == DEVICE_LITTLE_ENDIAN) {
3453 val = bswap16(val);
3454 }
3455 #else
3456 if (endian == DEVICE_BIG_ENDIAN) {
3457 val = bswap16(val);
3458 }
3459 #endif
3460 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
3461 } else {
3462 /* RAM case */
3463 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3464 ptr = qemu_get_ram_ptr(addr1);
3465 switch (endian) {
3466 case DEVICE_LITTLE_ENDIAN:
3467 stw_le_p(ptr, val);
3468 break;
3469 case DEVICE_BIG_ENDIAN:
3470 stw_be_p(ptr, val);
3471 break;
3472 default:
3473 stw_p(ptr, val);
3474 break;
3475 }
3476 invalidate_and_set_dirty(mr, addr1, 2);
3477 r = MEMTX_OK;
3478 }
3479 if (result) {
3480 *result = r;
3481 }
3482 if (release_lock) {
3483 qemu_mutex_unlock_iothread();
3484 }
3485 rcu_read_unlock();
3486 }
3487
3488 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3489 MemTxAttrs attrs, MemTxResult *result)
3490 {
3491 address_space_stw_internal(as, addr, val, attrs, result,
3492 DEVICE_NATIVE_ENDIAN);
3493 }
3494
3495 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3496 MemTxAttrs attrs, MemTxResult *result)
3497 {
3498 address_space_stw_internal(as, addr, val, attrs, result,
3499 DEVICE_LITTLE_ENDIAN);
3500 }
3501
3502 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3503 MemTxAttrs attrs, MemTxResult *result)
3504 {
3505 address_space_stw_internal(as, addr, val, attrs, result,
3506 DEVICE_BIG_ENDIAN);
3507 }
3508
3509 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3510 {
3511 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3512 }
3513
3514 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3515 {
3516 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3517 }
3518
3519 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3520 {
3521 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3522 }
3523
3524 /* XXX: optimize */
3525 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3526 MemTxAttrs attrs, MemTxResult *result)
3527 {
3528 MemTxResult r;
3529 val = tswap64(val);
3530 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3531 if (result) {
3532 *result = r;
3533 }
3534 }
3535
3536 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3537 MemTxAttrs attrs, MemTxResult *result)
3538 {
3539 MemTxResult r;
3540 val = cpu_to_le64(val);
3541 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3542 if (result) {
3543 *result = r;
3544 }
3545 }
3546 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3547 MemTxAttrs attrs, MemTxResult *result)
3548 {
3549 MemTxResult r;
3550 val = cpu_to_be64(val);
3551 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3552 if (result) {
3553 *result = r;
3554 }
3555 }
3556
3557 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3558 {
3559 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3560 }
3561
3562 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3563 {
3564 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3565 }
3566
3567 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3568 {
3569 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3570 }
3571
3572 /* virtual memory access for debug (includes writing to ROM) */
3573 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3574 uint8_t *buf, int len, int is_write)
3575 {
3576 int l;
3577 hwaddr phys_addr;
3578 target_ulong page;
3579
3580 while (len > 0) {
3581 page = addr & TARGET_PAGE_MASK;
3582 phys_addr = cpu_get_phys_page_debug(cpu, page);
3583 /* if no physical page mapped, return an error */
3584 if (phys_addr == -1)
3585 return -1;
3586 l = (page + TARGET_PAGE_SIZE) - addr;
3587 if (l > len)
3588 l = len;
3589 phys_addr += (addr & ~TARGET_PAGE_MASK);
3590 if (is_write) {
3591 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
3592 } else {
3593 address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED,
3594 buf, l, 0);
3595 }
3596 len -= l;
3597 buf += l;
3598 addr += l;
3599 }
3600 return 0;
3601 }
3602
3603 /*
3604 * Allows code that needs to deal with migration bitmaps etc to still be built
3605 * target independent.
3606 */
3607 size_t qemu_target_page_bits(void)
3608 {
3609 return TARGET_PAGE_BITS;
3610 }
3611
3612 #endif
3613
3614 /*
3615 * A helper function for the _utterly broken_ virtio device model to find out if
3616 * it's running on a big endian machine. Don't do this at home kids!
3617 */
3618 bool target_words_bigendian(void);
3619 bool target_words_bigendian(void)
3620 {
3621 #if defined(TARGET_WORDS_BIGENDIAN)
3622 return true;
3623 #else
3624 return false;
3625 #endif
3626 }
3627
3628 #ifndef CONFIG_USER_ONLY
3629 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3630 {
3631 MemoryRegion*mr;
3632 hwaddr l = 1;
3633 bool res;
3634
3635 rcu_read_lock();
3636 mr = address_space_translate(&address_space_memory,
3637 phys_addr, &phys_addr, &l, false);
3638
3639 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3640 rcu_read_unlock();
3641 return res;
3642 }
3643
3644 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3645 {
3646 RAMBlock *block;
3647 int ret = 0;
3648
3649 rcu_read_lock();
3650 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3651 ret = func(block->idstr, block->host, block->offset,
3652 block->used_length, opaque);
3653 if (ret) {
3654 break;
3655 }
3656 }
3657 rcu_read_unlock();
3658 return ret;
3659 }
3660 #endif