]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
mem-prealloc: reduce large guest start-up and migration time.
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "exec/address-spaces.h"
47 #include "sysemu/xen-mapcache.h"
48 #include "trace-root.h"
49
50 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
51 #include <fcntl.h>
52 #include <linux/falloc.h>
53 #endif
54
55 #endif
56 #include "exec/cpu-all.h"
57 #include "qemu/rcu_queue.h"
58 #include "qemu/main-loop.h"
59 #include "translate-all.h"
60 #include "sysemu/replay.h"
61
62 #include "exec/memory-internal.h"
63 #include "exec/ram_addr.h"
64 #include "exec/log.h"
65
66 #include "migration/vmstate.h"
67
68 #include "qemu/range.h"
69 #ifndef _WIN32
70 #include "qemu/mmap-alloc.h"
71 #endif
72
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
77 * are protected by the ramlist lock.
78 */
79 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
80
81 static MemoryRegion *system_memory;
82 static MemoryRegion *system_io;
83
84 AddressSpace address_space_io;
85 AddressSpace address_space_memory;
86
87 MemoryRegion io_mem_rom, io_mem_notdirty;
88 static MemoryRegion io_mem_unassigned;
89
90 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
91 #define RAM_PREALLOC (1 << 0)
92
93 /* RAM is mmap-ed with MAP_SHARED */
94 #define RAM_SHARED (1 << 1)
95
96 /* Only a portion of RAM (used_length) is actually used, and migrated.
97 * This used_length size can change across reboots.
98 */
99 #define RAM_RESIZEABLE (1 << 2)
100
101 #endif
102
103 #ifdef TARGET_PAGE_BITS_VARY
104 int target_page_bits;
105 bool target_page_bits_decided;
106 #endif
107
108 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
109 /* current CPU in the current thread. It is only valid inside
110 cpu_exec() */
111 __thread CPUState *current_cpu;
112 /* 0 = Do not count executed instructions.
113 1 = Precise instruction counting.
114 2 = Adaptive rate instruction counting. */
115 int use_icount;
116
117 bool set_preferred_target_page_bits(int bits)
118 {
119 /* The target page size is the lowest common denominator for all
120 * the CPUs in the system, so we can only make it smaller, never
121 * larger. And we can't make it smaller once we've committed to
122 * a particular size.
123 */
124 #ifdef TARGET_PAGE_BITS_VARY
125 assert(bits >= TARGET_PAGE_BITS_MIN);
126 if (target_page_bits == 0 || target_page_bits > bits) {
127 if (target_page_bits_decided) {
128 return false;
129 }
130 target_page_bits = bits;
131 }
132 #endif
133 return true;
134 }
135
136 #if !defined(CONFIG_USER_ONLY)
137
138 static void finalize_target_page_bits(void)
139 {
140 #ifdef TARGET_PAGE_BITS_VARY
141 if (target_page_bits == 0) {
142 target_page_bits = TARGET_PAGE_BITS_MIN;
143 }
144 target_page_bits_decided = true;
145 #endif
146 }
147
148 typedef struct PhysPageEntry PhysPageEntry;
149
150 struct PhysPageEntry {
151 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
152 uint32_t skip : 6;
153 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
154 uint32_t ptr : 26;
155 };
156
157 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
158
159 /* Size of the L2 (and L3, etc) page tables. */
160 #define ADDR_SPACE_BITS 64
161
162 #define P_L2_BITS 9
163 #define P_L2_SIZE (1 << P_L2_BITS)
164
165 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
166
167 typedef PhysPageEntry Node[P_L2_SIZE];
168
169 typedef struct PhysPageMap {
170 struct rcu_head rcu;
171
172 unsigned sections_nb;
173 unsigned sections_nb_alloc;
174 unsigned nodes_nb;
175 unsigned nodes_nb_alloc;
176 Node *nodes;
177 MemoryRegionSection *sections;
178 } PhysPageMap;
179
180 struct AddressSpaceDispatch {
181 struct rcu_head rcu;
182
183 MemoryRegionSection *mru_section;
184 /* This is a multi-level map on the physical address space.
185 * The bottom level has pointers to MemoryRegionSections.
186 */
187 PhysPageEntry phys_map;
188 PhysPageMap map;
189 AddressSpace *as;
190 };
191
192 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
193 typedef struct subpage_t {
194 MemoryRegion iomem;
195 AddressSpace *as;
196 hwaddr base;
197 uint16_t sub_section[];
198 } subpage_t;
199
200 #define PHYS_SECTION_UNASSIGNED 0
201 #define PHYS_SECTION_NOTDIRTY 1
202 #define PHYS_SECTION_ROM 2
203 #define PHYS_SECTION_WATCH 3
204
205 static void io_mem_init(void);
206 static void memory_map_init(void);
207 static void tcg_commit(MemoryListener *listener);
208
209 static MemoryRegion io_mem_watch;
210
211 /**
212 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
213 * @cpu: the CPU whose AddressSpace this is
214 * @as: the AddressSpace itself
215 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
216 * @tcg_as_listener: listener for tracking changes to the AddressSpace
217 */
218 struct CPUAddressSpace {
219 CPUState *cpu;
220 AddressSpace *as;
221 struct AddressSpaceDispatch *memory_dispatch;
222 MemoryListener tcg_as_listener;
223 };
224
225 #endif
226
227 #if !defined(CONFIG_USER_ONLY)
228
229 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
230 {
231 static unsigned alloc_hint = 16;
232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
236 alloc_hint = map->nodes_nb_alloc;
237 }
238 }
239
240 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
241 {
242 unsigned i;
243 uint32_t ret;
244 PhysPageEntry e;
245 PhysPageEntry *p;
246
247 ret = map->nodes_nb++;
248 p = map->nodes[ret];
249 assert(ret != PHYS_MAP_NODE_NIL);
250 assert(ret != map->nodes_nb_alloc);
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
254 for (i = 0; i < P_L2_SIZE; ++i) {
255 memcpy(&p[i], &e, sizeof(e));
256 }
257 return ret;
258 }
259
260 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
262 int level)
263 {
264 PhysPageEntry *p;
265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
266
267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
268 lp->ptr = phys_map_node_alloc(map, level == 0);
269 }
270 p = map->nodes[lp->ptr];
271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
272
273 while (*nb && lp < &p[P_L2_SIZE]) {
274 if ((*index & (step - 1)) == 0 && *nb >= step) {
275 lp->skip = 0;
276 lp->ptr = leaf;
277 *index += step;
278 *nb -= step;
279 } else {
280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
281 }
282 ++lp;
283 }
284 }
285
286 static void phys_page_set(AddressSpaceDispatch *d,
287 hwaddr index, hwaddr nb,
288 uint16_t leaf)
289 {
290 /* Wildly overreserve - it doesn't matter much. */
291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
292
293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
294 }
295
296 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
299 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
300 {
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
319 phys_page_compact(&p[i], nodes);
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347 }
348
349 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
350 {
351 if (d->phys_map.skip) {
352 phys_page_compact(&d->phys_map, d->map.nodes);
353 }
354 }
355
356 static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358 {
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
362 return int128_gethi(section->size) ||
363 range_covers_byte(section->offset_within_address_space,
364 int128_getlo(section->size), addr);
365 }
366
367 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
368 Node *nodes, MemoryRegionSection *sections)
369 {
370 PhysPageEntry *p;
371 hwaddr index = addr >> TARGET_PAGE_BITS;
372 int i;
373
374 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
375 if (lp.ptr == PHYS_MAP_NODE_NIL) {
376 return &sections[PHYS_SECTION_UNASSIGNED];
377 }
378 p = nodes[lp.ptr];
379 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
380 }
381
382 if (section_covers_addr(&sections[lp.ptr], addr)) {
383 return &sections[lp.ptr];
384 } else {
385 return &sections[PHYS_SECTION_UNASSIGNED];
386 }
387 }
388
389 bool memory_region_is_unassigned(MemoryRegion *mr)
390 {
391 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
392 && mr != &io_mem_watch;
393 }
394
395 /* Called from RCU critical section */
396 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
397 hwaddr addr,
398 bool resolve_subpage)
399 {
400 MemoryRegionSection *section = atomic_read(&d->mru_section);
401 subpage_t *subpage;
402 bool update;
403
404 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
405 section_covers_addr(section, addr)) {
406 update = false;
407 } else {
408 section = phys_page_find(d->phys_map, addr, d->map.nodes,
409 d->map.sections);
410 update = true;
411 }
412 if (resolve_subpage && section->mr->subpage) {
413 subpage = container_of(section->mr, subpage_t, iomem);
414 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
415 }
416 if (update) {
417 atomic_set(&d->mru_section, section);
418 }
419 return section;
420 }
421
422 /* Called from RCU critical section */
423 static MemoryRegionSection *
424 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
425 hwaddr *plen, bool resolve_subpage)
426 {
427 MemoryRegionSection *section;
428 MemoryRegion *mr;
429 Int128 diff;
430
431 section = address_space_lookup_region(d, addr, resolve_subpage);
432 /* Compute offset within MemoryRegionSection */
433 addr -= section->offset_within_address_space;
434
435 /* Compute offset within MemoryRegion */
436 *xlat = addr + section->offset_within_region;
437
438 mr = section->mr;
439
440 /* MMIO registers can be expected to perform full-width accesses based only
441 * on their address, without considering adjacent registers that could
442 * decode to completely different MemoryRegions. When such registers
443 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
444 * regions overlap wildly. For this reason we cannot clamp the accesses
445 * here.
446 *
447 * If the length is small (as is the case for address_space_ldl/stl),
448 * everything works fine. If the incoming length is large, however,
449 * the caller really has to do the clamping through memory_access_size.
450 */
451 if (memory_region_is_ram(mr)) {
452 diff = int128_sub(section->size, int128_make64(addr));
453 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
454 }
455 return section;
456 }
457
458 /* Called from RCU critical section */
459 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
460 bool is_write)
461 {
462 IOMMUTLBEntry iotlb = {0};
463 MemoryRegionSection *section;
464 MemoryRegion *mr;
465
466 for (;;) {
467 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
468 section = address_space_lookup_region(d, addr, false);
469 addr = addr - section->offset_within_address_space
470 + section->offset_within_region;
471 mr = section->mr;
472
473 if (!mr->iommu_ops) {
474 break;
475 }
476
477 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
478 if (!(iotlb.perm & (1 << is_write))) {
479 iotlb.target_as = NULL;
480 break;
481 }
482
483 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
484 | (addr & iotlb.addr_mask));
485 as = iotlb.target_as;
486 }
487
488 return iotlb;
489 }
490
491 /* Called from RCU critical section */
492 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
493 hwaddr *xlat, hwaddr *plen,
494 bool is_write)
495 {
496 IOMMUTLBEntry iotlb;
497 MemoryRegionSection *section;
498 MemoryRegion *mr;
499
500 for (;;) {
501 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
502 section = address_space_translate_internal(d, addr, &addr, plen, true);
503 mr = section->mr;
504
505 if (!mr->iommu_ops) {
506 break;
507 }
508
509 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
510 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
511 | (addr & iotlb.addr_mask));
512 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
513 if (!(iotlb.perm & (1 << is_write))) {
514 mr = &io_mem_unassigned;
515 break;
516 }
517
518 as = iotlb.target_as;
519 }
520
521 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
522 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
523 *plen = MIN(page, *plen);
524 }
525
526 *xlat = addr;
527 return mr;
528 }
529
530 /* Called from RCU critical section */
531 MemoryRegionSection *
532 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
533 hwaddr *xlat, hwaddr *plen)
534 {
535 MemoryRegionSection *section;
536 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
537
538 section = address_space_translate_internal(d, addr, xlat, plen, false);
539
540 assert(!section->mr->iommu_ops);
541 return section;
542 }
543 #endif
544
545 #if !defined(CONFIG_USER_ONLY)
546
547 static int cpu_common_post_load(void *opaque, int version_id)
548 {
549 CPUState *cpu = opaque;
550
551 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
552 version_id is increased. */
553 cpu->interrupt_request &= ~0x01;
554 tlb_flush(cpu);
555
556 return 0;
557 }
558
559 static int cpu_common_pre_load(void *opaque)
560 {
561 CPUState *cpu = opaque;
562
563 cpu->exception_index = -1;
564
565 return 0;
566 }
567
568 static bool cpu_common_exception_index_needed(void *opaque)
569 {
570 CPUState *cpu = opaque;
571
572 return tcg_enabled() && cpu->exception_index != -1;
573 }
574
575 static const VMStateDescription vmstate_cpu_common_exception_index = {
576 .name = "cpu_common/exception_index",
577 .version_id = 1,
578 .minimum_version_id = 1,
579 .needed = cpu_common_exception_index_needed,
580 .fields = (VMStateField[]) {
581 VMSTATE_INT32(exception_index, CPUState),
582 VMSTATE_END_OF_LIST()
583 }
584 };
585
586 static bool cpu_common_crash_occurred_needed(void *opaque)
587 {
588 CPUState *cpu = opaque;
589
590 return cpu->crash_occurred;
591 }
592
593 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
594 .name = "cpu_common/crash_occurred",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .needed = cpu_common_crash_occurred_needed,
598 .fields = (VMStateField[]) {
599 VMSTATE_BOOL(crash_occurred, CPUState),
600 VMSTATE_END_OF_LIST()
601 }
602 };
603
604 const VMStateDescription vmstate_cpu_common = {
605 .name = "cpu_common",
606 .version_id = 1,
607 .minimum_version_id = 1,
608 .pre_load = cpu_common_pre_load,
609 .post_load = cpu_common_post_load,
610 .fields = (VMStateField[]) {
611 VMSTATE_UINT32(halted, CPUState),
612 VMSTATE_UINT32(interrupt_request, CPUState),
613 VMSTATE_END_OF_LIST()
614 },
615 .subsections = (const VMStateDescription*[]) {
616 &vmstate_cpu_common_exception_index,
617 &vmstate_cpu_common_crash_occurred,
618 NULL
619 }
620 };
621
622 #endif
623
624 CPUState *qemu_get_cpu(int index)
625 {
626 CPUState *cpu;
627
628 CPU_FOREACH(cpu) {
629 if (cpu->cpu_index == index) {
630 return cpu;
631 }
632 }
633
634 return NULL;
635 }
636
637 #if !defined(CONFIG_USER_ONLY)
638 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
639 {
640 CPUAddressSpace *newas;
641
642 /* Target code should have set num_ases before calling us */
643 assert(asidx < cpu->num_ases);
644
645 if (asidx == 0) {
646 /* address space 0 gets the convenience alias */
647 cpu->as = as;
648 }
649
650 /* KVM cannot currently support multiple address spaces. */
651 assert(asidx == 0 || !kvm_enabled());
652
653 if (!cpu->cpu_ases) {
654 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
655 }
656
657 newas = &cpu->cpu_ases[asidx];
658 newas->cpu = cpu;
659 newas->as = as;
660 if (tcg_enabled()) {
661 newas->tcg_as_listener.commit = tcg_commit;
662 memory_listener_register(&newas->tcg_as_listener, as);
663 }
664 }
665
666 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
667 {
668 /* Return the AddressSpace corresponding to the specified index */
669 return cpu->cpu_ases[asidx].as;
670 }
671 #endif
672
673 void cpu_exec_unrealizefn(CPUState *cpu)
674 {
675 CPUClass *cc = CPU_GET_CLASS(cpu);
676
677 cpu_list_remove(cpu);
678
679 if (cc->vmsd != NULL) {
680 vmstate_unregister(NULL, cc->vmsd, cpu);
681 }
682 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
683 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
684 }
685 }
686
687 void cpu_exec_initfn(CPUState *cpu)
688 {
689 cpu->as = NULL;
690 cpu->num_ases = 0;
691
692 #ifndef CONFIG_USER_ONLY
693 cpu->thread_id = qemu_get_thread_id();
694
695 /* This is a softmmu CPU object, so create a property for it
696 * so users can wire up its memory. (This can't go in qom/cpu.c
697 * because that file is compiled only once for both user-mode
698 * and system builds.) The default if no link is set up is to use
699 * the system address space.
700 */
701 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
702 (Object **)&cpu->memory,
703 qdev_prop_allow_set_link_before_realize,
704 OBJ_PROP_LINK_UNREF_ON_RELEASE,
705 &error_abort);
706 cpu->memory = system_memory;
707 object_ref(OBJECT(cpu->memory));
708 #endif
709 }
710
711 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
712 {
713 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
714
715 cpu_list_add(cpu);
716
717 #ifndef CONFIG_USER_ONLY
718 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
719 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
720 }
721 if (cc->vmsd != NULL) {
722 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
723 }
724 #endif
725 }
726
727 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
728 {
729 /* Flush the whole TB as this will not have race conditions
730 * even if we don't have proper locking yet.
731 * Ideally we would just invalidate the TBs for the
732 * specified PC.
733 */
734 tb_flush(cpu);
735 }
736
737 #if defined(CONFIG_USER_ONLY)
738 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
739
740 {
741 }
742
743 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
744 int flags)
745 {
746 return -ENOSYS;
747 }
748
749 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
750 {
751 }
752
753 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
754 int flags, CPUWatchpoint **watchpoint)
755 {
756 return -ENOSYS;
757 }
758 #else
759 /* Add a watchpoint. */
760 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
761 int flags, CPUWatchpoint **watchpoint)
762 {
763 CPUWatchpoint *wp;
764
765 /* forbid ranges which are empty or run off the end of the address space */
766 if (len == 0 || (addr + len - 1) < addr) {
767 error_report("tried to set invalid watchpoint at %"
768 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
769 return -EINVAL;
770 }
771 wp = g_malloc(sizeof(*wp));
772
773 wp->vaddr = addr;
774 wp->len = len;
775 wp->flags = flags;
776
777 /* keep all GDB-injected watchpoints in front */
778 if (flags & BP_GDB) {
779 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
780 } else {
781 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
782 }
783
784 tlb_flush_page(cpu, addr);
785
786 if (watchpoint)
787 *watchpoint = wp;
788 return 0;
789 }
790
791 /* Remove a specific watchpoint. */
792 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
793 int flags)
794 {
795 CPUWatchpoint *wp;
796
797 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
798 if (addr == wp->vaddr && len == wp->len
799 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
800 cpu_watchpoint_remove_by_ref(cpu, wp);
801 return 0;
802 }
803 }
804 return -ENOENT;
805 }
806
807 /* Remove a specific watchpoint by reference. */
808 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
809 {
810 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
811
812 tlb_flush_page(cpu, watchpoint->vaddr);
813
814 g_free(watchpoint);
815 }
816
817 /* Remove all matching watchpoints. */
818 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
819 {
820 CPUWatchpoint *wp, *next;
821
822 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
823 if (wp->flags & mask) {
824 cpu_watchpoint_remove_by_ref(cpu, wp);
825 }
826 }
827 }
828
829 /* Return true if this watchpoint address matches the specified
830 * access (ie the address range covered by the watchpoint overlaps
831 * partially or completely with the address range covered by the
832 * access).
833 */
834 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
835 vaddr addr,
836 vaddr len)
837 {
838 /* We know the lengths are non-zero, but a little caution is
839 * required to avoid errors in the case where the range ends
840 * exactly at the top of the address space and so addr + len
841 * wraps round to zero.
842 */
843 vaddr wpend = wp->vaddr + wp->len - 1;
844 vaddr addrend = addr + len - 1;
845
846 return !(addr > wpend || wp->vaddr > addrend);
847 }
848
849 #endif
850
851 /* Add a breakpoint. */
852 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
853 CPUBreakpoint **breakpoint)
854 {
855 CPUBreakpoint *bp;
856
857 bp = g_malloc(sizeof(*bp));
858
859 bp->pc = pc;
860 bp->flags = flags;
861
862 /* keep all GDB-injected breakpoints in front */
863 if (flags & BP_GDB) {
864 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
865 } else {
866 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
867 }
868
869 breakpoint_invalidate(cpu, pc);
870
871 if (breakpoint) {
872 *breakpoint = bp;
873 }
874 return 0;
875 }
876
877 /* Remove a specific breakpoint. */
878 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
879 {
880 CPUBreakpoint *bp;
881
882 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
883 if (bp->pc == pc && bp->flags == flags) {
884 cpu_breakpoint_remove_by_ref(cpu, bp);
885 return 0;
886 }
887 }
888 return -ENOENT;
889 }
890
891 /* Remove a specific breakpoint by reference. */
892 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
893 {
894 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
895
896 breakpoint_invalidate(cpu, breakpoint->pc);
897
898 g_free(breakpoint);
899 }
900
901 /* Remove all matching breakpoints. */
902 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
903 {
904 CPUBreakpoint *bp, *next;
905
906 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
907 if (bp->flags & mask) {
908 cpu_breakpoint_remove_by_ref(cpu, bp);
909 }
910 }
911 }
912
913 /* enable or disable single step mode. EXCP_DEBUG is returned by the
914 CPU loop after each instruction */
915 void cpu_single_step(CPUState *cpu, int enabled)
916 {
917 if (cpu->singlestep_enabled != enabled) {
918 cpu->singlestep_enabled = enabled;
919 if (kvm_enabled()) {
920 kvm_update_guest_debug(cpu, 0);
921 } else {
922 /* must flush all the translated code to avoid inconsistencies */
923 /* XXX: only flush what is necessary */
924 tb_flush(cpu);
925 }
926 }
927 }
928
929 void cpu_abort(CPUState *cpu, const char *fmt, ...)
930 {
931 va_list ap;
932 va_list ap2;
933
934 va_start(ap, fmt);
935 va_copy(ap2, ap);
936 fprintf(stderr, "qemu: fatal: ");
937 vfprintf(stderr, fmt, ap);
938 fprintf(stderr, "\n");
939 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
940 if (qemu_log_separate()) {
941 qemu_log_lock();
942 qemu_log("qemu: fatal: ");
943 qemu_log_vprintf(fmt, ap2);
944 qemu_log("\n");
945 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
946 qemu_log_flush();
947 qemu_log_unlock();
948 qemu_log_close();
949 }
950 va_end(ap2);
951 va_end(ap);
952 replay_finish();
953 #if defined(CONFIG_USER_ONLY)
954 {
955 struct sigaction act;
956 sigfillset(&act.sa_mask);
957 act.sa_handler = SIG_DFL;
958 sigaction(SIGABRT, &act, NULL);
959 }
960 #endif
961 abort();
962 }
963
964 #if !defined(CONFIG_USER_ONLY)
965 /* Called from RCU critical section */
966 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
967 {
968 RAMBlock *block;
969
970 block = atomic_rcu_read(&ram_list.mru_block);
971 if (block && addr - block->offset < block->max_length) {
972 return block;
973 }
974 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
975 if (addr - block->offset < block->max_length) {
976 goto found;
977 }
978 }
979
980 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
981 abort();
982
983 found:
984 /* It is safe to write mru_block outside the iothread lock. This
985 * is what happens:
986 *
987 * mru_block = xxx
988 * rcu_read_unlock()
989 * xxx removed from list
990 * rcu_read_lock()
991 * read mru_block
992 * mru_block = NULL;
993 * call_rcu(reclaim_ramblock, xxx);
994 * rcu_read_unlock()
995 *
996 * atomic_rcu_set is not needed here. The block was already published
997 * when it was placed into the list. Here we're just making an extra
998 * copy of the pointer.
999 */
1000 ram_list.mru_block = block;
1001 return block;
1002 }
1003
1004 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1005 {
1006 CPUState *cpu;
1007 ram_addr_t start1;
1008 RAMBlock *block;
1009 ram_addr_t end;
1010
1011 end = TARGET_PAGE_ALIGN(start + length);
1012 start &= TARGET_PAGE_MASK;
1013
1014 rcu_read_lock();
1015 block = qemu_get_ram_block(start);
1016 assert(block == qemu_get_ram_block(end - 1));
1017 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1018 CPU_FOREACH(cpu) {
1019 tlb_reset_dirty(cpu, start1, length);
1020 }
1021 rcu_read_unlock();
1022 }
1023
1024 /* Note: start and end must be within the same ram block. */
1025 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1026 ram_addr_t length,
1027 unsigned client)
1028 {
1029 DirtyMemoryBlocks *blocks;
1030 unsigned long end, page;
1031 bool dirty = false;
1032
1033 if (length == 0) {
1034 return false;
1035 }
1036
1037 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1038 page = start >> TARGET_PAGE_BITS;
1039
1040 rcu_read_lock();
1041
1042 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1043
1044 while (page < end) {
1045 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1046 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1047 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1048
1049 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1050 offset, num);
1051 page += num;
1052 }
1053
1054 rcu_read_unlock();
1055
1056 if (dirty && tcg_enabled()) {
1057 tlb_reset_dirty_range_all(start, length);
1058 }
1059
1060 return dirty;
1061 }
1062
1063 /* Called from RCU critical section */
1064 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1065 MemoryRegionSection *section,
1066 target_ulong vaddr,
1067 hwaddr paddr, hwaddr xlat,
1068 int prot,
1069 target_ulong *address)
1070 {
1071 hwaddr iotlb;
1072 CPUWatchpoint *wp;
1073
1074 if (memory_region_is_ram(section->mr)) {
1075 /* Normal RAM. */
1076 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1077 if (!section->readonly) {
1078 iotlb |= PHYS_SECTION_NOTDIRTY;
1079 } else {
1080 iotlb |= PHYS_SECTION_ROM;
1081 }
1082 } else {
1083 AddressSpaceDispatch *d;
1084
1085 d = atomic_rcu_read(&section->address_space->dispatch);
1086 iotlb = section - d->map.sections;
1087 iotlb += xlat;
1088 }
1089
1090 /* Make accesses to pages with watchpoints go via the
1091 watchpoint trap routines. */
1092 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1093 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1094 /* Avoid trapping reads of pages with a write breakpoint. */
1095 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1096 iotlb = PHYS_SECTION_WATCH + paddr;
1097 *address |= TLB_MMIO;
1098 break;
1099 }
1100 }
1101 }
1102
1103 return iotlb;
1104 }
1105 #endif /* defined(CONFIG_USER_ONLY) */
1106
1107 #if !defined(CONFIG_USER_ONLY)
1108
1109 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1110 uint16_t section);
1111 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1112
1113 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1114 qemu_anon_ram_alloc;
1115
1116 /*
1117 * Set a custom physical guest memory alloator.
1118 * Accelerators with unusual needs may need this. Hopefully, we can
1119 * get rid of it eventually.
1120 */
1121 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1122 {
1123 phys_mem_alloc = alloc;
1124 }
1125
1126 static uint16_t phys_section_add(PhysPageMap *map,
1127 MemoryRegionSection *section)
1128 {
1129 /* The physical section number is ORed with a page-aligned
1130 * pointer to produce the iotlb entries. Thus it should
1131 * never overflow into the page-aligned value.
1132 */
1133 assert(map->sections_nb < TARGET_PAGE_SIZE);
1134
1135 if (map->sections_nb == map->sections_nb_alloc) {
1136 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1137 map->sections = g_renew(MemoryRegionSection, map->sections,
1138 map->sections_nb_alloc);
1139 }
1140 map->sections[map->sections_nb] = *section;
1141 memory_region_ref(section->mr);
1142 return map->sections_nb++;
1143 }
1144
1145 static void phys_section_destroy(MemoryRegion *mr)
1146 {
1147 bool have_sub_page = mr->subpage;
1148
1149 memory_region_unref(mr);
1150
1151 if (have_sub_page) {
1152 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1153 object_unref(OBJECT(&subpage->iomem));
1154 g_free(subpage);
1155 }
1156 }
1157
1158 static void phys_sections_free(PhysPageMap *map)
1159 {
1160 while (map->sections_nb > 0) {
1161 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1162 phys_section_destroy(section->mr);
1163 }
1164 g_free(map->sections);
1165 g_free(map->nodes);
1166 }
1167
1168 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1169 {
1170 subpage_t *subpage;
1171 hwaddr base = section->offset_within_address_space
1172 & TARGET_PAGE_MASK;
1173 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1174 d->map.nodes, d->map.sections);
1175 MemoryRegionSection subsection = {
1176 .offset_within_address_space = base,
1177 .size = int128_make64(TARGET_PAGE_SIZE),
1178 };
1179 hwaddr start, end;
1180
1181 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1182
1183 if (!(existing->mr->subpage)) {
1184 subpage = subpage_init(d->as, base);
1185 subsection.address_space = d->as;
1186 subsection.mr = &subpage->iomem;
1187 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1188 phys_section_add(&d->map, &subsection));
1189 } else {
1190 subpage = container_of(existing->mr, subpage_t, iomem);
1191 }
1192 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1193 end = start + int128_get64(section->size) - 1;
1194 subpage_register(subpage, start, end,
1195 phys_section_add(&d->map, section));
1196 }
1197
1198
1199 static void register_multipage(AddressSpaceDispatch *d,
1200 MemoryRegionSection *section)
1201 {
1202 hwaddr start_addr = section->offset_within_address_space;
1203 uint16_t section_index = phys_section_add(&d->map, section);
1204 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1205 TARGET_PAGE_BITS));
1206
1207 assert(num_pages);
1208 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1209 }
1210
1211 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1212 {
1213 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1214 AddressSpaceDispatch *d = as->next_dispatch;
1215 MemoryRegionSection now = *section, remain = *section;
1216 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1217
1218 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1219 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1220 - now.offset_within_address_space;
1221
1222 now.size = int128_min(int128_make64(left), now.size);
1223 register_subpage(d, &now);
1224 } else {
1225 now.size = int128_zero();
1226 }
1227 while (int128_ne(remain.size, now.size)) {
1228 remain.size = int128_sub(remain.size, now.size);
1229 remain.offset_within_address_space += int128_get64(now.size);
1230 remain.offset_within_region += int128_get64(now.size);
1231 now = remain;
1232 if (int128_lt(remain.size, page_size)) {
1233 register_subpage(d, &now);
1234 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1235 now.size = page_size;
1236 register_subpage(d, &now);
1237 } else {
1238 now.size = int128_and(now.size, int128_neg(page_size));
1239 register_multipage(d, &now);
1240 }
1241 }
1242 }
1243
1244 void qemu_flush_coalesced_mmio_buffer(void)
1245 {
1246 if (kvm_enabled())
1247 kvm_flush_coalesced_mmio_buffer();
1248 }
1249
1250 void qemu_mutex_lock_ramlist(void)
1251 {
1252 qemu_mutex_lock(&ram_list.mutex);
1253 }
1254
1255 void qemu_mutex_unlock_ramlist(void)
1256 {
1257 qemu_mutex_unlock(&ram_list.mutex);
1258 }
1259
1260 #ifdef __linux__
1261 /*
1262 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1263 * may or may not name the same files / on the same filesystem now as
1264 * when we actually open and map them. Iterate over the file
1265 * descriptors instead, and use qemu_fd_getpagesize().
1266 */
1267 static int find_max_supported_pagesize(Object *obj, void *opaque)
1268 {
1269 char *mem_path;
1270 long *hpsize_min = opaque;
1271
1272 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1273 mem_path = object_property_get_str(obj, "mem-path", NULL);
1274 if (mem_path) {
1275 long hpsize = qemu_mempath_getpagesize(mem_path);
1276 if (hpsize < *hpsize_min) {
1277 *hpsize_min = hpsize;
1278 }
1279 } else {
1280 *hpsize_min = getpagesize();
1281 }
1282 }
1283
1284 return 0;
1285 }
1286
1287 long qemu_getrampagesize(void)
1288 {
1289 long hpsize = LONG_MAX;
1290 long mainrampagesize;
1291 Object *memdev_root;
1292
1293 if (mem_path) {
1294 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1295 } else {
1296 mainrampagesize = getpagesize();
1297 }
1298
1299 /* it's possible we have memory-backend objects with
1300 * hugepage-backed RAM. these may get mapped into system
1301 * address space via -numa parameters or memory hotplug
1302 * hooks. we want to take these into account, but we
1303 * also want to make sure these supported hugepage
1304 * sizes are applicable across the entire range of memory
1305 * we may boot from, so we take the min across all
1306 * backends, and assume normal pages in cases where a
1307 * backend isn't backed by hugepages.
1308 */
1309 memdev_root = object_resolve_path("/objects", NULL);
1310 if (memdev_root) {
1311 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1312 }
1313 if (hpsize == LONG_MAX) {
1314 /* No additional memory regions found ==> Report main RAM page size */
1315 return mainrampagesize;
1316 }
1317
1318 /* If NUMA is disabled or the NUMA nodes are not backed with a
1319 * memory-backend, then there is at least one node using "normal" RAM,
1320 * so if its page size is smaller we have got to report that size instead.
1321 */
1322 if (hpsize > mainrampagesize &&
1323 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1324 static bool warned;
1325 if (!warned) {
1326 error_report("Huge page support disabled (n/a for main memory).");
1327 warned = true;
1328 }
1329 return mainrampagesize;
1330 }
1331
1332 return hpsize;
1333 }
1334 #else
1335 long qemu_getrampagesize(void)
1336 {
1337 return getpagesize();
1338 }
1339 #endif
1340
1341 #ifdef __linux__
1342 static int64_t get_file_size(int fd)
1343 {
1344 int64_t size = lseek(fd, 0, SEEK_END);
1345 if (size < 0) {
1346 return -errno;
1347 }
1348 return size;
1349 }
1350
1351 static void *file_ram_alloc(RAMBlock *block,
1352 ram_addr_t memory,
1353 const char *path,
1354 Error **errp)
1355 {
1356 bool unlink_on_error = false;
1357 char *filename;
1358 char *sanitized_name;
1359 char *c;
1360 void *area = MAP_FAILED;
1361 int fd = -1;
1362 int64_t file_size;
1363
1364 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1365 error_setg(errp,
1366 "host lacks kvm mmu notifiers, -mem-path unsupported");
1367 return NULL;
1368 }
1369
1370 for (;;) {
1371 fd = open(path, O_RDWR);
1372 if (fd >= 0) {
1373 /* @path names an existing file, use it */
1374 break;
1375 }
1376 if (errno == ENOENT) {
1377 /* @path names a file that doesn't exist, create it */
1378 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1379 if (fd >= 0) {
1380 unlink_on_error = true;
1381 break;
1382 }
1383 } else if (errno == EISDIR) {
1384 /* @path names a directory, create a file there */
1385 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1386 sanitized_name = g_strdup(memory_region_name(block->mr));
1387 for (c = sanitized_name; *c != '\0'; c++) {
1388 if (*c == '/') {
1389 *c = '_';
1390 }
1391 }
1392
1393 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1394 sanitized_name);
1395 g_free(sanitized_name);
1396
1397 fd = mkstemp(filename);
1398 if (fd >= 0) {
1399 unlink(filename);
1400 g_free(filename);
1401 break;
1402 }
1403 g_free(filename);
1404 }
1405 if (errno != EEXIST && errno != EINTR) {
1406 error_setg_errno(errp, errno,
1407 "can't open backing store %s for guest RAM",
1408 path);
1409 goto error;
1410 }
1411 /*
1412 * Try again on EINTR and EEXIST. The latter happens when
1413 * something else creates the file between our two open().
1414 */
1415 }
1416
1417 block->page_size = qemu_fd_getpagesize(fd);
1418 block->mr->align = block->page_size;
1419 #if defined(__s390x__)
1420 if (kvm_enabled()) {
1421 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1422 }
1423 #endif
1424
1425 file_size = get_file_size(fd);
1426
1427 if (memory < block->page_size) {
1428 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1429 "or larger than page size 0x%zx",
1430 memory, block->page_size);
1431 goto error;
1432 }
1433
1434 if (file_size > 0 && file_size < memory) {
1435 error_setg(errp, "backing store %s size 0x%" PRIx64
1436 " does not match 'size' option 0x" RAM_ADDR_FMT,
1437 path, file_size, memory);
1438 goto error;
1439 }
1440
1441 memory = ROUND_UP(memory, block->page_size);
1442
1443 /*
1444 * ftruncate is not supported by hugetlbfs in older
1445 * hosts, so don't bother bailing out on errors.
1446 * If anything goes wrong with it under other filesystems,
1447 * mmap will fail.
1448 *
1449 * Do not truncate the non-empty backend file to avoid corrupting
1450 * the existing data in the file. Disabling shrinking is not
1451 * enough. For example, the current vNVDIMM implementation stores
1452 * the guest NVDIMM labels at the end of the backend file. If the
1453 * backend file is later extended, QEMU will not be able to find
1454 * those labels. Therefore, extending the non-empty backend file
1455 * is disabled as well.
1456 */
1457 if (!file_size && ftruncate(fd, memory)) {
1458 perror("ftruncate");
1459 }
1460
1461 area = qemu_ram_mmap(fd, memory, block->mr->align,
1462 block->flags & RAM_SHARED);
1463 if (area == MAP_FAILED) {
1464 error_setg_errno(errp, errno,
1465 "unable to map backing store for guest RAM");
1466 goto error;
1467 }
1468
1469 if (mem_prealloc) {
1470 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1471 if (errp && *errp) {
1472 goto error;
1473 }
1474 }
1475
1476 block->fd = fd;
1477 return area;
1478
1479 error:
1480 if (area != MAP_FAILED) {
1481 qemu_ram_munmap(area, memory);
1482 }
1483 if (unlink_on_error) {
1484 unlink(path);
1485 }
1486 if (fd != -1) {
1487 close(fd);
1488 }
1489 return NULL;
1490 }
1491 #endif
1492
1493 /* Called with the ramlist lock held. */
1494 static ram_addr_t find_ram_offset(ram_addr_t size)
1495 {
1496 RAMBlock *block, *next_block;
1497 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1498
1499 assert(size != 0); /* it would hand out same offset multiple times */
1500
1501 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1502 return 0;
1503 }
1504
1505 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1506 ram_addr_t end, next = RAM_ADDR_MAX;
1507
1508 end = block->offset + block->max_length;
1509
1510 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1511 if (next_block->offset >= end) {
1512 next = MIN(next, next_block->offset);
1513 }
1514 }
1515 if (next - end >= size && next - end < mingap) {
1516 offset = end;
1517 mingap = next - end;
1518 }
1519 }
1520
1521 if (offset == RAM_ADDR_MAX) {
1522 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1523 (uint64_t)size);
1524 abort();
1525 }
1526
1527 return offset;
1528 }
1529
1530 ram_addr_t last_ram_offset(void)
1531 {
1532 RAMBlock *block;
1533 ram_addr_t last = 0;
1534
1535 rcu_read_lock();
1536 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1537 last = MAX(last, block->offset + block->max_length);
1538 }
1539 rcu_read_unlock();
1540 return last;
1541 }
1542
1543 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1544 {
1545 int ret;
1546
1547 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1548 if (!machine_dump_guest_core(current_machine)) {
1549 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1550 if (ret) {
1551 perror("qemu_madvise");
1552 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1553 "but dump_guest_core=off specified\n");
1554 }
1555 }
1556 }
1557
1558 const char *qemu_ram_get_idstr(RAMBlock *rb)
1559 {
1560 return rb->idstr;
1561 }
1562
1563 /* Called with iothread lock held. */
1564 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1565 {
1566 RAMBlock *block;
1567
1568 assert(new_block);
1569 assert(!new_block->idstr[0]);
1570
1571 if (dev) {
1572 char *id = qdev_get_dev_path(dev);
1573 if (id) {
1574 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1575 g_free(id);
1576 }
1577 }
1578 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1579
1580 rcu_read_lock();
1581 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1582 if (block != new_block &&
1583 !strcmp(block->idstr, new_block->idstr)) {
1584 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1585 new_block->idstr);
1586 abort();
1587 }
1588 }
1589 rcu_read_unlock();
1590 }
1591
1592 /* Called with iothread lock held. */
1593 void qemu_ram_unset_idstr(RAMBlock *block)
1594 {
1595 /* FIXME: arch_init.c assumes that this is not called throughout
1596 * migration. Ignore the problem since hot-unplug during migration
1597 * does not work anyway.
1598 */
1599 if (block) {
1600 memset(block->idstr, 0, sizeof(block->idstr));
1601 }
1602 }
1603
1604 size_t qemu_ram_pagesize(RAMBlock *rb)
1605 {
1606 return rb->page_size;
1607 }
1608
1609 /* Returns the largest size of page in use */
1610 size_t qemu_ram_pagesize_largest(void)
1611 {
1612 RAMBlock *block;
1613 size_t largest = 0;
1614
1615 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1616 largest = MAX(largest, qemu_ram_pagesize(block));
1617 }
1618
1619 return largest;
1620 }
1621
1622 static int memory_try_enable_merging(void *addr, size_t len)
1623 {
1624 if (!machine_mem_merge(current_machine)) {
1625 /* disabled by the user */
1626 return 0;
1627 }
1628
1629 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1630 }
1631
1632 /* Only legal before guest might have detected the memory size: e.g. on
1633 * incoming migration, or right after reset.
1634 *
1635 * As memory core doesn't know how is memory accessed, it is up to
1636 * resize callback to update device state and/or add assertions to detect
1637 * misuse, if necessary.
1638 */
1639 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1640 {
1641 assert(block);
1642
1643 newsize = HOST_PAGE_ALIGN(newsize);
1644
1645 if (block->used_length == newsize) {
1646 return 0;
1647 }
1648
1649 if (!(block->flags & RAM_RESIZEABLE)) {
1650 error_setg_errno(errp, EINVAL,
1651 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1652 " in != 0x" RAM_ADDR_FMT, block->idstr,
1653 newsize, block->used_length);
1654 return -EINVAL;
1655 }
1656
1657 if (block->max_length < newsize) {
1658 error_setg_errno(errp, EINVAL,
1659 "Length too large: %s: 0x" RAM_ADDR_FMT
1660 " > 0x" RAM_ADDR_FMT, block->idstr,
1661 newsize, block->max_length);
1662 return -EINVAL;
1663 }
1664
1665 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1666 block->used_length = newsize;
1667 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1668 DIRTY_CLIENTS_ALL);
1669 memory_region_set_size(block->mr, newsize);
1670 if (block->resized) {
1671 block->resized(block->idstr, newsize, block->host);
1672 }
1673 return 0;
1674 }
1675
1676 /* Called with ram_list.mutex held */
1677 static void dirty_memory_extend(ram_addr_t old_ram_size,
1678 ram_addr_t new_ram_size)
1679 {
1680 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1681 DIRTY_MEMORY_BLOCK_SIZE);
1682 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1683 DIRTY_MEMORY_BLOCK_SIZE);
1684 int i;
1685
1686 /* Only need to extend if block count increased */
1687 if (new_num_blocks <= old_num_blocks) {
1688 return;
1689 }
1690
1691 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1692 DirtyMemoryBlocks *old_blocks;
1693 DirtyMemoryBlocks *new_blocks;
1694 int j;
1695
1696 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1697 new_blocks = g_malloc(sizeof(*new_blocks) +
1698 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1699
1700 if (old_num_blocks) {
1701 memcpy(new_blocks->blocks, old_blocks->blocks,
1702 old_num_blocks * sizeof(old_blocks->blocks[0]));
1703 }
1704
1705 for (j = old_num_blocks; j < new_num_blocks; j++) {
1706 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1707 }
1708
1709 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1710
1711 if (old_blocks) {
1712 g_free_rcu(old_blocks, rcu);
1713 }
1714 }
1715 }
1716
1717 static void ram_block_add(RAMBlock *new_block, Error **errp)
1718 {
1719 RAMBlock *block;
1720 RAMBlock *last_block = NULL;
1721 ram_addr_t old_ram_size, new_ram_size;
1722 Error *err = NULL;
1723
1724 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1725
1726 qemu_mutex_lock_ramlist();
1727 new_block->offset = find_ram_offset(new_block->max_length);
1728
1729 if (!new_block->host) {
1730 if (xen_enabled()) {
1731 xen_ram_alloc(new_block->offset, new_block->max_length,
1732 new_block->mr, &err);
1733 if (err) {
1734 error_propagate(errp, err);
1735 qemu_mutex_unlock_ramlist();
1736 return;
1737 }
1738 } else {
1739 new_block->host = phys_mem_alloc(new_block->max_length,
1740 &new_block->mr->align);
1741 if (!new_block->host) {
1742 error_setg_errno(errp, errno,
1743 "cannot set up guest memory '%s'",
1744 memory_region_name(new_block->mr));
1745 qemu_mutex_unlock_ramlist();
1746 return;
1747 }
1748 memory_try_enable_merging(new_block->host, new_block->max_length);
1749 }
1750 }
1751
1752 new_ram_size = MAX(old_ram_size,
1753 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1754 if (new_ram_size > old_ram_size) {
1755 migration_bitmap_extend(old_ram_size, new_ram_size);
1756 dirty_memory_extend(old_ram_size, new_ram_size);
1757 }
1758 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1759 * QLIST (which has an RCU-friendly variant) does not have insertion at
1760 * tail, so save the last element in last_block.
1761 */
1762 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1763 last_block = block;
1764 if (block->max_length < new_block->max_length) {
1765 break;
1766 }
1767 }
1768 if (block) {
1769 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1770 } else if (last_block) {
1771 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1772 } else { /* list is empty */
1773 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1774 }
1775 ram_list.mru_block = NULL;
1776
1777 /* Write list before version */
1778 smp_wmb();
1779 ram_list.version++;
1780 qemu_mutex_unlock_ramlist();
1781
1782 cpu_physical_memory_set_dirty_range(new_block->offset,
1783 new_block->used_length,
1784 DIRTY_CLIENTS_ALL);
1785
1786 if (new_block->host) {
1787 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1788 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1789 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1790 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1791 ram_block_notify_add(new_block->host, new_block->max_length);
1792 }
1793 }
1794
1795 #ifdef __linux__
1796 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1797 bool share, const char *mem_path,
1798 Error **errp)
1799 {
1800 RAMBlock *new_block;
1801 Error *local_err = NULL;
1802
1803 if (xen_enabled()) {
1804 error_setg(errp, "-mem-path not supported with Xen");
1805 return NULL;
1806 }
1807
1808 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1809 /*
1810 * file_ram_alloc() needs to allocate just like
1811 * phys_mem_alloc, but we haven't bothered to provide
1812 * a hook there.
1813 */
1814 error_setg(errp,
1815 "-mem-path not supported with this accelerator");
1816 return NULL;
1817 }
1818
1819 size = HOST_PAGE_ALIGN(size);
1820 new_block = g_malloc0(sizeof(*new_block));
1821 new_block->mr = mr;
1822 new_block->used_length = size;
1823 new_block->max_length = size;
1824 new_block->flags = share ? RAM_SHARED : 0;
1825 new_block->host = file_ram_alloc(new_block, size,
1826 mem_path, errp);
1827 if (!new_block->host) {
1828 g_free(new_block);
1829 return NULL;
1830 }
1831
1832 ram_block_add(new_block, &local_err);
1833 if (local_err) {
1834 g_free(new_block);
1835 error_propagate(errp, local_err);
1836 return NULL;
1837 }
1838 return new_block;
1839 }
1840 #endif
1841
1842 static
1843 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1844 void (*resized)(const char*,
1845 uint64_t length,
1846 void *host),
1847 void *host, bool resizeable,
1848 MemoryRegion *mr, Error **errp)
1849 {
1850 RAMBlock *new_block;
1851 Error *local_err = NULL;
1852
1853 size = HOST_PAGE_ALIGN(size);
1854 max_size = HOST_PAGE_ALIGN(max_size);
1855 new_block = g_malloc0(sizeof(*new_block));
1856 new_block->mr = mr;
1857 new_block->resized = resized;
1858 new_block->used_length = size;
1859 new_block->max_length = max_size;
1860 assert(max_size >= size);
1861 new_block->fd = -1;
1862 new_block->page_size = getpagesize();
1863 new_block->host = host;
1864 if (host) {
1865 new_block->flags |= RAM_PREALLOC;
1866 }
1867 if (resizeable) {
1868 new_block->flags |= RAM_RESIZEABLE;
1869 }
1870 ram_block_add(new_block, &local_err);
1871 if (local_err) {
1872 g_free(new_block);
1873 error_propagate(errp, local_err);
1874 return NULL;
1875 }
1876 return new_block;
1877 }
1878
1879 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1880 MemoryRegion *mr, Error **errp)
1881 {
1882 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1883 }
1884
1885 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1886 {
1887 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1888 }
1889
1890 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1891 void (*resized)(const char*,
1892 uint64_t length,
1893 void *host),
1894 MemoryRegion *mr, Error **errp)
1895 {
1896 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1897 }
1898
1899 static void reclaim_ramblock(RAMBlock *block)
1900 {
1901 if (block->flags & RAM_PREALLOC) {
1902 ;
1903 } else if (xen_enabled()) {
1904 xen_invalidate_map_cache_entry(block->host);
1905 #ifndef _WIN32
1906 } else if (block->fd >= 0) {
1907 qemu_ram_munmap(block->host, block->max_length);
1908 close(block->fd);
1909 #endif
1910 } else {
1911 qemu_anon_ram_free(block->host, block->max_length);
1912 }
1913 g_free(block);
1914 }
1915
1916 void qemu_ram_free(RAMBlock *block)
1917 {
1918 if (!block) {
1919 return;
1920 }
1921
1922 if (block->host) {
1923 ram_block_notify_remove(block->host, block->max_length);
1924 }
1925
1926 qemu_mutex_lock_ramlist();
1927 QLIST_REMOVE_RCU(block, next);
1928 ram_list.mru_block = NULL;
1929 /* Write list before version */
1930 smp_wmb();
1931 ram_list.version++;
1932 call_rcu(block, reclaim_ramblock, rcu);
1933 qemu_mutex_unlock_ramlist();
1934 }
1935
1936 #ifndef _WIN32
1937 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1938 {
1939 RAMBlock *block;
1940 ram_addr_t offset;
1941 int flags;
1942 void *area, *vaddr;
1943
1944 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1945 offset = addr - block->offset;
1946 if (offset < block->max_length) {
1947 vaddr = ramblock_ptr(block, offset);
1948 if (block->flags & RAM_PREALLOC) {
1949 ;
1950 } else if (xen_enabled()) {
1951 abort();
1952 } else {
1953 flags = MAP_FIXED;
1954 if (block->fd >= 0) {
1955 flags |= (block->flags & RAM_SHARED ?
1956 MAP_SHARED : MAP_PRIVATE);
1957 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1958 flags, block->fd, offset);
1959 } else {
1960 /*
1961 * Remap needs to match alloc. Accelerators that
1962 * set phys_mem_alloc never remap. If they did,
1963 * we'd need a remap hook here.
1964 */
1965 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1966
1967 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1968 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1969 flags, -1, 0);
1970 }
1971 if (area != vaddr) {
1972 fprintf(stderr, "Could not remap addr: "
1973 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1974 length, addr);
1975 exit(1);
1976 }
1977 memory_try_enable_merging(vaddr, length);
1978 qemu_ram_setup_dump(vaddr, length);
1979 }
1980 }
1981 }
1982 }
1983 #endif /* !_WIN32 */
1984
1985 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1986 * This should not be used for general purpose DMA. Use address_space_map
1987 * or address_space_rw instead. For local memory (e.g. video ram) that the
1988 * device owns, use memory_region_get_ram_ptr.
1989 *
1990 * Called within RCU critical section.
1991 */
1992 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1993 {
1994 RAMBlock *block = ram_block;
1995
1996 if (block == NULL) {
1997 block = qemu_get_ram_block(addr);
1998 addr -= block->offset;
1999 }
2000
2001 if (xen_enabled() && block->host == NULL) {
2002 /* We need to check if the requested address is in the RAM
2003 * because we don't want to map the entire memory in QEMU.
2004 * In that case just map until the end of the page.
2005 */
2006 if (block->offset == 0) {
2007 return xen_map_cache(addr, 0, 0);
2008 }
2009
2010 block->host = xen_map_cache(block->offset, block->max_length, 1);
2011 }
2012 return ramblock_ptr(block, addr);
2013 }
2014
2015 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2016 * but takes a size argument.
2017 *
2018 * Called within RCU critical section.
2019 */
2020 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2021 hwaddr *size)
2022 {
2023 RAMBlock *block = ram_block;
2024 if (*size == 0) {
2025 return NULL;
2026 }
2027
2028 if (block == NULL) {
2029 block = qemu_get_ram_block(addr);
2030 addr -= block->offset;
2031 }
2032 *size = MIN(*size, block->max_length - addr);
2033
2034 if (xen_enabled() && block->host == NULL) {
2035 /* We need to check if the requested address is in the RAM
2036 * because we don't want to map the entire memory in QEMU.
2037 * In that case just map the requested area.
2038 */
2039 if (block->offset == 0) {
2040 return xen_map_cache(addr, *size, 1);
2041 }
2042
2043 block->host = xen_map_cache(block->offset, block->max_length, 1);
2044 }
2045
2046 return ramblock_ptr(block, addr);
2047 }
2048
2049 /*
2050 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2051 * in that RAMBlock.
2052 *
2053 * ptr: Host pointer to look up
2054 * round_offset: If true round the result offset down to a page boundary
2055 * *ram_addr: set to result ram_addr
2056 * *offset: set to result offset within the RAMBlock
2057 *
2058 * Returns: RAMBlock (or NULL if not found)
2059 *
2060 * By the time this function returns, the returned pointer is not protected
2061 * by RCU anymore. If the caller is not within an RCU critical section and
2062 * does not hold the iothread lock, it must have other means of protecting the
2063 * pointer, such as a reference to the region that includes the incoming
2064 * ram_addr_t.
2065 */
2066 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2067 ram_addr_t *offset)
2068 {
2069 RAMBlock *block;
2070 uint8_t *host = ptr;
2071
2072 if (xen_enabled()) {
2073 ram_addr_t ram_addr;
2074 rcu_read_lock();
2075 ram_addr = xen_ram_addr_from_mapcache(ptr);
2076 block = qemu_get_ram_block(ram_addr);
2077 if (block) {
2078 *offset = ram_addr - block->offset;
2079 }
2080 rcu_read_unlock();
2081 return block;
2082 }
2083
2084 rcu_read_lock();
2085 block = atomic_rcu_read(&ram_list.mru_block);
2086 if (block && block->host && host - block->host < block->max_length) {
2087 goto found;
2088 }
2089
2090 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2091 /* This case append when the block is not mapped. */
2092 if (block->host == NULL) {
2093 continue;
2094 }
2095 if (host - block->host < block->max_length) {
2096 goto found;
2097 }
2098 }
2099
2100 rcu_read_unlock();
2101 return NULL;
2102
2103 found:
2104 *offset = (host - block->host);
2105 if (round_offset) {
2106 *offset &= TARGET_PAGE_MASK;
2107 }
2108 rcu_read_unlock();
2109 return block;
2110 }
2111
2112 /*
2113 * Finds the named RAMBlock
2114 *
2115 * name: The name of RAMBlock to find
2116 *
2117 * Returns: RAMBlock (or NULL if not found)
2118 */
2119 RAMBlock *qemu_ram_block_by_name(const char *name)
2120 {
2121 RAMBlock *block;
2122
2123 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2124 if (!strcmp(name, block->idstr)) {
2125 return block;
2126 }
2127 }
2128
2129 return NULL;
2130 }
2131
2132 /* Some of the softmmu routines need to translate from a host pointer
2133 (typically a TLB entry) back to a ram offset. */
2134 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2135 {
2136 RAMBlock *block;
2137 ram_addr_t offset;
2138
2139 block = qemu_ram_block_from_host(ptr, false, &offset);
2140 if (!block) {
2141 return RAM_ADDR_INVALID;
2142 }
2143
2144 return block->offset + offset;
2145 }
2146
2147 /* Called within RCU critical section. */
2148 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2149 uint64_t val, unsigned size)
2150 {
2151 bool locked = false;
2152
2153 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2154 locked = true;
2155 tb_lock();
2156 tb_invalidate_phys_page_fast(ram_addr, size);
2157 }
2158 switch (size) {
2159 case 1:
2160 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2161 break;
2162 case 2:
2163 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2164 break;
2165 case 4:
2166 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2167 break;
2168 default:
2169 abort();
2170 }
2171
2172 if (locked) {
2173 tb_unlock();
2174 }
2175
2176 /* Set both VGA and migration bits for simplicity and to remove
2177 * the notdirty callback faster.
2178 */
2179 cpu_physical_memory_set_dirty_range(ram_addr, size,
2180 DIRTY_CLIENTS_NOCODE);
2181 /* we remove the notdirty callback only if the code has been
2182 flushed */
2183 if (!cpu_physical_memory_is_clean(ram_addr)) {
2184 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2185 }
2186 }
2187
2188 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2189 unsigned size, bool is_write)
2190 {
2191 return is_write;
2192 }
2193
2194 static const MemoryRegionOps notdirty_mem_ops = {
2195 .write = notdirty_mem_write,
2196 .valid.accepts = notdirty_mem_accepts,
2197 .endianness = DEVICE_NATIVE_ENDIAN,
2198 };
2199
2200 /* Generate a debug exception if a watchpoint has been hit. */
2201 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2202 {
2203 CPUState *cpu = current_cpu;
2204 CPUClass *cc = CPU_GET_CLASS(cpu);
2205 CPUArchState *env = cpu->env_ptr;
2206 target_ulong pc, cs_base;
2207 target_ulong vaddr;
2208 CPUWatchpoint *wp;
2209 uint32_t cpu_flags;
2210
2211 if (cpu->watchpoint_hit) {
2212 /* We re-entered the check after replacing the TB. Now raise
2213 * the debug interrupt so that is will trigger after the
2214 * current instruction. */
2215 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2216 return;
2217 }
2218 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2219 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2220 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2221 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2222 && (wp->flags & flags)) {
2223 if (flags == BP_MEM_READ) {
2224 wp->flags |= BP_WATCHPOINT_HIT_READ;
2225 } else {
2226 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2227 }
2228 wp->hitaddr = vaddr;
2229 wp->hitattrs = attrs;
2230 if (!cpu->watchpoint_hit) {
2231 if (wp->flags & BP_CPU &&
2232 !cc->debug_check_watchpoint(cpu, wp)) {
2233 wp->flags &= ~BP_WATCHPOINT_HIT;
2234 continue;
2235 }
2236 cpu->watchpoint_hit = wp;
2237
2238 /* Both tb_lock and iothread_mutex will be reset when
2239 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2240 * back into the cpu_exec main loop.
2241 */
2242 tb_lock();
2243 tb_check_watchpoint(cpu);
2244 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2245 cpu->exception_index = EXCP_DEBUG;
2246 cpu_loop_exit(cpu);
2247 } else {
2248 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2249 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2250 cpu_loop_exit_noexc(cpu);
2251 }
2252 }
2253 } else {
2254 wp->flags &= ~BP_WATCHPOINT_HIT;
2255 }
2256 }
2257 }
2258
2259 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2260 so these check for a hit then pass through to the normal out-of-line
2261 phys routines. */
2262 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2263 unsigned size, MemTxAttrs attrs)
2264 {
2265 MemTxResult res;
2266 uint64_t data;
2267 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2268 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2269
2270 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2271 switch (size) {
2272 case 1:
2273 data = address_space_ldub(as, addr, attrs, &res);
2274 break;
2275 case 2:
2276 data = address_space_lduw(as, addr, attrs, &res);
2277 break;
2278 case 4:
2279 data = address_space_ldl(as, addr, attrs, &res);
2280 break;
2281 default: abort();
2282 }
2283 *pdata = data;
2284 return res;
2285 }
2286
2287 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2288 uint64_t val, unsigned size,
2289 MemTxAttrs attrs)
2290 {
2291 MemTxResult res;
2292 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2293 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2294
2295 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2296 switch (size) {
2297 case 1:
2298 address_space_stb(as, addr, val, attrs, &res);
2299 break;
2300 case 2:
2301 address_space_stw(as, addr, val, attrs, &res);
2302 break;
2303 case 4:
2304 address_space_stl(as, addr, val, attrs, &res);
2305 break;
2306 default: abort();
2307 }
2308 return res;
2309 }
2310
2311 static const MemoryRegionOps watch_mem_ops = {
2312 .read_with_attrs = watch_mem_read,
2313 .write_with_attrs = watch_mem_write,
2314 .endianness = DEVICE_NATIVE_ENDIAN,
2315 };
2316
2317 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2318 unsigned len, MemTxAttrs attrs)
2319 {
2320 subpage_t *subpage = opaque;
2321 uint8_t buf[8];
2322 MemTxResult res;
2323
2324 #if defined(DEBUG_SUBPAGE)
2325 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2326 subpage, len, addr);
2327 #endif
2328 res = address_space_read(subpage->as, addr + subpage->base,
2329 attrs, buf, len);
2330 if (res) {
2331 return res;
2332 }
2333 switch (len) {
2334 case 1:
2335 *data = ldub_p(buf);
2336 return MEMTX_OK;
2337 case 2:
2338 *data = lduw_p(buf);
2339 return MEMTX_OK;
2340 case 4:
2341 *data = ldl_p(buf);
2342 return MEMTX_OK;
2343 case 8:
2344 *data = ldq_p(buf);
2345 return MEMTX_OK;
2346 default:
2347 abort();
2348 }
2349 }
2350
2351 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2352 uint64_t value, unsigned len, MemTxAttrs attrs)
2353 {
2354 subpage_t *subpage = opaque;
2355 uint8_t buf[8];
2356
2357 #if defined(DEBUG_SUBPAGE)
2358 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2359 " value %"PRIx64"\n",
2360 __func__, subpage, len, addr, value);
2361 #endif
2362 switch (len) {
2363 case 1:
2364 stb_p(buf, value);
2365 break;
2366 case 2:
2367 stw_p(buf, value);
2368 break;
2369 case 4:
2370 stl_p(buf, value);
2371 break;
2372 case 8:
2373 stq_p(buf, value);
2374 break;
2375 default:
2376 abort();
2377 }
2378 return address_space_write(subpage->as, addr + subpage->base,
2379 attrs, buf, len);
2380 }
2381
2382 static bool subpage_accepts(void *opaque, hwaddr addr,
2383 unsigned len, bool is_write)
2384 {
2385 subpage_t *subpage = opaque;
2386 #if defined(DEBUG_SUBPAGE)
2387 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2388 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2389 #endif
2390
2391 return address_space_access_valid(subpage->as, addr + subpage->base,
2392 len, is_write);
2393 }
2394
2395 static const MemoryRegionOps subpage_ops = {
2396 .read_with_attrs = subpage_read,
2397 .write_with_attrs = subpage_write,
2398 .impl.min_access_size = 1,
2399 .impl.max_access_size = 8,
2400 .valid.min_access_size = 1,
2401 .valid.max_access_size = 8,
2402 .valid.accepts = subpage_accepts,
2403 .endianness = DEVICE_NATIVE_ENDIAN,
2404 };
2405
2406 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2407 uint16_t section)
2408 {
2409 int idx, eidx;
2410
2411 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2412 return -1;
2413 idx = SUBPAGE_IDX(start);
2414 eidx = SUBPAGE_IDX(end);
2415 #if defined(DEBUG_SUBPAGE)
2416 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2417 __func__, mmio, start, end, idx, eidx, section);
2418 #endif
2419 for (; idx <= eidx; idx++) {
2420 mmio->sub_section[idx] = section;
2421 }
2422
2423 return 0;
2424 }
2425
2426 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2427 {
2428 subpage_t *mmio;
2429
2430 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2431 mmio->as = as;
2432 mmio->base = base;
2433 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2434 NULL, TARGET_PAGE_SIZE);
2435 mmio->iomem.subpage = true;
2436 #if defined(DEBUG_SUBPAGE)
2437 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2438 mmio, base, TARGET_PAGE_SIZE);
2439 #endif
2440 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2441
2442 return mmio;
2443 }
2444
2445 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2446 MemoryRegion *mr)
2447 {
2448 assert(as);
2449 MemoryRegionSection section = {
2450 .address_space = as,
2451 .mr = mr,
2452 .offset_within_address_space = 0,
2453 .offset_within_region = 0,
2454 .size = int128_2_64(),
2455 };
2456
2457 return phys_section_add(map, &section);
2458 }
2459
2460 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2461 {
2462 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2463 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2464 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2465 MemoryRegionSection *sections = d->map.sections;
2466
2467 return sections[index & ~TARGET_PAGE_MASK].mr;
2468 }
2469
2470 static void io_mem_init(void)
2471 {
2472 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2473 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2474 NULL, UINT64_MAX);
2475
2476 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2477 * which can be called without the iothread mutex.
2478 */
2479 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2480 NULL, UINT64_MAX);
2481 memory_region_clear_global_locking(&io_mem_notdirty);
2482
2483 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2484 NULL, UINT64_MAX);
2485 }
2486
2487 static void mem_begin(MemoryListener *listener)
2488 {
2489 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2490 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2491 uint16_t n;
2492
2493 n = dummy_section(&d->map, as, &io_mem_unassigned);
2494 assert(n == PHYS_SECTION_UNASSIGNED);
2495 n = dummy_section(&d->map, as, &io_mem_notdirty);
2496 assert(n == PHYS_SECTION_NOTDIRTY);
2497 n = dummy_section(&d->map, as, &io_mem_rom);
2498 assert(n == PHYS_SECTION_ROM);
2499 n = dummy_section(&d->map, as, &io_mem_watch);
2500 assert(n == PHYS_SECTION_WATCH);
2501
2502 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2503 d->as = as;
2504 as->next_dispatch = d;
2505 }
2506
2507 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2508 {
2509 phys_sections_free(&d->map);
2510 g_free(d);
2511 }
2512
2513 static void mem_commit(MemoryListener *listener)
2514 {
2515 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2516 AddressSpaceDispatch *cur = as->dispatch;
2517 AddressSpaceDispatch *next = as->next_dispatch;
2518
2519 phys_page_compact_all(next, next->map.nodes_nb);
2520
2521 atomic_rcu_set(&as->dispatch, next);
2522 if (cur) {
2523 call_rcu(cur, address_space_dispatch_free, rcu);
2524 }
2525 }
2526
2527 static void tcg_commit(MemoryListener *listener)
2528 {
2529 CPUAddressSpace *cpuas;
2530 AddressSpaceDispatch *d;
2531
2532 /* since each CPU stores ram addresses in its TLB cache, we must
2533 reset the modified entries */
2534 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2535 cpu_reloading_memory_map();
2536 /* The CPU and TLB are protected by the iothread lock.
2537 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2538 * may have split the RCU critical section.
2539 */
2540 d = atomic_rcu_read(&cpuas->as->dispatch);
2541 atomic_rcu_set(&cpuas->memory_dispatch, d);
2542 tlb_flush(cpuas->cpu);
2543 }
2544
2545 void address_space_init_dispatch(AddressSpace *as)
2546 {
2547 as->dispatch = NULL;
2548 as->dispatch_listener = (MemoryListener) {
2549 .begin = mem_begin,
2550 .commit = mem_commit,
2551 .region_add = mem_add,
2552 .region_nop = mem_add,
2553 .priority = 0,
2554 };
2555 memory_listener_register(&as->dispatch_listener, as);
2556 }
2557
2558 void address_space_unregister(AddressSpace *as)
2559 {
2560 memory_listener_unregister(&as->dispatch_listener);
2561 }
2562
2563 void address_space_destroy_dispatch(AddressSpace *as)
2564 {
2565 AddressSpaceDispatch *d = as->dispatch;
2566
2567 atomic_rcu_set(&as->dispatch, NULL);
2568 if (d) {
2569 call_rcu(d, address_space_dispatch_free, rcu);
2570 }
2571 }
2572
2573 static void memory_map_init(void)
2574 {
2575 system_memory = g_malloc(sizeof(*system_memory));
2576
2577 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2578 address_space_init(&address_space_memory, system_memory, "memory");
2579
2580 system_io = g_malloc(sizeof(*system_io));
2581 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2582 65536);
2583 address_space_init(&address_space_io, system_io, "I/O");
2584 }
2585
2586 MemoryRegion *get_system_memory(void)
2587 {
2588 return system_memory;
2589 }
2590
2591 MemoryRegion *get_system_io(void)
2592 {
2593 return system_io;
2594 }
2595
2596 #endif /* !defined(CONFIG_USER_ONLY) */
2597
2598 /* physical memory access (slow version, mainly for debug) */
2599 #if defined(CONFIG_USER_ONLY)
2600 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2601 uint8_t *buf, int len, int is_write)
2602 {
2603 int l, flags;
2604 target_ulong page;
2605 void * p;
2606
2607 while (len > 0) {
2608 page = addr & TARGET_PAGE_MASK;
2609 l = (page + TARGET_PAGE_SIZE) - addr;
2610 if (l > len)
2611 l = len;
2612 flags = page_get_flags(page);
2613 if (!(flags & PAGE_VALID))
2614 return -1;
2615 if (is_write) {
2616 if (!(flags & PAGE_WRITE))
2617 return -1;
2618 /* XXX: this code should not depend on lock_user */
2619 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2620 return -1;
2621 memcpy(p, buf, l);
2622 unlock_user(p, addr, l);
2623 } else {
2624 if (!(flags & PAGE_READ))
2625 return -1;
2626 /* XXX: this code should not depend on lock_user */
2627 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2628 return -1;
2629 memcpy(buf, p, l);
2630 unlock_user(p, addr, 0);
2631 }
2632 len -= l;
2633 buf += l;
2634 addr += l;
2635 }
2636 return 0;
2637 }
2638
2639 #else
2640
2641 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2642 hwaddr length)
2643 {
2644 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2645 addr += memory_region_get_ram_addr(mr);
2646
2647 /* No early return if dirty_log_mask is or becomes 0, because
2648 * cpu_physical_memory_set_dirty_range will still call
2649 * xen_modified_memory.
2650 */
2651 if (dirty_log_mask) {
2652 dirty_log_mask =
2653 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2654 }
2655 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2656 tb_lock();
2657 tb_invalidate_phys_range(addr, addr + length);
2658 tb_unlock();
2659 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2660 }
2661 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2662 }
2663
2664 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2665 {
2666 unsigned access_size_max = mr->ops->valid.max_access_size;
2667
2668 /* Regions are assumed to support 1-4 byte accesses unless
2669 otherwise specified. */
2670 if (access_size_max == 0) {
2671 access_size_max = 4;
2672 }
2673
2674 /* Bound the maximum access by the alignment of the address. */
2675 if (!mr->ops->impl.unaligned) {
2676 unsigned align_size_max = addr & -addr;
2677 if (align_size_max != 0 && align_size_max < access_size_max) {
2678 access_size_max = align_size_max;
2679 }
2680 }
2681
2682 /* Don't attempt accesses larger than the maximum. */
2683 if (l > access_size_max) {
2684 l = access_size_max;
2685 }
2686 l = pow2floor(l);
2687
2688 return l;
2689 }
2690
2691 static bool prepare_mmio_access(MemoryRegion *mr)
2692 {
2693 bool unlocked = !qemu_mutex_iothread_locked();
2694 bool release_lock = false;
2695
2696 if (unlocked && mr->global_locking) {
2697 qemu_mutex_lock_iothread();
2698 unlocked = false;
2699 release_lock = true;
2700 }
2701 if (mr->flush_coalesced_mmio) {
2702 if (unlocked) {
2703 qemu_mutex_lock_iothread();
2704 }
2705 qemu_flush_coalesced_mmio_buffer();
2706 if (unlocked) {
2707 qemu_mutex_unlock_iothread();
2708 }
2709 }
2710
2711 return release_lock;
2712 }
2713
2714 /* Called within RCU critical section. */
2715 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2716 MemTxAttrs attrs,
2717 const uint8_t *buf,
2718 int len, hwaddr addr1,
2719 hwaddr l, MemoryRegion *mr)
2720 {
2721 uint8_t *ptr;
2722 uint64_t val;
2723 MemTxResult result = MEMTX_OK;
2724 bool release_lock = false;
2725
2726 for (;;) {
2727 if (!memory_access_is_direct(mr, true)) {
2728 release_lock |= prepare_mmio_access(mr);
2729 l = memory_access_size(mr, l, addr1);
2730 /* XXX: could force current_cpu to NULL to avoid
2731 potential bugs */
2732 switch (l) {
2733 case 8:
2734 /* 64 bit write access */
2735 val = ldq_p(buf);
2736 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2737 attrs);
2738 break;
2739 case 4:
2740 /* 32 bit write access */
2741 val = (uint32_t)ldl_p(buf);
2742 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2743 attrs);
2744 break;
2745 case 2:
2746 /* 16 bit write access */
2747 val = lduw_p(buf);
2748 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2749 attrs);
2750 break;
2751 case 1:
2752 /* 8 bit write access */
2753 val = ldub_p(buf);
2754 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2755 attrs);
2756 break;
2757 default:
2758 abort();
2759 }
2760 } else {
2761 /* RAM case */
2762 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2763 memcpy(ptr, buf, l);
2764 invalidate_and_set_dirty(mr, addr1, l);
2765 }
2766
2767 if (release_lock) {
2768 qemu_mutex_unlock_iothread();
2769 release_lock = false;
2770 }
2771
2772 len -= l;
2773 buf += l;
2774 addr += l;
2775
2776 if (!len) {
2777 break;
2778 }
2779
2780 l = len;
2781 mr = address_space_translate(as, addr, &addr1, &l, true);
2782 }
2783
2784 return result;
2785 }
2786
2787 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2788 const uint8_t *buf, int len)
2789 {
2790 hwaddr l;
2791 hwaddr addr1;
2792 MemoryRegion *mr;
2793 MemTxResult result = MEMTX_OK;
2794
2795 if (len > 0) {
2796 rcu_read_lock();
2797 l = len;
2798 mr = address_space_translate(as, addr, &addr1, &l, true);
2799 result = address_space_write_continue(as, addr, attrs, buf, len,
2800 addr1, l, mr);
2801 rcu_read_unlock();
2802 }
2803
2804 return result;
2805 }
2806
2807 /* Called within RCU critical section. */
2808 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2809 MemTxAttrs attrs, uint8_t *buf,
2810 int len, hwaddr addr1, hwaddr l,
2811 MemoryRegion *mr)
2812 {
2813 uint8_t *ptr;
2814 uint64_t val;
2815 MemTxResult result = MEMTX_OK;
2816 bool release_lock = false;
2817
2818 for (;;) {
2819 if (!memory_access_is_direct(mr, false)) {
2820 /* I/O case */
2821 release_lock |= prepare_mmio_access(mr);
2822 l = memory_access_size(mr, l, addr1);
2823 switch (l) {
2824 case 8:
2825 /* 64 bit read access */
2826 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2827 attrs);
2828 stq_p(buf, val);
2829 break;
2830 case 4:
2831 /* 32 bit read access */
2832 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2833 attrs);
2834 stl_p(buf, val);
2835 break;
2836 case 2:
2837 /* 16 bit read access */
2838 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2839 attrs);
2840 stw_p(buf, val);
2841 break;
2842 case 1:
2843 /* 8 bit read access */
2844 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2845 attrs);
2846 stb_p(buf, val);
2847 break;
2848 default:
2849 abort();
2850 }
2851 } else {
2852 /* RAM case */
2853 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2854 memcpy(buf, ptr, l);
2855 }
2856
2857 if (release_lock) {
2858 qemu_mutex_unlock_iothread();
2859 release_lock = false;
2860 }
2861
2862 len -= l;
2863 buf += l;
2864 addr += l;
2865
2866 if (!len) {
2867 break;
2868 }
2869
2870 l = len;
2871 mr = address_space_translate(as, addr, &addr1, &l, false);
2872 }
2873
2874 return result;
2875 }
2876
2877 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2878 MemTxAttrs attrs, uint8_t *buf, int len)
2879 {
2880 hwaddr l;
2881 hwaddr addr1;
2882 MemoryRegion *mr;
2883 MemTxResult result = MEMTX_OK;
2884
2885 if (len > 0) {
2886 rcu_read_lock();
2887 l = len;
2888 mr = address_space_translate(as, addr, &addr1, &l, false);
2889 result = address_space_read_continue(as, addr, attrs, buf, len,
2890 addr1, l, mr);
2891 rcu_read_unlock();
2892 }
2893
2894 return result;
2895 }
2896
2897 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2898 uint8_t *buf, int len, bool is_write)
2899 {
2900 if (is_write) {
2901 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2902 } else {
2903 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2904 }
2905 }
2906
2907 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2908 int len, int is_write)
2909 {
2910 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2911 buf, len, is_write);
2912 }
2913
2914 enum write_rom_type {
2915 WRITE_DATA,
2916 FLUSH_CACHE,
2917 };
2918
2919 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2920 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2921 {
2922 hwaddr l;
2923 uint8_t *ptr;
2924 hwaddr addr1;
2925 MemoryRegion *mr;
2926
2927 rcu_read_lock();
2928 while (len > 0) {
2929 l = len;
2930 mr = address_space_translate(as, addr, &addr1, &l, true);
2931
2932 if (!(memory_region_is_ram(mr) ||
2933 memory_region_is_romd(mr))) {
2934 l = memory_access_size(mr, l, addr1);
2935 } else {
2936 /* ROM/RAM case */
2937 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2938 switch (type) {
2939 case WRITE_DATA:
2940 memcpy(ptr, buf, l);
2941 invalidate_and_set_dirty(mr, addr1, l);
2942 break;
2943 case FLUSH_CACHE:
2944 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2945 break;
2946 }
2947 }
2948 len -= l;
2949 buf += l;
2950 addr += l;
2951 }
2952 rcu_read_unlock();
2953 }
2954
2955 /* used for ROM loading : can write in RAM and ROM */
2956 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2957 const uint8_t *buf, int len)
2958 {
2959 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2960 }
2961
2962 void cpu_flush_icache_range(hwaddr start, int len)
2963 {
2964 /*
2965 * This function should do the same thing as an icache flush that was
2966 * triggered from within the guest. For TCG we are always cache coherent,
2967 * so there is no need to flush anything. For KVM / Xen we need to flush
2968 * the host's instruction cache at least.
2969 */
2970 if (tcg_enabled()) {
2971 return;
2972 }
2973
2974 cpu_physical_memory_write_rom_internal(&address_space_memory,
2975 start, NULL, len, FLUSH_CACHE);
2976 }
2977
2978 typedef struct {
2979 MemoryRegion *mr;
2980 void *buffer;
2981 hwaddr addr;
2982 hwaddr len;
2983 bool in_use;
2984 } BounceBuffer;
2985
2986 static BounceBuffer bounce;
2987
2988 typedef struct MapClient {
2989 QEMUBH *bh;
2990 QLIST_ENTRY(MapClient) link;
2991 } MapClient;
2992
2993 QemuMutex map_client_list_lock;
2994 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2995 = QLIST_HEAD_INITIALIZER(map_client_list);
2996
2997 static void cpu_unregister_map_client_do(MapClient *client)
2998 {
2999 QLIST_REMOVE(client, link);
3000 g_free(client);
3001 }
3002
3003 static void cpu_notify_map_clients_locked(void)
3004 {
3005 MapClient *client;
3006
3007 while (!QLIST_EMPTY(&map_client_list)) {
3008 client = QLIST_FIRST(&map_client_list);
3009 qemu_bh_schedule(client->bh);
3010 cpu_unregister_map_client_do(client);
3011 }
3012 }
3013
3014 void cpu_register_map_client(QEMUBH *bh)
3015 {
3016 MapClient *client = g_malloc(sizeof(*client));
3017
3018 qemu_mutex_lock(&map_client_list_lock);
3019 client->bh = bh;
3020 QLIST_INSERT_HEAD(&map_client_list, client, link);
3021 if (!atomic_read(&bounce.in_use)) {
3022 cpu_notify_map_clients_locked();
3023 }
3024 qemu_mutex_unlock(&map_client_list_lock);
3025 }
3026
3027 void cpu_exec_init_all(void)
3028 {
3029 qemu_mutex_init(&ram_list.mutex);
3030 /* The data structures we set up here depend on knowing the page size,
3031 * so no more changes can be made after this point.
3032 * In an ideal world, nothing we did before we had finished the
3033 * machine setup would care about the target page size, and we could
3034 * do this much later, rather than requiring board models to state
3035 * up front what their requirements are.
3036 */
3037 finalize_target_page_bits();
3038 io_mem_init();
3039 memory_map_init();
3040 qemu_mutex_init(&map_client_list_lock);
3041 }
3042
3043 void cpu_unregister_map_client(QEMUBH *bh)
3044 {
3045 MapClient *client;
3046
3047 qemu_mutex_lock(&map_client_list_lock);
3048 QLIST_FOREACH(client, &map_client_list, link) {
3049 if (client->bh == bh) {
3050 cpu_unregister_map_client_do(client);
3051 break;
3052 }
3053 }
3054 qemu_mutex_unlock(&map_client_list_lock);
3055 }
3056
3057 static void cpu_notify_map_clients(void)
3058 {
3059 qemu_mutex_lock(&map_client_list_lock);
3060 cpu_notify_map_clients_locked();
3061 qemu_mutex_unlock(&map_client_list_lock);
3062 }
3063
3064 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3065 {
3066 MemoryRegion *mr;
3067 hwaddr l, xlat;
3068
3069 rcu_read_lock();
3070 while (len > 0) {
3071 l = len;
3072 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3073 if (!memory_access_is_direct(mr, is_write)) {
3074 l = memory_access_size(mr, l, addr);
3075 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3076 rcu_read_unlock();
3077 return false;
3078 }
3079 }
3080
3081 len -= l;
3082 addr += l;
3083 }
3084 rcu_read_unlock();
3085 return true;
3086 }
3087
3088 static hwaddr
3089 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3090 MemoryRegion *mr, hwaddr base, hwaddr len,
3091 bool is_write)
3092 {
3093 hwaddr done = 0;
3094 hwaddr xlat;
3095 MemoryRegion *this_mr;
3096
3097 for (;;) {
3098 target_len -= len;
3099 addr += len;
3100 done += len;
3101 if (target_len == 0) {
3102 return done;
3103 }
3104
3105 len = target_len;
3106 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3107 if (this_mr != mr || xlat != base + done) {
3108 return done;
3109 }
3110 }
3111 }
3112
3113 /* Map a physical memory region into a host virtual address.
3114 * May map a subset of the requested range, given by and returned in *plen.
3115 * May return NULL if resources needed to perform the mapping are exhausted.
3116 * Use only for reads OR writes - not for read-modify-write operations.
3117 * Use cpu_register_map_client() to know when retrying the map operation is
3118 * likely to succeed.
3119 */
3120 void *address_space_map(AddressSpace *as,
3121 hwaddr addr,
3122 hwaddr *plen,
3123 bool is_write)
3124 {
3125 hwaddr len = *plen;
3126 hwaddr l, xlat;
3127 MemoryRegion *mr;
3128 void *ptr;
3129
3130 if (len == 0) {
3131 return NULL;
3132 }
3133
3134 l = len;
3135 rcu_read_lock();
3136 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3137
3138 if (!memory_access_is_direct(mr, is_write)) {
3139 if (atomic_xchg(&bounce.in_use, true)) {
3140 rcu_read_unlock();
3141 return NULL;
3142 }
3143 /* Avoid unbounded allocations */
3144 l = MIN(l, TARGET_PAGE_SIZE);
3145 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3146 bounce.addr = addr;
3147 bounce.len = l;
3148
3149 memory_region_ref(mr);
3150 bounce.mr = mr;
3151 if (!is_write) {
3152 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3153 bounce.buffer, l);
3154 }
3155
3156 rcu_read_unlock();
3157 *plen = l;
3158 return bounce.buffer;
3159 }
3160
3161
3162 memory_region_ref(mr);
3163 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3164 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3165 rcu_read_unlock();
3166
3167 return ptr;
3168 }
3169
3170 /* Unmaps a memory region previously mapped by address_space_map().
3171 * Will also mark the memory as dirty if is_write == 1. access_len gives
3172 * the amount of memory that was actually read or written by the caller.
3173 */
3174 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3175 int is_write, hwaddr access_len)
3176 {
3177 if (buffer != bounce.buffer) {
3178 MemoryRegion *mr;
3179 ram_addr_t addr1;
3180
3181 mr = memory_region_from_host(buffer, &addr1);
3182 assert(mr != NULL);
3183 if (is_write) {
3184 invalidate_and_set_dirty(mr, addr1, access_len);
3185 }
3186 if (xen_enabled()) {
3187 xen_invalidate_map_cache_entry(buffer);
3188 }
3189 memory_region_unref(mr);
3190 return;
3191 }
3192 if (is_write) {
3193 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3194 bounce.buffer, access_len);
3195 }
3196 qemu_vfree(bounce.buffer);
3197 bounce.buffer = NULL;
3198 memory_region_unref(bounce.mr);
3199 atomic_mb_set(&bounce.in_use, false);
3200 cpu_notify_map_clients();
3201 }
3202
3203 void *cpu_physical_memory_map(hwaddr addr,
3204 hwaddr *plen,
3205 int is_write)
3206 {
3207 return address_space_map(&address_space_memory, addr, plen, is_write);
3208 }
3209
3210 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3211 int is_write, hwaddr access_len)
3212 {
3213 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3214 }
3215
3216 #define ARG1_DECL AddressSpace *as
3217 #define ARG1 as
3218 #define SUFFIX
3219 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3220 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3221 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3222 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3223 #define RCU_READ_LOCK(...) rcu_read_lock()
3224 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3225 #include "memory_ldst.inc.c"
3226
3227 int64_t address_space_cache_init(MemoryRegionCache *cache,
3228 AddressSpace *as,
3229 hwaddr addr,
3230 hwaddr len,
3231 bool is_write)
3232 {
3233 hwaddr l, xlat;
3234 MemoryRegion *mr;
3235 void *ptr;
3236
3237 assert(len > 0);
3238
3239 l = len;
3240 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3241 if (!memory_access_is_direct(mr, is_write)) {
3242 return -EINVAL;
3243 }
3244
3245 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3246 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3247
3248 cache->xlat = xlat;
3249 cache->is_write = is_write;
3250 cache->mr = mr;
3251 cache->ptr = ptr;
3252 cache->len = l;
3253 memory_region_ref(cache->mr);
3254
3255 return l;
3256 }
3257
3258 void address_space_cache_invalidate(MemoryRegionCache *cache,
3259 hwaddr addr,
3260 hwaddr access_len)
3261 {
3262 assert(cache->is_write);
3263 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3264 }
3265
3266 void address_space_cache_destroy(MemoryRegionCache *cache)
3267 {
3268 if (!cache->mr) {
3269 return;
3270 }
3271
3272 if (xen_enabled()) {
3273 xen_invalidate_map_cache_entry(cache->ptr);
3274 }
3275 memory_region_unref(cache->mr);
3276 cache->mr = NULL;
3277 }
3278
3279 /* Called from RCU critical section. This function has the same
3280 * semantics as address_space_translate, but it only works on a
3281 * predefined range of a MemoryRegion that was mapped with
3282 * address_space_cache_init.
3283 */
3284 static inline MemoryRegion *address_space_translate_cached(
3285 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3286 hwaddr *plen, bool is_write)
3287 {
3288 assert(addr < cache->len && *plen <= cache->len - addr);
3289 *xlat = addr + cache->xlat;
3290 return cache->mr;
3291 }
3292
3293 #define ARG1_DECL MemoryRegionCache *cache
3294 #define ARG1 cache
3295 #define SUFFIX _cached
3296 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3297 #define IS_DIRECT(mr, is_write) true
3298 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3299 #define INVALIDATE(mr, ofs, len) ((void)0)
3300 #define RCU_READ_LOCK() ((void)0)
3301 #define RCU_READ_UNLOCK() ((void)0)
3302 #include "memory_ldst.inc.c"
3303
3304 /* virtual memory access for debug (includes writing to ROM) */
3305 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3306 uint8_t *buf, int len, int is_write)
3307 {
3308 int l;
3309 hwaddr phys_addr;
3310 target_ulong page;
3311
3312 while (len > 0) {
3313 int asidx;
3314 MemTxAttrs attrs;
3315
3316 page = addr & TARGET_PAGE_MASK;
3317 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3318 asidx = cpu_asidx_from_attrs(cpu, attrs);
3319 /* if no physical page mapped, return an error */
3320 if (phys_addr == -1)
3321 return -1;
3322 l = (page + TARGET_PAGE_SIZE) - addr;
3323 if (l > len)
3324 l = len;
3325 phys_addr += (addr & ~TARGET_PAGE_MASK);
3326 if (is_write) {
3327 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3328 phys_addr, buf, l);
3329 } else {
3330 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3331 MEMTXATTRS_UNSPECIFIED,
3332 buf, l, 0);
3333 }
3334 len -= l;
3335 buf += l;
3336 addr += l;
3337 }
3338 return 0;
3339 }
3340
3341 /*
3342 * Allows code that needs to deal with migration bitmaps etc to still be built
3343 * target independent.
3344 */
3345 size_t qemu_target_page_bits(void)
3346 {
3347 return TARGET_PAGE_BITS;
3348 }
3349
3350 #endif
3351
3352 /*
3353 * A helper function for the _utterly broken_ virtio device model to find out if
3354 * it's running on a big endian machine. Don't do this at home kids!
3355 */
3356 bool target_words_bigendian(void);
3357 bool target_words_bigendian(void)
3358 {
3359 #if defined(TARGET_WORDS_BIGENDIAN)
3360 return true;
3361 #else
3362 return false;
3363 #endif
3364 }
3365
3366 #ifndef CONFIG_USER_ONLY
3367 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3368 {
3369 MemoryRegion*mr;
3370 hwaddr l = 1;
3371 bool res;
3372
3373 rcu_read_lock();
3374 mr = address_space_translate(&address_space_memory,
3375 phys_addr, &phys_addr, &l, false);
3376
3377 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3378 rcu_read_unlock();
3379 return res;
3380 }
3381
3382 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3383 {
3384 RAMBlock *block;
3385 int ret = 0;
3386
3387 rcu_read_lock();
3388 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3389 ret = func(block->idstr, block->host, block->offset,
3390 block->used_length, opaque);
3391 if (ret) {
3392 break;
3393 }
3394 }
3395 rcu_read_unlock();
3396 return ret;
3397 }
3398
3399 /*
3400 * Unmap pages of memory from start to start+length such that
3401 * they a) read as 0, b) Trigger whatever fault mechanism
3402 * the OS provides for postcopy.
3403 * The pages must be unmapped by the end of the function.
3404 * Returns: 0 on success, none-0 on failure
3405 *
3406 */
3407 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3408 {
3409 int ret = -1;
3410
3411 uint8_t *host_startaddr = rb->host + start;
3412
3413 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3414 error_report("ram_block_discard_range: Unaligned start address: %p",
3415 host_startaddr);
3416 goto err;
3417 }
3418
3419 if ((start + length) <= rb->used_length) {
3420 uint8_t *host_endaddr = host_startaddr + length;
3421 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3422 error_report("ram_block_discard_range: Unaligned end address: %p",
3423 host_endaddr);
3424 goto err;
3425 }
3426
3427 errno = ENOTSUP; /* If we are missing MADVISE etc */
3428
3429 if (rb->page_size == qemu_host_page_size) {
3430 #if defined(CONFIG_MADVISE)
3431 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3432 * freeing the page.
3433 */
3434 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3435 #endif
3436 } else {
3437 /* Huge page case - unfortunately it can't do DONTNEED, but
3438 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3439 * huge page file.
3440 */
3441 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3442 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3443 start, length);
3444 #endif
3445 }
3446 if (ret) {
3447 ret = -errno;
3448 error_report("ram_block_discard_range: Failed to discard range "
3449 "%s:%" PRIx64 " +%zx (%d)",
3450 rb->idstr, start, length, ret);
3451 }
3452 } else {
3453 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3454 "/%zx/" RAM_ADDR_FMT")",
3455 rb->idstr, start, length, rb->used_length);
3456 }
3457
3458 err:
3459 return ret;
3460 }
3461
3462 #endif