]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Merge remote-tracking branch 'remotes/vivier/tags/m68k-next-pull-request' into staging
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include "qemu.h"
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace-root.h"
54
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
58
59 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 #include "exec/log.h"
68
69 #include "qemu/pmem.h"
70
71 #include "migration/vmstate.h"
72
73 #include "qemu/range.h"
74 #ifndef _WIN32
75 #include "qemu/mmap-alloc.h"
76 #endif
77
78 #include "monitor/monitor.h"
79
80 #ifdef CONFIG_LIBDAXCTL
81 #include <daxctl/libdaxctl.h>
82 #endif
83
84 //#define DEBUG_SUBPAGE
85
86 #if !defined(CONFIG_USER_ONLY)
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
89 */
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
94
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
97
98 static MemoryRegion io_mem_unassigned;
99 #endif
100
101 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
102
103 /* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
105 __thread CPUState *current_cpu;
106
107 uintptr_t qemu_host_page_size;
108 intptr_t qemu_host_page_mask;
109
110 #if !defined(CONFIG_USER_ONLY)
111 /* 0 = Do not count executed instructions.
112 1 = Precise instruction counting.
113 2 = Adaptive rate instruction counting. */
114 int use_icount;
115
116 typedef struct PhysPageEntry PhysPageEntry;
117
118 struct PhysPageEntry {
119 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
120 uint32_t skip : 6;
121 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
122 uint32_t ptr : 26;
123 };
124
125 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
126
127 /* Size of the L2 (and L3, etc) page tables. */
128 #define ADDR_SPACE_BITS 64
129
130 #define P_L2_BITS 9
131 #define P_L2_SIZE (1 << P_L2_BITS)
132
133 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
134
135 typedef PhysPageEntry Node[P_L2_SIZE];
136
137 typedef struct PhysPageMap {
138 struct rcu_head rcu;
139
140 unsigned sections_nb;
141 unsigned sections_nb_alloc;
142 unsigned nodes_nb;
143 unsigned nodes_nb_alloc;
144 Node *nodes;
145 MemoryRegionSection *sections;
146 } PhysPageMap;
147
148 struct AddressSpaceDispatch {
149 MemoryRegionSection *mru_section;
150 /* This is a multi-level map on the physical address space.
151 * The bottom level has pointers to MemoryRegionSections.
152 */
153 PhysPageEntry phys_map;
154 PhysPageMap map;
155 };
156
157 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
158 typedef struct subpage_t {
159 MemoryRegion iomem;
160 FlatView *fv;
161 hwaddr base;
162 uint16_t sub_section[];
163 } subpage_t;
164
165 #define PHYS_SECTION_UNASSIGNED 0
166
167 static void io_mem_init(void);
168 static void memory_map_init(void);
169 static void tcg_log_global_after_sync(MemoryListener *listener);
170 static void tcg_commit(MemoryListener *listener);
171
172 /**
173 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
174 * @cpu: the CPU whose AddressSpace this is
175 * @as: the AddressSpace itself
176 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
177 * @tcg_as_listener: listener for tracking changes to the AddressSpace
178 */
179 struct CPUAddressSpace {
180 CPUState *cpu;
181 AddressSpace *as;
182 struct AddressSpaceDispatch *memory_dispatch;
183 MemoryListener tcg_as_listener;
184 };
185
186 struct DirtyBitmapSnapshot {
187 ram_addr_t start;
188 ram_addr_t end;
189 unsigned long dirty[];
190 };
191
192 #endif
193
194 #if !defined(CONFIG_USER_ONLY)
195
196 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
197 {
198 static unsigned alloc_hint = 16;
199 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
200 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
201 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
202 alloc_hint = map->nodes_nb_alloc;
203 }
204 }
205
206 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
207 {
208 unsigned i;
209 uint32_t ret;
210 PhysPageEntry e;
211 PhysPageEntry *p;
212
213 ret = map->nodes_nb++;
214 p = map->nodes[ret];
215 assert(ret != PHYS_MAP_NODE_NIL);
216 assert(ret != map->nodes_nb_alloc);
217
218 e.skip = leaf ? 0 : 1;
219 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
220 for (i = 0; i < P_L2_SIZE; ++i) {
221 memcpy(&p[i], &e, sizeof(e));
222 }
223 return ret;
224 }
225
226 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
227 hwaddr *index, uint64_t *nb, uint16_t leaf,
228 int level)
229 {
230 PhysPageEntry *p;
231 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
232
233 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
234 lp->ptr = phys_map_node_alloc(map, level == 0);
235 }
236 p = map->nodes[lp->ptr];
237 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
238
239 while (*nb && lp < &p[P_L2_SIZE]) {
240 if ((*index & (step - 1)) == 0 && *nb >= step) {
241 lp->skip = 0;
242 lp->ptr = leaf;
243 *index += step;
244 *nb -= step;
245 } else {
246 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
247 }
248 ++lp;
249 }
250 }
251
252 static void phys_page_set(AddressSpaceDispatch *d,
253 hwaddr index, uint64_t nb,
254 uint16_t leaf)
255 {
256 /* Wildly overreserve - it doesn't matter much. */
257 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
258
259 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
260 }
261
262 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
263 * and update our entry so we can skip it and go directly to the destination.
264 */
265 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
266 {
267 unsigned valid_ptr = P_L2_SIZE;
268 int valid = 0;
269 PhysPageEntry *p;
270 int i;
271
272 if (lp->ptr == PHYS_MAP_NODE_NIL) {
273 return;
274 }
275
276 p = nodes[lp->ptr];
277 for (i = 0; i < P_L2_SIZE; i++) {
278 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
279 continue;
280 }
281
282 valid_ptr = i;
283 valid++;
284 if (p[i].skip) {
285 phys_page_compact(&p[i], nodes);
286 }
287 }
288
289 /* We can only compress if there's only one child. */
290 if (valid != 1) {
291 return;
292 }
293
294 assert(valid_ptr < P_L2_SIZE);
295
296 /* Don't compress if it won't fit in the # of bits we have. */
297 if (P_L2_LEVELS >= (1 << 6) &&
298 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
299 return;
300 }
301
302 lp->ptr = p[valid_ptr].ptr;
303 if (!p[valid_ptr].skip) {
304 /* If our only child is a leaf, make this a leaf. */
305 /* By design, we should have made this node a leaf to begin with so we
306 * should never reach here.
307 * But since it's so simple to handle this, let's do it just in case we
308 * change this rule.
309 */
310 lp->skip = 0;
311 } else {
312 lp->skip += p[valid_ptr].skip;
313 }
314 }
315
316 void address_space_dispatch_compact(AddressSpaceDispatch *d)
317 {
318 if (d->phys_map.skip) {
319 phys_page_compact(&d->phys_map, d->map.nodes);
320 }
321 }
322
323 static inline bool section_covers_addr(const MemoryRegionSection *section,
324 hwaddr addr)
325 {
326 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
327 * the section must cover the entire address space.
328 */
329 return int128_gethi(section->size) ||
330 range_covers_byte(section->offset_within_address_space,
331 int128_getlo(section->size), addr);
332 }
333
334 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
335 {
336 PhysPageEntry lp = d->phys_map, *p;
337 Node *nodes = d->map.nodes;
338 MemoryRegionSection *sections = d->map.sections;
339 hwaddr index = addr >> TARGET_PAGE_BITS;
340 int i;
341
342 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
343 if (lp.ptr == PHYS_MAP_NODE_NIL) {
344 return &sections[PHYS_SECTION_UNASSIGNED];
345 }
346 p = nodes[lp.ptr];
347 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
348 }
349
350 if (section_covers_addr(&sections[lp.ptr], addr)) {
351 return &sections[lp.ptr];
352 } else {
353 return &sections[PHYS_SECTION_UNASSIGNED];
354 }
355 }
356
357 /* Called from RCU critical section */
358 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
359 hwaddr addr,
360 bool resolve_subpage)
361 {
362 MemoryRegionSection *section = atomic_read(&d->mru_section);
363 subpage_t *subpage;
364
365 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
366 !section_covers_addr(section, addr)) {
367 section = phys_page_find(d, addr);
368 atomic_set(&d->mru_section, section);
369 }
370 if (resolve_subpage && section->mr->subpage) {
371 subpage = container_of(section->mr, subpage_t, iomem);
372 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
373 }
374 return section;
375 }
376
377 /* Called from RCU critical section */
378 static MemoryRegionSection *
379 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
380 hwaddr *plen, bool resolve_subpage)
381 {
382 MemoryRegionSection *section;
383 MemoryRegion *mr;
384 Int128 diff;
385
386 section = address_space_lookup_region(d, addr, resolve_subpage);
387 /* Compute offset within MemoryRegionSection */
388 addr -= section->offset_within_address_space;
389
390 /* Compute offset within MemoryRegion */
391 *xlat = addr + section->offset_within_region;
392
393 mr = section->mr;
394
395 /* MMIO registers can be expected to perform full-width accesses based only
396 * on their address, without considering adjacent registers that could
397 * decode to completely different MemoryRegions. When such registers
398 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
399 * regions overlap wildly. For this reason we cannot clamp the accesses
400 * here.
401 *
402 * If the length is small (as is the case for address_space_ldl/stl),
403 * everything works fine. If the incoming length is large, however,
404 * the caller really has to do the clamping through memory_access_size.
405 */
406 if (memory_region_is_ram(mr)) {
407 diff = int128_sub(section->size, int128_make64(addr));
408 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
409 }
410 return section;
411 }
412
413 /**
414 * address_space_translate_iommu - translate an address through an IOMMU
415 * memory region and then through the target address space.
416 *
417 * @iommu_mr: the IOMMU memory region that we start the translation from
418 * @addr: the address to be translated through the MMU
419 * @xlat: the translated address offset within the destination memory region.
420 * It cannot be %NULL.
421 * @plen_out: valid read/write length of the translated address. It
422 * cannot be %NULL.
423 * @page_mask_out: page mask for the translated address. This
424 * should only be meaningful for IOMMU translated
425 * addresses, since there may be huge pages that this bit
426 * would tell. It can be %NULL if we don't care about it.
427 * @is_write: whether the translation operation is for write
428 * @is_mmio: whether this can be MMIO, set true if it can
429 * @target_as: the address space targeted by the IOMMU
430 * @attrs: transaction attributes
431 *
432 * This function is called from RCU critical section. It is the common
433 * part of flatview_do_translate and address_space_translate_cached.
434 */
435 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
436 hwaddr *xlat,
437 hwaddr *plen_out,
438 hwaddr *page_mask_out,
439 bool is_write,
440 bool is_mmio,
441 AddressSpace **target_as,
442 MemTxAttrs attrs)
443 {
444 MemoryRegionSection *section;
445 hwaddr page_mask = (hwaddr)-1;
446
447 do {
448 hwaddr addr = *xlat;
449 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
450 int iommu_idx = 0;
451 IOMMUTLBEntry iotlb;
452
453 if (imrc->attrs_to_index) {
454 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
455 }
456
457 iotlb = imrc->translate(iommu_mr, addr, is_write ?
458 IOMMU_WO : IOMMU_RO, iommu_idx);
459
460 if (!(iotlb.perm & (1 << is_write))) {
461 goto unassigned;
462 }
463
464 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
465 | (addr & iotlb.addr_mask));
466 page_mask &= iotlb.addr_mask;
467 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
468 *target_as = iotlb.target_as;
469
470 section = address_space_translate_internal(
471 address_space_to_dispatch(iotlb.target_as), addr, xlat,
472 plen_out, is_mmio);
473
474 iommu_mr = memory_region_get_iommu(section->mr);
475 } while (unlikely(iommu_mr));
476
477 if (page_mask_out) {
478 *page_mask_out = page_mask;
479 }
480 return *section;
481
482 unassigned:
483 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
484 }
485
486 /**
487 * flatview_do_translate - translate an address in FlatView
488 *
489 * @fv: the flat view that we want to translate on
490 * @addr: the address to be translated in above address space
491 * @xlat: the translated address offset within memory region. It
492 * cannot be @NULL.
493 * @plen_out: valid read/write length of the translated address. It
494 * can be @NULL when we don't care about it.
495 * @page_mask_out: page mask for the translated address. This
496 * should only be meaningful for IOMMU translated
497 * addresses, since there may be huge pages that this bit
498 * would tell. It can be @NULL if we don't care about it.
499 * @is_write: whether the translation operation is for write
500 * @is_mmio: whether this can be MMIO, set true if it can
501 * @target_as: the address space targeted by the IOMMU
502 * @attrs: memory transaction attributes
503 *
504 * This function is called from RCU critical section
505 */
506 static MemoryRegionSection flatview_do_translate(FlatView *fv,
507 hwaddr addr,
508 hwaddr *xlat,
509 hwaddr *plen_out,
510 hwaddr *page_mask_out,
511 bool is_write,
512 bool is_mmio,
513 AddressSpace **target_as,
514 MemTxAttrs attrs)
515 {
516 MemoryRegionSection *section;
517 IOMMUMemoryRegion *iommu_mr;
518 hwaddr plen = (hwaddr)(-1);
519
520 if (!plen_out) {
521 plen_out = &plen;
522 }
523
524 section = address_space_translate_internal(
525 flatview_to_dispatch(fv), addr, xlat,
526 plen_out, is_mmio);
527
528 iommu_mr = memory_region_get_iommu(section->mr);
529 if (unlikely(iommu_mr)) {
530 return address_space_translate_iommu(iommu_mr, xlat,
531 plen_out, page_mask_out,
532 is_write, is_mmio,
533 target_as, attrs);
534 }
535 if (page_mask_out) {
536 /* Not behind an IOMMU, use default page size. */
537 *page_mask_out = ~TARGET_PAGE_MASK;
538 }
539
540 return *section;
541 }
542
543 /* Called from RCU critical section */
544 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
545 bool is_write, MemTxAttrs attrs)
546 {
547 MemoryRegionSection section;
548 hwaddr xlat, page_mask;
549
550 /*
551 * This can never be MMIO, and we don't really care about plen,
552 * but page mask.
553 */
554 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
555 NULL, &page_mask, is_write, false, &as,
556 attrs);
557
558 /* Illegal translation */
559 if (section.mr == &io_mem_unassigned) {
560 goto iotlb_fail;
561 }
562
563 /* Convert memory region offset into address space offset */
564 xlat += section.offset_within_address_space -
565 section.offset_within_region;
566
567 return (IOMMUTLBEntry) {
568 .target_as = as,
569 .iova = addr & ~page_mask,
570 .translated_addr = xlat & ~page_mask,
571 .addr_mask = page_mask,
572 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
573 .perm = IOMMU_RW,
574 };
575
576 iotlb_fail:
577 return (IOMMUTLBEntry) {0};
578 }
579
580 /* Called from RCU critical section */
581 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
582 hwaddr *plen, bool is_write,
583 MemTxAttrs attrs)
584 {
585 MemoryRegion *mr;
586 MemoryRegionSection section;
587 AddressSpace *as = NULL;
588
589 /* This can be MMIO, so setup MMIO bit. */
590 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
591 is_write, true, &as, attrs);
592 mr = section.mr;
593
594 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
595 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
596 *plen = MIN(page, *plen);
597 }
598
599 return mr;
600 }
601
602 typedef struct TCGIOMMUNotifier {
603 IOMMUNotifier n;
604 MemoryRegion *mr;
605 CPUState *cpu;
606 int iommu_idx;
607 bool active;
608 } TCGIOMMUNotifier;
609
610 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
611 {
612 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
613
614 if (!notifier->active) {
615 return;
616 }
617 tlb_flush(notifier->cpu);
618 notifier->active = false;
619 /* We leave the notifier struct on the list to avoid reallocating it later.
620 * Generally the number of IOMMUs a CPU deals with will be small.
621 * In any case we can't unregister the iommu notifier from a notify
622 * callback.
623 */
624 }
625
626 static void tcg_register_iommu_notifier(CPUState *cpu,
627 IOMMUMemoryRegion *iommu_mr,
628 int iommu_idx)
629 {
630 /* Make sure this CPU has an IOMMU notifier registered for this
631 * IOMMU/IOMMU index combination, so that we can flush its TLB
632 * when the IOMMU tells us the mappings we've cached have changed.
633 */
634 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
635 TCGIOMMUNotifier *notifier;
636 Error *err = NULL;
637 int i, ret;
638
639 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
640 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
641 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
642 break;
643 }
644 }
645 if (i == cpu->iommu_notifiers->len) {
646 /* Not found, add a new entry at the end of the array */
647 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
648 notifier = g_new0(TCGIOMMUNotifier, 1);
649 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
650
651 notifier->mr = mr;
652 notifier->iommu_idx = iommu_idx;
653 notifier->cpu = cpu;
654 /* Rather than trying to register interest in the specific part
655 * of the iommu's address space that we've accessed and then
656 * expand it later as subsequent accesses touch more of it, we
657 * just register interest in the whole thing, on the assumption
658 * that iommu reconfiguration will be rare.
659 */
660 iommu_notifier_init(&notifier->n,
661 tcg_iommu_unmap_notify,
662 IOMMU_NOTIFIER_UNMAP,
663 0,
664 HWADDR_MAX,
665 iommu_idx);
666 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
667 &err);
668 if (ret) {
669 error_report_err(err);
670 exit(1);
671 }
672 }
673
674 if (!notifier->active) {
675 notifier->active = true;
676 }
677 }
678
679 static void tcg_iommu_free_notifier_list(CPUState *cpu)
680 {
681 /* Destroy the CPU's notifier list */
682 int i;
683 TCGIOMMUNotifier *notifier;
684
685 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
686 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
687 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
688 g_free(notifier);
689 }
690 g_array_free(cpu->iommu_notifiers, true);
691 }
692
693 /* Called from RCU critical section */
694 MemoryRegionSection *
695 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
696 hwaddr *xlat, hwaddr *plen,
697 MemTxAttrs attrs, int *prot)
698 {
699 MemoryRegionSection *section;
700 IOMMUMemoryRegion *iommu_mr;
701 IOMMUMemoryRegionClass *imrc;
702 IOMMUTLBEntry iotlb;
703 int iommu_idx;
704 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
705
706 for (;;) {
707 section = address_space_translate_internal(d, addr, &addr, plen, false);
708
709 iommu_mr = memory_region_get_iommu(section->mr);
710 if (!iommu_mr) {
711 break;
712 }
713
714 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
715
716 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
717 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
718 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
719 * doesn't short-cut its translation table walk.
720 */
721 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
722 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
723 | (addr & iotlb.addr_mask));
724 /* Update the caller's prot bits to remove permissions the IOMMU
725 * is giving us a failure response for. If we get down to no
726 * permissions left at all we can give up now.
727 */
728 if (!(iotlb.perm & IOMMU_RO)) {
729 *prot &= ~(PAGE_READ | PAGE_EXEC);
730 }
731 if (!(iotlb.perm & IOMMU_WO)) {
732 *prot &= ~PAGE_WRITE;
733 }
734
735 if (!*prot) {
736 goto translate_fail;
737 }
738
739 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
740 }
741
742 assert(!memory_region_is_iommu(section->mr));
743 *xlat = addr;
744 return section;
745
746 translate_fail:
747 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
748 }
749 #endif
750
751 #if !defined(CONFIG_USER_ONLY)
752
753 static int cpu_common_post_load(void *opaque, int version_id)
754 {
755 CPUState *cpu = opaque;
756
757 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
758 version_id is increased. */
759 cpu->interrupt_request &= ~0x01;
760 tlb_flush(cpu);
761
762 /* loadvm has just updated the content of RAM, bypassing the
763 * usual mechanisms that ensure we flush TBs for writes to
764 * memory we've translated code from. So we must flush all TBs,
765 * which will now be stale.
766 */
767 tb_flush(cpu);
768
769 return 0;
770 }
771
772 static int cpu_common_pre_load(void *opaque)
773 {
774 CPUState *cpu = opaque;
775
776 cpu->exception_index = -1;
777
778 return 0;
779 }
780
781 static bool cpu_common_exception_index_needed(void *opaque)
782 {
783 CPUState *cpu = opaque;
784
785 return tcg_enabled() && cpu->exception_index != -1;
786 }
787
788 static const VMStateDescription vmstate_cpu_common_exception_index = {
789 .name = "cpu_common/exception_index",
790 .version_id = 1,
791 .minimum_version_id = 1,
792 .needed = cpu_common_exception_index_needed,
793 .fields = (VMStateField[]) {
794 VMSTATE_INT32(exception_index, CPUState),
795 VMSTATE_END_OF_LIST()
796 }
797 };
798
799 static bool cpu_common_crash_occurred_needed(void *opaque)
800 {
801 CPUState *cpu = opaque;
802
803 return cpu->crash_occurred;
804 }
805
806 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
807 .name = "cpu_common/crash_occurred",
808 .version_id = 1,
809 .minimum_version_id = 1,
810 .needed = cpu_common_crash_occurred_needed,
811 .fields = (VMStateField[]) {
812 VMSTATE_BOOL(crash_occurred, CPUState),
813 VMSTATE_END_OF_LIST()
814 }
815 };
816
817 const VMStateDescription vmstate_cpu_common = {
818 .name = "cpu_common",
819 .version_id = 1,
820 .minimum_version_id = 1,
821 .pre_load = cpu_common_pre_load,
822 .post_load = cpu_common_post_load,
823 .fields = (VMStateField[]) {
824 VMSTATE_UINT32(halted, CPUState),
825 VMSTATE_UINT32(interrupt_request, CPUState),
826 VMSTATE_END_OF_LIST()
827 },
828 .subsections = (const VMStateDescription*[]) {
829 &vmstate_cpu_common_exception_index,
830 &vmstate_cpu_common_crash_occurred,
831 NULL
832 }
833 };
834
835 #endif
836
837 CPUState *qemu_get_cpu(int index)
838 {
839 CPUState *cpu;
840
841 CPU_FOREACH(cpu) {
842 if (cpu->cpu_index == index) {
843 return cpu;
844 }
845 }
846
847 return NULL;
848 }
849
850 #if !defined(CONFIG_USER_ONLY)
851 void cpu_address_space_init(CPUState *cpu, int asidx,
852 const char *prefix, MemoryRegion *mr)
853 {
854 CPUAddressSpace *newas;
855 AddressSpace *as = g_new0(AddressSpace, 1);
856 char *as_name;
857
858 assert(mr);
859 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
860 address_space_init(as, mr, as_name);
861 g_free(as_name);
862
863 /* Target code should have set num_ases before calling us */
864 assert(asidx < cpu->num_ases);
865
866 if (asidx == 0) {
867 /* address space 0 gets the convenience alias */
868 cpu->as = as;
869 }
870
871 /* KVM cannot currently support multiple address spaces. */
872 assert(asidx == 0 || !kvm_enabled());
873
874 if (!cpu->cpu_ases) {
875 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
876 }
877
878 newas = &cpu->cpu_ases[asidx];
879 newas->cpu = cpu;
880 newas->as = as;
881 if (tcg_enabled()) {
882 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
883 newas->tcg_as_listener.commit = tcg_commit;
884 memory_listener_register(&newas->tcg_as_listener, as);
885 }
886 }
887
888 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
889 {
890 /* Return the AddressSpace corresponding to the specified index */
891 return cpu->cpu_ases[asidx].as;
892 }
893 #endif
894
895 void cpu_exec_unrealizefn(CPUState *cpu)
896 {
897 CPUClass *cc = CPU_GET_CLASS(cpu);
898
899 tlb_destroy(cpu);
900 cpu_list_remove(cpu);
901
902 if (cc->vmsd != NULL) {
903 vmstate_unregister(NULL, cc->vmsd, cpu);
904 }
905 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
906 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
907 }
908 #ifndef CONFIG_USER_ONLY
909 tcg_iommu_free_notifier_list(cpu);
910 #endif
911 }
912
913 Property cpu_common_props[] = {
914 #ifndef CONFIG_USER_ONLY
915 /* Create a memory property for softmmu CPU object,
916 * so users can wire up its memory. (This can't go in hw/core/cpu.c
917 * because that file is compiled only once for both user-mode
918 * and system builds.) The default if no link is set up is to use
919 * the system address space.
920 */
921 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
922 MemoryRegion *),
923 #endif
924 DEFINE_PROP_END_OF_LIST(),
925 };
926
927 void cpu_exec_initfn(CPUState *cpu)
928 {
929 cpu->as = NULL;
930 cpu->num_ases = 0;
931
932 #ifndef CONFIG_USER_ONLY
933 cpu->thread_id = qemu_get_thread_id();
934 cpu->memory = system_memory;
935 object_ref(OBJECT(cpu->memory));
936 #endif
937 }
938
939 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
940 {
941 CPUClass *cc = CPU_GET_CLASS(cpu);
942 static bool tcg_target_initialized;
943
944 cpu_list_add(cpu);
945
946 if (tcg_enabled() && !tcg_target_initialized) {
947 tcg_target_initialized = true;
948 cc->tcg_initialize();
949 }
950 tlb_init(cpu);
951
952 qemu_plugin_vcpu_init_hook(cpu);
953
954 #ifdef CONFIG_USER_ONLY
955 assert(cc->vmsd == NULL);
956 #else /* !CONFIG_USER_ONLY */
957 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
958 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
959 }
960 if (cc->vmsd != NULL) {
961 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
962 }
963
964 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
965 #endif
966 }
967
968 const char *parse_cpu_option(const char *cpu_option)
969 {
970 ObjectClass *oc;
971 CPUClass *cc;
972 gchar **model_pieces;
973 const char *cpu_type;
974
975 model_pieces = g_strsplit(cpu_option, ",", 2);
976 if (!model_pieces[0]) {
977 error_report("-cpu option cannot be empty");
978 exit(1);
979 }
980
981 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
982 if (oc == NULL) {
983 error_report("unable to find CPU model '%s'", model_pieces[0]);
984 g_strfreev(model_pieces);
985 exit(EXIT_FAILURE);
986 }
987
988 cpu_type = object_class_get_name(oc);
989 cc = CPU_CLASS(oc);
990 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
991 g_strfreev(model_pieces);
992 return cpu_type;
993 }
994
995 #if defined(CONFIG_USER_ONLY)
996 void tb_invalidate_phys_addr(target_ulong addr)
997 {
998 mmap_lock();
999 tb_invalidate_phys_page_range(addr, addr + 1);
1000 mmap_unlock();
1001 }
1002
1003 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1004 {
1005 tb_invalidate_phys_addr(pc);
1006 }
1007 #else
1008 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1009 {
1010 ram_addr_t ram_addr;
1011 MemoryRegion *mr;
1012 hwaddr l = 1;
1013
1014 if (!tcg_enabled()) {
1015 return;
1016 }
1017
1018 RCU_READ_LOCK_GUARD();
1019 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1020 if (!(memory_region_is_ram(mr)
1021 || memory_region_is_romd(mr))) {
1022 return;
1023 }
1024 ram_addr = memory_region_get_ram_addr(mr) + addr;
1025 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1026 }
1027
1028 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1029 {
1030 /*
1031 * There may not be a virtual to physical translation for the pc
1032 * right now, but there may exist cached TB for this pc.
1033 * Flush the whole TB cache to force re-translation of such TBs.
1034 * This is heavyweight, but we're debugging anyway.
1035 */
1036 tb_flush(cpu);
1037 }
1038 #endif
1039
1040 #ifndef CONFIG_USER_ONLY
1041 /* Add a watchpoint. */
1042 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1043 int flags, CPUWatchpoint **watchpoint)
1044 {
1045 CPUWatchpoint *wp;
1046 vaddr in_page;
1047
1048 /* forbid ranges which are empty or run off the end of the address space */
1049 if (len == 0 || (addr + len - 1) < addr) {
1050 error_report("tried to set invalid watchpoint at %"
1051 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1052 return -EINVAL;
1053 }
1054 wp = g_malloc(sizeof(*wp));
1055
1056 wp->vaddr = addr;
1057 wp->len = len;
1058 wp->flags = flags;
1059
1060 /* keep all GDB-injected watchpoints in front */
1061 if (flags & BP_GDB) {
1062 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1063 } else {
1064 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1065 }
1066
1067 in_page = -(addr | TARGET_PAGE_MASK);
1068 if (len <= in_page) {
1069 tlb_flush_page(cpu, addr);
1070 } else {
1071 tlb_flush(cpu);
1072 }
1073
1074 if (watchpoint)
1075 *watchpoint = wp;
1076 return 0;
1077 }
1078
1079 /* Remove a specific watchpoint. */
1080 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1081 int flags)
1082 {
1083 CPUWatchpoint *wp;
1084
1085 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1086 if (addr == wp->vaddr && len == wp->len
1087 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1088 cpu_watchpoint_remove_by_ref(cpu, wp);
1089 return 0;
1090 }
1091 }
1092 return -ENOENT;
1093 }
1094
1095 /* Remove a specific watchpoint by reference. */
1096 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1097 {
1098 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1099
1100 tlb_flush_page(cpu, watchpoint->vaddr);
1101
1102 g_free(watchpoint);
1103 }
1104
1105 /* Remove all matching watchpoints. */
1106 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1107 {
1108 CPUWatchpoint *wp, *next;
1109
1110 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1111 if (wp->flags & mask) {
1112 cpu_watchpoint_remove_by_ref(cpu, wp);
1113 }
1114 }
1115 }
1116
1117 /* Return true if this watchpoint address matches the specified
1118 * access (ie the address range covered by the watchpoint overlaps
1119 * partially or completely with the address range covered by the
1120 * access).
1121 */
1122 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1123 vaddr addr, vaddr len)
1124 {
1125 /* We know the lengths are non-zero, but a little caution is
1126 * required to avoid errors in the case where the range ends
1127 * exactly at the top of the address space and so addr + len
1128 * wraps round to zero.
1129 */
1130 vaddr wpend = wp->vaddr + wp->len - 1;
1131 vaddr addrend = addr + len - 1;
1132
1133 return !(addr > wpend || wp->vaddr > addrend);
1134 }
1135
1136 /* Return flags for watchpoints that match addr + prot. */
1137 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1138 {
1139 CPUWatchpoint *wp;
1140 int ret = 0;
1141
1142 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1143 if (watchpoint_address_matches(wp, addr, len)) {
1144 ret |= wp->flags;
1145 }
1146 }
1147 return ret;
1148 }
1149 #endif /* !CONFIG_USER_ONLY */
1150
1151 /* Add a breakpoint. */
1152 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1153 CPUBreakpoint **breakpoint)
1154 {
1155 CPUBreakpoint *bp;
1156
1157 bp = g_malloc(sizeof(*bp));
1158
1159 bp->pc = pc;
1160 bp->flags = flags;
1161
1162 /* keep all GDB-injected breakpoints in front */
1163 if (flags & BP_GDB) {
1164 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1165 } else {
1166 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1167 }
1168
1169 breakpoint_invalidate(cpu, pc);
1170
1171 if (breakpoint) {
1172 *breakpoint = bp;
1173 }
1174 return 0;
1175 }
1176
1177 /* Remove a specific breakpoint. */
1178 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1179 {
1180 CPUBreakpoint *bp;
1181
1182 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1183 if (bp->pc == pc && bp->flags == flags) {
1184 cpu_breakpoint_remove_by_ref(cpu, bp);
1185 return 0;
1186 }
1187 }
1188 return -ENOENT;
1189 }
1190
1191 /* Remove a specific breakpoint by reference. */
1192 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1193 {
1194 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1195
1196 breakpoint_invalidate(cpu, breakpoint->pc);
1197
1198 g_free(breakpoint);
1199 }
1200
1201 /* Remove all matching breakpoints. */
1202 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1203 {
1204 CPUBreakpoint *bp, *next;
1205
1206 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1207 if (bp->flags & mask) {
1208 cpu_breakpoint_remove_by_ref(cpu, bp);
1209 }
1210 }
1211 }
1212
1213 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1214 CPU loop after each instruction */
1215 void cpu_single_step(CPUState *cpu, int enabled)
1216 {
1217 if (cpu->singlestep_enabled != enabled) {
1218 cpu->singlestep_enabled = enabled;
1219 if (kvm_enabled()) {
1220 kvm_update_guest_debug(cpu, 0);
1221 } else {
1222 /* must flush all the translated code to avoid inconsistencies */
1223 /* XXX: only flush what is necessary */
1224 tb_flush(cpu);
1225 }
1226 }
1227 }
1228
1229 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1230 {
1231 va_list ap;
1232 va_list ap2;
1233
1234 va_start(ap, fmt);
1235 va_copy(ap2, ap);
1236 fprintf(stderr, "qemu: fatal: ");
1237 vfprintf(stderr, fmt, ap);
1238 fprintf(stderr, "\n");
1239 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1240 if (qemu_log_separate()) {
1241 FILE *logfile = qemu_log_lock();
1242 qemu_log("qemu: fatal: ");
1243 qemu_log_vprintf(fmt, ap2);
1244 qemu_log("\n");
1245 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1246 qemu_log_flush();
1247 qemu_log_unlock(logfile);
1248 qemu_log_close();
1249 }
1250 va_end(ap2);
1251 va_end(ap);
1252 replay_finish();
1253 #if defined(CONFIG_USER_ONLY)
1254 {
1255 struct sigaction act;
1256 sigfillset(&act.sa_mask);
1257 act.sa_handler = SIG_DFL;
1258 act.sa_flags = 0;
1259 sigaction(SIGABRT, &act, NULL);
1260 }
1261 #endif
1262 abort();
1263 }
1264
1265 #if !defined(CONFIG_USER_ONLY)
1266 /* Called from RCU critical section */
1267 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1268 {
1269 RAMBlock *block;
1270
1271 block = atomic_rcu_read(&ram_list.mru_block);
1272 if (block && addr - block->offset < block->max_length) {
1273 return block;
1274 }
1275 RAMBLOCK_FOREACH(block) {
1276 if (addr - block->offset < block->max_length) {
1277 goto found;
1278 }
1279 }
1280
1281 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1282 abort();
1283
1284 found:
1285 /* It is safe to write mru_block outside the iothread lock. This
1286 * is what happens:
1287 *
1288 * mru_block = xxx
1289 * rcu_read_unlock()
1290 * xxx removed from list
1291 * rcu_read_lock()
1292 * read mru_block
1293 * mru_block = NULL;
1294 * call_rcu(reclaim_ramblock, xxx);
1295 * rcu_read_unlock()
1296 *
1297 * atomic_rcu_set is not needed here. The block was already published
1298 * when it was placed into the list. Here we're just making an extra
1299 * copy of the pointer.
1300 */
1301 ram_list.mru_block = block;
1302 return block;
1303 }
1304
1305 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1306 {
1307 CPUState *cpu;
1308 ram_addr_t start1;
1309 RAMBlock *block;
1310 ram_addr_t end;
1311
1312 assert(tcg_enabled());
1313 end = TARGET_PAGE_ALIGN(start + length);
1314 start &= TARGET_PAGE_MASK;
1315
1316 RCU_READ_LOCK_GUARD();
1317 block = qemu_get_ram_block(start);
1318 assert(block == qemu_get_ram_block(end - 1));
1319 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1320 CPU_FOREACH(cpu) {
1321 tlb_reset_dirty(cpu, start1, length);
1322 }
1323 }
1324
1325 /* Note: start and end must be within the same ram block. */
1326 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1327 ram_addr_t length,
1328 unsigned client)
1329 {
1330 DirtyMemoryBlocks *blocks;
1331 unsigned long end, page, start_page;
1332 bool dirty = false;
1333 RAMBlock *ramblock;
1334 uint64_t mr_offset, mr_size;
1335
1336 if (length == 0) {
1337 return false;
1338 }
1339
1340 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1341 start_page = start >> TARGET_PAGE_BITS;
1342 page = start_page;
1343
1344 WITH_RCU_READ_LOCK_GUARD() {
1345 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1346 ramblock = qemu_get_ram_block(start);
1347 /* Range sanity check on the ramblock */
1348 assert(start >= ramblock->offset &&
1349 start + length <= ramblock->offset + ramblock->used_length);
1350
1351 while (page < end) {
1352 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1353 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1354 unsigned long num = MIN(end - page,
1355 DIRTY_MEMORY_BLOCK_SIZE - offset);
1356
1357 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1358 offset, num);
1359 page += num;
1360 }
1361
1362 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1363 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1364 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1365 }
1366
1367 if (dirty && tcg_enabled()) {
1368 tlb_reset_dirty_range_all(start, length);
1369 }
1370
1371 return dirty;
1372 }
1373
1374 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1375 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1376 {
1377 DirtyMemoryBlocks *blocks;
1378 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1379 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1380 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1381 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1382 DirtyBitmapSnapshot *snap;
1383 unsigned long page, end, dest;
1384
1385 snap = g_malloc0(sizeof(*snap) +
1386 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1387 snap->start = first;
1388 snap->end = last;
1389
1390 page = first >> TARGET_PAGE_BITS;
1391 end = last >> TARGET_PAGE_BITS;
1392 dest = 0;
1393
1394 WITH_RCU_READ_LOCK_GUARD() {
1395 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1396
1397 while (page < end) {
1398 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1399 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1400 unsigned long num = MIN(end - page,
1401 DIRTY_MEMORY_BLOCK_SIZE - offset);
1402
1403 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1404 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1405 offset >>= BITS_PER_LEVEL;
1406
1407 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1408 blocks->blocks[idx] + offset,
1409 num);
1410 page += num;
1411 dest += num >> BITS_PER_LEVEL;
1412 }
1413 }
1414
1415 if (tcg_enabled()) {
1416 tlb_reset_dirty_range_all(start, length);
1417 }
1418
1419 memory_region_clear_dirty_bitmap(mr, offset, length);
1420
1421 return snap;
1422 }
1423
1424 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1425 ram_addr_t start,
1426 ram_addr_t length)
1427 {
1428 unsigned long page, end;
1429
1430 assert(start >= snap->start);
1431 assert(start + length <= snap->end);
1432
1433 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1434 page = (start - snap->start) >> TARGET_PAGE_BITS;
1435
1436 while (page < end) {
1437 if (test_bit(page, snap->dirty)) {
1438 return true;
1439 }
1440 page++;
1441 }
1442 return false;
1443 }
1444
1445 /* Called from RCU critical section */
1446 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1447 MemoryRegionSection *section)
1448 {
1449 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1450 return section - d->map.sections;
1451 }
1452 #endif /* defined(CONFIG_USER_ONLY) */
1453
1454 #if !defined(CONFIG_USER_ONLY)
1455
1456 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1457 uint16_t section);
1458 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1459
1460 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1461 qemu_anon_ram_alloc;
1462
1463 /*
1464 * Set a custom physical guest memory alloator.
1465 * Accelerators with unusual needs may need this. Hopefully, we can
1466 * get rid of it eventually.
1467 */
1468 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1469 {
1470 phys_mem_alloc = alloc;
1471 }
1472
1473 static uint16_t phys_section_add(PhysPageMap *map,
1474 MemoryRegionSection *section)
1475 {
1476 /* The physical section number is ORed with a page-aligned
1477 * pointer to produce the iotlb entries. Thus it should
1478 * never overflow into the page-aligned value.
1479 */
1480 assert(map->sections_nb < TARGET_PAGE_SIZE);
1481
1482 if (map->sections_nb == map->sections_nb_alloc) {
1483 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1484 map->sections = g_renew(MemoryRegionSection, map->sections,
1485 map->sections_nb_alloc);
1486 }
1487 map->sections[map->sections_nb] = *section;
1488 memory_region_ref(section->mr);
1489 return map->sections_nb++;
1490 }
1491
1492 static void phys_section_destroy(MemoryRegion *mr)
1493 {
1494 bool have_sub_page = mr->subpage;
1495
1496 memory_region_unref(mr);
1497
1498 if (have_sub_page) {
1499 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1500 object_unref(OBJECT(&subpage->iomem));
1501 g_free(subpage);
1502 }
1503 }
1504
1505 static void phys_sections_free(PhysPageMap *map)
1506 {
1507 while (map->sections_nb > 0) {
1508 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1509 phys_section_destroy(section->mr);
1510 }
1511 g_free(map->sections);
1512 g_free(map->nodes);
1513 }
1514
1515 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1516 {
1517 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1518 subpage_t *subpage;
1519 hwaddr base = section->offset_within_address_space
1520 & TARGET_PAGE_MASK;
1521 MemoryRegionSection *existing = phys_page_find(d, base);
1522 MemoryRegionSection subsection = {
1523 .offset_within_address_space = base,
1524 .size = int128_make64(TARGET_PAGE_SIZE),
1525 };
1526 hwaddr start, end;
1527
1528 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1529
1530 if (!(existing->mr->subpage)) {
1531 subpage = subpage_init(fv, base);
1532 subsection.fv = fv;
1533 subsection.mr = &subpage->iomem;
1534 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1535 phys_section_add(&d->map, &subsection));
1536 } else {
1537 subpage = container_of(existing->mr, subpage_t, iomem);
1538 }
1539 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1540 end = start + int128_get64(section->size) - 1;
1541 subpage_register(subpage, start, end,
1542 phys_section_add(&d->map, section));
1543 }
1544
1545
1546 static void register_multipage(FlatView *fv,
1547 MemoryRegionSection *section)
1548 {
1549 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1550 hwaddr start_addr = section->offset_within_address_space;
1551 uint16_t section_index = phys_section_add(&d->map, section);
1552 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1553 TARGET_PAGE_BITS));
1554
1555 assert(num_pages);
1556 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1557 }
1558
1559 /*
1560 * The range in *section* may look like this:
1561 *
1562 * |s|PPPPPPP|s|
1563 *
1564 * where s stands for subpage and P for page.
1565 */
1566 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1567 {
1568 MemoryRegionSection remain = *section;
1569 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1570
1571 /* register first subpage */
1572 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1573 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1574 - remain.offset_within_address_space;
1575
1576 MemoryRegionSection now = remain;
1577 now.size = int128_min(int128_make64(left), now.size);
1578 register_subpage(fv, &now);
1579 if (int128_eq(remain.size, now.size)) {
1580 return;
1581 }
1582 remain.size = int128_sub(remain.size, now.size);
1583 remain.offset_within_address_space += int128_get64(now.size);
1584 remain.offset_within_region += int128_get64(now.size);
1585 }
1586
1587 /* register whole pages */
1588 if (int128_ge(remain.size, page_size)) {
1589 MemoryRegionSection now = remain;
1590 now.size = int128_and(now.size, int128_neg(page_size));
1591 register_multipage(fv, &now);
1592 if (int128_eq(remain.size, now.size)) {
1593 return;
1594 }
1595 remain.size = int128_sub(remain.size, now.size);
1596 remain.offset_within_address_space += int128_get64(now.size);
1597 remain.offset_within_region += int128_get64(now.size);
1598 }
1599
1600 /* register last subpage */
1601 register_subpage(fv, &remain);
1602 }
1603
1604 void qemu_flush_coalesced_mmio_buffer(void)
1605 {
1606 if (kvm_enabled())
1607 kvm_flush_coalesced_mmio_buffer();
1608 }
1609
1610 void qemu_mutex_lock_ramlist(void)
1611 {
1612 qemu_mutex_lock(&ram_list.mutex);
1613 }
1614
1615 void qemu_mutex_unlock_ramlist(void)
1616 {
1617 qemu_mutex_unlock(&ram_list.mutex);
1618 }
1619
1620 void ram_block_dump(Monitor *mon)
1621 {
1622 RAMBlock *block;
1623 char *psize;
1624
1625 RCU_READ_LOCK_GUARD();
1626 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1627 "Block Name", "PSize", "Offset", "Used", "Total");
1628 RAMBLOCK_FOREACH(block) {
1629 psize = size_to_str(block->page_size);
1630 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1631 " 0x%016" PRIx64 "\n", block->idstr, psize,
1632 (uint64_t)block->offset,
1633 (uint64_t)block->used_length,
1634 (uint64_t)block->max_length);
1635 g_free(psize);
1636 }
1637 }
1638
1639 #ifdef __linux__
1640 /*
1641 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1642 * may or may not name the same files / on the same filesystem now as
1643 * when we actually open and map them. Iterate over the file
1644 * descriptors instead, and use qemu_fd_getpagesize().
1645 */
1646 static int find_min_backend_pagesize(Object *obj, void *opaque)
1647 {
1648 long *hpsize_min = opaque;
1649
1650 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1651 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1652 long hpsize = host_memory_backend_pagesize(backend);
1653
1654 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1655 *hpsize_min = hpsize;
1656 }
1657 }
1658
1659 return 0;
1660 }
1661
1662 static int find_max_backend_pagesize(Object *obj, void *opaque)
1663 {
1664 long *hpsize_max = opaque;
1665
1666 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1667 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1668 long hpsize = host_memory_backend_pagesize(backend);
1669
1670 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1671 *hpsize_max = hpsize;
1672 }
1673 }
1674
1675 return 0;
1676 }
1677
1678 /*
1679 * TODO: We assume right now that all mapped host memory backends are
1680 * used as RAM, however some might be used for different purposes.
1681 */
1682 long qemu_minrampagesize(void)
1683 {
1684 long hpsize = LONG_MAX;
1685 Object *memdev_root = object_resolve_path("/objects", NULL);
1686
1687 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1688 return hpsize;
1689 }
1690
1691 long qemu_maxrampagesize(void)
1692 {
1693 long pagesize = 0;
1694 Object *memdev_root = object_resolve_path("/objects", NULL);
1695
1696 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1697 return pagesize;
1698 }
1699 #else
1700 long qemu_minrampagesize(void)
1701 {
1702 return qemu_real_host_page_size;
1703 }
1704 long qemu_maxrampagesize(void)
1705 {
1706 return qemu_real_host_page_size;
1707 }
1708 #endif
1709
1710 #ifdef CONFIG_POSIX
1711 static int64_t get_file_size(int fd)
1712 {
1713 int64_t size;
1714 #if defined(__linux__)
1715 struct stat st;
1716
1717 if (fstat(fd, &st) < 0) {
1718 return -errno;
1719 }
1720
1721 /* Special handling for devdax character devices */
1722 if (S_ISCHR(st.st_mode)) {
1723 g_autofree char *subsystem_path = NULL;
1724 g_autofree char *subsystem = NULL;
1725
1726 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1727 major(st.st_rdev), minor(st.st_rdev));
1728 subsystem = g_file_read_link(subsystem_path, NULL);
1729
1730 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1731 g_autofree char *size_path = NULL;
1732 g_autofree char *size_str = NULL;
1733
1734 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1735 major(st.st_rdev), minor(st.st_rdev));
1736
1737 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1738 return g_ascii_strtoll(size_str, NULL, 0);
1739 }
1740 }
1741 }
1742 #endif /* defined(__linux__) */
1743
1744 /* st.st_size may be zero for special files yet lseek(2) works */
1745 size = lseek(fd, 0, SEEK_END);
1746 if (size < 0) {
1747 return -errno;
1748 }
1749 return size;
1750 }
1751
1752 static int64_t get_file_align(int fd)
1753 {
1754 int64_t align = -1;
1755 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1756 struct stat st;
1757
1758 if (fstat(fd, &st) < 0) {
1759 return -errno;
1760 }
1761
1762 /* Special handling for devdax character devices */
1763 if (S_ISCHR(st.st_mode)) {
1764 g_autofree char *path = NULL;
1765 g_autofree char *rpath = NULL;
1766 struct daxctl_ctx *ctx;
1767 struct daxctl_region *region;
1768 int rc = 0;
1769
1770 path = g_strdup_printf("/sys/dev/char/%d:%d",
1771 major(st.st_rdev), minor(st.st_rdev));
1772 rpath = realpath(path, NULL);
1773
1774 rc = daxctl_new(&ctx);
1775 if (rc) {
1776 return -1;
1777 }
1778
1779 daxctl_region_foreach(ctx, region) {
1780 if (strstr(rpath, daxctl_region_get_path(region))) {
1781 align = daxctl_region_get_align(region);
1782 break;
1783 }
1784 }
1785 daxctl_unref(ctx);
1786 }
1787 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1788
1789 return align;
1790 }
1791
1792 static int file_ram_open(const char *path,
1793 const char *region_name,
1794 bool *created,
1795 Error **errp)
1796 {
1797 char *filename;
1798 char *sanitized_name;
1799 char *c;
1800 int fd = -1;
1801
1802 *created = false;
1803 for (;;) {
1804 fd = open(path, O_RDWR);
1805 if (fd >= 0) {
1806 /* @path names an existing file, use it */
1807 break;
1808 }
1809 if (errno == ENOENT) {
1810 /* @path names a file that doesn't exist, create it */
1811 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1812 if (fd >= 0) {
1813 *created = true;
1814 break;
1815 }
1816 } else if (errno == EISDIR) {
1817 /* @path names a directory, create a file there */
1818 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1819 sanitized_name = g_strdup(region_name);
1820 for (c = sanitized_name; *c != '\0'; c++) {
1821 if (*c == '/') {
1822 *c = '_';
1823 }
1824 }
1825
1826 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1827 sanitized_name);
1828 g_free(sanitized_name);
1829
1830 fd = mkstemp(filename);
1831 if (fd >= 0) {
1832 unlink(filename);
1833 g_free(filename);
1834 break;
1835 }
1836 g_free(filename);
1837 }
1838 if (errno != EEXIST && errno != EINTR) {
1839 error_setg_errno(errp, errno,
1840 "can't open backing store %s for guest RAM",
1841 path);
1842 return -1;
1843 }
1844 /*
1845 * Try again on EINTR and EEXIST. The latter happens when
1846 * something else creates the file between our two open().
1847 */
1848 }
1849
1850 return fd;
1851 }
1852
1853 static void *file_ram_alloc(RAMBlock *block,
1854 ram_addr_t memory,
1855 int fd,
1856 bool truncate,
1857 Error **errp)
1858 {
1859 void *area;
1860
1861 block->page_size = qemu_fd_getpagesize(fd);
1862 if (block->mr->align % block->page_size) {
1863 error_setg(errp, "alignment 0x%" PRIx64
1864 " must be multiples of page size 0x%zx",
1865 block->mr->align, block->page_size);
1866 return NULL;
1867 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1868 error_setg(errp, "alignment 0x%" PRIx64
1869 " must be a power of two", block->mr->align);
1870 return NULL;
1871 }
1872 block->mr->align = MAX(block->page_size, block->mr->align);
1873 #if defined(__s390x__)
1874 if (kvm_enabled()) {
1875 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1876 }
1877 #endif
1878
1879 if (memory < block->page_size) {
1880 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1881 "or larger than page size 0x%zx",
1882 memory, block->page_size);
1883 return NULL;
1884 }
1885
1886 memory = ROUND_UP(memory, block->page_size);
1887
1888 /*
1889 * ftruncate is not supported by hugetlbfs in older
1890 * hosts, so don't bother bailing out on errors.
1891 * If anything goes wrong with it under other filesystems,
1892 * mmap will fail.
1893 *
1894 * Do not truncate the non-empty backend file to avoid corrupting
1895 * the existing data in the file. Disabling shrinking is not
1896 * enough. For example, the current vNVDIMM implementation stores
1897 * the guest NVDIMM labels at the end of the backend file. If the
1898 * backend file is later extended, QEMU will not be able to find
1899 * those labels. Therefore, extending the non-empty backend file
1900 * is disabled as well.
1901 */
1902 if (truncate && ftruncate(fd, memory)) {
1903 perror("ftruncate");
1904 }
1905
1906 area = qemu_ram_mmap(fd, memory, block->mr->align,
1907 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1908 if (area == MAP_FAILED) {
1909 error_setg_errno(errp, errno,
1910 "unable to map backing store for guest RAM");
1911 return NULL;
1912 }
1913
1914 block->fd = fd;
1915 return area;
1916 }
1917 #endif
1918
1919 /* Allocate space within the ram_addr_t space that governs the
1920 * dirty bitmaps.
1921 * Called with the ramlist lock held.
1922 */
1923 static ram_addr_t find_ram_offset(ram_addr_t size)
1924 {
1925 RAMBlock *block, *next_block;
1926 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1927
1928 assert(size != 0); /* it would hand out same offset multiple times */
1929
1930 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1931 return 0;
1932 }
1933
1934 RAMBLOCK_FOREACH(block) {
1935 ram_addr_t candidate, next = RAM_ADDR_MAX;
1936
1937 /* Align blocks to start on a 'long' in the bitmap
1938 * which makes the bitmap sync'ing take the fast path.
1939 */
1940 candidate = block->offset + block->max_length;
1941 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1942
1943 /* Search for the closest following block
1944 * and find the gap.
1945 */
1946 RAMBLOCK_FOREACH(next_block) {
1947 if (next_block->offset >= candidate) {
1948 next = MIN(next, next_block->offset);
1949 }
1950 }
1951
1952 /* If it fits remember our place and remember the size
1953 * of gap, but keep going so that we might find a smaller
1954 * gap to fill so avoiding fragmentation.
1955 */
1956 if (next - candidate >= size && next - candidate < mingap) {
1957 offset = candidate;
1958 mingap = next - candidate;
1959 }
1960
1961 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1962 }
1963
1964 if (offset == RAM_ADDR_MAX) {
1965 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1966 (uint64_t)size);
1967 abort();
1968 }
1969
1970 trace_find_ram_offset(size, offset);
1971
1972 return offset;
1973 }
1974
1975 static unsigned long last_ram_page(void)
1976 {
1977 RAMBlock *block;
1978 ram_addr_t last = 0;
1979
1980 RCU_READ_LOCK_GUARD();
1981 RAMBLOCK_FOREACH(block) {
1982 last = MAX(last, block->offset + block->max_length);
1983 }
1984 return last >> TARGET_PAGE_BITS;
1985 }
1986
1987 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1988 {
1989 int ret;
1990
1991 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1992 if (!machine_dump_guest_core(current_machine)) {
1993 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1994 if (ret) {
1995 perror("qemu_madvise");
1996 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1997 "but dump_guest_core=off specified\n");
1998 }
1999 }
2000 }
2001
2002 const char *qemu_ram_get_idstr(RAMBlock *rb)
2003 {
2004 return rb->idstr;
2005 }
2006
2007 void *qemu_ram_get_host_addr(RAMBlock *rb)
2008 {
2009 return rb->host;
2010 }
2011
2012 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2013 {
2014 return rb->offset;
2015 }
2016
2017 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2018 {
2019 return rb->used_length;
2020 }
2021
2022 bool qemu_ram_is_shared(RAMBlock *rb)
2023 {
2024 return rb->flags & RAM_SHARED;
2025 }
2026
2027 /* Note: Only set at the start of postcopy */
2028 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2029 {
2030 return rb->flags & RAM_UF_ZEROPAGE;
2031 }
2032
2033 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2034 {
2035 rb->flags |= RAM_UF_ZEROPAGE;
2036 }
2037
2038 bool qemu_ram_is_migratable(RAMBlock *rb)
2039 {
2040 return rb->flags & RAM_MIGRATABLE;
2041 }
2042
2043 void qemu_ram_set_migratable(RAMBlock *rb)
2044 {
2045 rb->flags |= RAM_MIGRATABLE;
2046 }
2047
2048 void qemu_ram_unset_migratable(RAMBlock *rb)
2049 {
2050 rb->flags &= ~RAM_MIGRATABLE;
2051 }
2052
2053 /* Called with iothread lock held. */
2054 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2055 {
2056 RAMBlock *block;
2057
2058 assert(new_block);
2059 assert(!new_block->idstr[0]);
2060
2061 if (dev) {
2062 char *id = qdev_get_dev_path(dev);
2063 if (id) {
2064 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2065 g_free(id);
2066 }
2067 }
2068 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2069
2070 RCU_READ_LOCK_GUARD();
2071 RAMBLOCK_FOREACH(block) {
2072 if (block != new_block &&
2073 !strcmp(block->idstr, new_block->idstr)) {
2074 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2075 new_block->idstr);
2076 abort();
2077 }
2078 }
2079 }
2080
2081 /* Called with iothread lock held. */
2082 void qemu_ram_unset_idstr(RAMBlock *block)
2083 {
2084 /* FIXME: arch_init.c assumes that this is not called throughout
2085 * migration. Ignore the problem since hot-unplug during migration
2086 * does not work anyway.
2087 */
2088 if (block) {
2089 memset(block->idstr, 0, sizeof(block->idstr));
2090 }
2091 }
2092
2093 size_t qemu_ram_pagesize(RAMBlock *rb)
2094 {
2095 return rb->page_size;
2096 }
2097
2098 /* Returns the largest size of page in use */
2099 size_t qemu_ram_pagesize_largest(void)
2100 {
2101 RAMBlock *block;
2102 size_t largest = 0;
2103
2104 RAMBLOCK_FOREACH(block) {
2105 largest = MAX(largest, qemu_ram_pagesize(block));
2106 }
2107
2108 return largest;
2109 }
2110
2111 static int memory_try_enable_merging(void *addr, size_t len)
2112 {
2113 if (!machine_mem_merge(current_machine)) {
2114 /* disabled by the user */
2115 return 0;
2116 }
2117
2118 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2119 }
2120
2121 /* Only legal before guest might have detected the memory size: e.g. on
2122 * incoming migration, or right after reset.
2123 *
2124 * As memory core doesn't know how is memory accessed, it is up to
2125 * resize callback to update device state and/or add assertions to detect
2126 * misuse, if necessary.
2127 */
2128 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2129 {
2130 const ram_addr_t unaligned_size = newsize;
2131
2132 assert(block);
2133
2134 newsize = HOST_PAGE_ALIGN(newsize);
2135
2136 if (block->used_length == newsize) {
2137 /*
2138 * We don't have to resize the ram block (which only knows aligned
2139 * sizes), however, we have to notify if the unaligned size changed.
2140 */
2141 if (unaligned_size != memory_region_size(block->mr)) {
2142 memory_region_set_size(block->mr, unaligned_size);
2143 if (block->resized) {
2144 block->resized(block->idstr, unaligned_size, block->host);
2145 }
2146 }
2147 return 0;
2148 }
2149
2150 if (!(block->flags & RAM_RESIZEABLE)) {
2151 error_setg_errno(errp, EINVAL,
2152 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2153 " in != 0x" RAM_ADDR_FMT, block->idstr,
2154 newsize, block->used_length);
2155 return -EINVAL;
2156 }
2157
2158 if (block->max_length < newsize) {
2159 error_setg_errno(errp, EINVAL,
2160 "Length too large: %s: 0x" RAM_ADDR_FMT
2161 " > 0x" RAM_ADDR_FMT, block->idstr,
2162 newsize, block->max_length);
2163 return -EINVAL;
2164 }
2165
2166 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2167 block->used_length = newsize;
2168 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2169 DIRTY_CLIENTS_ALL);
2170 memory_region_set_size(block->mr, unaligned_size);
2171 if (block->resized) {
2172 block->resized(block->idstr, unaligned_size, block->host);
2173 }
2174 return 0;
2175 }
2176
2177 /*
2178 * Trigger sync on the given ram block for range [start, start + length]
2179 * with the backing store if one is available.
2180 * Otherwise no-op.
2181 * @Note: this is supposed to be a synchronous op.
2182 */
2183 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2184 {
2185 /* The requested range should fit in within the block range */
2186 g_assert((start + length) <= block->used_length);
2187
2188 #ifdef CONFIG_LIBPMEM
2189 /* The lack of support for pmem should not block the sync */
2190 if (ramblock_is_pmem(block)) {
2191 void *addr = ramblock_ptr(block, start);
2192 pmem_persist(addr, length);
2193 return;
2194 }
2195 #endif
2196 if (block->fd >= 0) {
2197 /**
2198 * Case there is no support for PMEM or the memory has not been
2199 * specified as persistent (or is not one) - use the msync.
2200 * Less optimal but still achieves the same goal
2201 */
2202 void *addr = ramblock_ptr(block, start);
2203 if (qemu_msync(addr, length, block->fd)) {
2204 warn_report("%s: failed to sync memory range: start: "
2205 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2206 __func__, start, length);
2207 }
2208 }
2209 }
2210
2211 /* Called with ram_list.mutex held */
2212 static void dirty_memory_extend(ram_addr_t old_ram_size,
2213 ram_addr_t new_ram_size)
2214 {
2215 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2216 DIRTY_MEMORY_BLOCK_SIZE);
2217 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2218 DIRTY_MEMORY_BLOCK_SIZE);
2219 int i;
2220
2221 /* Only need to extend if block count increased */
2222 if (new_num_blocks <= old_num_blocks) {
2223 return;
2224 }
2225
2226 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2227 DirtyMemoryBlocks *old_blocks;
2228 DirtyMemoryBlocks *new_blocks;
2229 int j;
2230
2231 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2232 new_blocks = g_malloc(sizeof(*new_blocks) +
2233 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2234
2235 if (old_num_blocks) {
2236 memcpy(new_blocks->blocks, old_blocks->blocks,
2237 old_num_blocks * sizeof(old_blocks->blocks[0]));
2238 }
2239
2240 for (j = old_num_blocks; j < new_num_blocks; j++) {
2241 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2242 }
2243
2244 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2245
2246 if (old_blocks) {
2247 g_free_rcu(old_blocks, rcu);
2248 }
2249 }
2250 }
2251
2252 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2253 {
2254 RAMBlock *block;
2255 RAMBlock *last_block = NULL;
2256 ram_addr_t old_ram_size, new_ram_size;
2257 Error *err = NULL;
2258
2259 old_ram_size = last_ram_page();
2260
2261 qemu_mutex_lock_ramlist();
2262 new_block->offset = find_ram_offset(new_block->max_length);
2263
2264 if (!new_block->host) {
2265 if (xen_enabled()) {
2266 xen_ram_alloc(new_block->offset, new_block->max_length,
2267 new_block->mr, &err);
2268 if (err) {
2269 error_propagate(errp, err);
2270 qemu_mutex_unlock_ramlist();
2271 return;
2272 }
2273 } else {
2274 new_block->host = phys_mem_alloc(new_block->max_length,
2275 &new_block->mr->align, shared);
2276 if (!new_block->host) {
2277 error_setg_errno(errp, errno,
2278 "cannot set up guest memory '%s'",
2279 memory_region_name(new_block->mr));
2280 qemu_mutex_unlock_ramlist();
2281 return;
2282 }
2283 memory_try_enable_merging(new_block->host, new_block->max_length);
2284 }
2285 }
2286
2287 new_ram_size = MAX(old_ram_size,
2288 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2289 if (new_ram_size > old_ram_size) {
2290 dirty_memory_extend(old_ram_size, new_ram_size);
2291 }
2292 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2293 * QLIST (which has an RCU-friendly variant) does not have insertion at
2294 * tail, so save the last element in last_block.
2295 */
2296 RAMBLOCK_FOREACH(block) {
2297 last_block = block;
2298 if (block->max_length < new_block->max_length) {
2299 break;
2300 }
2301 }
2302 if (block) {
2303 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2304 } else if (last_block) {
2305 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2306 } else { /* list is empty */
2307 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2308 }
2309 ram_list.mru_block = NULL;
2310
2311 /* Write list before version */
2312 smp_wmb();
2313 ram_list.version++;
2314 qemu_mutex_unlock_ramlist();
2315
2316 cpu_physical_memory_set_dirty_range(new_block->offset,
2317 new_block->used_length,
2318 DIRTY_CLIENTS_ALL);
2319
2320 if (new_block->host) {
2321 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2322 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2323 /*
2324 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2325 * Configure it unless the machine is a qtest server, in which case
2326 * KVM is not used and it may be forked (eg for fuzzing purposes).
2327 */
2328 if (!qtest_enabled()) {
2329 qemu_madvise(new_block->host, new_block->max_length,
2330 QEMU_MADV_DONTFORK);
2331 }
2332 ram_block_notify_add(new_block->host, new_block->max_length);
2333 }
2334 }
2335
2336 #ifdef CONFIG_POSIX
2337 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2338 uint32_t ram_flags, int fd,
2339 Error **errp)
2340 {
2341 RAMBlock *new_block;
2342 Error *local_err = NULL;
2343 int64_t file_size, file_align;
2344
2345 /* Just support these ram flags by now. */
2346 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2347
2348 if (xen_enabled()) {
2349 error_setg(errp, "-mem-path not supported with Xen");
2350 return NULL;
2351 }
2352
2353 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2354 error_setg(errp,
2355 "host lacks kvm mmu notifiers, -mem-path unsupported");
2356 return NULL;
2357 }
2358
2359 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2360 /*
2361 * file_ram_alloc() needs to allocate just like
2362 * phys_mem_alloc, but we haven't bothered to provide
2363 * a hook there.
2364 */
2365 error_setg(errp,
2366 "-mem-path not supported with this accelerator");
2367 return NULL;
2368 }
2369
2370 size = HOST_PAGE_ALIGN(size);
2371 file_size = get_file_size(fd);
2372 if (file_size > 0 && file_size < size) {
2373 error_setg(errp, "backing store size 0x%" PRIx64
2374 " does not match 'size' option 0x" RAM_ADDR_FMT,
2375 file_size, size);
2376 return NULL;
2377 }
2378
2379 file_align = get_file_align(fd);
2380 if (file_align > 0 && mr && file_align > mr->align) {
2381 error_setg(errp, "backing store align 0x%" PRIx64
2382 " is larger than 'align' option 0x%" PRIx64,
2383 file_align, mr->align);
2384 return NULL;
2385 }
2386
2387 new_block = g_malloc0(sizeof(*new_block));
2388 new_block->mr = mr;
2389 new_block->used_length = size;
2390 new_block->max_length = size;
2391 new_block->flags = ram_flags;
2392 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2393 if (!new_block->host) {
2394 g_free(new_block);
2395 return NULL;
2396 }
2397
2398 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2399 if (local_err) {
2400 g_free(new_block);
2401 error_propagate(errp, local_err);
2402 return NULL;
2403 }
2404 return new_block;
2405
2406 }
2407
2408
2409 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2410 uint32_t ram_flags, const char *mem_path,
2411 Error **errp)
2412 {
2413 int fd;
2414 bool created;
2415 RAMBlock *block;
2416
2417 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2418 if (fd < 0) {
2419 return NULL;
2420 }
2421
2422 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2423 if (!block) {
2424 if (created) {
2425 unlink(mem_path);
2426 }
2427 close(fd);
2428 return NULL;
2429 }
2430
2431 return block;
2432 }
2433 #endif
2434
2435 static
2436 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2437 void (*resized)(const char*,
2438 uint64_t length,
2439 void *host),
2440 void *host, bool resizeable, bool share,
2441 MemoryRegion *mr, Error **errp)
2442 {
2443 RAMBlock *new_block;
2444 Error *local_err = NULL;
2445
2446 size = HOST_PAGE_ALIGN(size);
2447 max_size = HOST_PAGE_ALIGN(max_size);
2448 new_block = g_malloc0(sizeof(*new_block));
2449 new_block->mr = mr;
2450 new_block->resized = resized;
2451 new_block->used_length = size;
2452 new_block->max_length = max_size;
2453 assert(max_size >= size);
2454 new_block->fd = -1;
2455 new_block->page_size = qemu_real_host_page_size;
2456 new_block->host = host;
2457 if (host) {
2458 new_block->flags |= RAM_PREALLOC;
2459 }
2460 if (resizeable) {
2461 new_block->flags |= RAM_RESIZEABLE;
2462 }
2463 ram_block_add(new_block, &local_err, share);
2464 if (local_err) {
2465 g_free(new_block);
2466 error_propagate(errp, local_err);
2467 return NULL;
2468 }
2469 return new_block;
2470 }
2471
2472 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2473 MemoryRegion *mr, Error **errp)
2474 {
2475 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2476 false, mr, errp);
2477 }
2478
2479 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2480 MemoryRegion *mr, Error **errp)
2481 {
2482 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2483 share, mr, errp);
2484 }
2485
2486 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2487 void (*resized)(const char*,
2488 uint64_t length,
2489 void *host),
2490 MemoryRegion *mr, Error **errp)
2491 {
2492 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2493 false, mr, errp);
2494 }
2495
2496 static void reclaim_ramblock(RAMBlock *block)
2497 {
2498 if (block->flags & RAM_PREALLOC) {
2499 ;
2500 } else if (xen_enabled()) {
2501 xen_invalidate_map_cache_entry(block->host);
2502 #ifndef _WIN32
2503 } else if (block->fd >= 0) {
2504 qemu_ram_munmap(block->fd, block->host, block->max_length);
2505 close(block->fd);
2506 #endif
2507 } else {
2508 qemu_anon_ram_free(block->host, block->max_length);
2509 }
2510 g_free(block);
2511 }
2512
2513 void qemu_ram_free(RAMBlock *block)
2514 {
2515 if (!block) {
2516 return;
2517 }
2518
2519 if (block->host) {
2520 ram_block_notify_remove(block->host, block->max_length);
2521 }
2522
2523 qemu_mutex_lock_ramlist();
2524 QLIST_REMOVE_RCU(block, next);
2525 ram_list.mru_block = NULL;
2526 /* Write list before version */
2527 smp_wmb();
2528 ram_list.version++;
2529 call_rcu(block, reclaim_ramblock, rcu);
2530 qemu_mutex_unlock_ramlist();
2531 }
2532
2533 #ifndef _WIN32
2534 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2535 {
2536 RAMBlock *block;
2537 ram_addr_t offset;
2538 int flags;
2539 void *area, *vaddr;
2540
2541 RAMBLOCK_FOREACH(block) {
2542 offset = addr - block->offset;
2543 if (offset < block->max_length) {
2544 vaddr = ramblock_ptr(block, offset);
2545 if (block->flags & RAM_PREALLOC) {
2546 ;
2547 } else if (xen_enabled()) {
2548 abort();
2549 } else {
2550 flags = MAP_FIXED;
2551 if (block->fd >= 0) {
2552 flags |= (block->flags & RAM_SHARED ?
2553 MAP_SHARED : MAP_PRIVATE);
2554 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2555 flags, block->fd, offset);
2556 } else {
2557 /*
2558 * Remap needs to match alloc. Accelerators that
2559 * set phys_mem_alloc never remap. If they did,
2560 * we'd need a remap hook here.
2561 */
2562 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2563
2564 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2565 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2566 flags, -1, 0);
2567 }
2568 if (area != vaddr) {
2569 error_report("Could not remap addr: "
2570 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2571 length, addr);
2572 exit(1);
2573 }
2574 memory_try_enable_merging(vaddr, length);
2575 qemu_ram_setup_dump(vaddr, length);
2576 }
2577 }
2578 }
2579 }
2580 #endif /* !_WIN32 */
2581
2582 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2583 * This should not be used for general purpose DMA. Use address_space_map
2584 * or address_space_rw instead. For local memory (e.g. video ram) that the
2585 * device owns, use memory_region_get_ram_ptr.
2586 *
2587 * Called within RCU critical section.
2588 */
2589 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2590 {
2591 RAMBlock *block = ram_block;
2592
2593 if (block == NULL) {
2594 block = qemu_get_ram_block(addr);
2595 addr -= block->offset;
2596 }
2597
2598 if (xen_enabled() && block->host == NULL) {
2599 /* We need to check if the requested address is in the RAM
2600 * because we don't want to map the entire memory in QEMU.
2601 * In that case just map until the end of the page.
2602 */
2603 if (block->offset == 0) {
2604 return xen_map_cache(addr, 0, 0, false);
2605 }
2606
2607 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2608 }
2609 return ramblock_ptr(block, addr);
2610 }
2611
2612 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2613 * but takes a size argument.
2614 *
2615 * Called within RCU critical section.
2616 */
2617 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2618 hwaddr *size, bool lock)
2619 {
2620 RAMBlock *block = ram_block;
2621 if (*size == 0) {
2622 return NULL;
2623 }
2624
2625 if (block == NULL) {
2626 block = qemu_get_ram_block(addr);
2627 addr -= block->offset;
2628 }
2629 *size = MIN(*size, block->max_length - addr);
2630
2631 if (xen_enabled() && block->host == NULL) {
2632 /* We need to check if the requested address is in the RAM
2633 * because we don't want to map the entire memory in QEMU.
2634 * In that case just map the requested area.
2635 */
2636 if (block->offset == 0) {
2637 return xen_map_cache(addr, *size, lock, lock);
2638 }
2639
2640 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2641 }
2642
2643 return ramblock_ptr(block, addr);
2644 }
2645
2646 /* Return the offset of a hostpointer within a ramblock */
2647 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2648 {
2649 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2650 assert((uintptr_t)host >= (uintptr_t)rb->host);
2651 assert(res < rb->max_length);
2652
2653 return res;
2654 }
2655
2656 /*
2657 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2658 * in that RAMBlock.
2659 *
2660 * ptr: Host pointer to look up
2661 * round_offset: If true round the result offset down to a page boundary
2662 * *ram_addr: set to result ram_addr
2663 * *offset: set to result offset within the RAMBlock
2664 *
2665 * Returns: RAMBlock (or NULL if not found)
2666 *
2667 * By the time this function returns, the returned pointer is not protected
2668 * by RCU anymore. If the caller is not within an RCU critical section and
2669 * does not hold the iothread lock, it must have other means of protecting the
2670 * pointer, such as a reference to the region that includes the incoming
2671 * ram_addr_t.
2672 */
2673 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2674 ram_addr_t *offset)
2675 {
2676 RAMBlock *block;
2677 uint8_t *host = ptr;
2678
2679 if (xen_enabled()) {
2680 ram_addr_t ram_addr;
2681 RCU_READ_LOCK_GUARD();
2682 ram_addr = xen_ram_addr_from_mapcache(ptr);
2683 block = qemu_get_ram_block(ram_addr);
2684 if (block) {
2685 *offset = ram_addr - block->offset;
2686 }
2687 return block;
2688 }
2689
2690 RCU_READ_LOCK_GUARD();
2691 block = atomic_rcu_read(&ram_list.mru_block);
2692 if (block && block->host && host - block->host < block->max_length) {
2693 goto found;
2694 }
2695
2696 RAMBLOCK_FOREACH(block) {
2697 /* This case append when the block is not mapped. */
2698 if (block->host == NULL) {
2699 continue;
2700 }
2701 if (host - block->host < block->max_length) {
2702 goto found;
2703 }
2704 }
2705
2706 return NULL;
2707
2708 found:
2709 *offset = (host - block->host);
2710 if (round_offset) {
2711 *offset &= TARGET_PAGE_MASK;
2712 }
2713 return block;
2714 }
2715
2716 /*
2717 * Finds the named RAMBlock
2718 *
2719 * name: The name of RAMBlock to find
2720 *
2721 * Returns: RAMBlock (or NULL if not found)
2722 */
2723 RAMBlock *qemu_ram_block_by_name(const char *name)
2724 {
2725 RAMBlock *block;
2726
2727 RAMBLOCK_FOREACH(block) {
2728 if (!strcmp(name, block->idstr)) {
2729 return block;
2730 }
2731 }
2732
2733 return NULL;
2734 }
2735
2736 /* Some of the softmmu routines need to translate from a host pointer
2737 (typically a TLB entry) back to a ram offset. */
2738 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2739 {
2740 RAMBlock *block;
2741 ram_addr_t offset;
2742
2743 block = qemu_ram_block_from_host(ptr, false, &offset);
2744 if (!block) {
2745 return RAM_ADDR_INVALID;
2746 }
2747
2748 return block->offset + offset;
2749 }
2750
2751 /* Generate a debug exception if a watchpoint has been hit. */
2752 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2753 MemTxAttrs attrs, int flags, uintptr_t ra)
2754 {
2755 CPUClass *cc = CPU_GET_CLASS(cpu);
2756 CPUWatchpoint *wp;
2757
2758 assert(tcg_enabled());
2759 if (cpu->watchpoint_hit) {
2760 /*
2761 * We re-entered the check after replacing the TB.
2762 * Now raise the debug interrupt so that it will
2763 * trigger after the current instruction.
2764 */
2765 qemu_mutex_lock_iothread();
2766 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2767 qemu_mutex_unlock_iothread();
2768 return;
2769 }
2770
2771 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2772 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2773 if (watchpoint_address_matches(wp, addr, len)
2774 && (wp->flags & flags)) {
2775 if (flags == BP_MEM_READ) {
2776 wp->flags |= BP_WATCHPOINT_HIT_READ;
2777 } else {
2778 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2779 }
2780 wp->hitaddr = MAX(addr, wp->vaddr);
2781 wp->hitattrs = attrs;
2782 if (!cpu->watchpoint_hit) {
2783 if (wp->flags & BP_CPU &&
2784 !cc->debug_check_watchpoint(cpu, wp)) {
2785 wp->flags &= ~BP_WATCHPOINT_HIT;
2786 continue;
2787 }
2788 cpu->watchpoint_hit = wp;
2789
2790 mmap_lock();
2791 tb_check_watchpoint(cpu, ra);
2792 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2793 cpu->exception_index = EXCP_DEBUG;
2794 mmap_unlock();
2795 cpu_loop_exit_restore(cpu, ra);
2796 } else {
2797 /* Force execution of one insn next time. */
2798 cpu->cflags_next_tb = 1 | curr_cflags();
2799 mmap_unlock();
2800 if (ra) {
2801 cpu_restore_state(cpu, ra, true);
2802 }
2803 cpu_loop_exit_noexc(cpu);
2804 }
2805 }
2806 } else {
2807 wp->flags &= ~BP_WATCHPOINT_HIT;
2808 }
2809 }
2810 }
2811
2812 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2813 MemTxAttrs attrs, void *buf, hwaddr len);
2814 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2815 const void *buf, hwaddr len);
2816 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2817 bool is_write, MemTxAttrs attrs);
2818
2819 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2820 unsigned len, MemTxAttrs attrs)
2821 {
2822 subpage_t *subpage = opaque;
2823 uint8_t buf[8];
2824 MemTxResult res;
2825
2826 #if defined(DEBUG_SUBPAGE)
2827 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2828 subpage, len, addr);
2829 #endif
2830 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2831 if (res) {
2832 return res;
2833 }
2834 *data = ldn_p(buf, len);
2835 return MEMTX_OK;
2836 }
2837
2838 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2839 uint64_t value, unsigned len, MemTxAttrs attrs)
2840 {
2841 subpage_t *subpage = opaque;
2842 uint8_t buf[8];
2843
2844 #if defined(DEBUG_SUBPAGE)
2845 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2846 " value %"PRIx64"\n",
2847 __func__, subpage, len, addr, value);
2848 #endif
2849 stn_p(buf, len, value);
2850 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2851 }
2852
2853 static bool subpage_accepts(void *opaque, hwaddr addr,
2854 unsigned len, bool is_write,
2855 MemTxAttrs attrs)
2856 {
2857 subpage_t *subpage = opaque;
2858 #if defined(DEBUG_SUBPAGE)
2859 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2860 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2861 #endif
2862
2863 return flatview_access_valid(subpage->fv, addr + subpage->base,
2864 len, is_write, attrs);
2865 }
2866
2867 static const MemoryRegionOps subpage_ops = {
2868 .read_with_attrs = subpage_read,
2869 .write_with_attrs = subpage_write,
2870 .impl.min_access_size = 1,
2871 .impl.max_access_size = 8,
2872 .valid.min_access_size = 1,
2873 .valid.max_access_size = 8,
2874 .valid.accepts = subpage_accepts,
2875 .endianness = DEVICE_NATIVE_ENDIAN,
2876 };
2877
2878 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2879 uint16_t section)
2880 {
2881 int idx, eidx;
2882
2883 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2884 return -1;
2885 idx = SUBPAGE_IDX(start);
2886 eidx = SUBPAGE_IDX(end);
2887 #if defined(DEBUG_SUBPAGE)
2888 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2889 __func__, mmio, start, end, idx, eidx, section);
2890 #endif
2891 for (; idx <= eidx; idx++) {
2892 mmio->sub_section[idx] = section;
2893 }
2894
2895 return 0;
2896 }
2897
2898 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2899 {
2900 subpage_t *mmio;
2901
2902 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2903 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2904 mmio->fv = fv;
2905 mmio->base = base;
2906 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2907 NULL, TARGET_PAGE_SIZE);
2908 mmio->iomem.subpage = true;
2909 #if defined(DEBUG_SUBPAGE)
2910 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2911 mmio, base, TARGET_PAGE_SIZE);
2912 #endif
2913
2914 return mmio;
2915 }
2916
2917 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2918 {
2919 assert(fv);
2920 MemoryRegionSection section = {
2921 .fv = fv,
2922 .mr = mr,
2923 .offset_within_address_space = 0,
2924 .offset_within_region = 0,
2925 .size = int128_2_64(),
2926 };
2927
2928 return phys_section_add(map, &section);
2929 }
2930
2931 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2932 hwaddr index, MemTxAttrs attrs)
2933 {
2934 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2935 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2936 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2937 MemoryRegionSection *sections = d->map.sections;
2938
2939 return &sections[index & ~TARGET_PAGE_MASK];
2940 }
2941
2942 static void io_mem_init(void)
2943 {
2944 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2945 NULL, UINT64_MAX);
2946 }
2947
2948 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2949 {
2950 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2951 uint16_t n;
2952
2953 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2954 assert(n == PHYS_SECTION_UNASSIGNED);
2955
2956 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2957
2958 return d;
2959 }
2960
2961 void address_space_dispatch_free(AddressSpaceDispatch *d)
2962 {
2963 phys_sections_free(&d->map);
2964 g_free(d);
2965 }
2966
2967 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2968 {
2969 }
2970
2971 static void tcg_log_global_after_sync(MemoryListener *listener)
2972 {
2973 CPUAddressSpace *cpuas;
2974
2975 /* Wait for the CPU to end the current TB. This avoids the following
2976 * incorrect race:
2977 *
2978 * vCPU migration
2979 * ---------------------- -------------------------
2980 * TLB check -> slow path
2981 * notdirty_mem_write
2982 * write to RAM
2983 * mark dirty
2984 * clear dirty flag
2985 * TLB check -> fast path
2986 * read memory
2987 * write to RAM
2988 *
2989 * by pushing the migration thread's memory read after the vCPU thread has
2990 * written the memory.
2991 */
2992 if (replay_mode == REPLAY_MODE_NONE) {
2993 /*
2994 * VGA can make calls to this function while updating the screen.
2995 * In record/replay mode this causes a deadlock, because
2996 * run_on_cpu waits for rr mutex. Therefore no races are possible
2997 * in this case and no need for making run_on_cpu when
2998 * record/replay is not enabled.
2999 */
3000 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3001 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3002 }
3003 }
3004
3005 static void tcg_commit(MemoryListener *listener)
3006 {
3007 CPUAddressSpace *cpuas;
3008 AddressSpaceDispatch *d;
3009
3010 assert(tcg_enabled());
3011 /* since each CPU stores ram addresses in its TLB cache, we must
3012 reset the modified entries */
3013 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3014 cpu_reloading_memory_map();
3015 /* The CPU and TLB are protected by the iothread lock.
3016 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3017 * may have split the RCU critical section.
3018 */
3019 d = address_space_to_dispatch(cpuas->as);
3020 atomic_rcu_set(&cpuas->memory_dispatch, d);
3021 tlb_flush(cpuas->cpu);
3022 }
3023
3024 static void memory_map_init(void)
3025 {
3026 system_memory = g_malloc(sizeof(*system_memory));
3027
3028 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3029 address_space_init(&address_space_memory, system_memory, "memory");
3030
3031 system_io = g_malloc(sizeof(*system_io));
3032 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3033 65536);
3034 address_space_init(&address_space_io, system_io, "I/O");
3035 }
3036
3037 MemoryRegion *get_system_memory(void)
3038 {
3039 return system_memory;
3040 }
3041
3042 MemoryRegion *get_system_io(void)
3043 {
3044 return system_io;
3045 }
3046
3047 #endif /* !defined(CONFIG_USER_ONLY) */
3048
3049 /* physical memory access (slow version, mainly for debug) */
3050 #if defined(CONFIG_USER_ONLY)
3051 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3052 void *ptr, target_ulong len, bool is_write)
3053 {
3054 int flags;
3055 target_ulong l, page;
3056 void * p;
3057 uint8_t *buf = ptr;
3058
3059 while (len > 0) {
3060 page = addr & TARGET_PAGE_MASK;
3061 l = (page + TARGET_PAGE_SIZE) - addr;
3062 if (l > len)
3063 l = len;
3064 flags = page_get_flags(page);
3065 if (!(flags & PAGE_VALID))
3066 return -1;
3067 if (is_write) {
3068 if (!(flags & PAGE_WRITE))
3069 return -1;
3070 /* XXX: this code should not depend on lock_user */
3071 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3072 return -1;
3073 memcpy(p, buf, l);
3074 unlock_user(p, addr, l);
3075 } else {
3076 if (!(flags & PAGE_READ))
3077 return -1;
3078 /* XXX: this code should not depend on lock_user */
3079 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3080 return -1;
3081 memcpy(buf, p, l);
3082 unlock_user(p, addr, 0);
3083 }
3084 len -= l;
3085 buf += l;
3086 addr += l;
3087 }
3088 return 0;
3089 }
3090
3091 #else
3092
3093 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3094 hwaddr length)
3095 {
3096 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3097 addr += memory_region_get_ram_addr(mr);
3098
3099 /* No early return if dirty_log_mask is or becomes 0, because
3100 * cpu_physical_memory_set_dirty_range will still call
3101 * xen_modified_memory.
3102 */
3103 if (dirty_log_mask) {
3104 dirty_log_mask =
3105 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3106 }
3107 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3108 assert(tcg_enabled());
3109 tb_invalidate_phys_range(addr, addr + length);
3110 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3111 }
3112 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3113 }
3114
3115 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3116 {
3117 /*
3118 * In principle this function would work on other memory region types too,
3119 * but the ROM device use case is the only one where this operation is
3120 * necessary. Other memory regions should use the
3121 * address_space_read/write() APIs.
3122 */
3123 assert(memory_region_is_romd(mr));
3124
3125 invalidate_and_set_dirty(mr, addr, size);
3126 }
3127
3128 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3129 {
3130 unsigned access_size_max = mr->ops->valid.max_access_size;
3131
3132 /* Regions are assumed to support 1-4 byte accesses unless
3133 otherwise specified. */
3134 if (access_size_max == 0) {
3135 access_size_max = 4;
3136 }
3137
3138 /* Bound the maximum access by the alignment of the address. */
3139 if (!mr->ops->impl.unaligned) {
3140 unsigned align_size_max = addr & -addr;
3141 if (align_size_max != 0 && align_size_max < access_size_max) {
3142 access_size_max = align_size_max;
3143 }
3144 }
3145
3146 /* Don't attempt accesses larger than the maximum. */
3147 if (l > access_size_max) {
3148 l = access_size_max;
3149 }
3150 l = pow2floor(l);
3151
3152 return l;
3153 }
3154
3155 static bool prepare_mmio_access(MemoryRegion *mr)
3156 {
3157 bool unlocked = !qemu_mutex_iothread_locked();
3158 bool release_lock = false;
3159
3160 if (unlocked && mr->global_locking) {
3161 qemu_mutex_lock_iothread();
3162 unlocked = false;
3163 release_lock = true;
3164 }
3165 if (mr->flush_coalesced_mmio) {
3166 if (unlocked) {
3167 qemu_mutex_lock_iothread();
3168 }
3169 qemu_flush_coalesced_mmio_buffer();
3170 if (unlocked) {
3171 qemu_mutex_unlock_iothread();
3172 }
3173 }
3174
3175 return release_lock;
3176 }
3177
3178 /* Called within RCU critical section. */
3179 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3180 MemTxAttrs attrs,
3181 const void *ptr,
3182 hwaddr len, hwaddr addr1,
3183 hwaddr l, MemoryRegion *mr)
3184 {
3185 uint8_t *ram_ptr;
3186 uint64_t val;
3187 MemTxResult result = MEMTX_OK;
3188 bool release_lock = false;
3189 const uint8_t *buf = ptr;
3190
3191 for (;;) {
3192 if (!memory_access_is_direct(mr, true)) {
3193 release_lock |= prepare_mmio_access(mr);
3194 l = memory_access_size(mr, l, addr1);
3195 /* XXX: could force current_cpu to NULL to avoid
3196 potential bugs */
3197 val = ldn_he_p(buf, l);
3198 result |= memory_region_dispatch_write(mr, addr1, val,
3199 size_memop(l), attrs);
3200 } else {
3201 /* RAM case */
3202 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3203 memcpy(ram_ptr, buf, l);
3204 invalidate_and_set_dirty(mr, addr1, l);
3205 }
3206
3207 if (release_lock) {
3208 qemu_mutex_unlock_iothread();
3209 release_lock = false;
3210 }
3211
3212 len -= l;
3213 buf += l;
3214 addr += l;
3215
3216 if (!len) {
3217 break;
3218 }
3219
3220 l = len;
3221 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3222 }
3223
3224 return result;
3225 }
3226
3227 /* Called from RCU critical section. */
3228 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3229 const void *buf, hwaddr len)
3230 {
3231 hwaddr l;
3232 hwaddr addr1;
3233 MemoryRegion *mr;
3234 MemTxResult result = MEMTX_OK;
3235
3236 l = len;
3237 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3238 result = flatview_write_continue(fv, addr, attrs, buf, len,
3239 addr1, l, mr);
3240
3241 return result;
3242 }
3243
3244 /* Called within RCU critical section. */
3245 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3246 MemTxAttrs attrs, void *ptr,
3247 hwaddr len, hwaddr addr1, hwaddr l,
3248 MemoryRegion *mr)
3249 {
3250 uint8_t *ram_ptr;
3251 uint64_t val;
3252 MemTxResult result = MEMTX_OK;
3253 bool release_lock = false;
3254 uint8_t *buf = ptr;
3255
3256 for (;;) {
3257 if (!memory_access_is_direct(mr, false)) {
3258 /* I/O case */
3259 release_lock |= prepare_mmio_access(mr);
3260 l = memory_access_size(mr, l, addr1);
3261 result |= memory_region_dispatch_read(mr, addr1, &val,
3262 size_memop(l), attrs);
3263 stn_he_p(buf, l, val);
3264 } else {
3265 /* RAM case */
3266 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3267 memcpy(buf, ram_ptr, l);
3268 }
3269
3270 if (release_lock) {
3271 qemu_mutex_unlock_iothread();
3272 release_lock = false;
3273 }
3274
3275 len -= l;
3276 buf += l;
3277 addr += l;
3278
3279 if (!len) {
3280 break;
3281 }
3282
3283 l = len;
3284 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3285 }
3286
3287 return result;
3288 }
3289
3290 /* Called from RCU critical section. */
3291 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3292 MemTxAttrs attrs, void *buf, hwaddr len)
3293 {
3294 hwaddr l;
3295 hwaddr addr1;
3296 MemoryRegion *mr;
3297
3298 l = len;
3299 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3300 return flatview_read_continue(fv, addr, attrs, buf, len,
3301 addr1, l, mr);
3302 }
3303
3304 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3305 MemTxAttrs attrs, void *buf, hwaddr len)
3306 {
3307 MemTxResult result = MEMTX_OK;
3308 FlatView *fv;
3309
3310 if (len > 0) {
3311 RCU_READ_LOCK_GUARD();
3312 fv = address_space_to_flatview(as);
3313 result = flatview_read(fv, addr, attrs, buf, len);
3314 }
3315
3316 return result;
3317 }
3318
3319 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3320 MemTxAttrs attrs,
3321 const void *buf, hwaddr len)
3322 {
3323 MemTxResult result = MEMTX_OK;
3324 FlatView *fv;
3325
3326 if (len > 0) {
3327 RCU_READ_LOCK_GUARD();
3328 fv = address_space_to_flatview(as);
3329 result = flatview_write(fv, addr, attrs, buf, len);
3330 }
3331
3332 return result;
3333 }
3334
3335 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3336 void *buf, hwaddr len, bool is_write)
3337 {
3338 if (is_write) {
3339 return address_space_write(as, addr, attrs, buf, len);
3340 } else {
3341 return address_space_read_full(as, addr, attrs, buf, len);
3342 }
3343 }
3344
3345 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3346 hwaddr len, bool is_write)
3347 {
3348 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3349 buf, len, is_write);
3350 }
3351
3352 enum write_rom_type {
3353 WRITE_DATA,
3354 FLUSH_CACHE,
3355 };
3356
3357 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3358 hwaddr addr,
3359 MemTxAttrs attrs,
3360 const void *ptr,
3361 hwaddr len,
3362 enum write_rom_type type)
3363 {
3364 hwaddr l;
3365 uint8_t *ram_ptr;
3366 hwaddr addr1;
3367 MemoryRegion *mr;
3368 const uint8_t *buf = ptr;
3369
3370 RCU_READ_LOCK_GUARD();
3371 while (len > 0) {
3372 l = len;
3373 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3374
3375 if (!(memory_region_is_ram(mr) ||
3376 memory_region_is_romd(mr))) {
3377 l = memory_access_size(mr, l, addr1);
3378 } else {
3379 /* ROM/RAM case */
3380 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3381 switch (type) {
3382 case WRITE_DATA:
3383 memcpy(ram_ptr, buf, l);
3384 invalidate_and_set_dirty(mr, addr1, l);
3385 break;
3386 case FLUSH_CACHE:
3387 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
3388 break;
3389 }
3390 }
3391 len -= l;
3392 buf += l;
3393 addr += l;
3394 }
3395 return MEMTX_OK;
3396 }
3397
3398 /* used for ROM loading : can write in RAM and ROM */
3399 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3400 MemTxAttrs attrs,
3401 const void *buf, hwaddr len)
3402 {
3403 return address_space_write_rom_internal(as, addr, attrs,
3404 buf, len, WRITE_DATA);
3405 }
3406
3407 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3408 {
3409 /*
3410 * This function should do the same thing as an icache flush that was
3411 * triggered from within the guest. For TCG we are always cache coherent,
3412 * so there is no need to flush anything. For KVM / Xen we need to flush
3413 * the host's instruction cache at least.
3414 */
3415 if (tcg_enabled()) {
3416 return;
3417 }
3418
3419 address_space_write_rom_internal(&address_space_memory,
3420 start, MEMTXATTRS_UNSPECIFIED,
3421 NULL, len, FLUSH_CACHE);
3422 }
3423
3424 typedef struct {
3425 MemoryRegion *mr;
3426 void *buffer;
3427 hwaddr addr;
3428 hwaddr len;
3429 bool in_use;
3430 } BounceBuffer;
3431
3432 static BounceBuffer bounce;
3433
3434 typedef struct MapClient {
3435 QEMUBH *bh;
3436 QLIST_ENTRY(MapClient) link;
3437 } MapClient;
3438
3439 QemuMutex map_client_list_lock;
3440 static QLIST_HEAD(, MapClient) map_client_list
3441 = QLIST_HEAD_INITIALIZER(map_client_list);
3442
3443 static void cpu_unregister_map_client_do(MapClient *client)
3444 {
3445 QLIST_REMOVE(client, link);
3446 g_free(client);
3447 }
3448
3449 static void cpu_notify_map_clients_locked(void)
3450 {
3451 MapClient *client;
3452
3453 while (!QLIST_EMPTY(&map_client_list)) {
3454 client = QLIST_FIRST(&map_client_list);
3455 qemu_bh_schedule(client->bh);
3456 cpu_unregister_map_client_do(client);
3457 }
3458 }
3459
3460 void cpu_register_map_client(QEMUBH *bh)
3461 {
3462 MapClient *client = g_malloc(sizeof(*client));
3463
3464 qemu_mutex_lock(&map_client_list_lock);
3465 client->bh = bh;
3466 QLIST_INSERT_HEAD(&map_client_list, client, link);
3467 if (!atomic_read(&bounce.in_use)) {
3468 cpu_notify_map_clients_locked();
3469 }
3470 qemu_mutex_unlock(&map_client_list_lock);
3471 }
3472
3473 void cpu_exec_init_all(void)
3474 {
3475 qemu_mutex_init(&ram_list.mutex);
3476 /* The data structures we set up here depend on knowing the page size,
3477 * so no more changes can be made after this point.
3478 * In an ideal world, nothing we did before we had finished the
3479 * machine setup would care about the target page size, and we could
3480 * do this much later, rather than requiring board models to state
3481 * up front what their requirements are.
3482 */
3483 finalize_target_page_bits();
3484 io_mem_init();
3485 memory_map_init();
3486 qemu_mutex_init(&map_client_list_lock);
3487 }
3488
3489 void cpu_unregister_map_client(QEMUBH *bh)
3490 {
3491 MapClient *client;
3492
3493 qemu_mutex_lock(&map_client_list_lock);
3494 QLIST_FOREACH(client, &map_client_list, link) {
3495 if (client->bh == bh) {
3496 cpu_unregister_map_client_do(client);
3497 break;
3498 }
3499 }
3500 qemu_mutex_unlock(&map_client_list_lock);
3501 }
3502
3503 static void cpu_notify_map_clients(void)
3504 {
3505 qemu_mutex_lock(&map_client_list_lock);
3506 cpu_notify_map_clients_locked();
3507 qemu_mutex_unlock(&map_client_list_lock);
3508 }
3509
3510 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3511 bool is_write, MemTxAttrs attrs)
3512 {
3513 MemoryRegion *mr;
3514 hwaddr l, xlat;
3515
3516 while (len > 0) {
3517 l = len;
3518 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3519 if (!memory_access_is_direct(mr, is_write)) {
3520 l = memory_access_size(mr, l, addr);
3521 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3522 return false;
3523 }
3524 }
3525
3526 len -= l;
3527 addr += l;
3528 }
3529 return true;
3530 }
3531
3532 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3533 hwaddr len, bool is_write,
3534 MemTxAttrs attrs)
3535 {
3536 FlatView *fv;
3537 bool result;
3538
3539 RCU_READ_LOCK_GUARD();
3540 fv = address_space_to_flatview(as);
3541 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3542 return result;
3543 }
3544
3545 static hwaddr
3546 flatview_extend_translation(FlatView *fv, hwaddr addr,
3547 hwaddr target_len,
3548 MemoryRegion *mr, hwaddr base, hwaddr len,
3549 bool is_write, MemTxAttrs attrs)
3550 {
3551 hwaddr done = 0;
3552 hwaddr xlat;
3553 MemoryRegion *this_mr;
3554
3555 for (;;) {
3556 target_len -= len;
3557 addr += len;
3558 done += len;
3559 if (target_len == 0) {
3560 return done;
3561 }
3562
3563 len = target_len;
3564 this_mr = flatview_translate(fv, addr, &xlat,
3565 &len, is_write, attrs);
3566 if (this_mr != mr || xlat != base + done) {
3567 return done;
3568 }
3569 }
3570 }
3571
3572 /* Map a physical memory region into a host virtual address.
3573 * May map a subset of the requested range, given by and returned in *plen.
3574 * May return NULL if resources needed to perform the mapping are exhausted.
3575 * Use only for reads OR writes - not for read-modify-write operations.
3576 * Use cpu_register_map_client() to know when retrying the map operation is
3577 * likely to succeed.
3578 */
3579 void *address_space_map(AddressSpace *as,
3580 hwaddr addr,
3581 hwaddr *plen,
3582 bool is_write,
3583 MemTxAttrs attrs)
3584 {
3585 hwaddr len = *plen;
3586 hwaddr l, xlat;
3587 MemoryRegion *mr;
3588 void *ptr;
3589 FlatView *fv;
3590
3591 if (len == 0) {
3592 return NULL;
3593 }
3594
3595 l = len;
3596 RCU_READ_LOCK_GUARD();
3597 fv = address_space_to_flatview(as);
3598 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3599
3600 if (!memory_access_is_direct(mr, is_write)) {
3601 if (atomic_xchg(&bounce.in_use, true)) {
3602 *plen = 0;
3603 return NULL;
3604 }
3605 /* Avoid unbounded allocations */
3606 l = MIN(l, TARGET_PAGE_SIZE);
3607 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3608 bounce.addr = addr;
3609 bounce.len = l;
3610
3611 memory_region_ref(mr);
3612 bounce.mr = mr;
3613 if (!is_write) {
3614 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3615 bounce.buffer, l);
3616 }
3617
3618 *plen = l;
3619 return bounce.buffer;
3620 }
3621
3622
3623 memory_region_ref(mr);
3624 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3625 l, is_write, attrs);
3626 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3627
3628 return ptr;
3629 }
3630
3631 /* Unmaps a memory region previously mapped by address_space_map().
3632 * Will also mark the memory as dirty if is_write is true. access_len gives
3633 * the amount of memory that was actually read or written by the caller.
3634 */
3635 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3636 bool is_write, hwaddr access_len)
3637 {
3638 if (buffer != bounce.buffer) {
3639 MemoryRegion *mr;
3640 ram_addr_t addr1;
3641
3642 mr = memory_region_from_host(buffer, &addr1);
3643 assert(mr != NULL);
3644 if (is_write) {
3645 invalidate_and_set_dirty(mr, addr1, access_len);
3646 }
3647 if (xen_enabled()) {
3648 xen_invalidate_map_cache_entry(buffer);
3649 }
3650 memory_region_unref(mr);
3651 return;
3652 }
3653 if (is_write) {
3654 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3655 bounce.buffer, access_len);
3656 }
3657 qemu_vfree(bounce.buffer);
3658 bounce.buffer = NULL;
3659 memory_region_unref(bounce.mr);
3660 atomic_mb_set(&bounce.in_use, false);
3661 cpu_notify_map_clients();
3662 }
3663
3664 void *cpu_physical_memory_map(hwaddr addr,
3665 hwaddr *plen,
3666 bool is_write)
3667 {
3668 return address_space_map(&address_space_memory, addr, plen, is_write,
3669 MEMTXATTRS_UNSPECIFIED);
3670 }
3671
3672 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3673 bool is_write, hwaddr access_len)
3674 {
3675 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3676 }
3677
3678 #define ARG1_DECL AddressSpace *as
3679 #define ARG1 as
3680 #define SUFFIX
3681 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3682 #define RCU_READ_LOCK(...) rcu_read_lock()
3683 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3684 #include "memory_ldst.inc.c"
3685
3686 int64_t address_space_cache_init(MemoryRegionCache *cache,
3687 AddressSpace *as,
3688 hwaddr addr,
3689 hwaddr len,
3690 bool is_write)
3691 {
3692 AddressSpaceDispatch *d;
3693 hwaddr l;
3694 MemoryRegion *mr;
3695
3696 assert(len > 0);
3697
3698 l = len;
3699 cache->fv = address_space_get_flatview(as);
3700 d = flatview_to_dispatch(cache->fv);
3701 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3702
3703 mr = cache->mrs.mr;
3704 memory_region_ref(mr);
3705 if (memory_access_is_direct(mr, is_write)) {
3706 /* We don't care about the memory attributes here as we're only
3707 * doing this if we found actual RAM, which behaves the same
3708 * regardless of attributes; so UNSPECIFIED is fine.
3709 */
3710 l = flatview_extend_translation(cache->fv, addr, len, mr,
3711 cache->xlat, l, is_write,
3712 MEMTXATTRS_UNSPECIFIED);
3713 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3714 } else {
3715 cache->ptr = NULL;
3716 }
3717
3718 cache->len = l;
3719 cache->is_write = is_write;
3720 return l;
3721 }
3722
3723 void address_space_cache_invalidate(MemoryRegionCache *cache,
3724 hwaddr addr,
3725 hwaddr access_len)
3726 {
3727 assert(cache->is_write);
3728 if (likely(cache->ptr)) {
3729 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3730 }
3731 }
3732
3733 void address_space_cache_destroy(MemoryRegionCache *cache)
3734 {
3735 if (!cache->mrs.mr) {
3736 return;
3737 }
3738
3739 if (xen_enabled()) {
3740 xen_invalidate_map_cache_entry(cache->ptr);
3741 }
3742 memory_region_unref(cache->mrs.mr);
3743 flatview_unref(cache->fv);
3744 cache->mrs.mr = NULL;
3745 cache->fv = NULL;
3746 }
3747
3748 /* Called from RCU critical section. This function has the same
3749 * semantics as address_space_translate, but it only works on a
3750 * predefined range of a MemoryRegion that was mapped with
3751 * address_space_cache_init.
3752 */
3753 static inline MemoryRegion *address_space_translate_cached(
3754 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3755 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3756 {
3757 MemoryRegionSection section;
3758 MemoryRegion *mr;
3759 IOMMUMemoryRegion *iommu_mr;
3760 AddressSpace *target_as;
3761
3762 assert(!cache->ptr);
3763 *xlat = addr + cache->xlat;
3764
3765 mr = cache->mrs.mr;
3766 iommu_mr = memory_region_get_iommu(mr);
3767 if (!iommu_mr) {
3768 /* MMIO region. */
3769 return mr;
3770 }
3771
3772 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3773 NULL, is_write, true,
3774 &target_as, attrs);
3775 return section.mr;
3776 }
3777
3778 /* Called from RCU critical section. address_space_read_cached uses this
3779 * out of line function when the target is an MMIO or IOMMU region.
3780 */
3781 MemTxResult
3782 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3783 void *buf, hwaddr len)
3784 {
3785 hwaddr addr1, l;
3786 MemoryRegion *mr;
3787
3788 l = len;
3789 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3790 MEMTXATTRS_UNSPECIFIED);
3791 return flatview_read_continue(cache->fv,
3792 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3793 addr1, l, mr);
3794 }
3795
3796 /* Called from RCU critical section. address_space_write_cached uses this
3797 * out of line function when the target is an MMIO or IOMMU region.
3798 */
3799 MemTxResult
3800 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3801 const void *buf, hwaddr len)
3802 {
3803 hwaddr addr1, l;
3804 MemoryRegion *mr;
3805
3806 l = len;
3807 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3808 MEMTXATTRS_UNSPECIFIED);
3809 return flatview_write_continue(cache->fv,
3810 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3811 addr1, l, mr);
3812 }
3813
3814 #define ARG1_DECL MemoryRegionCache *cache
3815 #define ARG1 cache
3816 #define SUFFIX _cached_slow
3817 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3818 #define RCU_READ_LOCK() ((void)0)
3819 #define RCU_READ_UNLOCK() ((void)0)
3820 #include "memory_ldst.inc.c"
3821
3822 /* virtual memory access for debug (includes writing to ROM) */
3823 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3824 void *ptr, target_ulong len, bool is_write)
3825 {
3826 hwaddr phys_addr;
3827 target_ulong l, page;
3828 uint8_t *buf = ptr;
3829
3830 cpu_synchronize_state(cpu);
3831 while (len > 0) {
3832 int asidx;
3833 MemTxAttrs attrs;
3834 MemTxResult res;
3835
3836 page = addr & TARGET_PAGE_MASK;
3837 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3838 asidx = cpu_asidx_from_attrs(cpu, attrs);
3839 /* if no physical page mapped, return an error */
3840 if (phys_addr == -1)
3841 return -1;
3842 l = (page + TARGET_PAGE_SIZE) - addr;
3843 if (l > len)
3844 l = len;
3845 phys_addr += (addr & ~TARGET_PAGE_MASK);
3846 if (is_write) {
3847 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3848 attrs, buf, l);
3849 } else {
3850 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3851 attrs, buf, l);
3852 }
3853 if (res != MEMTX_OK) {
3854 return -1;
3855 }
3856 len -= l;
3857 buf += l;
3858 addr += l;
3859 }
3860 return 0;
3861 }
3862
3863 /*
3864 * Allows code that needs to deal with migration bitmaps etc to still be built
3865 * target independent.
3866 */
3867 size_t qemu_target_page_size(void)
3868 {
3869 return TARGET_PAGE_SIZE;
3870 }
3871
3872 int qemu_target_page_bits(void)
3873 {
3874 return TARGET_PAGE_BITS;
3875 }
3876
3877 int qemu_target_page_bits_min(void)
3878 {
3879 return TARGET_PAGE_BITS_MIN;
3880 }
3881 #endif
3882
3883 bool target_words_bigendian(void)
3884 {
3885 #if defined(TARGET_WORDS_BIGENDIAN)
3886 return true;
3887 #else
3888 return false;
3889 #endif
3890 }
3891
3892 #ifndef CONFIG_USER_ONLY
3893 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3894 {
3895 MemoryRegion*mr;
3896 hwaddr l = 1;
3897 bool res;
3898
3899 RCU_READ_LOCK_GUARD();
3900 mr = address_space_translate(&address_space_memory,
3901 phys_addr, &phys_addr, &l, false,
3902 MEMTXATTRS_UNSPECIFIED);
3903
3904 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3905 return res;
3906 }
3907
3908 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3909 {
3910 RAMBlock *block;
3911 int ret = 0;
3912
3913 RCU_READ_LOCK_GUARD();
3914 RAMBLOCK_FOREACH(block) {
3915 ret = func(block, opaque);
3916 if (ret) {
3917 break;
3918 }
3919 }
3920 return ret;
3921 }
3922
3923 /*
3924 * Unmap pages of memory from start to start+length such that
3925 * they a) read as 0, b) Trigger whatever fault mechanism
3926 * the OS provides for postcopy.
3927 * The pages must be unmapped by the end of the function.
3928 * Returns: 0 on success, none-0 on failure
3929 *
3930 */
3931 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3932 {
3933 int ret = -1;
3934
3935 uint8_t *host_startaddr = rb->host + start;
3936
3937 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3938 error_report("ram_block_discard_range: Unaligned start address: %p",
3939 host_startaddr);
3940 goto err;
3941 }
3942
3943 if ((start + length) <= rb->used_length) {
3944 bool need_madvise, need_fallocate;
3945 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3946 error_report("ram_block_discard_range: Unaligned length: %zx",
3947 length);
3948 goto err;
3949 }
3950
3951 errno = ENOTSUP; /* If we are missing MADVISE etc */
3952
3953 /* The logic here is messy;
3954 * madvise DONTNEED fails for hugepages
3955 * fallocate works on hugepages and shmem
3956 */
3957 need_madvise = (rb->page_size == qemu_host_page_size);
3958 need_fallocate = rb->fd != -1;
3959 if (need_fallocate) {
3960 /* For a file, this causes the area of the file to be zero'd
3961 * if read, and for hugetlbfs also causes it to be unmapped
3962 * so a userfault will trigger.
3963 */
3964 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3965 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3966 start, length);
3967 if (ret) {
3968 ret = -errno;
3969 error_report("ram_block_discard_range: Failed to fallocate "
3970 "%s:%" PRIx64 " +%zx (%d)",
3971 rb->idstr, start, length, ret);
3972 goto err;
3973 }
3974 #else
3975 ret = -ENOSYS;
3976 error_report("ram_block_discard_range: fallocate not available/file"
3977 "%s:%" PRIx64 " +%zx (%d)",
3978 rb->idstr, start, length, ret);
3979 goto err;
3980 #endif
3981 }
3982 if (need_madvise) {
3983 /* For normal RAM this causes it to be unmapped,
3984 * for shared memory it causes the local mapping to disappear
3985 * and to fall back on the file contents (which we just
3986 * fallocate'd away).
3987 */
3988 #if defined(CONFIG_MADVISE)
3989 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3990 if (ret) {
3991 ret = -errno;
3992 error_report("ram_block_discard_range: Failed to discard range "
3993 "%s:%" PRIx64 " +%zx (%d)",
3994 rb->idstr, start, length, ret);
3995 goto err;
3996 }
3997 #else
3998 ret = -ENOSYS;
3999 error_report("ram_block_discard_range: MADVISE not available"
4000 "%s:%" PRIx64 " +%zx (%d)",
4001 rb->idstr, start, length, ret);
4002 goto err;
4003 #endif
4004 }
4005 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4006 need_madvise, need_fallocate, ret);
4007 } else {
4008 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4009 "/%zx/" RAM_ADDR_FMT")",
4010 rb->idstr, start, length, rb->used_length);
4011 }
4012
4013 err:
4014 return ret;
4015 }
4016
4017 bool ramblock_is_pmem(RAMBlock *rb)
4018 {
4019 return rb->flags & RAM_PMEM;
4020 }
4021
4022 #endif
4023
4024 void page_size_init(void)
4025 {
4026 /* NOTE: we can always suppose that qemu_host_page_size >=
4027 TARGET_PAGE_SIZE */
4028 if (qemu_host_page_size == 0) {
4029 qemu_host_page_size = qemu_real_host_page_size;
4030 }
4031 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4032 qemu_host_page_size = TARGET_PAGE_SIZE;
4033 }
4034 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4035 }
4036
4037 #if !defined(CONFIG_USER_ONLY)
4038
4039 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4040 {
4041 if (start == end - 1) {
4042 qemu_printf("\t%3d ", start);
4043 } else {
4044 qemu_printf("\t%3d..%-3d ", start, end - 1);
4045 }
4046 qemu_printf(" skip=%d ", skip);
4047 if (ptr == PHYS_MAP_NODE_NIL) {
4048 qemu_printf(" ptr=NIL");
4049 } else if (!skip) {
4050 qemu_printf(" ptr=#%d", ptr);
4051 } else {
4052 qemu_printf(" ptr=[%d]", ptr);
4053 }
4054 qemu_printf("\n");
4055 }
4056
4057 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4058 int128_sub((size), int128_one())) : 0)
4059
4060 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4061 {
4062 int i;
4063
4064 qemu_printf(" Dispatch\n");
4065 qemu_printf(" Physical sections\n");
4066
4067 for (i = 0; i < d->map.sections_nb; ++i) {
4068 MemoryRegionSection *s = d->map.sections + i;
4069 const char *names[] = { " [unassigned]", " [not dirty]",
4070 " [ROM]", " [watch]" };
4071
4072 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4073 " %s%s%s%s%s",
4074 i,
4075 s->offset_within_address_space,
4076 s->offset_within_address_space + MR_SIZE(s->mr->size),
4077 s->mr->name ? s->mr->name : "(noname)",
4078 i < ARRAY_SIZE(names) ? names[i] : "",
4079 s->mr == root ? " [ROOT]" : "",
4080 s == d->mru_section ? " [MRU]" : "",
4081 s->mr->is_iommu ? " [iommu]" : "");
4082
4083 if (s->mr->alias) {
4084 qemu_printf(" alias=%s", s->mr->alias->name ?
4085 s->mr->alias->name : "noname");
4086 }
4087 qemu_printf("\n");
4088 }
4089
4090 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4091 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4092 for (i = 0; i < d->map.nodes_nb; ++i) {
4093 int j, jprev;
4094 PhysPageEntry prev;
4095 Node *n = d->map.nodes + i;
4096
4097 qemu_printf(" [%d]\n", i);
4098
4099 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4100 PhysPageEntry *pe = *n + j;
4101
4102 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4103 continue;
4104 }
4105
4106 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4107
4108 jprev = j;
4109 prev = *pe;
4110 }
4111
4112 if (jprev != ARRAY_SIZE(*n)) {
4113 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4114 }
4115 }
4116 }
4117
4118 /*
4119 * If positive, discarding RAM is disabled. If negative, discarding RAM is
4120 * required to work and cannot be disabled.
4121 */
4122 static int ram_block_discard_disabled;
4123
4124 int ram_block_discard_disable(bool state)
4125 {
4126 int old;
4127
4128 if (!state) {
4129 atomic_dec(&ram_block_discard_disabled);
4130 return 0;
4131 }
4132
4133 do {
4134 old = atomic_read(&ram_block_discard_disabled);
4135 if (old < 0) {
4136 return -EBUSY;
4137 }
4138 } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old + 1) != old);
4139 return 0;
4140 }
4141
4142 int ram_block_discard_require(bool state)
4143 {
4144 int old;
4145
4146 if (!state) {
4147 atomic_inc(&ram_block_discard_disabled);
4148 return 0;
4149 }
4150
4151 do {
4152 old = atomic_read(&ram_block_discard_disabled);
4153 if (old > 0) {
4154 return -EBUSY;
4155 }
4156 } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old - 1) != old);
4157 return 0;
4158 }
4159
4160 bool ram_block_discard_is_disabled(void)
4161 {
4162 return atomic_read(&ram_block_discard_disabled) > 0;
4163 }
4164
4165 bool ram_block_discard_is_required(void)
4166 {
4167 return atomic_read(&ram_block_discard_disabled) < 0;
4168 }
4169
4170 #endif