]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Remove io_index argument from cpu_register_io_memory()
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
34
35 #include "cpu.h"
36 #include "exec-all.h"
37 #include "qemu-common.h"
38 #include "tcg.h"
39 #include "hw/hw.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 #endif
82
83 static TranslationBlock *tbs;
84 int code_gen_max_blocks;
85 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
86 static int nb_tbs;
87 /* any access to the tbs or the page table must use this lock */
88 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89
90 #if defined(__arm__) || defined(__sparc_v9__)
91 /* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
93 section close to code segment. */
94 #define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
101
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 uint8_t *code_gen_ptr;
108
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 uint8_t *phys_ram_dirty;
112 static int in_migration;
113
114 typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119 } RAMBlock;
120
121 static RAMBlock *ram_blocks;
122 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
123 then we can no longer assume contiguous ram offsets, and external uses
124 of this variable will break. */
125 ram_addr_t last_ram_offset;
126 #endif
127
128 CPUState *first_cpu;
129 /* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
131 CPUState *cpu_single_env;
132 /* 0 = Do not count executed instructions.
133 1 = Precise instruction counting.
134 2 = Adaptive rate instruction counting. */
135 int use_icount = 0;
136 /* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138 int64_t qemu_icount;
139
140 typedef struct PageDesc {
141 /* list of TBs intersecting this ram page */
142 TranslationBlock *first_tb;
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147 #if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149 #endif
150 } PageDesc;
151
152 typedef struct PhysPageDesc {
153 /* offset in host memory of the page + io_index in the low bits */
154 ram_addr_t phys_offset;
155 ram_addr_t region_offset;
156 } PhysPageDesc;
157
158 #define L2_BITS 10
159 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160 /* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
163 */
164 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165 #else
166 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
167 #endif
168
169 #define L1_SIZE (1 << L1_BITS)
170 #define L2_SIZE (1 << L2_BITS)
171
172 unsigned long qemu_real_host_page_size;
173 unsigned long qemu_host_page_bits;
174 unsigned long qemu_host_page_size;
175 unsigned long qemu_host_page_mask;
176
177 /* XXX: for system emulation, it could just be an array */
178 static PageDesc *l1_map[L1_SIZE];
179 static PhysPageDesc **l1_phys_map;
180
181 #if !defined(CONFIG_USER_ONLY)
182 static void io_mem_init(void);
183
184 /* io memory support */
185 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
187 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
188 static char io_mem_used[IO_MEM_NB_ENTRIES];
189 static int io_mem_watch;
190 #endif
191
192 /* log support */
193 static const char *logfilename = "/tmp/qemu.log";
194 FILE *logfile;
195 int loglevel;
196 static int log_append = 0;
197
198 /* statistics */
199 static int tlb_flush_count;
200 static int tb_flush_count;
201 static int tb_phys_invalidate_count;
202
203 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204 typedef struct subpage_t {
205 target_phys_addr_t base;
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
210 } subpage_t;
211
212 #ifdef _WIN32
213 static void map_exec(void *addr, long size)
214 {
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
218
219 }
220 #else
221 static void map_exec(void *addr, long size)
222 {
223 unsigned long start, end, page_size;
224
225 page_size = getpagesize();
226 start = (unsigned long)addr;
227 start &= ~(page_size - 1);
228
229 end = (unsigned long)addr + size;
230 end += page_size - 1;
231 end &= ~(page_size - 1);
232
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
235 }
236 #endif
237
238 static void page_init(void)
239 {
240 /* NOTE: we can always suppose that qemu_host_page_size >=
241 TARGET_PAGE_SIZE */
242 #ifdef _WIN32
243 {
244 SYSTEM_INFO system_info;
245
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
248 }
249 #else
250 qemu_real_host_page_size = getpagesize();
251 #endif
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
262
263 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
264 {
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
268
269 mmap_lock();
270 last_brk = (unsigned long)sbrk(0);
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 page_set_flags(startaddr & TARGET_PAGE_MASK,
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
283 }
284 } while (!feof(f));
285 fclose(f);
286 }
287 mmap_unlock();
288 }
289 #endif
290 }
291
292 static inline PageDesc **page_l1_map(target_ulong index)
293 {
294 #if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
298 return NULL;
299 #endif
300 return &l1_map[index >> L2_BITS];
301 }
302
303 static inline PageDesc *page_find_alloc(target_ulong index)
304 {
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
309
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
313 #if defined(CONFIG_USER_ONLY)
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
318 *lp = p;
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
324 }
325 #else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328 #endif
329 }
330 return p + (index & (L2_SIZE - 1));
331 }
332
333 static inline PageDesc *page_find(target_ulong index)
334 {
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
339
340 p = *lp;
341 if (!p)
342 return 0;
343 return p + (index & (L2_SIZE - 1));
344 }
345
346 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
347 {
348 void **lp, **p;
349 PhysPageDesc *pd;
350
351 p = (void **)l1_phys_map;
352 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
353
354 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356 #endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
366 }
367 #endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
369 pd = *lp;
370 if (!pd) {
371 int i;
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
377 for (i = 0; i < L2_SIZE; i++) {
378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
380 }
381 }
382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
383 }
384
385 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
386 {
387 return phys_page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391 static void tlb_protect_code(ram_addr_t ram_addr);
392 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
393 target_ulong vaddr);
394 #define mmap_lock() do { } while(0)
395 #define mmap_unlock() do { } while(0)
396 #endif
397
398 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
399
400 #if defined(CONFIG_USER_ONLY)
401 /* Currently it is not recommended to allocate big chunks of data in
402 user mode. It will change when a dedicated libc will be used */
403 #define USE_STATIC_CODE_GEN_BUFFER
404 #endif
405
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408 #endif
409
410 static void code_gen_alloc(unsigned long tb_size)
411 {
412 #ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416 #else
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
419 #if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 #else
423 /* XXX: needs adjustments */
424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
425 #endif
426 }
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431 #if defined(__linux__)
432 {
433 int flags;
434 void *start = NULL;
435
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437 #if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
442 #elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
448 #elif defined(__arm__)
449 /* Map the buffer below 32M, so we can use direct calls and branches */
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
454 #endif
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
461 }
462 }
463 #elif defined(__FreeBSD__) || defined(__DragonFly__)
464 {
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468 #if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476 #endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
483 }
484 }
485 #else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488 #endif
489 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
495 }
496
497 /* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500 void cpu_exec_init_all(unsigned long tb_size)
501 {
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
505 page_init();
506 #if !defined(CONFIG_USER_ONLY)
507 io_mem_init();
508 #endif
509 }
510
511 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
512
513 #define CPU_COMMON_SAVE_VERSION 1
514
515 static void cpu_common_save(QEMUFile *f, void *opaque)
516 {
517 CPUState *env = opaque;
518
519 cpu_synchronize_state(env, 0);
520
521 qemu_put_be32s(f, &env->halted);
522 qemu_put_be32s(f, &env->interrupt_request);
523 }
524
525 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
526 {
527 CPUState *env = opaque;
528
529 if (version_id != CPU_COMMON_SAVE_VERSION)
530 return -EINVAL;
531
532 qemu_get_be32s(f, &env->halted);
533 qemu_get_be32s(f, &env->interrupt_request);
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
537 tlb_flush(env, 1);
538 cpu_synchronize_state(env, 1);
539
540 return 0;
541 }
542 #endif
543
544 void cpu_exec_init(CPUState *env)
545 {
546 CPUState **penv;
547 int cpu_index;
548
549 #if defined(CONFIG_USER_ONLY)
550 cpu_list_lock();
551 #endif
552 env->next_cpu = NULL;
553 penv = &first_cpu;
554 cpu_index = 0;
555 while (*penv != NULL) {
556 penv = &(*penv)->next_cpu;
557 cpu_index++;
558 }
559 env->cpu_index = cpu_index;
560 env->numa_node = 0;
561 TAILQ_INIT(&env->breakpoints);
562 TAILQ_INIT(&env->watchpoints);
563 *penv = env;
564 #if defined(CONFIG_USER_ONLY)
565 cpu_list_unlock();
566 #endif
567 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
568 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
569 cpu_common_save, cpu_common_load, env);
570 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
571 cpu_save, cpu_load, env);
572 #endif
573 }
574
575 static inline void invalidate_page_bitmap(PageDesc *p)
576 {
577 if (p->code_bitmap) {
578 qemu_free(p->code_bitmap);
579 p->code_bitmap = NULL;
580 }
581 p->code_write_count = 0;
582 }
583
584 /* set to NULL all the 'first_tb' fields in all PageDescs */
585 static void page_flush_tb(void)
586 {
587 int i, j;
588 PageDesc *p;
589
590 for(i = 0; i < L1_SIZE; i++) {
591 p = l1_map[i];
592 if (p) {
593 for(j = 0; j < L2_SIZE; j++) {
594 p->first_tb = NULL;
595 invalidate_page_bitmap(p);
596 p++;
597 }
598 }
599 }
600 }
601
602 /* flush all the translation blocks */
603 /* XXX: tb_flush is currently not thread safe */
604 void tb_flush(CPUState *env1)
605 {
606 CPUState *env;
607 #if defined(DEBUG_FLUSH)
608 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
609 (unsigned long)(code_gen_ptr - code_gen_buffer),
610 nb_tbs, nb_tbs > 0 ?
611 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
612 #endif
613 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
614 cpu_abort(env1, "Internal error: code buffer overflow\n");
615
616 nb_tbs = 0;
617
618 for(env = first_cpu; env != NULL; env = env->next_cpu) {
619 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
620 }
621
622 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
623 page_flush_tb();
624
625 code_gen_ptr = code_gen_buffer;
626 /* XXX: flush processor icache at this point if cache flush is
627 expensive */
628 tb_flush_count++;
629 }
630
631 #ifdef DEBUG_TB_CHECK
632
633 static void tb_invalidate_check(target_ulong address)
634 {
635 TranslationBlock *tb;
636 int i;
637 address &= TARGET_PAGE_MASK;
638 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
639 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
640 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
641 address >= tb->pc + tb->size)) {
642 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
643 address, (long)tb->pc, tb->size);
644 }
645 }
646 }
647 }
648
649 /* verify that all the pages have correct rights for code */
650 static void tb_page_check(void)
651 {
652 TranslationBlock *tb;
653 int i, flags1, flags2;
654
655 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
656 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
657 flags1 = page_get_flags(tb->pc);
658 flags2 = page_get_flags(tb->pc + tb->size - 1);
659 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
660 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
661 (long)tb->pc, tb->size, flags1, flags2);
662 }
663 }
664 }
665 }
666
667 static void tb_jmp_check(TranslationBlock *tb)
668 {
669 TranslationBlock *tb1;
670 unsigned int n1;
671
672 /* suppress any remaining jumps to this TB */
673 tb1 = tb->jmp_first;
674 for(;;) {
675 n1 = (long)tb1 & 3;
676 tb1 = (TranslationBlock *)((long)tb1 & ~3);
677 if (n1 == 2)
678 break;
679 tb1 = tb1->jmp_next[n1];
680 }
681 /* check end of list */
682 if (tb1 != tb) {
683 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
684 }
685 }
686
687 #endif
688
689 /* invalidate one TB */
690 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
691 int next_offset)
692 {
693 TranslationBlock *tb1;
694 for(;;) {
695 tb1 = *ptb;
696 if (tb1 == tb) {
697 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
698 break;
699 }
700 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
701 }
702 }
703
704 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
705 {
706 TranslationBlock *tb1;
707 unsigned int n1;
708
709 for(;;) {
710 tb1 = *ptb;
711 n1 = (long)tb1 & 3;
712 tb1 = (TranslationBlock *)((long)tb1 & ~3);
713 if (tb1 == tb) {
714 *ptb = tb1->page_next[n1];
715 break;
716 }
717 ptb = &tb1->page_next[n1];
718 }
719 }
720
721 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
722 {
723 TranslationBlock *tb1, **ptb;
724 unsigned int n1;
725
726 ptb = &tb->jmp_next[n];
727 tb1 = *ptb;
728 if (tb1) {
729 /* find tb(n) in circular list */
730 for(;;) {
731 tb1 = *ptb;
732 n1 = (long)tb1 & 3;
733 tb1 = (TranslationBlock *)((long)tb1 & ~3);
734 if (n1 == n && tb1 == tb)
735 break;
736 if (n1 == 2) {
737 ptb = &tb1->jmp_first;
738 } else {
739 ptb = &tb1->jmp_next[n1];
740 }
741 }
742 /* now we can suppress tb(n) from the list */
743 *ptb = tb->jmp_next[n];
744
745 tb->jmp_next[n] = NULL;
746 }
747 }
748
749 /* reset the jump entry 'n' of a TB so that it is not chained to
750 another TB */
751 static inline void tb_reset_jump(TranslationBlock *tb, int n)
752 {
753 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
754 }
755
756 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
757 {
758 CPUState *env;
759 PageDesc *p;
760 unsigned int h, n1;
761 target_phys_addr_t phys_pc;
762 TranslationBlock *tb1, *tb2;
763
764 /* remove the TB from the hash list */
765 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
766 h = tb_phys_hash_func(phys_pc);
767 tb_remove(&tb_phys_hash[h], tb,
768 offsetof(TranslationBlock, phys_hash_next));
769
770 /* remove the TB from the page list */
771 if (tb->page_addr[0] != page_addr) {
772 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
773 tb_page_remove(&p->first_tb, tb);
774 invalidate_page_bitmap(p);
775 }
776 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
777 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
778 tb_page_remove(&p->first_tb, tb);
779 invalidate_page_bitmap(p);
780 }
781
782 tb_invalidated_flag = 1;
783
784 /* remove the TB from the hash list */
785 h = tb_jmp_cache_hash_func(tb->pc);
786 for(env = first_cpu; env != NULL; env = env->next_cpu) {
787 if (env->tb_jmp_cache[h] == tb)
788 env->tb_jmp_cache[h] = NULL;
789 }
790
791 /* suppress this TB from the two jump lists */
792 tb_jmp_remove(tb, 0);
793 tb_jmp_remove(tb, 1);
794
795 /* suppress any remaining jumps to this TB */
796 tb1 = tb->jmp_first;
797 for(;;) {
798 n1 = (long)tb1 & 3;
799 if (n1 == 2)
800 break;
801 tb1 = (TranslationBlock *)((long)tb1 & ~3);
802 tb2 = tb1->jmp_next[n1];
803 tb_reset_jump(tb1, n1);
804 tb1->jmp_next[n1] = NULL;
805 tb1 = tb2;
806 }
807 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
808
809 tb_phys_invalidate_count++;
810 }
811
812 static inline void set_bits(uint8_t *tab, int start, int len)
813 {
814 int end, mask, end1;
815
816 end = start + len;
817 tab += start >> 3;
818 mask = 0xff << (start & 7);
819 if ((start & ~7) == (end & ~7)) {
820 if (start < end) {
821 mask &= ~(0xff << (end & 7));
822 *tab |= mask;
823 }
824 } else {
825 *tab++ |= mask;
826 start = (start + 8) & ~7;
827 end1 = end & ~7;
828 while (start < end1) {
829 *tab++ = 0xff;
830 start += 8;
831 }
832 if (start < end) {
833 mask = ~(0xff << (end & 7));
834 *tab |= mask;
835 }
836 }
837 }
838
839 static void build_page_bitmap(PageDesc *p)
840 {
841 int n, tb_start, tb_end;
842 TranslationBlock *tb;
843
844 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
845
846 tb = p->first_tb;
847 while (tb != NULL) {
848 n = (long)tb & 3;
849 tb = (TranslationBlock *)((long)tb & ~3);
850 /* NOTE: this is subtle as a TB may span two physical pages */
851 if (n == 0) {
852 /* NOTE: tb_end may be after the end of the page, but
853 it is not a problem */
854 tb_start = tb->pc & ~TARGET_PAGE_MASK;
855 tb_end = tb_start + tb->size;
856 if (tb_end > TARGET_PAGE_SIZE)
857 tb_end = TARGET_PAGE_SIZE;
858 } else {
859 tb_start = 0;
860 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
861 }
862 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
863 tb = tb->page_next[n];
864 }
865 }
866
867 TranslationBlock *tb_gen_code(CPUState *env,
868 target_ulong pc, target_ulong cs_base,
869 int flags, int cflags)
870 {
871 TranslationBlock *tb;
872 uint8_t *tc_ptr;
873 target_ulong phys_pc, phys_page2, virt_page2;
874 int code_gen_size;
875
876 phys_pc = get_phys_addr_code(env, pc);
877 tb = tb_alloc(pc);
878 if (!tb) {
879 /* flush must be done */
880 tb_flush(env);
881 /* cannot fail at this point */
882 tb = tb_alloc(pc);
883 /* Don't forget to invalidate previous TB info. */
884 tb_invalidated_flag = 1;
885 }
886 tc_ptr = code_gen_ptr;
887 tb->tc_ptr = tc_ptr;
888 tb->cs_base = cs_base;
889 tb->flags = flags;
890 tb->cflags = cflags;
891 cpu_gen_code(env, tb, &code_gen_size);
892 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
893
894 /* check next page if needed */
895 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
896 phys_page2 = -1;
897 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
898 phys_page2 = get_phys_addr_code(env, virt_page2);
899 }
900 tb_link_phys(tb, phys_pc, phys_page2);
901 return tb;
902 }
903
904 /* invalidate all TBs which intersect with the target physical page
905 starting in range [start;end[. NOTE: start and end must refer to
906 the same physical page. 'is_cpu_write_access' should be true if called
907 from a real cpu write access: the virtual CPU will exit the current
908 TB if code is modified inside this TB. */
909 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
910 int is_cpu_write_access)
911 {
912 TranslationBlock *tb, *tb_next, *saved_tb;
913 CPUState *env = cpu_single_env;
914 target_ulong tb_start, tb_end;
915 PageDesc *p;
916 int n;
917 #ifdef TARGET_HAS_PRECISE_SMC
918 int current_tb_not_found = is_cpu_write_access;
919 TranslationBlock *current_tb = NULL;
920 int current_tb_modified = 0;
921 target_ulong current_pc = 0;
922 target_ulong current_cs_base = 0;
923 int current_flags = 0;
924 #endif /* TARGET_HAS_PRECISE_SMC */
925
926 p = page_find(start >> TARGET_PAGE_BITS);
927 if (!p)
928 return;
929 if (!p->code_bitmap &&
930 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
931 is_cpu_write_access) {
932 /* build code bitmap */
933 build_page_bitmap(p);
934 }
935
936 /* we remove all the TBs in the range [start, end[ */
937 /* XXX: see if in some cases it could be faster to invalidate all the code */
938 tb = p->first_tb;
939 while (tb != NULL) {
940 n = (long)tb & 3;
941 tb = (TranslationBlock *)((long)tb & ~3);
942 tb_next = tb->page_next[n];
943 /* NOTE: this is subtle as a TB may span two physical pages */
944 if (n == 0) {
945 /* NOTE: tb_end may be after the end of the page, but
946 it is not a problem */
947 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
948 tb_end = tb_start + tb->size;
949 } else {
950 tb_start = tb->page_addr[1];
951 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
952 }
953 if (!(tb_end <= start || tb_start >= end)) {
954 #ifdef TARGET_HAS_PRECISE_SMC
955 if (current_tb_not_found) {
956 current_tb_not_found = 0;
957 current_tb = NULL;
958 if (env->mem_io_pc) {
959 /* now we have a real cpu fault */
960 current_tb = tb_find_pc(env->mem_io_pc);
961 }
962 }
963 if (current_tb == tb &&
964 (current_tb->cflags & CF_COUNT_MASK) != 1) {
965 /* If we are modifying the current TB, we must stop
966 its execution. We could be more precise by checking
967 that the modification is after the current PC, but it
968 would require a specialized function to partially
969 restore the CPU state */
970
971 current_tb_modified = 1;
972 cpu_restore_state(current_tb, env,
973 env->mem_io_pc, NULL);
974 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
975 &current_flags);
976 }
977 #endif /* TARGET_HAS_PRECISE_SMC */
978 /* we need to do that to handle the case where a signal
979 occurs while doing tb_phys_invalidate() */
980 saved_tb = NULL;
981 if (env) {
982 saved_tb = env->current_tb;
983 env->current_tb = NULL;
984 }
985 tb_phys_invalidate(tb, -1);
986 if (env) {
987 env->current_tb = saved_tb;
988 if (env->interrupt_request && env->current_tb)
989 cpu_interrupt(env, env->interrupt_request);
990 }
991 }
992 tb = tb_next;
993 }
994 #if !defined(CONFIG_USER_ONLY)
995 /* if no code remaining, no need to continue to use slow writes */
996 if (!p->first_tb) {
997 invalidate_page_bitmap(p);
998 if (is_cpu_write_access) {
999 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1000 }
1001 }
1002 #endif
1003 #ifdef TARGET_HAS_PRECISE_SMC
1004 if (current_tb_modified) {
1005 /* we generate a block containing just the instruction
1006 modifying the memory. It will ensure that it cannot modify
1007 itself */
1008 env->current_tb = NULL;
1009 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1010 cpu_resume_from_signal(env, NULL);
1011 }
1012 #endif
1013 }
1014
1015 /* len must be <= 8 and start must be a multiple of len */
1016 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1017 {
1018 PageDesc *p;
1019 int offset, b;
1020 #if 0
1021 if (1) {
1022 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1023 cpu_single_env->mem_io_vaddr, len,
1024 cpu_single_env->eip,
1025 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1026 }
1027 #endif
1028 p = page_find(start >> TARGET_PAGE_BITS);
1029 if (!p)
1030 return;
1031 if (p->code_bitmap) {
1032 offset = start & ~TARGET_PAGE_MASK;
1033 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1034 if (b & ((1 << len) - 1))
1035 goto do_invalidate;
1036 } else {
1037 do_invalidate:
1038 tb_invalidate_phys_page_range(start, start + len, 1);
1039 }
1040 }
1041
1042 #if !defined(CONFIG_SOFTMMU)
1043 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1044 unsigned long pc, void *puc)
1045 {
1046 TranslationBlock *tb;
1047 PageDesc *p;
1048 int n;
1049 #ifdef TARGET_HAS_PRECISE_SMC
1050 TranslationBlock *current_tb = NULL;
1051 CPUState *env = cpu_single_env;
1052 int current_tb_modified = 0;
1053 target_ulong current_pc = 0;
1054 target_ulong current_cs_base = 0;
1055 int current_flags = 0;
1056 #endif
1057
1058 addr &= TARGET_PAGE_MASK;
1059 p = page_find(addr >> TARGET_PAGE_BITS);
1060 if (!p)
1061 return;
1062 tb = p->first_tb;
1063 #ifdef TARGET_HAS_PRECISE_SMC
1064 if (tb && pc != 0) {
1065 current_tb = tb_find_pc(pc);
1066 }
1067 #endif
1068 while (tb != NULL) {
1069 n = (long)tb & 3;
1070 tb = (TranslationBlock *)((long)tb & ~3);
1071 #ifdef TARGET_HAS_PRECISE_SMC
1072 if (current_tb == tb &&
1073 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1074 /* If we are modifying the current TB, we must stop
1075 its execution. We could be more precise by checking
1076 that the modification is after the current PC, but it
1077 would require a specialized function to partially
1078 restore the CPU state */
1079
1080 current_tb_modified = 1;
1081 cpu_restore_state(current_tb, env, pc, puc);
1082 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1083 &current_flags);
1084 }
1085 #endif /* TARGET_HAS_PRECISE_SMC */
1086 tb_phys_invalidate(tb, addr);
1087 tb = tb->page_next[n];
1088 }
1089 p->first_tb = NULL;
1090 #ifdef TARGET_HAS_PRECISE_SMC
1091 if (current_tb_modified) {
1092 /* we generate a block containing just the instruction
1093 modifying the memory. It will ensure that it cannot modify
1094 itself */
1095 env->current_tb = NULL;
1096 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1097 cpu_resume_from_signal(env, puc);
1098 }
1099 #endif
1100 }
1101 #endif
1102
1103 /* add the tb in the target page and protect it if necessary */
1104 static inline void tb_alloc_page(TranslationBlock *tb,
1105 unsigned int n, target_ulong page_addr)
1106 {
1107 PageDesc *p;
1108 TranslationBlock *last_first_tb;
1109
1110 tb->page_addr[n] = page_addr;
1111 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1112 tb->page_next[n] = p->first_tb;
1113 last_first_tb = p->first_tb;
1114 p->first_tb = (TranslationBlock *)((long)tb | n);
1115 invalidate_page_bitmap(p);
1116
1117 #if defined(TARGET_HAS_SMC) || 1
1118
1119 #if defined(CONFIG_USER_ONLY)
1120 if (p->flags & PAGE_WRITE) {
1121 target_ulong addr;
1122 PageDesc *p2;
1123 int prot;
1124
1125 /* force the host page as non writable (writes will have a
1126 page fault + mprotect overhead) */
1127 page_addr &= qemu_host_page_mask;
1128 prot = 0;
1129 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1130 addr += TARGET_PAGE_SIZE) {
1131
1132 p2 = page_find (addr >> TARGET_PAGE_BITS);
1133 if (!p2)
1134 continue;
1135 prot |= p2->flags;
1136 p2->flags &= ~PAGE_WRITE;
1137 page_get_flags(addr);
1138 }
1139 mprotect(g2h(page_addr), qemu_host_page_size,
1140 (prot & PAGE_BITS) & ~PAGE_WRITE);
1141 #ifdef DEBUG_TB_INVALIDATE
1142 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1143 page_addr);
1144 #endif
1145 }
1146 #else
1147 /* if some code is already present, then the pages are already
1148 protected. So we handle the case where only the first TB is
1149 allocated in a physical page */
1150 if (!last_first_tb) {
1151 tlb_protect_code(page_addr);
1152 }
1153 #endif
1154
1155 #endif /* TARGET_HAS_SMC */
1156 }
1157
1158 /* Allocate a new translation block. Flush the translation buffer if
1159 too many translation blocks or too much generated code. */
1160 TranslationBlock *tb_alloc(target_ulong pc)
1161 {
1162 TranslationBlock *tb;
1163
1164 if (nb_tbs >= code_gen_max_blocks ||
1165 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1166 return NULL;
1167 tb = &tbs[nb_tbs++];
1168 tb->pc = pc;
1169 tb->cflags = 0;
1170 return tb;
1171 }
1172
1173 void tb_free(TranslationBlock *tb)
1174 {
1175 /* In practice this is mostly used for single use temporary TB
1176 Ignore the hard cases and just back up if this TB happens to
1177 be the last one generated. */
1178 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1179 code_gen_ptr = tb->tc_ptr;
1180 nb_tbs--;
1181 }
1182 }
1183
1184 /* add a new TB and link it to the physical page tables. phys_page2 is
1185 (-1) to indicate that only one page contains the TB. */
1186 void tb_link_phys(TranslationBlock *tb,
1187 target_ulong phys_pc, target_ulong phys_page2)
1188 {
1189 unsigned int h;
1190 TranslationBlock **ptb;
1191
1192 /* Grab the mmap lock to stop another thread invalidating this TB
1193 before we are done. */
1194 mmap_lock();
1195 /* add in the physical hash table */
1196 h = tb_phys_hash_func(phys_pc);
1197 ptb = &tb_phys_hash[h];
1198 tb->phys_hash_next = *ptb;
1199 *ptb = tb;
1200
1201 /* add in the page list */
1202 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1203 if (phys_page2 != -1)
1204 tb_alloc_page(tb, 1, phys_page2);
1205 else
1206 tb->page_addr[1] = -1;
1207
1208 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1209 tb->jmp_next[0] = NULL;
1210 tb->jmp_next[1] = NULL;
1211
1212 /* init original jump addresses */
1213 if (tb->tb_next_offset[0] != 0xffff)
1214 tb_reset_jump(tb, 0);
1215 if (tb->tb_next_offset[1] != 0xffff)
1216 tb_reset_jump(tb, 1);
1217
1218 #ifdef DEBUG_TB_CHECK
1219 tb_page_check();
1220 #endif
1221 mmap_unlock();
1222 }
1223
1224 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1225 tb[1].tc_ptr. Return NULL if not found */
1226 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1227 {
1228 int m_min, m_max, m;
1229 unsigned long v;
1230 TranslationBlock *tb;
1231
1232 if (nb_tbs <= 0)
1233 return NULL;
1234 if (tc_ptr < (unsigned long)code_gen_buffer ||
1235 tc_ptr >= (unsigned long)code_gen_ptr)
1236 return NULL;
1237 /* binary search (cf Knuth) */
1238 m_min = 0;
1239 m_max = nb_tbs - 1;
1240 while (m_min <= m_max) {
1241 m = (m_min + m_max) >> 1;
1242 tb = &tbs[m];
1243 v = (unsigned long)tb->tc_ptr;
1244 if (v == tc_ptr)
1245 return tb;
1246 else if (tc_ptr < v) {
1247 m_max = m - 1;
1248 } else {
1249 m_min = m + 1;
1250 }
1251 }
1252 return &tbs[m_max];
1253 }
1254
1255 static void tb_reset_jump_recursive(TranslationBlock *tb);
1256
1257 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1258 {
1259 TranslationBlock *tb1, *tb_next, **ptb;
1260 unsigned int n1;
1261
1262 tb1 = tb->jmp_next[n];
1263 if (tb1 != NULL) {
1264 /* find head of list */
1265 for(;;) {
1266 n1 = (long)tb1 & 3;
1267 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1268 if (n1 == 2)
1269 break;
1270 tb1 = tb1->jmp_next[n1];
1271 }
1272 /* we are now sure now that tb jumps to tb1 */
1273 tb_next = tb1;
1274
1275 /* remove tb from the jmp_first list */
1276 ptb = &tb_next->jmp_first;
1277 for(;;) {
1278 tb1 = *ptb;
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == n && tb1 == tb)
1282 break;
1283 ptb = &tb1->jmp_next[n1];
1284 }
1285 *ptb = tb->jmp_next[n];
1286 tb->jmp_next[n] = NULL;
1287
1288 /* suppress the jump to next tb in generated code */
1289 tb_reset_jump(tb, n);
1290
1291 /* suppress jumps in the tb on which we could have jumped */
1292 tb_reset_jump_recursive(tb_next);
1293 }
1294 }
1295
1296 static void tb_reset_jump_recursive(TranslationBlock *tb)
1297 {
1298 tb_reset_jump_recursive2(tb, 0);
1299 tb_reset_jump_recursive2(tb, 1);
1300 }
1301
1302 #if defined(TARGET_HAS_ICE)
1303 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1304 {
1305 target_phys_addr_t addr;
1306 target_ulong pd;
1307 ram_addr_t ram_addr;
1308 PhysPageDesc *p;
1309
1310 addr = cpu_get_phys_page_debug(env, pc);
1311 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1312 if (!p) {
1313 pd = IO_MEM_UNASSIGNED;
1314 } else {
1315 pd = p->phys_offset;
1316 }
1317 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1318 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1319 }
1320 #endif
1321
1322 /* Add a watchpoint. */
1323 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1324 int flags, CPUWatchpoint **watchpoint)
1325 {
1326 target_ulong len_mask = ~(len - 1);
1327 CPUWatchpoint *wp;
1328
1329 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1330 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1331 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1332 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1333 return -EINVAL;
1334 }
1335 wp = qemu_malloc(sizeof(*wp));
1336
1337 wp->vaddr = addr;
1338 wp->len_mask = len_mask;
1339 wp->flags = flags;
1340
1341 /* keep all GDB-injected watchpoints in front */
1342 if (flags & BP_GDB)
1343 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1344 else
1345 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1346
1347 tlb_flush_page(env, addr);
1348
1349 if (watchpoint)
1350 *watchpoint = wp;
1351 return 0;
1352 }
1353
1354 /* Remove a specific watchpoint. */
1355 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1356 int flags)
1357 {
1358 target_ulong len_mask = ~(len - 1);
1359 CPUWatchpoint *wp;
1360
1361 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1362 if (addr == wp->vaddr && len_mask == wp->len_mask
1363 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1364 cpu_watchpoint_remove_by_ref(env, wp);
1365 return 0;
1366 }
1367 }
1368 return -ENOENT;
1369 }
1370
1371 /* Remove a specific watchpoint by reference. */
1372 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1373 {
1374 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1375
1376 tlb_flush_page(env, watchpoint->vaddr);
1377
1378 qemu_free(watchpoint);
1379 }
1380
1381 /* Remove all matching watchpoints. */
1382 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1383 {
1384 CPUWatchpoint *wp, *next;
1385
1386 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1387 if (wp->flags & mask)
1388 cpu_watchpoint_remove_by_ref(env, wp);
1389 }
1390 }
1391
1392 /* Add a breakpoint. */
1393 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1394 CPUBreakpoint **breakpoint)
1395 {
1396 #if defined(TARGET_HAS_ICE)
1397 CPUBreakpoint *bp;
1398
1399 bp = qemu_malloc(sizeof(*bp));
1400
1401 bp->pc = pc;
1402 bp->flags = flags;
1403
1404 /* keep all GDB-injected breakpoints in front */
1405 if (flags & BP_GDB)
1406 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1407 else
1408 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1409
1410 breakpoint_invalidate(env, pc);
1411
1412 if (breakpoint)
1413 *breakpoint = bp;
1414 return 0;
1415 #else
1416 return -ENOSYS;
1417 #endif
1418 }
1419
1420 /* Remove a specific breakpoint. */
1421 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1422 {
1423 #if defined(TARGET_HAS_ICE)
1424 CPUBreakpoint *bp;
1425
1426 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1427 if (bp->pc == pc && bp->flags == flags) {
1428 cpu_breakpoint_remove_by_ref(env, bp);
1429 return 0;
1430 }
1431 }
1432 return -ENOENT;
1433 #else
1434 return -ENOSYS;
1435 #endif
1436 }
1437
1438 /* Remove a specific breakpoint by reference. */
1439 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1440 {
1441 #if defined(TARGET_HAS_ICE)
1442 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1443
1444 breakpoint_invalidate(env, breakpoint->pc);
1445
1446 qemu_free(breakpoint);
1447 #endif
1448 }
1449
1450 /* Remove all matching breakpoints. */
1451 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1452 {
1453 #if defined(TARGET_HAS_ICE)
1454 CPUBreakpoint *bp, *next;
1455
1456 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1457 if (bp->flags & mask)
1458 cpu_breakpoint_remove_by_ref(env, bp);
1459 }
1460 #endif
1461 }
1462
1463 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1464 CPU loop after each instruction */
1465 void cpu_single_step(CPUState *env, int enabled)
1466 {
1467 #if defined(TARGET_HAS_ICE)
1468 if (env->singlestep_enabled != enabled) {
1469 env->singlestep_enabled = enabled;
1470 if (kvm_enabled())
1471 kvm_update_guest_debug(env, 0);
1472 else {
1473 /* must flush all the translated code to avoid inconsistencies */
1474 /* XXX: only flush what is necessary */
1475 tb_flush(env);
1476 }
1477 }
1478 #endif
1479 }
1480
1481 /* enable or disable low levels log */
1482 void cpu_set_log(int log_flags)
1483 {
1484 loglevel = log_flags;
1485 if (loglevel && !logfile) {
1486 logfile = fopen(logfilename, log_append ? "a" : "w");
1487 if (!logfile) {
1488 perror(logfilename);
1489 _exit(1);
1490 }
1491 #if !defined(CONFIG_SOFTMMU)
1492 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1493 {
1494 static char logfile_buf[4096];
1495 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1496 }
1497 #else
1498 setvbuf(logfile, NULL, _IOLBF, 0);
1499 #endif
1500 log_append = 1;
1501 }
1502 if (!loglevel && logfile) {
1503 fclose(logfile);
1504 logfile = NULL;
1505 }
1506 }
1507
1508 void cpu_set_log_filename(const char *filename)
1509 {
1510 logfilename = strdup(filename);
1511 if (logfile) {
1512 fclose(logfile);
1513 logfile = NULL;
1514 }
1515 cpu_set_log(loglevel);
1516 }
1517
1518 static void cpu_unlink_tb(CPUState *env)
1519 {
1520 #if defined(USE_NPTL)
1521 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1522 problem and hope the cpu will stop of its own accord. For userspace
1523 emulation this often isn't actually as bad as it sounds. Often
1524 signals are used primarily to interrupt blocking syscalls. */
1525 #else
1526 TranslationBlock *tb;
1527 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1528
1529 tb = env->current_tb;
1530 /* if the cpu is currently executing code, we must unlink it and
1531 all the potentially executing TB */
1532 if (tb && !testandset(&interrupt_lock)) {
1533 env->current_tb = NULL;
1534 tb_reset_jump_recursive(tb);
1535 resetlock(&interrupt_lock);
1536 }
1537 #endif
1538 }
1539
1540 /* mask must never be zero, except for A20 change call */
1541 void cpu_interrupt(CPUState *env, int mask)
1542 {
1543 int old_mask;
1544
1545 old_mask = env->interrupt_request;
1546 env->interrupt_request |= mask;
1547
1548 #ifndef CONFIG_USER_ONLY
1549 /*
1550 * If called from iothread context, wake the target cpu in
1551 * case its halted.
1552 */
1553 if (!qemu_cpu_self(env)) {
1554 qemu_cpu_kick(env);
1555 return;
1556 }
1557 #endif
1558
1559 if (use_icount) {
1560 env->icount_decr.u16.high = 0xffff;
1561 #ifndef CONFIG_USER_ONLY
1562 if (!can_do_io(env)
1563 && (mask & ~old_mask) != 0) {
1564 cpu_abort(env, "Raised interrupt while not in I/O function");
1565 }
1566 #endif
1567 } else {
1568 cpu_unlink_tb(env);
1569 }
1570 }
1571
1572 void cpu_reset_interrupt(CPUState *env, int mask)
1573 {
1574 env->interrupt_request &= ~mask;
1575 }
1576
1577 void cpu_exit(CPUState *env)
1578 {
1579 env->exit_request = 1;
1580 cpu_unlink_tb(env);
1581 }
1582
1583 const CPULogItem cpu_log_items[] = {
1584 { CPU_LOG_TB_OUT_ASM, "out_asm",
1585 "show generated host assembly code for each compiled TB" },
1586 { CPU_LOG_TB_IN_ASM, "in_asm",
1587 "show target assembly code for each compiled TB" },
1588 { CPU_LOG_TB_OP, "op",
1589 "show micro ops for each compiled TB" },
1590 { CPU_LOG_TB_OP_OPT, "op_opt",
1591 "show micro ops "
1592 #ifdef TARGET_I386
1593 "before eflags optimization and "
1594 #endif
1595 "after liveness analysis" },
1596 { CPU_LOG_INT, "int",
1597 "show interrupts/exceptions in short format" },
1598 { CPU_LOG_EXEC, "exec",
1599 "show trace before each executed TB (lots of logs)" },
1600 { CPU_LOG_TB_CPU, "cpu",
1601 "show CPU state before block translation" },
1602 #ifdef TARGET_I386
1603 { CPU_LOG_PCALL, "pcall",
1604 "show protected mode far calls/returns/exceptions" },
1605 { CPU_LOG_RESET, "cpu_reset",
1606 "show CPU state before CPU resets" },
1607 #endif
1608 #ifdef DEBUG_IOPORT
1609 { CPU_LOG_IOPORT, "ioport",
1610 "show all i/o ports accesses" },
1611 #endif
1612 { 0, NULL, NULL },
1613 };
1614
1615 static int cmp1(const char *s1, int n, const char *s2)
1616 {
1617 if (strlen(s2) != n)
1618 return 0;
1619 return memcmp(s1, s2, n) == 0;
1620 }
1621
1622 /* takes a comma separated list of log masks. Return 0 if error. */
1623 int cpu_str_to_log_mask(const char *str)
1624 {
1625 const CPULogItem *item;
1626 int mask;
1627 const char *p, *p1;
1628
1629 p = str;
1630 mask = 0;
1631 for(;;) {
1632 p1 = strchr(p, ',');
1633 if (!p1)
1634 p1 = p + strlen(p);
1635 if(cmp1(p,p1-p,"all")) {
1636 for(item = cpu_log_items; item->mask != 0; item++) {
1637 mask |= item->mask;
1638 }
1639 } else {
1640 for(item = cpu_log_items; item->mask != 0; item++) {
1641 if (cmp1(p, p1 - p, item->name))
1642 goto found;
1643 }
1644 return 0;
1645 }
1646 found:
1647 mask |= item->mask;
1648 if (*p1 != ',')
1649 break;
1650 p = p1 + 1;
1651 }
1652 return mask;
1653 }
1654
1655 void cpu_abort(CPUState *env, const char *fmt, ...)
1656 {
1657 va_list ap;
1658 va_list ap2;
1659
1660 va_start(ap, fmt);
1661 va_copy(ap2, ap);
1662 fprintf(stderr, "qemu: fatal: ");
1663 vfprintf(stderr, fmt, ap);
1664 fprintf(stderr, "\n");
1665 #ifdef TARGET_I386
1666 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1667 #else
1668 cpu_dump_state(env, stderr, fprintf, 0);
1669 #endif
1670 if (qemu_log_enabled()) {
1671 qemu_log("qemu: fatal: ");
1672 qemu_log_vprintf(fmt, ap2);
1673 qemu_log("\n");
1674 #ifdef TARGET_I386
1675 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1676 #else
1677 log_cpu_state(env, 0);
1678 #endif
1679 qemu_log_flush();
1680 qemu_log_close();
1681 }
1682 va_end(ap2);
1683 va_end(ap);
1684 abort();
1685 }
1686
1687 CPUState *cpu_copy(CPUState *env)
1688 {
1689 CPUState *new_env = cpu_init(env->cpu_model_str);
1690 CPUState *next_cpu = new_env->next_cpu;
1691 int cpu_index = new_env->cpu_index;
1692 #if defined(TARGET_HAS_ICE)
1693 CPUBreakpoint *bp;
1694 CPUWatchpoint *wp;
1695 #endif
1696
1697 memcpy(new_env, env, sizeof(CPUState));
1698
1699 /* Preserve chaining and index. */
1700 new_env->next_cpu = next_cpu;
1701 new_env->cpu_index = cpu_index;
1702
1703 /* Clone all break/watchpoints.
1704 Note: Once we support ptrace with hw-debug register access, make sure
1705 BP_CPU break/watchpoints are handled correctly on clone. */
1706 TAILQ_INIT(&env->breakpoints);
1707 TAILQ_INIT(&env->watchpoints);
1708 #if defined(TARGET_HAS_ICE)
1709 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1710 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1711 }
1712 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1713 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1714 wp->flags, NULL);
1715 }
1716 #endif
1717
1718 return new_env;
1719 }
1720
1721 #if !defined(CONFIG_USER_ONLY)
1722
1723 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1724 {
1725 unsigned int i;
1726
1727 /* Discard jump cache entries for any tb which might potentially
1728 overlap the flushed page. */
1729 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1730 memset (&env->tb_jmp_cache[i], 0,
1731 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1732
1733 i = tb_jmp_cache_hash_page(addr);
1734 memset (&env->tb_jmp_cache[i], 0,
1735 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1736 }
1737
1738 /* NOTE: if flush_global is true, also flush global entries (not
1739 implemented yet) */
1740 void tlb_flush(CPUState *env, int flush_global)
1741 {
1742 int i;
1743
1744 #if defined(DEBUG_TLB)
1745 printf("tlb_flush:\n");
1746 #endif
1747 /* must reset current TB so that interrupts cannot modify the
1748 links while we are modifying them */
1749 env->current_tb = NULL;
1750
1751 for(i = 0; i < CPU_TLB_SIZE; i++) {
1752 env->tlb_table[0][i].addr_read = -1;
1753 env->tlb_table[0][i].addr_write = -1;
1754 env->tlb_table[0][i].addr_code = -1;
1755 env->tlb_table[1][i].addr_read = -1;
1756 env->tlb_table[1][i].addr_write = -1;
1757 env->tlb_table[1][i].addr_code = -1;
1758 #if (NB_MMU_MODES >= 3)
1759 env->tlb_table[2][i].addr_read = -1;
1760 env->tlb_table[2][i].addr_write = -1;
1761 env->tlb_table[2][i].addr_code = -1;
1762 #endif
1763 #if (NB_MMU_MODES >= 4)
1764 env->tlb_table[3][i].addr_read = -1;
1765 env->tlb_table[3][i].addr_write = -1;
1766 env->tlb_table[3][i].addr_code = -1;
1767 #endif
1768 #if (NB_MMU_MODES >= 5)
1769 env->tlb_table[4][i].addr_read = -1;
1770 env->tlb_table[4][i].addr_write = -1;
1771 env->tlb_table[4][i].addr_code = -1;
1772 #endif
1773
1774 }
1775
1776 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1777
1778 #ifdef CONFIG_KQEMU
1779 if (env->kqemu_enabled) {
1780 kqemu_flush(env, flush_global);
1781 }
1782 #endif
1783 tlb_flush_count++;
1784 }
1785
1786 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1787 {
1788 if (addr == (tlb_entry->addr_read &
1789 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1790 addr == (tlb_entry->addr_write &
1791 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1792 addr == (tlb_entry->addr_code &
1793 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1794 tlb_entry->addr_read = -1;
1795 tlb_entry->addr_write = -1;
1796 tlb_entry->addr_code = -1;
1797 }
1798 }
1799
1800 void tlb_flush_page(CPUState *env, target_ulong addr)
1801 {
1802 int i;
1803
1804 #if defined(DEBUG_TLB)
1805 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1806 #endif
1807 /* must reset current TB so that interrupts cannot modify the
1808 links while we are modifying them */
1809 env->current_tb = NULL;
1810
1811 addr &= TARGET_PAGE_MASK;
1812 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1813 tlb_flush_entry(&env->tlb_table[0][i], addr);
1814 tlb_flush_entry(&env->tlb_table[1][i], addr);
1815 #if (NB_MMU_MODES >= 3)
1816 tlb_flush_entry(&env->tlb_table[2][i], addr);
1817 #endif
1818 #if (NB_MMU_MODES >= 4)
1819 tlb_flush_entry(&env->tlb_table[3][i], addr);
1820 #endif
1821 #if (NB_MMU_MODES >= 5)
1822 tlb_flush_entry(&env->tlb_table[4][i], addr);
1823 #endif
1824
1825 tlb_flush_jmp_cache(env, addr);
1826
1827 #ifdef CONFIG_KQEMU
1828 if (env->kqemu_enabled) {
1829 kqemu_flush_page(env, addr);
1830 }
1831 #endif
1832 }
1833
1834 /* update the TLBs so that writes to code in the virtual page 'addr'
1835 can be detected */
1836 static void tlb_protect_code(ram_addr_t ram_addr)
1837 {
1838 cpu_physical_memory_reset_dirty(ram_addr,
1839 ram_addr + TARGET_PAGE_SIZE,
1840 CODE_DIRTY_FLAG);
1841 }
1842
1843 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1844 tested for self modifying code */
1845 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1846 target_ulong vaddr)
1847 {
1848 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1849 }
1850
1851 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1852 unsigned long start, unsigned long length)
1853 {
1854 unsigned long addr;
1855 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1856 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1857 if ((addr - start) < length) {
1858 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1859 }
1860 }
1861 }
1862
1863 /* Note: start and end must be within the same ram block. */
1864 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1865 int dirty_flags)
1866 {
1867 CPUState *env;
1868 unsigned long length, start1;
1869 int i, mask, len;
1870 uint8_t *p;
1871
1872 start &= TARGET_PAGE_MASK;
1873 end = TARGET_PAGE_ALIGN(end);
1874
1875 length = end - start;
1876 if (length == 0)
1877 return;
1878 len = length >> TARGET_PAGE_BITS;
1879 #ifdef CONFIG_KQEMU
1880 /* XXX: should not depend on cpu context */
1881 env = first_cpu;
1882 if (env->kqemu_enabled) {
1883 ram_addr_t addr;
1884 addr = start;
1885 for(i = 0; i < len; i++) {
1886 kqemu_set_notdirty(env, addr);
1887 addr += TARGET_PAGE_SIZE;
1888 }
1889 }
1890 #endif
1891 mask = ~dirty_flags;
1892 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1893 for(i = 0; i < len; i++)
1894 p[i] &= mask;
1895
1896 /* we modify the TLB cache so that the dirty bit will be set again
1897 when accessing the range */
1898 start1 = (unsigned long)qemu_get_ram_ptr(start);
1899 /* Chek that we don't span multiple blocks - this breaks the
1900 address comparisons below. */
1901 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1902 != (end - 1) - start) {
1903 abort();
1904 }
1905
1906 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1907 for(i = 0; i < CPU_TLB_SIZE; i++)
1908 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1909 for(i = 0; i < CPU_TLB_SIZE; i++)
1910 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1911 #if (NB_MMU_MODES >= 3)
1912 for(i = 0; i < CPU_TLB_SIZE; i++)
1913 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1914 #endif
1915 #if (NB_MMU_MODES >= 4)
1916 for(i = 0; i < CPU_TLB_SIZE; i++)
1917 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1918 #endif
1919 #if (NB_MMU_MODES >= 5)
1920 for(i = 0; i < CPU_TLB_SIZE; i++)
1921 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
1922 #endif
1923 }
1924 }
1925
1926 int cpu_physical_memory_set_dirty_tracking(int enable)
1927 {
1928 in_migration = enable;
1929 if (kvm_enabled()) {
1930 return kvm_set_migration_log(enable);
1931 }
1932 return 0;
1933 }
1934
1935 int cpu_physical_memory_get_dirty_tracking(void)
1936 {
1937 return in_migration;
1938 }
1939
1940 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1941 target_phys_addr_t end_addr)
1942 {
1943 int ret = 0;
1944
1945 if (kvm_enabled())
1946 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1947 return ret;
1948 }
1949
1950 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1951 {
1952 ram_addr_t ram_addr;
1953 void *p;
1954
1955 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1956 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1957 + tlb_entry->addend);
1958 ram_addr = qemu_ram_addr_from_host(p);
1959 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1960 tlb_entry->addr_write |= TLB_NOTDIRTY;
1961 }
1962 }
1963 }
1964
1965 /* update the TLB according to the current state of the dirty bits */
1966 void cpu_tlb_update_dirty(CPUState *env)
1967 {
1968 int i;
1969 for(i = 0; i < CPU_TLB_SIZE; i++)
1970 tlb_update_dirty(&env->tlb_table[0][i]);
1971 for(i = 0; i < CPU_TLB_SIZE; i++)
1972 tlb_update_dirty(&env->tlb_table[1][i]);
1973 #if (NB_MMU_MODES >= 3)
1974 for(i = 0; i < CPU_TLB_SIZE; i++)
1975 tlb_update_dirty(&env->tlb_table[2][i]);
1976 #endif
1977 #if (NB_MMU_MODES >= 4)
1978 for(i = 0; i < CPU_TLB_SIZE; i++)
1979 tlb_update_dirty(&env->tlb_table[3][i]);
1980 #endif
1981 #if (NB_MMU_MODES >= 5)
1982 for(i = 0; i < CPU_TLB_SIZE; i++)
1983 tlb_update_dirty(&env->tlb_table[4][i]);
1984 #endif
1985 }
1986
1987 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1988 {
1989 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1990 tlb_entry->addr_write = vaddr;
1991 }
1992
1993 /* update the TLB corresponding to virtual page vaddr
1994 so that it is no longer dirty */
1995 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1996 {
1997 int i;
1998
1999 vaddr &= TARGET_PAGE_MASK;
2000 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2001 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
2002 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
2003 #if (NB_MMU_MODES >= 3)
2004 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
2005 #endif
2006 #if (NB_MMU_MODES >= 4)
2007 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
2008 #endif
2009 #if (NB_MMU_MODES >= 5)
2010 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
2011 #endif
2012 }
2013
2014 /* add a new TLB entry. At most one entry for a given virtual address
2015 is permitted. Return 0 if OK or 2 if the page could not be mapped
2016 (can only happen in non SOFTMMU mode for I/O pages or pages
2017 conflicting with the host address space). */
2018 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2019 target_phys_addr_t paddr, int prot,
2020 int mmu_idx, int is_softmmu)
2021 {
2022 PhysPageDesc *p;
2023 unsigned long pd;
2024 unsigned int index;
2025 target_ulong address;
2026 target_ulong code_address;
2027 target_phys_addr_t addend;
2028 int ret;
2029 CPUTLBEntry *te;
2030 CPUWatchpoint *wp;
2031 target_phys_addr_t iotlb;
2032
2033 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2034 if (!p) {
2035 pd = IO_MEM_UNASSIGNED;
2036 } else {
2037 pd = p->phys_offset;
2038 }
2039 #if defined(DEBUG_TLB)
2040 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2041 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2042 #endif
2043
2044 ret = 0;
2045 address = vaddr;
2046 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2047 /* IO memory case (romd handled later) */
2048 address |= TLB_MMIO;
2049 }
2050 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2051 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2052 /* Normal RAM. */
2053 iotlb = pd & TARGET_PAGE_MASK;
2054 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2055 iotlb |= IO_MEM_NOTDIRTY;
2056 else
2057 iotlb |= IO_MEM_ROM;
2058 } else {
2059 /* IO handlers are currently passed a physical address.
2060 It would be nice to pass an offset from the base address
2061 of that region. This would avoid having to special case RAM,
2062 and avoid full address decoding in every device.
2063 We can't use the high bits of pd for this because
2064 IO_MEM_ROMD uses these as a ram address. */
2065 iotlb = (pd & ~TARGET_PAGE_MASK);
2066 if (p) {
2067 iotlb += p->region_offset;
2068 } else {
2069 iotlb += paddr;
2070 }
2071 }
2072
2073 code_address = address;
2074 /* Make accesses to pages with watchpoints go via the
2075 watchpoint trap routines. */
2076 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2077 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2078 iotlb = io_mem_watch + paddr;
2079 /* TODO: The memory case can be optimized by not trapping
2080 reads of pages with a write breakpoint. */
2081 address |= TLB_MMIO;
2082 }
2083 }
2084
2085 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2086 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2087 te = &env->tlb_table[mmu_idx][index];
2088 te->addend = addend - vaddr;
2089 if (prot & PAGE_READ) {
2090 te->addr_read = address;
2091 } else {
2092 te->addr_read = -1;
2093 }
2094
2095 if (prot & PAGE_EXEC) {
2096 te->addr_code = code_address;
2097 } else {
2098 te->addr_code = -1;
2099 }
2100 if (prot & PAGE_WRITE) {
2101 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2102 (pd & IO_MEM_ROMD)) {
2103 /* Write access calls the I/O callback. */
2104 te->addr_write = address | TLB_MMIO;
2105 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2106 !cpu_physical_memory_is_dirty(pd)) {
2107 te->addr_write = address | TLB_NOTDIRTY;
2108 } else {
2109 te->addr_write = address;
2110 }
2111 } else {
2112 te->addr_write = -1;
2113 }
2114 return ret;
2115 }
2116
2117 #else
2118
2119 void tlb_flush(CPUState *env, int flush_global)
2120 {
2121 }
2122
2123 void tlb_flush_page(CPUState *env, target_ulong addr)
2124 {
2125 }
2126
2127 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2128 target_phys_addr_t paddr, int prot,
2129 int mmu_idx, int is_softmmu)
2130 {
2131 return 0;
2132 }
2133
2134 /*
2135 * Walks guest process memory "regions" one by one
2136 * and calls callback function 'fn' for each region.
2137 */
2138 int walk_memory_regions(void *priv,
2139 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2140 {
2141 unsigned long start, end;
2142 PageDesc *p = NULL;
2143 int i, j, prot, prot1;
2144 int rc = 0;
2145
2146 start = end = -1;
2147 prot = 0;
2148
2149 for (i = 0; i <= L1_SIZE; i++) {
2150 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2151 for (j = 0; j < L2_SIZE; j++) {
2152 prot1 = (p == NULL) ? 0 : p[j].flags;
2153 /*
2154 * "region" is one continuous chunk of memory
2155 * that has same protection flags set.
2156 */
2157 if (prot1 != prot) {
2158 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2159 if (start != -1) {
2160 rc = (*fn)(priv, start, end, prot);
2161 /* callback can stop iteration by returning != 0 */
2162 if (rc != 0)
2163 return (rc);
2164 }
2165 if (prot1 != 0)
2166 start = end;
2167 else
2168 start = -1;
2169 prot = prot1;
2170 }
2171 if (p == NULL)
2172 break;
2173 }
2174 }
2175 return (rc);
2176 }
2177
2178 static int dump_region(void *priv, unsigned long start,
2179 unsigned long end, unsigned long prot)
2180 {
2181 FILE *f = (FILE *)priv;
2182
2183 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2184 start, end, end - start,
2185 ((prot & PAGE_READ) ? 'r' : '-'),
2186 ((prot & PAGE_WRITE) ? 'w' : '-'),
2187 ((prot & PAGE_EXEC) ? 'x' : '-'));
2188
2189 return (0);
2190 }
2191
2192 /* dump memory mappings */
2193 void page_dump(FILE *f)
2194 {
2195 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2196 "start", "end", "size", "prot");
2197 walk_memory_regions(f, dump_region);
2198 }
2199
2200 int page_get_flags(target_ulong address)
2201 {
2202 PageDesc *p;
2203
2204 p = page_find(address >> TARGET_PAGE_BITS);
2205 if (!p)
2206 return 0;
2207 return p->flags;
2208 }
2209
2210 /* modify the flags of a page and invalidate the code if
2211 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2212 depending on PAGE_WRITE */
2213 void page_set_flags(target_ulong start, target_ulong end, int flags)
2214 {
2215 PageDesc *p;
2216 target_ulong addr;
2217
2218 /* mmap_lock should already be held. */
2219 start = start & TARGET_PAGE_MASK;
2220 end = TARGET_PAGE_ALIGN(end);
2221 if (flags & PAGE_WRITE)
2222 flags |= PAGE_WRITE_ORG;
2223 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2224 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2225 /* We may be called for host regions that are outside guest
2226 address space. */
2227 if (!p)
2228 return;
2229 /* if the write protection is set, then we invalidate the code
2230 inside */
2231 if (!(p->flags & PAGE_WRITE) &&
2232 (flags & PAGE_WRITE) &&
2233 p->first_tb) {
2234 tb_invalidate_phys_page(addr, 0, NULL);
2235 }
2236 p->flags = flags;
2237 }
2238 }
2239
2240 int page_check_range(target_ulong start, target_ulong len, int flags)
2241 {
2242 PageDesc *p;
2243 target_ulong end;
2244 target_ulong addr;
2245
2246 if (start + len < start)
2247 /* we've wrapped around */
2248 return -1;
2249
2250 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2251 start = start & TARGET_PAGE_MASK;
2252
2253 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2254 p = page_find(addr >> TARGET_PAGE_BITS);
2255 if( !p )
2256 return -1;
2257 if( !(p->flags & PAGE_VALID) )
2258 return -1;
2259
2260 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2261 return -1;
2262 if (flags & PAGE_WRITE) {
2263 if (!(p->flags & PAGE_WRITE_ORG))
2264 return -1;
2265 /* unprotect the page if it was put read-only because it
2266 contains translated code */
2267 if (!(p->flags & PAGE_WRITE)) {
2268 if (!page_unprotect(addr, 0, NULL))
2269 return -1;
2270 }
2271 return 0;
2272 }
2273 }
2274 return 0;
2275 }
2276
2277 /* called from signal handler: invalidate the code and unprotect the
2278 page. Return TRUE if the fault was successfully handled. */
2279 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2280 {
2281 unsigned int page_index, prot, pindex;
2282 PageDesc *p, *p1;
2283 target_ulong host_start, host_end, addr;
2284
2285 /* Technically this isn't safe inside a signal handler. However we
2286 know this only ever happens in a synchronous SEGV handler, so in
2287 practice it seems to be ok. */
2288 mmap_lock();
2289
2290 host_start = address & qemu_host_page_mask;
2291 page_index = host_start >> TARGET_PAGE_BITS;
2292 p1 = page_find(page_index);
2293 if (!p1) {
2294 mmap_unlock();
2295 return 0;
2296 }
2297 host_end = host_start + qemu_host_page_size;
2298 p = p1;
2299 prot = 0;
2300 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2301 prot |= p->flags;
2302 p++;
2303 }
2304 /* if the page was really writable, then we change its
2305 protection back to writable */
2306 if (prot & PAGE_WRITE_ORG) {
2307 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2308 if (!(p1[pindex].flags & PAGE_WRITE)) {
2309 mprotect((void *)g2h(host_start), qemu_host_page_size,
2310 (prot & PAGE_BITS) | PAGE_WRITE);
2311 p1[pindex].flags |= PAGE_WRITE;
2312 /* and since the content will be modified, we must invalidate
2313 the corresponding translated code. */
2314 tb_invalidate_phys_page(address, pc, puc);
2315 #ifdef DEBUG_TB_CHECK
2316 tb_invalidate_check(address);
2317 #endif
2318 mmap_unlock();
2319 return 1;
2320 }
2321 }
2322 mmap_unlock();
2323 return 0;
2324 }
2325
2326 static inline void tlb_set_dirty(CPUState *env,
2327 unsigned long addr, target_ulong vaddr)
2328 {
2329 }
2330 #endif /* defined(CONFIG_USER_ONLY) */
2331
2332 #if !defined(CONFIG_USER_ONLY)
2333
2334 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2335 ram_addr_t memory, ram_addr_t region_offset);
2336 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2337 ram_addr_t orig_memory, ram_addr_t region_offset);
2338 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2339 need_subpage) \
2340 do { \
2341 if (addr > start_addr) \
2342 start_addr2 = 0; \
2343 else { \
2344 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2345 if (start_addr2 > 0) \
2346 need_subpage = 1; \
2347 } \
2348 \
2349 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2350 end_addr2 = TARGET_PAGE_SIZE - 1; \
2351 else { \
2352 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2353 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2354 need_subpage = 1; \
2355 } \
2356 } while (0)
2357
2358 /* register physical memory. 'size' must be a multiple of the target
2359 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2360 io memory page. The address used when calling the IO function is
2361 the offset from the start of the region, plus region_offset. Both
2362 start_addr and region_offset are rounded down to a page boundary
2363 before calculating this offset. This should not be a problem unless
2364 the low bits of start_addr and region_offset differ. */
2365 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2366 ram_addr_t size,
2367 ram_addr_t phys_offset,
2368 ram_addr_t region_offset)
2369 {
2370 target_phys_addr_t addr, end_addr;
2371 PhysPageDesc *p;
2372 CPUState *env;
2373 ram_addr_t orig_size = size;
2374 void *subpage;
2375
2376 #ifdef CONFIG_KQEMU
2377 /* XXX: should not depend on cpu context */
2378 env = first_cpu;
2379 if (env->kqemu_enabled) {
2380 kqemu_set_phys_mem(start_addr, size, phys_offset);
2381 }
2382 #endif
2383 if (kvm_enabled())
2384 kvm_set_phys_mem(start_addr, size, phys_offset);
2385
2386 if (phys_offset == IO_MEM_UNASSIGNED) {
2387 region_offset = start_addr;
2388 }
2389 region_offset &= TARGET_PAGE_MASK;
2390 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2391 end_addr = start_addr + (target_phys_addr_t)size;
2392 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2393 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2394 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2395 ram_addr_t orig_memory = p->phys_offset;
2396 target_phys_addr_t start_addr2, end_addr2;
2397 int need_subpage = 0;
2398
2399 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2400 need_subpage);
2401 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2402 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2403 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2404 &p->phys_offset, orig_memory,
2405 p->region_offset);
2406 } else {
2407 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2408 >> IO_MEM_SHIFT];
2409 }
2410 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2411 region_offset);
2412 p->region_offset = 0;
2413 } else {
2414 p->phys_offset = phys_offset;
2415 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2416 (phys_offset & IO_MEM_ROMD))
2417 phys_offset += TARGET_PAGE_SIZE;
2418 }
2419 } else {
2420 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2421 p->phys_offset = phys_offset;
2422 p->region_offset = region_offset;
2423 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2424 (phys_offset & IO_MEM_ROMD)) {
2425 phys_offset += TARGET_PAGE_SIZE;
2426 } else {
2427 target_phys_addr_t start_addr2, end_addr2;
2428 int need_subpage = 0;
2429
2430 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2431 end_addr2, need_subpage);
2432
2433 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2434 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2435 &p->phys_offset, IO_MEM_UNASSIGNED,
2436 addr & TARGET_PAGE_MASK);
2437 subpage_register(subpage, start_addr2, end_addr2,
2438 phys_offset, region_offset);
2439 p->region_offset = 0;
2440 }
2441 }
2442 }
2443 region_offset += TARGET_PAGE_SIZE;
2444 }
2445
2446 /* since each CPU stores ram addresses in its TLB cache, we must
2447 reset the modified entries */
2448 /* XXX: slow ! */
2449 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2450 tlb_flush(env, 1);
2451 }
2452 }
2453
2454 /* XXX: temporary until new memory mapping API */
2455 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2456 {
2457 PhysPageDesc *p;
2458
2459 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2460 if (!p)
2461 return IO_MEM_UNASSIGNED;
2462 return p->phys_offset;
2463 }
2464
2465 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2466 {
2467 if (kvm_enabled())
2468 kvm_coalesce_mmio_region(addr, size);
2469 }
2470
2471 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2472 {
2473 if (kvm_enabled())
2474 kvm_uncoalesce_mmio_region(addr, size);
2475 }
2476
2477 #ifdef CONFIG_KQEMU
2478 /* XXX: better than nothing */
2479 static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
2480 {
2481 ram_addr_t addr;
2482 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
2483 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2484 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
2485 abort();
2486 }
2487 addr = last_ram_offset;
2488 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
2489 return addr;
2490 }
2491 #endif
2492
2493 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2494 {
2495 RAMBlock *new_block;
2496
2497 #ifdef CONFIG_KQEMU
2498 if (kqemu_phys_ram_base) {
2499 return kqemu_ram_alloc(size);
2500 }
2501 #endif
2502
2503 size = TARGET_PAGE_ALIGN(size);
2504 new_block = qemu_malloc(sizeof(*new_block));
2505
2506 new_block->host = qemu_vmalloc(size);
2507 new_block->offset = last_ram_offset;
2508 new_block->length = size;
2509
2510 new_block->next = ram_blocks;
2511 ram_blocks = new_block;
2512
2513 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2514 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2515 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2516 0xff, size >> TARGET_PAGE_BITS);
2517
2518 last_ram_offset += size;
2519
2520 if (kvm_enabled())
2521 kvm_setup_guest_memory(new_block->host, size);
2522
2523 return new_block->offset;
2524 }
2525
2526 void qemu_ram_free(ram_addr_t addr)
2527 {
2528 /* TODO: implement this. */
2529 }
2530
2531 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2532 With the exception of the softmmu code in this file, this should
2533 only be used for local memory (e.g. video ram) that the device owns,
2534 and knows it isn't going to access beyond the end of the block.
2535
2536 It should not be used for general purpose DMA.
2537 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2538 */
2539 void *qemu_get_ram_ptr(ram_addr_t addr)
2540 {
2541 RAMBlock *prev;
2542 RAMBlock **prevp;
2543 RAMBlock *block;
2544
2545 #ifdef CONFIG_KQEMU
2546 if (kqemu_phys_ram_base) {
2547 return kqemu_phys_ram_base + addr;
2548 }
2549 #endif
2550
2551 prev = NULL;
2552 prevp = &ram_blocks;
2553 block = ram_blocks;
2554 while (block && (block->offset > addr
2555 || block->offset + block->length <= addr)) {
2556 if (prev)
2557 prevp = &prev->next;
2558 prev = block;
2559 block = block->next;
2560 }
2561 if (!block) {
2562 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2563 abort();
2564 }
2565 /* Move this entry to to start of the list. */
2566 if (prev) {
2567 prev->next = block->next;
2568 block->next = *prevp;
2569 *prevp = block;
2570 }
2571 return block->host + (addr - block->offset);
2572 }
2573
2574 /* Some of the softmmu routines need to translate from a host pointer
2575 (typically a TLB entry) back to a ram offset. */
2576 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2577 {
2578 RAMBlock *prev;
2579 RAMBlock **prevp;
2580 RAMBlock *block;
2581 uint8_t *host = ptr;
2582
2583 #ifdef CONFIG_KQEMU
2584 if (kqemu_phys_ram_base) {
2585 return host - kqemu_phys_ram_base;
2586 }
2587 #endif
2588
2589 prev = NULL;
2590 prevp = &ram_blocks;
2591 block = ram_blocks;
2592 while (block && (block->host > host
2593 || block->host + block->length <= host)) {
2594 if (prev)
2595 prevp = &prev->next;
2596 prev = block;
2597 block = block->next;
2598 }
2599 if (!block) {
2600 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2601 abort();
2602 }
2603 return block->offset + (host - block->host);
2604 }
2605
2606 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2607 {
2608 #ifdef DEBUG_UNASSIGNED
2609 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2610 #endif
2611 #if defined(TARGET_SPARC)
2612 do_unassigned_access(addr, 0, 0, 0, 1);
2613 #endif
2614 return 0;
2615 }
2616
2617 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2618 {
2619 #ifdef DEBUG_UNASSIGNED
2620 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2621 #endif
2622 #if defined(TARGET_SPARC)
2623 do_unassigned_access(addr, 0, 0, 0, 2);
2624 #endif
2625 return 0;
2626 }
2627
2628 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2629 {
2630 #ifdef DEBUG_UNASSIGNED
2631 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2632 #endif
2633 #if defined(TARGET_SPARC)
2634 do_unassigned_access(addr, 0, 0, 0, 4);
2635 #endif
2636 return 0;
2637 }
2638
2639 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2640 {
2641 #ifdef DEBUG_UNASSIGNED
2642 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2643 #endif
2644 #if defined(TARGET_SPARC)
2645 do_unassigned_access(addr, 1, 0, 0, 1);
2646 #endif
2647 }
2648
2649 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2650 {
2651 #ifdef DEBUG_UNASSIGNED
2652 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2653 #endif
2654 #if defined(TARGET_SPARC)
2655 do_unassigned_access(addr, 1, 0, 0, 2);
2656 #endif
2657 }
2658
2659 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2660 {
2661 #ifdef DEBUG_UNASSIGNED
2662 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2663 #endif
2664 #if defined(TARGET_SPARC)
2665 do_unassigned_access(addr, 1, 0, 0, 4);
2666 #endif
2667 }
2668
2669 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2670 unassigned_mem_readb,
2671 unassigned_mem_readw,
2672 unassigned_mem_readl,
2673 };
2674
2675 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2676 unassigned_mem_writeb,
2677 unassigned_mem_writew,
2678 unassigned_mem_writel,
2679 };
2680
2681 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2682 uint32_t val)
2683 {
2684 int dirty_flags;
2685 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2686 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2687 #if !defined(CONFIG_USER_ONLY)
2688 tb_invalidate_phys_page_fast(ram_addr, 1);
2689 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2690 #endif
2691 }
2692 stb_p(qemu_get_ram_ptr(ram_addr), val);
2693 #ifdef CONFIG_KQEMU
2694 if (cpu_single_env->kqemu_enabled &&
2695 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2696 kqemu_modify_page(cpu_single_env, ram_addr);
2697 #endif
2698 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2699 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2700 /* we remove the notdirty callback only if the code has been
2701 flushed */
2702 if (dirty_flags == 0xff)
2703 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2704 }
2705
2706 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2707 uint32_t val)
2708 {
2709 int dirty_flags;
2710 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2711 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2712 #if !defined(CONFIG_USER_ONLY)
2713 tb_invalidate_phys_page_fast(ram_addr, 2);
2714 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2715 #endif
2716 }
2717 stw_p(qemu_get_ram_ptr(ram_addr), val);
2718 #ifdef CONFIG_KQEMU
2719 if (cpu_single_env->kqemu_enabled &&
2720 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2721 kqemu_modify_page(cpu_single_env, ram_addr);
2722 #endif
2723 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2724 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2725 /* we remove the notdirty callback only if the code has been
2726 flushed */
2727 if (dirty_flags == 0xff)
2728 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2729 }
2730
2731 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2732 uint32_t val)
2733 {
2734 int dirty_flags;
2735 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2736 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2737 #if !defined(CONFIG_USER_ONLY)
2738 tb_invalidate_phys_page_fast(ram_addr, 4);
2739 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2740 #endif
2741 }
2742 stl_p(qemu_get_ram_ptr(ram_addr), val);
2743 #ifdef CONFIG_KQEMU
2744 if (cpu_single_env->kqemu_enabled &&
2745 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2746 kqemu_modify_page(cpu_single_env, ram_addr);
2747 #endif
2748 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2749 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2750 /* we remove the notdirty callback only if the code has been
2751 flushed */
2752 if (dirty_flags == 0xff)
2753 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2754 }
2755
2756 static CPUReadMemoryFunc *error_mem_read[3] = {
2757 NULL, /* never used */
2758 NULL, /* never used */
2759 NULL, /* never used */
2760 };
2761
2762 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2763 notdirty_mem_writeb,
2764 notdirty_mem_writew,
2765 notdirty_mem_writel,
2766 };
2767
2768 /* Generate a debug exception if a watchpoint has been hit. */
2769 static void check_watchpoint(int offset, int len_mask, int flags)
2770 {
2771 CPUState *env = cpu_single_env;
2772 target_ulong pc, cs_base;
2773 TranslationBlock *tb;
2774 target_ulong vaddr;
2775 CPUWatchpoint *wp;
2776 int cpu_flags;
2777
2778 if (env->watchpoint_hit) {
2779 /* We re-entered the check after replacing the TB. Now raise
2780 * the debug interrupt so that is will trigger after the
2781 * current instruction. */
2782 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2783 return;
2784 }
2785 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2786 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2787 if ((vaddr == (wp->vaddr & len_mask) ||
2788 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2789 wp->flags |= BP_WATCHPOINT_HIT;
2790 if (!env->watchpoint_hit) {
2791 env->watchpoint_hit = wp;
2792 tb = tb_find_pc(env->mem_io_pc);
2793 if (!tb) {
2794 cpu_abort(env, "check_watchpoint: could not find TB for "
2795 "pc=%p", (void *)env->mem_io_pc);
2796 }
2797 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2798 tb_phys_invalidate(tb, -1);
2799 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2800 env->exception_index = EXCP_DEBUG;
2801 } else {
2802 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2803 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2804 }
2805 cpu_resume_from_signal(env, NULL);
2806 }
2807 } else {
2808 wp->flags &= ~BP_WATCHPOINT_HIT;
2809 }
2810 }
2811 }
2812
2813 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2814 so these check for a hit then pass through to the normal out-of-line
2815 phys routines. */
2816 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2817 {
2818 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2819 return ldub_phys(addr);
2820 }
2821
2822 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2823 {
2824 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2825 return lduw_phys(addr);
2826 }
2827
2828 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2829 {
2830 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2831 return ldl_phys(addr);
2832 }
2833
2834 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2835 uint32_t val)
2836 {
2837 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2838 stb_phys(addr, val);
2839 }
2840
2841 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2842 uint32_t val)
2843 {
2844 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2845 stw_phys(addr, val);
2846 }
2847
2848 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2849 uint32_t val)
2850 {
2851 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2852 stl_phys(addr, val);
2853 }
2854
2855 static CPUReadMemoryFunc *watch_mem_read[3] = {
2856 watch_mem_readb,
2857 watch_mem_readw,
2858 watch_mem_readl,
2859 };
2860
2861 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2862 watch_mem_writeb,
2863 watch_mem_writew,
2864 watch_mem_writel,
2865 };
2866
2867 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2868 unsigned int len)
2869 {
2870 uint32_t ret;
2871 unsigned int idx;
2872
2873 idx = SUBPAGE_IDX(addr);
2874 #if defined(DEBUG_SUBPAGE)
2875 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2876 mmio, len, addr, idx);
2877 #endif
2878 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2879 addr + mmio->region_offset[idx][0][len]);
2880
2881 return ret;
2882 }
2883
2884 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2885 uint32_t value, unsigned int len)
2886 {
2887 unsigned int idx;
2888
2889 idx = SUBPAGE_IDX(addr);
2890 #if defined(DEBUG_SUBPAGE)
2891 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2892 mmio, len, addr, idx, value);
2893 #endif
2894 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2895 addr + mmio->region_offset[idx][1][len],
2896 value);
2897 }
2898
2899 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2900 {
2901 #if defined(DEBUG_SUBPAGE)
2902 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2903 #endif
2904
2905 return subpage_readlen(opaque, addr, 0);
2906 }
2907
2908 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2909 uint32_t value)
2910 {
2911 #if defined(DEBUG_SUBPAGE)
2912 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2913 #endif
2914 subpage_writelen(opaque, addr, value, 0);
2915 }
2916
2917 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2918 {
2919 #if defined(DEBUG_SUBPAGE)
2920 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2921 #endif
2922
2923 return subpage_readlen(opaque, addr, 1);
2924 }
2925
2926 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2927 uint32_t value)
2928 {
2929 #if defined(DEBUG_SUBPAGE)
2930 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2931 #endif
2932 subpage_writelen(opaque, addr, value, 1);
2933 }
2934
2935 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2936 {
2937 #if defined(DEBUG_SUBPAGE)
2938 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2939 #endif
2940
2941 return subpage_readlen(opaque, addr, 2);
2942 }
2943
2944 static void subpage_writel (void *opaque,
2945 target_phys_addr_t addr, uint32_t value)
2946 {
2947 #if defined(DEBUG_SUBPAGE)
2948 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2949 #endif
2950 subpage_writelen(opaque, addr, value, 2);
2951 }
2952
2953 static CPUReadMemoryFunc *subpage_read[] = {
2954 &subpage_readb,
2955 &subpage_readw,
2956 &subpage_readl,
2957 };
2958
2959 static CPUWriteMemoryFunc *subpage_write[] = {
2960 &subpage_writeb,
2961 &subpage_writew,
2962 &subpage_writel,
2963 };
2964
2965 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2966 ram_addr_t memory, ram_addr_t region_offset)
2967 {
2968 int idx, eidx;
2969 unsigned int i;
2970
2971 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2972 return -1;
2973 idx = SUBPAGE_IDX(start);
2974 eidx = SUBPAGE_IDX(end);
2975 #if defined(DEBUG_SUBPAGE)
2976 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2977 mmio, start, end, idx, eidx, memory);
2978 #endif
2979 memory >>= IO_MEM_SHIFT;
2980 for (; idx <= eidx; idx++) {
2981 for (i = 0; i < 4; i++) {
2982 if (io_mem_read[memory][i]) {
2983 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2984 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2985 mmio->region_offset[idx][0][i] = region_offset;
2986 }
2987 if (io_mem_write[memory][i]) {
2988 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2989 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2990 mmio->region_offset[idx][1][i] = region_offset;
2991 }
2992 }
2993 }
2994
2995 return 0;
2996 }
2997
2998 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2999 ram_addr_t orig_memory, ram_addr_t region_offset)
3000 {
3001 subpage_t *mmio;
3002 int subpage_memory;
3003
3004 mmio = qemu_mallocz(sizeof(subpage_t));
3005
3006 mmio->base = base;
3007 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3008 #if defined(DEBUG_SUBPAGE)
3009 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3010 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3011 #endif
3012 *phys = subpage_memory | IO_MEM_SUBPAGE;
3013 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3014 region_offset);
3015
3016 return mmio;
3017 }
3018
3019 static int get_free_io_mem_idx(void)
3020 {
3021 int i;
3022
3023 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3024 if (!io_mem_used[i]) {
3025 io_mem_used[i] = 1;
3026 return i;
3027 }
3028
3029 return -1;
3030 }
3031
3032 static int cpu_register_io_memory_fixed(int io_index,
3033 CPUReadMemoryFunc **mem_read,
3034 CPUWriteMemoryFunc **mem_write,
3035 void *opaque);
3036
3037 static void io_mem_init(void)
3038 {
3039 int i;
3040
3041 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3042 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3043 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3044 for (i=0; i<5; i++)
3045 io_mem_used[i] = 1;
3046
3047 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3048 watch_mem_write, NULL);
3049 #ifdef CONFIG_KQEMU
3050 if (kqemu_phys_ram_base) {
3051 /* alloc dirty bits array */
3052 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3053 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3054 }
3055 #endif
3056 }
3057
3058 /* mem_read and mem_write are arrays of functions containing the
3059 function to access byte (index 0), word (index 1) and dword (index
3060 2). Functions can be omitted with a NULL function pointer.
3061 If io_index is non zero, the corresponding io zone is
3062 modified. If it is zero, a new io zone is allocated. The return
3063 value can be used with cpu_register_physical_memory(). (-1) is
3064 returned if error. */
3065 static int cpu_register_io_memory_fixed(int io_index,
3066 CPUReadMemoryFunc **mem_read,
3067 CPUWriteMemoryFunc **mem_write,
3068 void *opaque)
3069 {
3070 int i, subwidth = 0;
3071
3072 if (io_index <= 0) {
3073 io_index = get_free_io_mem_idx();
3074 if (io_index == -1)
3075 return io_index;
3076 } else {
3077 io_index >>= IO_MEM_SHIFT;
3078 if (io_index >= IO_MEM_NB_ENTRIES)
3079 return -1;
3080 }
3081
3082 for(i = 0;i < 3; i++) {
3083 if (!mem_read[i] || !mem_write[i])
3084 subwidth = IO_MEM_SUBWIDTH;
3085 io_mem_read[io_index][i] = mem_read[i];
3086 io_mem_write[io_index][i] = mem_write[i];
3087 }
3088 io_mem_opaque[io_index] = opaque;
3089 return (io_index << IO_MEM_SHIFT) | subwidth;
3090 }
3091
3092 int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3093 CPUWriteMemoryFunc **mem_write,
3094 void *opaque)
3095 {
3096 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3097 }
3098
3099 void cpu_unregister_io_memory(int io_table_address)
3100 {
3101 int i;
3102 int io_index = io_table_address >> IO_MEM_SHIFT;
3103
3104 for (i=0;i < 3; i++) {
3105 io_mem_read[io_index][i] = unassigned_mem_read[i];
3106 io_mem_write[io_index][i] = unassigned_mem_write[i];
3107 }
3108 io_mem_opaque[io_index] = NULL;
3109 io_mem_used[io_index] = 0;
3110 }
3111
3112 #endif /* !defined(CONFIG_USER_ONLY) */
3113
3114 /* physical memory access (slow version, mainly for debug) */
3115 #if defined(CONFIG_USER_ONLY)
3116 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3117 int len, int is_write)
3118 {
3119 int l, flags;
3120 target_ulong page;
3121 void * p;
3122
3123 while (len > 0) {
3124 page = addr & TARGET_PAGE_MASK;
3125 l = (page + TARGET_PAGE_SIZE) - addr;
3126 if (l > len)
3127 l = len;
3128 flags = page_get_flags(page);
3129 if (!(flags & PAGE_VALID))
3130 return;
3131 if (is_write) {
3132 if (!(flags & PAGE_WRITE))
3133 return;
3134 /* XXX: this code should not depend on lock_user */
3135 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3136 /* FIXME - should this return an error rather than just fail? */
3137 return;
3138 memcpy(p, buf, l);
3139 unlock_user(p, addr, l);
3140 } else {
3141 if (!(flags & PAGE_READ))
3142 return;
3143 /* XXX: this code should not depend on lock_user */
3144 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3145 /* FIXME - should this return an error rather than just fail? */
3146 return;
3147 memcpy(buf, p, l);
3148 unlock_user(p, addr, 0);
3149 }
3150 len -= l;
3151 buf += l;
3152 addr += l;
3153 }
3154 }
3155
3156 #else
3157 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3158 int len, int is_write)
3159 {
3160 int l, io_index;
3161 uint8_t *ptr;
3162 uint32_t val;
3163 target_phys_addr_t page;
3164 unsigned long pd;
3165 PhysPageDesc *p;
3166
3167 while (len > 0) {
3168 page = addr & TARGET_PAGE_MASK;
3169 l = (page + TARGET_PAGE_SIZE) - addr;
3170 if (l > len)
3171 l = len;
3172 p = phys_page_find(page >> TARGET_PAGE_BITS);
3173 if (!p) {
3174 pd = IO_MEM_UNASSIGNED;
3175 } else {
3176 pd = p->phys_offset;
3177 }
3178
3179 if (is_write) {
3180 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3181 target_phys_addr_t addr1 = addr;
3182 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3183 if (p)
3184 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3185 /* XXX: could force cpu_single_env to NULL to avoid
3186 potential bugs */
3187 if (l >= 4 && ((addr1 & 3) == 0)) {
3188 /* 32 bit write access */
3189 val = ldl_p(buf);
3190 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3191 l = 4;
3192 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3193 /* 16 bit write access */
3194 val = lduw_p(buf);
3195 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3196 l = 2;
3197 } else {
3198 /* 8 bit write access */
3199 val = ldub_p(buf);
3200 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3201 l = 1;
3202 }
3203 } else {
3204 unsigned long addr1;
3205 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3206 /* RAM case */
3207 ptr = qemu_get_ram_ptr(addr1);
3208 memcpy(ptr, buf, l);
3209 if (!cpu_physical_memory_is_dirty(addr1)) {
3210 /* invalidate code */
3211 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3212 /* set dirty bit */
3213 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3214 (0xff & ~CODE_DIRTY_FLAG);
3215 }
3216 }
3217 } else {
3218 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3219 !(pd & IO_MEM_ROMD)) {
3220 target_phys_addr_t addr1 = addr;
3221 /* I/O case */
3222 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3223 if (p)
3224 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3225 if (l >= 4 && ((addr1 & 3) == 0)) {
3226 /* 32 bit read access */
3227 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3228 stl_p(buf, val);
3229 l = 4;
3230 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3231 /* 16 bit read access */
3232 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3233 stw_p(buf, val);
3234 l = 2;
3235 } else {
3236 /* 8 bit read access */
3237 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3238 stb_p(buf, val);
3239 l = 1;
3240 }
3241 } else {
3242 /* RAM case */
3243 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3244 (addr & ~TARGET_PAGE_MASK);
3245 memcpy(buf, ptr, l);
3246 }
3247 }
3248 len -= l;
3249 buf += l;
3250 addr += l;
3251 }
3252 }
3253
3254 /* used for ROM loading : can write in RAM and ROM */
3255 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3256 const uint8_t *buf, int len)
3257 {
3258 int l;
3259 uint8_t *ptr;
3260 target_phys_addr_t page;
3261 unsigned long pd;
3262 PhysPageDesc *p;
3263
3264 while (len > 0) {
3265 page = addr & TARGET_PAGE_MASK;
3266 l = (page + TARGET_PAGE_SIZE) - addr;
3267 if (l > len)
3268 l = len;
3269 p = phys_page_find(page >> TARGET_PAGE_BITS);
3270 if (!p) {
3271 pd = IO_MEM_UNASSIGNED;
3272 } else {
3273 pd = p->phys_offset;
3274 }
3275
3276 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3277 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3278 !(pd & IO_MEM_ROMD)) {
3279 /* do nothing */
3280 } else {
3281 unsigned long addr1;
3282 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3283 /* ROM/RAM case */
3284 ptr = qemu_get_ram_ptr(addr1);
3285 memcpy(ptr, buf, l);
3286 }
3287 len -= l;
3288 buf += l;
3289 addr += l;
3290 }
3291 }
3292
3293 typedef struct {
3294 void *buffer;
3295 target_phys_addr_t addr;
3296 target_phys_addr_t len;
3297 } BounceBuffer;
3298
3299 static BounceBuffer bounce;
3300
3301 typedef struct MapClient {
3302 void *opaque;
3303 void (*callback)(void *opaque);
3304 LIST_ENTRY(MapClient) link;
3305 } MapClient;
3306
3307 static LIST_HEAD(map_client_list, MapClient) map_client_list
3308 = LIST_HEAD_INITIALIZER(map_client_list);
3309
3310 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3311 {
3312 MapClient *client = qemu_malloc(sizeof(*client));
3313
3314 client->opaque = opaque;
3315 client->callback = callback;
3316 LIST_INSERT_HEAD(&map_client_list, client, link);
3317 return client;
3318 }
3319
3320 void cpu_unregister_map_client(void *_client)
3321 {
3322 MapClient *client = (MapClient *)_client;
3323
3324 LIST_REMOVE(client, link);
3325 }
3326
3327 static void cpu_notify_map_clients(void)
3328 {
3329 MapClient *client;
3330
3331 while (!LIST_EMPTY(&map_client_list)) {
3332 client = LIST_FIRST(&map_client_list);
3333 client->callback(client->opaque);
3334 LIST_REMOVE(client, link);
3335 }
3336 }
3337
3338 /* Map a physical memory region into a host virtual address.
3339 * May map a subset of the requested range, given by and returned in *plen.
3340 * May return NULL if resources needed to perform the mapping are exhausted.
3341 * Use only for reads OR writes - not for read-modify-write operations.
3342 * Use cpu_register_map_client() to know when retrying the map operation is
3343 * likely to succeed.
3344 */
3345 void *cpu_physical_memory_map(target_phys_addr_t addr,
3346 target_phys_addr_t *plen,
3347 int is_write)
3348 {
3349 target_phys_addr_t len = *plen;
3350 target_phys_addr_t done = 0;
3351 int l;
3352 uint8_t *ret = NULL;
3353 uint8_t *ptr;
3354 target_phys_addr_t page;
3355 unsigned long pd;
3356 PhysPageDesc *p;
3357 unsigned long addr1;
3358
3359 while (len > 0) {
3360 page = addr & TARGET_PAGE_MASK;
3361 l = (page + TARGET_PAGE_SIZE) - addr;
3362 if (l > len)
3363 l = len;
3364 p = phys_page_find(page >> TARGET_PAGE_BITS);
3365 if (!p) {
3366 pd = IO_MEM_UNASSIGNED;
3367 } else {
3368 pd = p->phys_offset;
3369 }
3370
3371 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3372 if (done || bounce.buffer) {
3373 break;
3374 }
3375 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3376 bounce.addr = addr;
3377 bounce.len = l;
3378 if (!is_write) {
3379 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3380 }
3381 ptr = bounce.buffer;
3382 } else {
3383 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3384 ptr = qemu_get_ram_ptr(addr1);
3385 }
3386 if (!done) {
3387 ret = ptr;
3388 } else if (ret + done != ptr) {
3389 break;
3390 }
3391
3392 len -= l;
3393 addr += l;
3394 done += l;
3395 }
3396 *plen = done;
3397 return ret;
3398 }
3399
3400 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3401 * Will also mark the memory as dirty if is_write == 1. access_len gives
3402 * the amount of memory that was actually read or written by the caller.
3403 */
3404 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3405 int is_write, target_phys_addr_t access_len)
3406 {
3407 if (buffer != bounce.buffer) {
3408 if (is_write) {
3409 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3410 while (access_len) {
3411 unsigned l;
3412 l = TARGET_PAGE_SIZE;
3413 if (l > access_len)
3414 l = access_len;
3415 if (!cpu_physical_memory_is_dirty(addr1)) {
3416 /* invalidate code */
3417 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3418 /* set dirty bit */
3419 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3420 (0xff & ~CODE_DIRTY_FLAG);
3421 }
3422 addr1 += l;
3423 access_len -= l;
3424 }
3425 }
3426 return;
3427 }
3428 if (is_write) {
3429 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3430 }
3431 qemu_free(bounce.buffer);
3432 bounce.buffer = NULL;
3433 cpu_notify_map_clients();
3434 }
3435
3436 /* warning: addr must be aligned */
3437 uint32_t ldl_phys(target_phys_addr_t addr)
3438 {
3439 int io_index;
3440 uint8_t *ptr;
3441 uint32_t val;
3442 unsigned long pd;
3443 PhysPageDesc *p;
3444
3445 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3446 if (!p) {
3447 pd = IO_MEM_UNASSIGNED;
3448 } else {
3449 pd = p->phys_offset;
3450 }
3451
3452 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3453 !(pd & IO_MEM_ROMD)) {
3454 /* I/O case */
3455 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3456 if (p)
3457 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3458 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3459 } else {
3460 /* RAM case */
3461 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3462 (addr & ~TARGET_PAGE_MASK);
3463 val = ldl_p(ptr);
3464 }
3465 return val;
3466 }
3467
3468 /* warning: addr must be aligned */
3469 uint64_t ldq_phys(target_phys_addr_t addr)
3470 {
3471 int io_index;
3472 uint8_t *ptr;
3473 uint64_t val;
3474 unsigned long pd;
3475 PhysPageDesc *p;
3476
3477 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3478 if (!p) {
3479 pd = IO_MEM_UNASSIGNED;
3480 } else {
3481 pd = p->phys_offset;
3482 }
3483
3484 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3485 !(pd & IO_MEM_ROMD)) {
3486 /* I/O case */
3487 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3488 if (p)
3489 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3490 #ifdef TARGET_WORDS_BIGENDIAN
3491 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3492 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3493 #else
3494 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3495 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3496 #endif
3497 } else {
3498 /* RAM case */
3499 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3500 (addr & ~TARGET_PAGE_MASK);
3501 val = ldq_p(ptr);
3502 }
3503 return val;
3504 }
3505
3506 /* XXX: optimize */
3507 uint32_t ldub_phys(target_phys_addr_t addr)
3508 {
3509 uint8_t val;
3510 cpu_physical_memory_read(addr, &val, 1);
3511 return val;
3512 }
3513
3514 /* XXX: optimize */
3515 uint32_t lduw_phys(target_phys_addr_t addr)
3516 {
3517 uint16_t val;
3518 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3519 return tswap16(val);
3520 }
3521
3522 /* warning: addr must be aligned. The ram page is not masked as dirty
3523 and the code inside is not invalidated. It is useful if the dirty
3524 bits are used to track modified PTEs */
3525 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3526 {
3527 int io_index;
3528 uint8_t *ptr;
3529 unsigned long pd;
3530 PhysPageDesc *p;
3531
3532 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3533 if (!p) {
3534 pd = IO_MEM_UNASSIGNED;
3535 } else {
3536 pd = p->phys_offset;
3537 }
3538
3539 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3540 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3541 if (p)
3542 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3543 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3544 } else {
3545 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3546 ptr = qemu_get_ram_ptr(addr1);
3547 stl_p(ptr, val);
3548
3549 if (unlikely(in_migration)) {
3550 if (!cpu_physical_memory_is_dirty(addr1)) {
3551 /* invalidate code */
3552 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3553 /* set dirty bit */
3554 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3555 (0xff & ~CODE_DIRTY_FLAG);
3556 }
3557 }
3558 }
3559 }
3560
3561 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3562 {
3563 int io_index;
3564 uint8_t *ptr;
3565 unsigned long pd;
3566 PhysPageDesc *p;
3567
3568 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3569 if (!p) {
3570 pd = IO_MEM_UNASSIGNED;
3571 } else {
3572 pd = p->phys_offset;
3573 }
3574
3575 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3576 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3577 if (p)
3578 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3579 #ifdef TARGET_WORDS_BIGENDIAN
3580 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3581 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3582 #else
3583 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3584 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3585 #endif
3586 } else {
3587 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3588 (addr & ~TARGET_PAGE_MASK);
3589 stq_p(ptr, val);
3590 }
3591 }
3592
3593 /* warning: addr must be aligned */
3594 void stl_phys(target_phys_addr_t addr, uint32_t val)
3595 {
3596 int io_index;
3597 uint8_t *ptr;
3598 unsigned long pd;
3599 PhysPageDesc *p;
3600
3601 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3602 if (!p) {
3603 pd = IO_MEM_UNASSIGNED;
3604 } else {
3605 pd = p->phys_offset;
3606 }
3607
3608 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3609 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3610 if (p)
3611 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3612 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3613 } else {
3614 unsigned long addr1;
3615 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3616 /* RAM case */
3617 ptr = qemu_get_ram_ptr(addr1);
3618 stl_p(ptr, val);
3619 if (!cpu_physical_memory_is_dirty(addr1)) {
3620 /* invalidate code */
3621 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3622 /* set dirty bit */
3623 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3624 (0xff & ~CODE_DIRTY_FLAG);
3625 }
3626 }
3627 }
3628
3629 /* XXX: optimize */
3630 void stb_phys(target_phys_addr_t addr, uint32_t val)
3631 {
3632 uint8_t v = val;
3633 cpu_physical_memory_write(addr, &v, 1);
3634 }
3635
3636 /* XXX: optimize */
3637 void stw_phys(target_phys_addr_t addr, uint32_t val)
3638 {
3639 uint16_t v = tswap16(val);
3640 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3641 }
3642
3643 /* XXX: optimize */
3644 void stq_phys(target_phys_addr_t addr, uint64_t val)
3645 {
3646 val = tswap64(val);
3647 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3648 }
3649
3650 #endif
3651
3652 /* virtual memory access for debug (includes writing to ROM) */
3653 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3654 uint8_t *buf, int len, int is_write)
3655 {
3656 int l;
3657 target_phys_addr_t phys_addr;
3658 target_ulong page;
3659
3660 while (len > 0) {
3661 page = addr & TARGET_PAGE_MASK;
3662 phys_addr = cpu_get_phys_page_debug(env, page);
3663 /* if no physical page mapped, return an error */
3664 if (phys_addr == -1)
3665 return -1;
3666 l = (page + TARGET_PAGE_SIZE) - addr;
3667 if (l > len)
3668 l = len;
3669 phys_addr += (addr & ~TARGET_PAGE_MASK);
3670 #if !defined(CONFIG_USER_ONLY)
3671 if (is_write)
3672 cpu_physical_memory_write_rom(phys_addr, buf, l);
3673 else
3674 #endif
3675 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3676 len -= l;
3677 buf += l;
3678 addr += l;
3679 }
3680 return 0;
3681 }
3682
3683 /* in deterministic execution mode, instructions doing device I/Os
3684 must be at the end of the TB */
3685 void cpu_io_recompile(CPUState *env, void *retaddr)
3686 {
3687 TranslationBlock *tb;
3688 uint32_t n, cflags;
3689 target_ulong pc, cs_base;
3690 uint64_t flags;
3691
3692 tb = tb_find_pc((unsigned long)retaddr);
3693 if (!tb) {
3694 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3695 retaddr);
3696 }
3697 n = env->icount_decr.u16.low + tb->icount;
3698 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3699 /* Calculate how many instructions had been executed before the fault
3700 occurred. */
3701 n = n - env->icount_decr.u16.low;
3702 /* Generate a new TB ending on the I/O insn. */
3703 n++;
3704 /* On MIPS and SH, delay slot instructions can only be restarted if
3705 they were already the first instruction in the TB. If this is not
3706 the first instruction in a TB then re-execute the preceding
3707 branch. */
3708 #if defined(TARGET_MIPS)
3709 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3710 env->active_tc.PC -= 4;
3711 env->icount_decr.u16.low++;
3712 env->hflags &= ~MIPS_HFLAG_BMASK;
3713 }
3714 #elif defined(TARGET_SH4)
3715 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3716 && n > 1) {
3717 env->pc -= 2;
3718 env->icount_decr.u16.low++;
3719 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3720 }
3721 #endif
3722 /* This should never happen. */
3723 if (n > CF_COUNT_MASK)
3724 cpu_abort(env, "TB too big during recompile");
3725
3726 cflags = n | CF_LAST_IO;
3727 pc = tb->pc;
3728 cs_base = tb->cs_base;
3729 flags = tb->flags;
3730 tb_phys_invalidate(tb, -1);
3731 /* FIXME: In theory this could raise an exception. In practice
3732 we have already translated the block once so it's probably ok. */
3733 tb_gen_code(env, pc, cs_base, flags, cflags);
3734 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3735 the first in the TB) then we end up generating a whole new TB and
3736 repeating the fault, which is horribly inefficient.
3737 Better would be to execute just this insn uncached, or generate a
3738 second new TB. */
3739 cpu_resume_from_signal(env, NULL);
3740 }
3741
3742 void dump_exec_info(FILE *f,
3743 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3744 {
3745 int i, target_code_size, max_target_code_size;
3746 int direct_jmp_count, direct_jmp2_count, cross_page;
3747 TranslationBlock *tb;
3748
3749 target_code_size = 0;
3750 max_target_code_size = 0;
3751 cross_page = 0;
3752 direct_jmp_count = 0;
3753 direct_jmp2_count = 0;
3754 for(i = 0; i < nb_tbs; i++) {
3755 tb = &tbs[i];
3756 target_code_size += tb->size;
3757 if (tb->size > max_target_code_size)
3758 max_target_code_size = tb->size;
3759 if (tb->page_addr[1] != -1)
3760 cross_page++;
3761 if (tb->tb_next_offset[0] != 0xffff) {
3762 direct_jmp_count++;
3763 if (tb->tb_next_offset[1] != 0xffff) {
3764 direct_jmp2_count++;
3765 }
3766 }
3767 }
3768 /* XXX: avoid using doubles ? */
3769 cpu_fprintf(f, "Translation buffer state:\n");
3770 cpu_fprintf(f, "gen code size %ld/%ld\n",
3771 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3772 cpu_fprintf(f, "TB count %d/%d\n",
3773 nb_tbs, code_gen_max_blocks);
3774 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3775 nb_tbs ? target_code_size / nb_tbs : 0,
3776 max_target_code_size);
3777 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3778 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3779 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3780 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3781 cross_page,
3782 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3783 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3784 direct_jmp_count,
3785 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3786 direct_jmp2_count,
3787 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3788 cpu_fprintf(f, "\nStatistics:\n");
3789 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3790 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3791 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3792 tcg_dump_info(f, cpu_fprintf);
3793 }
3794
3795 #if !defined(CONFIG_USER_ONLY)
3796
3797 #define MMUSUFFIX _cmmu
3798 #define GETPC() NULL
3799 #define env cpu_single_env
3800 #define SOFTMMU_CODE_ACCESS
3801
3802 #define SHIFT 0
3803 #include "softmmu_template.h"
3804
3805 #define SHIFT 1
3806 #include "softmmu_template.h"
3807
3808 #define SHIFT 2
3809 #include "softmmu_template.h"
3810
3811 #define SHIFT 3
3812 #include "softmmu_template.h"
3813
3814 #undef env
3815
3816 #endif