]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: remove code duplication in qemu_ram_alloc() and qemu_ram_alloc_from_ptr()
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "hw/qdev.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #include "qemu-timer.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #include <signal.h>
46 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
47 #include <sys/param.h>
48 #if __FreeBSD_version >= 700104
49 #define HAVE_KINFO_GETVMMAP
50 #define sigqueue sigqueue_freebsd /* avoid redefinition */
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <machine/profile.h>
54 #define _KERNEL
55 #include <sys/user.h>
56 #undef _KERNEL
57 #undef sigqueue
58 #include <libutil.h>
59 #endif
60 #endif
61 #endif
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
67
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 static uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 static int in_migration;
115
116 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
117 #endif
118
119 CPUState *first_cpu;
120 /* current CPU in the current thread. It is only valid inside
121 cpu_exec() */
122 CPUState *cpu_single_env;
123 /* 0 = Do not count executed instructions.
124 1 = Precise instruction counting.
125 2 = Adaptive rate instruction counting. */
126 int use_icount = 0;
127 /* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
129 int64_t qemu_icount;
130
131 typedef struct PageDesc {
132 /* list of TBs intersecting this ram page */
133 TranslationBlock *first_tb;
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count;
137 uint8_t *code_bitmap;
138 #if defined(CONFIG_USER_ONLY)
139 unsigned long flags;
140 #endif
141 } PageDesc;
142
143 /* In system mode we want L1_MAP to be based on ram offsets,
144 while in user mode we want it to be based on virtual addresses. */
145 #if !defined(CONFIG_USER_ONLY)
146 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
147 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
148 #else
149 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
150 #endif
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
153 #endif
154
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define L2_BITS 10
157 #define L2_SIZE (1 << L2_BITS)
158
159 /* The bits remaining after N lower levels of page tables. */
160 #define P_L1_BITS_REM \
161 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162 #define V_L1_BITS_REM \
163 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
164
165 /* Size of the L1 page table. Avoid silly small sizes. */
166 #if P_L1_BITS_REM < 4
167 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
168 #else
169 #define P_L1_BITS P_L1_BITS_REM
170 #endif
171
172 #if V_L1_BITS_REM < 4
173 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
174 #else
175 #define V_L1_BITS V_L1_BITS_REM
176 #endif
177
178 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
179 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
180
181 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
182 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
183
184 unsigned long qemu_real_host_page_size;
185 unsigned long qemu_host_page_bits;
186 unsigned long qemu_host_page_size;
187 unsigned long qemu_host_page_mask;
188
189 /* This is a multi-level map on the virtual address space.
190 The bottom level has pointers to PageDesc. */
191 static void *l1_map[V_L1_SIZE];
192
193 #if !defined(CONFIG_USER_ONLY)
194 typedef struct PhysPageDesc {
195 /* offset in host memory of the page + io_index in the low bits */
196 ram_addr_t phys_offset;
197 ram_addr_t region_offset;
198 } PhysPageDesc;
199
200 /* This is a multi-level map on the physical address space.
201 The bottom level has pointers to PhysPageDesc. */
202 static void *l1_phys_map[P_L1_SIZE];
203
204 static void io_mem_init(void);
205
206 /* io memory support */
207 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
208 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
209 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
210 static char io_mem_used[IO_MEM_NB_ENTRIES];
211 static int io_mem_watch;
212 #endif
213
214 /* log support */
215 #ifdef WIN32
216 static const char *logfilename = "qemu.log";
217 #else
218 static const char *logfilename = "/tmp/qemu.log";
219 #endif
220 FILE *logfile;
221 int loglevel;
222 static int log_append = 0;
223
224 /* statistics */
225 #if !defined(CONFIG_USER_ONLY)
226 static int tlb_flush_count;
227 #endif
228 static int tb_flush_count;
229 static int tb_phys_invalidate_count;
230
231 #ifdef _WIN32
232 static void map_exec(void *addr, long size)
233 {
234 DWORD old_protect;
235 VirtualProtect(addr, size,
236 PAGE_EXECUTE_READWRITE, &old_protect);
237
238 }
239 #else
240 static void map_exec(void *addr, long size)
241 {
242 unsigned long start, end, page_size;
243
244 page_size = getpagesize();
245 start = (unsigned long)addr;
246 start &= ~(page_size - 1);
247
248 end = (unsigned long)addr + size;
249 end += page_size - 1;
250 end &= ~(page_size - 1);
251
252 mprotect((void *)start, end - start,
253 PROT_READ | PROT_WRITE | PROT_EXEC);
254 }
255 #endif
256
257 static void page_init(void)
258 {
259 /* NOTE: we can always suppose that qemu_host_page_size >=
260 TARGET_PAGE_SIZE */
261 #ifdef _WIN32
262 {
263 SYSTEM_INFO system_info;
264
265 GetSystemInfo(&system_info);
266 qemu_real_host_page_size = system_info.dwPageSize;
267 }
268 #else
269 qemu_real_host_page_size = getpagesize();
270 #endif
271 if (qemu_host_page_size == 0)
272 qemu_host_page_size = qemu_real_host_page_size;
273 if (qemu_host_page_size < TARGET_PAGE_SIZE)
274 qemu_host_page_size = TARGET_PAGE_SIZE;
275 qemu_host_page_bits = 0;
276 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
277 qemu_host_page_bits++;
278 qemu_host_page_mask = ~(qemu_host_page_size - 1);
279
280 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
281 {
282 #ifdef HAVE_KINFO_GETVMMAP
283 struct kinfo_vmentry *freep;
284 int i, cnt;
285
286 freep = kinfo_getvmmap(getpid(), &cnt);
287 if (freep) {
288 mmap_lock();
289 for (i = 0; i < cnt; i++) {
290 unsigned long startaddr, endaddr;
291
292 startaddr = freep[i].kve_start;
293 endaddr = freep[i].kve_end;
294 if (h2g_valid(startaddr)) {
295 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
296
297 if (h2g_valid(endaddr)) {
298 endaddr = h2g(endaddr);
299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
300 } else {
301 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
302 endaddr = ~0ul;
303 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
304 #endif
305 }
306 }
307 }
308 free(freep);
309 mmap_unlock();
310 }
311 #else
312 FILE *f;
313
314 last_brk = (unsigned long)sbrk(0);
315
316 f = fopen("/compat/linux/proc/self/maps", "r");
317 if (f) {
318 mmap_lock();
319
320 do {
321 unsigned long startaddr, endaddr;
322 int n;
323
324 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
325
326 if (n == 2 && h2g_valid(startaddr)) {
327 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
328
329 if (h2g_valid(endaddr)) {
330 endaddr = h2g(endaddr);
331 } else {
332 endaddr = ~0ul;
333 }
334 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
335 }
336 } while (!feof(f));
337
338 fclose(f);
339 mmap_unlock();
340 }
341 #endif
342 }
343 #endif
344 }
345
346 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
347 {
348 PageDesc *pd;
349 void **lp;
350 int i;
351
352 #if defined(CONFIG_USER_ONLY)
353 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
354 # define ALLOC(P, SIZE) \
355 do { \
356 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
357 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
358 } while (0)
359 #else
360 # define ALLOC(P, SIZE) \
361 do { P = qemu_mallocz(SIZE); } while (0)
362 #endif
363
364 /* Level 1. Always allocated. */
365 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
366
367 /* Level 2..N-1. */
368 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
369 void **p = *lp;
370
371 if (p == NULL) {
372 if (!alloc) {
373 return NULL;
374 }
375 ALLOC(p, sizeof(void *) * L2_SIZE);
376 *lp = p;
377 }
378
379 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
380 }
381
382 pd = *lp;
383 if (pd == NULL) {
384 if (!alloc) {
385 return NULL;
386 }
387 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
388 *lp = pd;
389 }
390
391 #undef ALLOC
392
393 return pd + (index & (L2_SIZE - 1));
394 }
395
396 static inline PageDesc *page_find(tb_page_addr_t index)
397 {
398 return page_find_alloc(index, 0);
399 }
400
401 #if !defined(CONFIG_USER_ONLY)
402 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
403 {
404 PhysPageDesc *pd;
405 void **lp;
406 int i;
407
408 /* Level 1. Always allocated. */
409 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
410
411 /* Level 2..N-1. */
412 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
413 void **p = *lp;
414 if (p == NULL) {
415 if (!alloc) {
416 return NULL;
417 }
418 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
419 }
420 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
421 }
422
423 pd = *lp;
424 if (pd == NULL) {
425 int i;
426
427 if (!alloc) {
428 return NULL;
429 }
430
431 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
432
433 for (i = 0; i < L2_SIZE; i++) {
434 pd[i].phys_offset = IO_MEM_UNASSIGNED;
435 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
436 }
437 }
438
439 return pd + (index & (L2_SIZE - 1));
440 }
441
442 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
443 {
444 return phys_page_find_alloc(index, 0);
445 }
446
447 static void tlb_protect_code(ram_addr_t ram_addr);
448 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
449 target_ulong vaddr);
450 #define mmap_lock() do { } while(0)
451 #define mmap_unlock() do { } while(0)
452 #endif
453
454 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
455
456 #if defined(CONFIG_USER_ONLY)
457 /* Currently it is not recommended to allocate big chunks of data in
458 user mode. It will change when a dedicated libc will be used */
459 #define USE_STATIC_CODE_GEN_BUFFER
460 #endif
461
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
464 __attribute__((aligned (CODE_GEN_ALIGN)));
465 #endif
466
467 static void code_gen_alloc(unsigned long tb_size)
468 {
469 #ifdef USE_STATIC_CODE_GEN_BUFFER
470 code_gen_buffer = static_code_gen_buffer;
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 map_exec(code_gen_buffer, code_gen_buffer_size);
473 #else
474 code_gen_buffer_size = tb_size;
475 if (code_gen_buffer_size == 0) {
476 #if defined(CONFIG_USER_ONLY)
477 /* in user mode, phys_ram_size is not meaningful */
478 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
479 #else
480 /* XXX: needs adjustments */
481 code_gen_buffer_size = (unsigned long)(ram_size / 4);
482 #endif
483 }
484 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
485 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
486 /* The code gen buffer location may have constraints depending on
487 the host cpu and OS */
488 #if defined(__linux__)
489 {
490 int flags;
491 void *start = NULL;
492
493 flags = MAP_PRIVATE | MAP_ANONYMOUS;
494 #if defined(__x86_64__)
495 flags |= MAP_32BIT;
496 /* Cannot map more than that */
497 if (code_gen_buffer_size > (800 * 1024 * 1024))
498 code_gen_buffer_size = (800 * 1024 * 1024);
499 #elif defined(__sparc_v9__)
500 // Map the buffer below 2G, so we can use direct calls and branches
501 flags |= MAP_FIXED;
502 start = (void *) 0x60000000UL;
503 if (code_gen_buffer_size > (512 * 1024 * 1024))
504 code_gen_buffer_size = (512 * 1024 * 1024);
505 #elif defined(__arm__)
506 /* Map the buffer below 32M, so we can use direct calls and branches */
507 flags |= MAP_FIXED;
508 start = (void *) 0x01000000UL;
509 if (code_gen_buffer_size > 16 * 1024 * 1024)
510 code_gen_buffer_size = 16 * 1024 * 1024;
511 #elif defined(__s390x__)
512 /* Map the buffer so that we can use direct calls and branches. */
513 /* We have a +- 4GB range on the branches; leave some slop. */
514 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
515 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
516 }
517 start = (void *)0x90000000UL;
518 #endif
519 code_gen_buffer = mmap(start, code_gen_buffer_size,
520 PROT_WRITE | PROT_READ | PROT_EXEC,
521 flags, -1, 0);
522 if (code_gen_buffer == MAP_FAILED) {
523 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
524 exit(1);
525 }
526 }
527 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
528 {
529 int flags;
530 void *addr = NULL;
531 flags = MAP_PRIVATE | MAP_ANONYMOUS;
532 #if defined(__x86_64__)
533 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
534 * 0x40000000 is free */
535 flags |= MAP_FIXED;
536 addr = (void *)0x40000000;
537 /* Cannot map more than that */
538 if (code_gen_buffer_size > (800 * 1024 * 1024))
539 code_gen_buffer_size = (800 * 1024 * 1024);
540 #endif
541 code_gen_buffer = mmap(addr, code_gen_buffer_size,
542 PROT_WRITE | PROT_READ | PROT_EXEC,
543 flags, -1, 0);
544 if (code_gen_buffer == MAP_FAILED) {
545 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
546 exit(1);
547 }
548 }
549 #else
550 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
551 map_exec(code_gen_buffer, code_gen_buffer_size);
552 #endif
553 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
554 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
555 code_gen_buffer_max_size = code_gen_buffer_size -
556 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
557 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
558 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
559 }
560
561 /* Must be called before using the QEMU cpus. 'tb_size' is the size
562 (in bytes) allocated to the translation buffer. Zero means default
563 size. */
564 void cpu_exec_init_all(unsigned long tb_size)
565 {
566 cpu_gen_init();
567 code_gen_alloc(tb_size);
568 code_gen_ptr = code_gen_buffer;
569 page_init();
570 #if !defined(CONFIG_USER_ONLY)
571 io_mem_init();
572 #endif
573 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
574 /* There's no guest base to take into account, so go ahead and
575 initialize the prologue now. */
576 tcg_prologue_init(&tcg_ctx);
577 #endif
578 }
579
580 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
581
582 static int cpu_common_post_load(void *opaque, int version_id)
583 {
584 CPUState *env = opaque;
585
586 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
587 version_id is increased. */
588 env->interrupt_request &= ~0x01;
589 tlb_flush(env, 1);
590
591 return 0;
592 }
593
594 static const VMStateDescription vmstate_cpu_common = {
595 .name = "cpu_common",
596 .version_id = 1,
597 .minimum_version_id = 1,
598 .minimum_version_id_old = 1,
599 .post_load = cpu_common_post_load,
600 .fields = (VMStateField []) {
601 VMSTATE_UINT32(halted, CPUState),
602 VMSTATE_UINT32(interrupt_request, CPUState),
603 VMSTATE_END_OF_LIST()
604 }
605 };
606 #endif
607
608 CPUState *qemu_get_cpu(int cpu)
609 {
610 CPUState *env = first_cpu;
611
612 while (env) {
613 if (env->cpu_index == cpu)
614 break;
615 env = env->next_cpu;
616 }
617
618 return env;
619 }
620
621 void cpu_exec_init(CPUState *env)
622 {
623 CPUState **penv;
624 int cpu_index;
625
626 #if defined(CONFIG_USER_ONLY)
627 cpu_list_lock();
628 #endif
629 env->next_cpu = NULL;
630 penv = &first_cpu;
631 cpu_index = 0;
632 while (*penv != NULL) {
633 penv = &(*penv)->next_cpu;
634 cpu_index++;
635 }
636 env->cpu_index = cpu_index;
637 env->numa_node = 0;
638 QTAILQ_INIT(&env->breakpoints);
639 QTAILQ_INIT(&env->watchpoints);
640 *penv = env;
641 #if defined(CONFIG_USER_ONLY)
642 cpu_list_unlock();
643 #endif
644 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
645 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
646 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
647 cpu_save, cpu_load, env);
648 #endif
649 }
650
651 static inline void invalidate_page_bitmap(PageDesc *p)
652 {
653 if (p->code_bitmap) {
654 qemu_free(p->code_bitmap);
655 p->code_bitmap = NULL;
656 }
657 p->code_write_count = 0;
658 }
659
660 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
661
662 static void page_flush_tb_1 (int level, void **lp)
663 {
664 int i;
665
666 if (*lp == NULL) {
667 return;
668 }
669 if (level == 0) {
670 PageDesc *pd = *lp;
671 for (i = 0; i < L2_SIZE; ++i) {
672 pd[i].first_tb = NULL;
673 invalidate_page_bitmap(pd + i);
674 }
675 } else {
676 void **pp = *lp;
677 for (i = 0; i < L2_SIZE; ++i) {
678 page_flush_tb_1 (level - 1, pp + i);
679 }
680 }
681 }
682
683 static void page_flush_tb(void)
684 {
685 int i;
686 for (i = 0; i < V_L1_SIZE; i++) {
687 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
688 }
689 }
690
691 /* flush all the translation blocks */
692 /* XXX: tb_flush is currently not thread safe */
693 void tb_flush(CPUState *env1)
694 {
695 CPUState *env;
696 #if defined(DEBUG_FLUSH)
697 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
698 (unsigned long)(code_gen_ptr - code_gen_buffer),
699 nb_tbs, nb_tbs > 0 ?
700 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
701 #endif
702 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
703 cpu_abort(env1, "Internal error: code buffer overflow\n");
704
705 nb_tbs = 0;
706
707 for(env = first_cpu; env != NULL; env = env->next_cpu) {
708 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
709 }
710
711 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
712 page_flush_tb();
713
714 code_gen_ptr = code_gen_buffer;
715 /* XXX: flush processor icache at this point if cache flush is
716 expensive */
717 tb_flush_count++;
718 }
719
720 #ifdef DEBUG_TB_CHECK
721
722 static void tb_invalidate_check(target_ulong address)
723 {
724 TranslationBlock *tb;
725 int i;
726 address &= TARGET_PAGE_MASK;
727 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
728 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
729 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
730 address >= tb->pc + tb->size)) {
731 printf("ERROR invalidate: address=" TARGET_FMT_lx
732 " PC=%08lx size=%04x\n",
733 address, (long)tb->pc, tb->size);
734 }
735 }
736 }
737 }
738
739 /* verify that all the pages have correct rights for code */
740 static void tb_page_check(void)
741 {
742 TranslationBlock *tb;
743 int i, flags1, flags2;
744
745 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
746 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
747 flags1 = page_get_flags(tb->pc);
748 flags2 = page_get_flags(tb->pc + tb->size - 1);
749 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
750 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
751 (long)tb->pc, tb->size, flags1, flags2);
752 }
753 }
754 }
755 }
756
757 #endif
758
759 /* invalidate one TB */
760 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
761 int next_offset)
762 {
763 TranslationBlock *tb1;
764 for(;;) {
765 tb1 = *ptb;
766 if (tb1 == tb) {
767 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
768 break;
769 }
770 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
771 }
772 }
773
774 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
775 {
776 TranslationBlock *tb1;
777 unsigned int n1;
778
779 for(;;) {
780 tb1 = *ptb;
781 n1 = (long)tb1 & 3;
782 tb1 = (TranslationBlock *)((long)tb1 & ~3);
783 if (tb1 == tb) {
784 *ptb = tb1->page_next[n1];
785 break;
786 }
787 ptb = &tb1->page_next[n1];
788 }
789 }
790
791 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
792 {
793 TranslationBlock *tb1, **ptb;
794 unsigned int n1;
795
796 ptb = &tb->jmp_next[n];
797 tb1 = *ptb;
798 if (tb1) {
799 /* find tb(n) in circular list */
800 for(;;) {
801 tb1 = *ptb;
802 n1 = (long)tb1 & 3;
803 tb1 = (TranslationBlock *)((long)tb1 & ~3);
804 if (n1 == n && tb1 == tb)
805 break;
806 if (n1 == 2) {
807 ptb = &tb1->jmp_first;
808 } else {
809 ptb = &tb1->jmp_next[n1];
810 }
811 }
812 /* now we can suppress tb(n) from the list */
813 *ptb = tb->jmp_next[n];
814
815 tb->jmp_next[n] = NULL;
816 }
817 }
818
819 /* reset the jump entry 'n' of a TB so that it is not chained to
820 another TB */
821 static inline void tb_reset_jump(TranslationBlock *tb, int n)
822 {
823 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
824 }
825
826 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
827 {
828 CPUState *env;
829 PageDesc *p;
830 unsigned int h, n1;
831 tb_page_addr_t phys_pc;
832 TranslationBlock *tb1, *tb2;
833
834 /* remove the TB from the hash list */
835 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
836 h = tb_phys_hash_func(phys_pc);
837 tb_remove(&tb_phys_hash[h], tb,
838 offsetof(TranslationBlock, phys_hash_next));
839
840 /* remove the TB from the page list */
841 if (tb->page_addr[0] != page_addr) {
842 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
843 tb_page_remove(&p->first_tb, tb);
844 invalidate_page_bitmap(p);
845 }
846 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
847 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
848 tb_page_remove(&p->first_tb, tb);
849 invalidate_page_bitmap(p);
850 }
851
852 tb_invalidated_flag = 1;
853
854 /* remove the TB from the hash list */
855 h = tb_jmp_cache_hash_func(tb->pc);
856 for(env = first_cpu; env != NULL; env = env->next_cpu) {
857 if (env->tb_jmp_cache[h] == tb)
858 env->tb_jmp_cache[h] = NULL;
859 }
860
861 /* suppress this TB from the two jump lists */
862 tb_jmp_remove(tb, 0);
863 tb_jmp_remove(tb, 1);
864
865 /* suppress any remaining jumps to this TB */
866 tb1 = tb->jmp_first;
867 for(;;) {
868 n1 = (long)tb1 & 3;
869 if (n1 == 2)
870 break;
871 tb1 = (TranslationBlock *)((long)tb1 & ~3);
872 tb2 = tb1->jmp_next[n1];
873 tb_reset_jump(tb1, n1);
874 tb1->jmp_next[n1] = NULL;
875 tb1 = tb2;
876 }
877 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
878
879 tb_phys_invalidate_count++;
880 }
881
882 static inline void set_bits(uint8_t *tab, int start, int len)
883 {
884 int end, mask, end1;
885
886 end = start + len;
887 tab += start >> 3;
888 mask = 0xff << (start & 7);
889 if ((start & ~7) == (end & ~7)) {
890 if (start < end) {
891 mask &= ~(0xff << (end & 7));
892 *tab |= mask;
893 }
894 } else {
895 *tab++ |= mask;
896 start = (start + 8) & ~7;
897 end1 = end & ~7;
898 while (start < end1) {
899 *tab++ = 0xff;
900 start += 8;
901 }
902 if (start < end) {
903 mask = ~(0xff << (end & 7));
904 *tab |= mask;
905 }
906 }
907 }
908
909 static void build_page_bitmap(PageDesc *p)
910 {
911 int n, tb_start, tb_end;
912 TranslationBlock *tb;
913
914 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
915
916 tb = p->first_tb;
917 while (tb != NULL) {
918 n = (long)tb & 3;
919 tb = (TranslationBlock *)((long)tb & ~3);
920 /* NOTE: this is subtle as a TB may span two physical pages */
921 if (n == 0) {
922 /* NOTE: tb_end may be after the end of the page, but
923 it is not a problem */
924 tb_start = tb->pc & ~TARGET_PAGE_MASK;
925 tb_end = tb_start + tb->size;
926 if (tb_end > TARGET_PAGE_SIZE)
927 tb_end = TARGET_PAGE_SIZE;
928 } else {
929 tb_start = 0;
930 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
931 }
932 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
933 tb = tb->page_next[n];
934 }
935 }
936
937 TranslationBlock *tb_gen_code(CPUState *env,
938 target_ulong pc, target_ulong cs_base,
939 int flags, int cflags)
940 {
941 TranslationBlock *tb;
942 uint8_t *tc_ptr;
943 tb_page_addr_t phys_pc, phys_page2;
944 target_ulong virt_page2;
945 int code_gen_size;
946
947 phys_pc = get_page_addr_code(env, pc);
948 tb = tb_alloc(pc);
949 if (!tb) {
950 /* flush must be done */
951 tb_flush(env);
952 /* cannot fail at this point */
953 tb = tb_alloc(pc);
954 /* Don't forget to invalidate previous TB info. */
955 tb_invalidated_flag = 1;
956 }
957 tc_ptr = code_gen_ptr;
958 tb->tc_ptr = tc_ptr;
959 tb->cs_base = cs_base;
960 tb->flags = flags;
961 tb->cflags = cflags;
962 cpu_gen_code(env, tb, &code_gen_size);
963 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
964
965 /* check next page if needed */
966 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
967 phys_page2 = -1;
968 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
969 phys_page2 = get_page_addr_code(env, virt_page2);
970 }
971 tb_link_page(tb, phys_pc, phys_page2);
972 return tb;
973 }
974
975 /* invalidate all TBs which intersect with the target physical page
976 starting in range [start;end[. NOTE: start and end must refer to
977 the same physical page. 'is_cpu_write_access' should be true if called
978 from a real cpu write access: the virtual CPU will exit the current
979 TB if code is modified inside this TB. */
980 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
981 int is_cpu_write_access)
982 {
983 TranslationBlock *tb, *tb_next, *saved_tb;
984 CPUState *env = cpu_single_env;
985 tb_page_addr_t tb_start, tb_end;
986 PageDesc *p;
987 int n;
988 #ifdef TARGET_HAS_PRECISE_SMC
989 int current_tb_not_found = is_cpu_write_access;
990 TranslationBlock *current_tb = NULL;
991 int current_tb_modified = 0;
992 target_ulong current_pc = 0;
993 target_ulong current_cs_base = 0;
994 int current_flags = 0;
995 #endif /* TARGET_HAS_PRECISE_SMC */
996
997 p = page_find(start >> TARGET_PAGE_BITS);
998 if (!p)
999 return;
1000 if (!p->code_bitmap &&
1001 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1002 is_cpu_write_access) {
1003 /* build code bitmap */
1004 build_page_bitmap(p);
1005 }
1006
1007 /* we remove all the TBs in the range [start, end[ */
1008 /* XXX: see if in some cases it could be faster to invalidate all the code */
1009 tb = p->first_tb;
1010 while (tb != NULL) {
1011 n = (long)tb & 3;
1012 tb = (TranslationBlock *)((long)tb & ~3);
1013 tb_next = tb->page_next[n];
1014 /* NOTE: this is subtle as a TB may span two physical pages */
1015 if (n == 0) {
1016 /* NOTE: tb_end may be after the end of the page, but
1017 it is not a problem */
1018 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1019 tb_end = tb_start + tb->size;
1020 } else {
1021 tb_start = tb->page_addr[1];
1022 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 if (!(tb_end <= start || tb_start >= end)) {
1025 #ifdef TARGET_HAS_PRECISE_SMC
1026 if (current_tb_not_found) {
1027 current_tb_not_found = 0;
1028 current_tb = NULL;
1029 if (env->mem_io_pc) {
1030 /* now we have a real cpu fault */
1031 current_tb = tb_find_pc(env->mem_io_pc);
1032 }
1033 }
1034 if (current_tb == tb &&
1035 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1036 /* If we are modifying the current TB, we must stop
1037 its execution. We could be more precise by checking
1038 that the modification is after the current PC, but it
1039 would require a specialized function to partially
1040 restore the CPU state */
1041
1042 current_tb_modified = 1;
1043 cpu_restore_state(current_tb, env,
1044 env->mem_io_pc, NULL);
1045 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1046 &current_flags);
1047 }
1048 #endif /* TARGET_HAS_PRECISE_SMC */
1049 /* we need to do that to handle the case where a signal
1050 occurs while doing tb_phys_invalidate() */
1051 saved_tb = NULL;
1052 if (env) {
1053 saved_tb = env->current_tb;
1054 env->current_tb = NULL;
1055 }
1056 tb_phys_invalidate(tb, -1);
1057 if (env) {
1058 env->current_tb = saved_tb;
1059 if (env->interrupt_request && env->current_tb)
1060 cpu_interrupt(env, env->interrupt_request);
1061 }
1062 }
1063 tb = tb_next;
1064 }
1065 #if !defined(CONFIG_USER_ONLY)
1066 /* if no code remaining, no need to continue to use slow writes */
1067 if (!p->first_tb) {
1068 invalidate_page_bitmap(p);
1069 if (is_cpu_write_access) {
1070 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1071 }
1072 }
1073 #endif
1074 #ifdef TARGET_HAS_PRECISE_SMC
1075 if (current_tb_modified) {
1076 /* we generate a block containing just the instruction
1077 modifying the memory. It will ensure that it cannot modify
1078 itself */
1079 env->current_tb = NULL;
1080 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1081 cpu_resume_from_signal(env, NULL);
1082 }
1083 #endif
1084 }
1085
1086 /* len must be <= 8 and start must be a multiple of len */
1087 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1088 {
1089 PageDesc *p;
1090 int offset, b;
1091 #if 0
1092 if (1) {
1093 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1094 cpu_single_env->mem_io_vaddr, len,
1095 cpu_single_env->eip,
1096 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1097 }
1098 #endif
1099 p = page_find(start >> TARGET_PAGE_BITS);
1100 if (!p)
1101 return;
1102 if (p->code_bitmap) {
1103 offset = start & ~TARGET_PAGE_MASK;
1104 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1105 if (b & ((1 << len) - 1))
1106 goto do_invalidate;
1107 } else {
1108 do_invalidate:
1109 tb_invalidate_phys_page_range(start, start + len, 1);
1110 }
1111 }
1112
1113 #if !defined(CONFIG_SOFTMMU)
1114 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1115 unsigned long pc, void *puc)
1116 {
1117 TranslationBlock *tb;
1118 PageDesc *p;
1119 int n;
1120 #ifdef TARGET_HAS_PRECISE_SMC
1121 TranslationBlock *current_tb = NULL;
1122 CPUState *env = cpu_single_env;
1123 int current_tb_modified = 0;
1124 target_ulong current_pc = 0;
1125 target_ulong current_cs_base = 0;
1126 int current_flags = 0;
1127 #endif
1128
1129 addr &= TARGET_PAGE_MASK;
1130 p = page_find(addr >> TARGET_PAGE_BITS);
1131 if (!p)
1132 return;
1133 tb = p->first_tb;
1134 #ifdef TARGET_HAS_PRECISE_SMC
1135 if (tb && pc != 0) {
1136 current_tb = tb_find_pc(pc);
1137 }
1138 #endif
1139 while (tb != NULL) {
1140 n = (long)tb & 3;
1141 tb = (TranslationBlock *)((long)tb & ~3);
1142 #ifdef TARGET_HAS_PRECISE_SMC
1143 if (current_tb == tb &&
1144 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1145 /* If we are modifying the current TB, we must stop
1146 its execution. We could be more precise by checking
1147 that the modification is after the current PC, but it
1148 would require a specialized function to partially
1149 restore the CPU state */
1150
1151 current_tb_modified = 1;
1152 cpu_restore_state(current_tb, env, pc, puc);
1153 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1154 &current_flags);
1155 }
1156 #endif /* TARGET_HAS_PRECISE_SMC */
1157 tb_phys_invalidate(tb, addr);
1158 tb = tb->page_next[n];
1159 }
1160 p->first_tb = NULL;
1161 #ifdef TARGET_HAS_PRECISE_SMC
1162 if (current_tb_modified) {
1163 /* we generate a block containing just the instruction
1164 modifying the memory. It will ensure that it cannot modify
1165 itself */
1166 env->current_tb = NULL;
1167 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1168 cpu_resume_from_signal(env, puc);
1169 }
1170 #endif
1171 }
1172 #endif
1173
1174 /* add the tb in the target page and protect it if necessary */
1175 static inline void tb_alloc_page(TranslationBlock *tb,
1176 unsigned int n, tb_page_addr_t page_addr)
1177 {
1178 PageDesc *p;
1179 TranslationBlock *last_first_tb;
1180
1181 tb->page_addr[n] = page_addr;
1182 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1183 tb->page_next[n] = p->first_tb;
1184 last_first_tb = p->first_tb;
1185 p->first_tb = (TranslationBlock *)((long)tb | n);
1186 invalidate_page_bitmap(p);
1187
1188 #if defined(TARGET_HAS_SMC) || 1
1189
1190 #if defined(CONFIG_USER_ONLY)
1191 if (p->flags & PAGE_WRITE) {
1192 target_ulong addr;
1193 PageDesc *p2;
1194 int prot;
1195
1196 /* force the host page as non writable (writes will have a
1197 page fault + mprotect overhead) */
1198 page_addr &= qemu_host_page_mask;
1199 prot = 0;
1200 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1201 addr += TARGET_PAGE_SIZE) {
1202
1203 p2 = page_find (addr >> TARGET_PAGE_BITS);
1204 if (!p2)
1205 continue;
1206 prot |= p2->flags;
1207 p2->flags &= ~PAGE_WRITE;
1208 }
1209 mprotect(g2h(page_addr), qemu_host_page_size,
1210 (prot & PAGE_BITS) & ~PAGE_WRITE);
1211 #ifdef DEBUG_TB_INVALIDATE
1212 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1213 page_addr);
1214 #endif
1215 }
1216 #else
1217 /* if some code is already present, then the pages are already
1218 protected. So we handle the case where only the first TB is
1219 allocated in a physical page */
1220 if (!last_first_tb) {
1221 tlb_protect_code(page_addr);
1222 }
1223 #endif
1224
1225 #endif /* TARGET_HAS_SMC */
1226 }
1227
1228 /* Allocate a new translation block. Flush the translation buffer if
1229 too many translation blocks or too much generated code. */
1230 TranslationBlock *tb_alloc(target_ulong pc)
1231 {
1232 TranslationBlock *tb;
1233
1234 if (nb_tbs >= code_gen_max_blocks ||
1235 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1236 return NULL;
1237 tb = &tbs[nb_tbs++];
1238 tb->pc = pc;
1239 tb->cflags = 0;
1240 return tb;
1241 }
1242
1243 void tb_free(TranslationBlock *tb)
1244 {
1245 /* In practice this is mostly used for single use temporary TB
1246 Ignore the hard cases and just back up if this TB happens to
1247 be the last one generated. */
1248 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1249 code_gen_ptr = tb->tc_ptr;
1250 nb_tbs--;
1251 }
1252 }
1253
1254 /* add a new TB and link it to the physical page tables. phys_page2 is
1255 (-1) to indicate that only one page contains the TB. */
1256 void tb_link_page(TranslationBlock *tb,
1257 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1258 {
1259 unsigned int h;
1260 TranslationBlock **ptb;
1261
1262 /* Grab the mmap lock to stop another thread invalidating this TB
1263 before we are done. */
1264 mmap_lock();
1265 /* add in the physical hash table */
1266 h = tb_phys_hash_func(phys_pc);
1267 ptb = &tb_phys_hash[h];
1268 tb->phys_hash_next = *ptb;
1269 *ptb = tb;
1270
1271 /* add in the page list */
1272 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1273 if (phys_page2 != -1)
1274 tb_alloc_page(tb, 1, phys_page2);
1275 else
1276 tb->page_addr[1] = -1;
1277
1278 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1279 tb->jmp_next[0] = NULL;
1280 tb->jmp_next[1] = NULL;
1281
1282 /* init original jump addresses */
1283 if (tb->tb_next_offset[0] != 0xffff)
1284 tb_reset_jump(tb, 0);
1285 if (tb->tb_next_offset[1] != 0xffff)
1286 tb_reset_jump(tb, 1);
1287
1288 #ifdef DEBUG_TB_CHECK
1289 tb_page_check();
1290 #endif
1291 mmap_unlock();
1292 }
1293
1294 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1295 tb[1].tc_ptr. Return NULL if not found */
1296 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1297 {
1298 int m_min, m_max, m;
1299 unsigned long v;
1300 TranslationBlock *tb;
1301
1302 if (nb_tbs <= 0)
1303 return NULL;
1304 if (tc_ptr < (unsigned long)code_gen_buffer ||
1305 tc_ptr >= (unsigned long)code_gen_ptr)
1306 return NULL;
1307 /* binary search (cf Knuth) */
1308 m_min = 0;
1309 m_max = nb_tbs - 1;
1310 while (m_min <= m_max) {
1311 m = (m_min + m_max) >> 1;
1312 tb = &tbs[m];
1313 v = (unsigned long)tb->tc_ptr;
1314 if (v == tc_ptr)
1315 return tb;
1316 else if (tc_ptr < v) {
1317 m_max = m - 1;
1318 } else {
1319 m_min = m + 1;
1320 }
1321 }
1322 return &tbs[m_max];
1323 }
1324
1325 static void tb_reset_jump_recursive(TranslationBlock *tb);
1326
1327 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1328 {
1329 TranslationBlock *tb1, *tb_next, **ptb;
1330 unsigned int n1;
1331
1332 tb1 = tb->jmp_next[n];
1333 if (tb1 != NULL) {
1334 /* find head of list */
1335 for(;;) {
1336 n1 = (long)tb1 & 3;
1337 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1338 if (n1 == 2)
1339 break;
1340 tb1 = tb1->jmp_next[n1];
1341 }
1342 /* we are now sure now that tb jumps to tb1 */
1343 tb_next = tb1;
1344
1345 /* remove tb from the jmp_first list */
1346 ptb = &tb_next->jmp_first;
1347 for(;;) {
1348 tb1 = *ptb;
1349 n1 = (long)tb1 & 3;
1350 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1351 if (n1 == n && tb1 == tb)
1352 break;
1353 ptb = &tb1->jmp_next[n1];
1354 }
1355 *ptb = tb->jmp_next[n];
1356 tb->jmp_next[n] = NULL;
1357
1358 /* suppress the jump to next tb in generated code */
1359 tb_reset_jump(tb, n);
1360
1361 /* suppress jumps in the tb on which we could have jumped */
1362 tb_reset_jump_recursive(tb_next);
1363 }
1364 }
1365
1366 static void tb_reset_jump_recursive(TranslationBlock *tb)
1367 {
1368 tb_reset_jump_recursive2(tb, 0);
1369 tb_reset_jump_recursive2(tb, 1);
1370 }
1371
1372 #if defined(TARGET_HAS_ICE)
1373 #if defined(CONFIG_USER_ONLY)
1374 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1375 {
1376 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1377 }
1378 #else
1379 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1380 {
1381 target_phys_addr_t addr;
1382 target_ulong pd;
1383 ram_addr_t ram_addr;
1384 PhysPageDesc *p;
1385
1386 addr = cpu_get_phys_page_debug(env, pc);
1387 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1388 if (!p) {
1389 pd = IO_MEM_UNASSIGNED;
1390 } else {
1391 pd = p->phys_offset;
1392 }
1393 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1394 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1395 }
1396 #endif
1397 #endif /* TARGET_HAS_ICE */
1398
1399 #if defined(CONFIG_USER_ONLY)
1400 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1401
1402 {
1403 }
1404
1405 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1406 int flags, CPUWatchpoint **watchpoint)
1407 {
1408 return -ENOSYS;
1409 }
1410 #else
1411 /* Add a watchpoint. */
1412 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1413 int flags, CPUWatchpoint **watchpoint)
1414 {
1415 target_ulong len_mask = ~(len - 1);
1416 CPUWatchpoint *wp;
1417
1418 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1419 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1420 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1421 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1422 return -EINVAL;
1423 }
1424 wp = qemu_malloc(sizeof(*wp));
1425
1426 wp->vaddr = addr;
1427 wp->len_mask = len_mask;
1428 wp->flags = flags;
1429
1430 /* keep all GDB-injected watchpoints in front */
1431 if (flags & BP_GDB)
1432 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1433 else
1434 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1435
1436 tlb_flush_page(env, addr);
1437
1438 if (watchpoint)
1439 *watchpoint = wp;
1440 return 0;
1441 }
1442
1443 /* Remove a specific watchpoint. */
1444 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1445 int flags)
1446 {
1447 target_ulong len_mask = ~(len - 1);
1448 CPUWatchpoint *wp;
1449
1450 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1451 if (addr == wp->vaddr && len_mask == wp->len_mask
1452 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1453 cpu_watchpoint_remove_by_ref(env, wp);
1454 return 0;
1455 }
1456 }
1457 return -ENOENT;
1458 }
1459
1460 /* Remove a specific watchpoint by reference. */
1461 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1462 {
1463 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1464
1465 tlb_flush_page(env, watchpoint->vaddr);
1466
1467 qemu_free(watchpoint);
1468 }
1469
1470 /* Remove all matching watchpoints. */
1471 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1472 {
1473 CPUWatchpoint *wp, *next;
1474
1475 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1476 if (wp->flags & mask)
1477 cpu_watchpoint_remove_by_ref(env, wp);
1478 }
1479 }
1480 #endif
1481
1482 /* Add a breakpoint. */
1483 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1484 CPUBreakpoint **breakpoint)
1485 {
1486 #if defined(TARGET_HAS_ICE)
1487 CPUBreakpoint *bp;
1488
1489 bp = qemu_malloc(sizeof(*bp));
1490
1491 bp->pc = pc;
1492 bp->flags = flags;
1493
1494 /* keep all GDB-injected breakpoints in front */
1495 if (flags & BP_GDB)
1496 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1497 else
1498 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1499
1500 breakpoint_invalidate(env, pc);
1501
1502 if (breakpoint)
1503 *breakpoint = bp;
1504 return 0;
1505 #else
1506 return -ENOSYS;
1507 #endif
1508 }
1509
1510 /* Remove a specific breakpoint. */
1511 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1512 {
1513 #if defined(TARGET_HAS_ICE)
1514 CPUBreakpoint *bp;
1515
1516 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1517 if (bp->pc == pc && bp->flags == flags) {
1518 cpu_breakpoint_remove_by_ref(env, bp);
1519 return 0;
1520 }
1521 }
1522 return -ENOENT;
1523 #else
1524 return -ENOSYS;
1525 #endif
1526 }
1527
1528 /* Remove a specific breakpoint by reference. */
1529 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1530 {
1531 #if defined(TARGET_HAS_ICE)
1532 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1533
1534 breakpoint_invalidate(env, breakpoint->pc);
1535
1536 qemu_free(breakpoint);
1537 #endif
1538 }
1539
1540 /* Remove all matching breakpoints. */
1541 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1542 {
1543 #if defined(TARGET_HAS_ICE)
1544 CPUBreakpoint *bp, *next;
1545
1546 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1547 if (bp->flags & mask)
1548 cpu_breakpoint_remove_by_ref(env, bp);
1549 }
1550 #endif
1551 }
1552
1553 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1554 CPU loop after each instruction */
1555 void cpu_single_step(CPUState *env, int enabled)
1556 {
1557 #if defined(TARGET_HAS_ICE)
1558 if (env->singlestep_enabled != enabled) {
1559 env->singlestep_enabled = enabled;
1560 if (kvm_enabled())
1561 kvm_update_guest_debug(env, 0);
1562 else {
1563 /* must flush all the translated code to avoid inconsistencies */
1564 /* XXX: only flush what is necessary */
1565 tb_flush(env);
1566 }
1567 }
1568 #endif
1569 }
1570
1571 /* enable or disable low levels log */
1572 void cpu_set_log(int log_flags)
1573 {
1574 loglevel = log_flags;
1575 if (loglevel && !logfile) {
1576 logfile = fopen(logfilename, log_append ? "a" : "w");
1577 if (!logfile) {
1578 perror(logfilename);
1579 _exit(1);
1580 }
1581 #if !defined(CONFIG_SOFTMMU)
1582 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1583 {
1584 static char logfile_buf[4096];
1585 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1586 }
1587 #elif !defined(_WIN32)
1588 /* Win32 doesn't support line-buffering and requires size >= 2 */
1589 setvbuf(logfile, NULL, _IOLBF, 0);
1590 #endif
1591 log_append = 1;
1592 }
1593 if (!loglevel && logfile) {
1594 fclose(logfile);
1595 logfile = NULL;
1596 }
1597 }
1598
1599 void cpu_set_log_filename(const char *filename)
1600 {
1601 logfilename = strdup(filename);
1602 if (logfile) {
1603 fclose(logfile);
1604 logfile = NULL;
1605 }
1606 cpu_set_log(loglevel);
1607 }
1608
1609 static void cpu_unlink_tb(CPUState *env)
1610 {
1611 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1612 problem and hope the cpu will stop of its own accord. For userspace
1613 emulation this often isn't actually as bad as it sounds. Often
1614 signals are used primarily to interrupt blocking syscalls. */
1615 TranslationBlock *tb;
1616 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1617
1618 spin_lock(&interrupt_lock);
1619 tb = env->current_tb;
1620 /* if the cpu is currently executing code, we must unlink it and
1621 all the potentially executing TB */
1622 if (tb) {
1623 env->current_tb = NULL;
1624 tb_reset_jump_recursive(tb);
1625 }
1626 spin_unlock(&interrupt_lock);
1627 }
1628
1629 /* mask must never be zero, except for A20 change call */
1630 void cpu_interrupt(CPUState *env, int mask)
1631 {
1632 int old_mask;
1633
1634 old_mask = env->interrupt_request;
1635 env->interrupt_request |= mask;
1636
1637 #ifndef CONFIG_USER_ONLY
1638 /*
1639 * If called from iothread context, wake the target cpu in
1640 * case its halted.
1641 */
1642 if (!qemu_cpu_self(env)) {
1643 qemu_cpu_kick(env);
1644 return;
1645 }
1646 #endif
1647
1648 if (use_icount) {
1649 env->icount_decr.u16.high = 0xffff;
1650 #ifndef CONFIG_USER_ONLY
1651 if (!can_do_io(env)
1652 && (mask & ~old_mask) != 0) {
1653 cpu_abort(env, "Raised interrupt while not in I/O function");
1654 }
1655 #endif
1656 } else {
1657 cpu_unlink_tb(env);
1658 }
1659 }
1660
1661 void cpu_reset_interrupt(CPUState *env, int mask)
1662 {
1663 env->interrupt_request &= ~mask;
1664 }
1665
1666 void cpu_exit(CPUState *env)
1667 {
1668 env->exit_request = 1;
1669 cpu_unlink_tb(env);
1670 }
1671
1672 const CPULogItem cpu_log_items[] = {
1673 { CPU_LOG_TB_OUT_ASM, "out_asm",
1674 "show generated host assembly code for each compiled TB" },
1675 { CPU_LOG_TB_IN_ASM, "in_asm",
1676 "show target assembly code for each compiled TB" },
1677 { CPU_LOG_TB_OP, "op",
1678 "show micro ops for each compiled TB" },
1679 { CPU_LOG_TB_OP_OPT, "op_opt",
1680 "show micro ops "
1681 #ifdef TARGET_I386
1682 "before eflags optimization and "
1683 #endif
1684 "after liveness analysis" },
1685 { CPU_LOG_INT, "int",
1686 "show interrupts/exceptions in short format" },
1687 { CPU_LOG_EXEC, "exec",
1688 "show trace before each executed TB (lots of logs)" },
1689 { CPU_LOG_TB_CPU, "cpu",
1690 "show CPU state before block translation" },
1691 #ifdef TARGET_I386
1692 { CPU_LOG_PCALL, "pcall",
1693 "show protected mode far calls/returns/exceptions" },
1694 { CPU_LOG_RESET, "cpu_reset",
1695 "show CPU state before CPU resets" },
1696 #endif
1697 #ifdef DEBUG_IOPORT
1698 { CPU_LOG_IOPORT, "ioport",
1699 "show all i/o ports accesses" },
1700 #endif
1701 { 0, NULL, NULL },
1702 };
1703
1704 #ifndef CONFIG_USER_ONLY
1705 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1706 = QLIST_HEAD_INITIALIZER(memory_client_list);
1707
1708 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1709 ram_addr_t size,
1710 ram_addr_t phys_offset)
1711 {
1712 CPUPhysMemoryClient *client;
1713 QLIST_FOREACH(client, &memory_client_list, list) {
1714 client->set_memory(client, start_addr, size, phys_offset);
1715 }
1716 }
1717
1718 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1719 target_phys_addr_t end)
1720 {
1721 CPUPhysMemoryClient *client;
1722 QLIST_FOREACH(client, &memory_client_list, list) {
1723 int r = client->sync_dirty_bitmap(client, start, end);
1724 if (r < 0)
1725 return r;
1726 }
1727 return 0;
1728 }
1729
1730 static int cpu_notify_migration_log(int enable)
1731 {
1732 CPUPhysMemoryClient *client;
1733 QLIST_FOREACH(client, &memory_client_list, list) {
1734 int r = client->migration_log(client, enable);
1735 if (r < 0)
1736 return r;
1737 }
1738 return 0;
1739 }
1740
1741 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1742 int level, void **lp)
1743 {
1744 int i;
1745
1746 if (*lp == NULL) {
1747 return;
1748 }
1749 if (level == 0) {
1750 PhysPageDesc *pd = *lp;
1751 for (i = 0; i < L2_SIZE; ++i) {
1752 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1753 client->set_memory(client, pd[i].region_offset,
1754 TARGET_PAGE_SIZE, pd[i].phys_offset);
1755 }
1756 }
1757 } else {
1758 void **pp = *lp;
1759 for (i = 0; i < L2_SIZE; ++i) {
1760 phys_page_for_each_1(client, level - 1, pp + i);
1761 }
1762 }
1763 }
1764
1765 static void phys_page_for_each(CPUPhysMemoryClient *client)
1766 {
1767 int i;
1768 for (i = 0; i < P_L1_SIZE; ++i) {
1769 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1770 l1_phys_map + 1);
1771 }
1772 }
1773
1774 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1775 {
1776 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1777 phys_page_for_each(client);
1778 }
1779
1780 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1781 {
1782 QLIST_REMOVE(client, list);
1783 }
1784 #endif
1785
1786 static int cmp1(const char *s1, int n, const char *s2)
1787 {
1788 if (strlen(s2) != n)
1789 return 0;
1790 return memcmp(s1, s2, n) == 0;
1791 }
1792
1793 /* takes a comma separated list of log masks. Return 0 if error. */
1794 int cpu_str_to_log_mask(const char *str)
1795 {
1796 const CPULogItem *item;
1797 int mask;
1798 const char *p, *p1;
1799
1800 p = str;
1801 mask = 0;
1802 for(;;) {
1803 p1 = strchr(p, ',');
1804 if (!p1)
1805 p1 = p + strlen(p);
1806 if(cmp1(p,p1-p,"all")) {
1807 for(item = cpu_log_items; item->mask != 0; item++) {
1808 mask |= item->mask;
1809 }
1810 } else {
1811 for(item = cpu_log_items; item->mask != 0; item++) {
1812 if (cmp1(p, p1 - p, item->name))
1813 goto found;
1814 }
1815 return 0;
1816 }
1817 found:
1818 mask |= item->mask;
1819 if (*p1 != ',')
1820 break;
1821 p = p1 + 1;
1822 }
1823 return mask;
1824 }
1825
1826 void cpu_abort(CPUState *env, const char *fmt, ...)
1827 {
1828 va_list ap;
1829 va_list ap2;
1830
1831 va_start(ap, fmt);
1832 va_copy(ap2, ap);
1833 fprintf(stderr, "qemu: fatal: ");
1834 vfprintf(stderr, fmt, ap);
1835 fprintf(stderr, "\n");
1836 #ifdef TARGET_I386
1837 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1838 #else
1839 cpu_dump_state(env, stderr, fprintf, 0);
1840 #endif
1841 if (qemu_log_enabled()) {
1842 qemu_log("qemu: fatal: ");
1843 qemu_log_vprintf(fmt, ap2);
1844 qemu_log("\n");
1845 #ifdef TARGET_I386
1846 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1847 #else
1848 log_cpu_state(env, 0);
1849 #endif
1850 qemu_log_flush();
1851 qemu_log_close();
1852 }
1853 va_end(ap2);
1854 va_end(ap);
1855 #if defined(CONFIG_USER_ONLY)
1856 {
1857 struct sigaction act;
1858 sigfillset(&act.sa_mask);
1859 act.sa_handler = SIG_DFL;
1860 sigaction(SIGABRT, &act, NULL);
1861 }
1862 #endif
1863 abort();
1864 }
1865
1866 CPUState *cpu_copy(CPUState *env)
1867 {
1868 CPUState *new_env = cpu_init(env->cpu_model_str);
1869 CPUState *next_cpu = new_env->next_cpu;
1870 int cpu_index = new_env->cpu_index;
1871 #if defined(TARGET_HAS_ICE)
1872 CPUBreakpoint *bp;
1873 CPUWatchpoint *wp;
1874 #endif
1875
1876 memcpy(new_env, env, sizeof(CPUState));
1877
1878 /* Preserve chaining and index. */
1879 new_env->next_cpu = next_cpu;
1880 new_env->cpu_index = cpu_index;
1881
1882 /* Clone all break/watchpoints.
1883 Note: Once we support ptrace with hw-debug register access, make sure
1884 BP_CPU break/watchpoints are handled correctly on clone. */
1885 QTAILQ_INIT(&env->breakpoints);
1886 QTAILQ_INIT(&env->watchpoints);
1887 #if defined(TARGET_HAS_ICE)
1888 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1889 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1890 }
1891 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1892 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1893 wp->flags, NULL);
1894 }
1895 #endif
1896
1897 return new_env;
1898 }
1899
1900 #if !defined(CONFIG_USER_ONLY)
1901
1902 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1903 {
1904 unsigned int i;
1905
1906 /* Discard jump cache entries for any tb which might potentially
1907 overlap the flushed page. */
1908 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1909 memset (&env->tb_jmp_cache[i], 0,
1910 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1911
1912 i = tb_jmp_cache_hash_page(addr);
1913 memset (&env->tb_jmp_cache[i], 0,
1914 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1915 }
1916
1917 static CPUTLBEntry s_cputlb_empty_entry = {
1918 .addr_read = -1,
1919 .addr_write = -1,
1920 .addr_code = -1,
1921 .addend = -1,
1922 };
1923
1924 /* NOTE: if flush_global is true, also flush global entries (not
1925 implemented yet) */
1926 void tlb_flush(CPUState *env, int flush_global)
1927 {
1928 int i;
1929
1930 #if defined(DEBUG_TLB)
1931 printf("tlb_flush:\n");
1932 #endif
1933 /* must reset current TB so that interrupts cannot modify the
1934 links while we are modifying them */
1935 env->current_tb = NULL;
1936
1937 for(i = 0; i < CPU_TLB_SIZE; i++) {
1938 int mmu_idx;
1939 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1940 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1941 }
1942 }
1943
1944 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1945
1946 env->tlb_flush_addr = -1;
1947 env->tlb_flush_mask = 0;
1948 tlb_flush_count++;
1949 }
1950
1951 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1952 {
1953 if (addr == (tlb_entry->addr_read &
1954 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1955 addr == (tlb_entry->addr_write &
1956 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1957 addr == (tlb_entry->addr_code &
1958 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1959 *tlb_entry = s_cputlb_empty_entry;
1960 }
1961 }
1962
1963 void tlb_flush_page(CPUState *env, target_ulong addr)
1964 {
1965 int i;
1966 int mmu_idx;
1967
1968 #if defined(DEBUG_TLB)
1969 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1970 #endif
1971 /* Check if we need to flush due to large pages. */
1972 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1973 #if defined(DEBUG_TLB)
1974 printf("tlb_flush_page: forced full flush ("
1975 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1976 env->tlb_flush_addr, env->tlb_flush_mask);
1977 #endif
1978 tlb_flush(env, 1);
1979 return;
1980 }
1981 /* must reset current TB so that interrupts cannot modify the
1982 links while we are modifying them */
1983 env->current_tb = NULL;
1984
1985 addr &= TARGET_PAGE_MASK;
1986 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1987 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1988 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1989
1990 tlb_flush_jmp_cache(env, addr);
1991 }
1992
1993 /* update the TLBs so that writes to code in the virtual page 'addr'
1994 can be detected */
1995 static void tlb_protect_code(ram_addr_t ram_addr)
1996 {
1997 cpu_physical_memory_reset_dirty(ram_addr,
1998 ram_addr + TARGET_PAGE_SIZE,
1999 CODE_DIRTY_FLAG);
2000 }
2001
2002 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2003 tested for self modifying code */
2004 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2005 target_ulong vaddr)
2006 {
2007 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2008 }
2009
2010 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2011 unsigned long start, unsigned long length)
2012 {
2013 unsigned long addr;
2014 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2015 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2016 if ((addr - start) < length) {
2017 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2018 }
2019 }
2020 }
2021
2022 /* Note: start and end must be within the same ram block. */
2023 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2024 int dirty_flags)
2025 {
2026 CPUState *env;
2027 unsigned long length, start1;
2028 int i;
2029
2030 start &= TARGET_PAGE_MASK;
2031 end = TARGET_PAGE_ALIGN(end);
2032
2033 length = end - start;
2034 if (length == 0)
2035 return;
2036 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2037
2038 /* we modify the TLB cache so that the dirty bit will be set again
2039 when accessing the range */
2040 start1 = (unsigned long)qemu_get_ram_ptr(start);
2041 /* Chek that we don't span multiple blocks - this breaks the
2042 address comparisons below. */
2043 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2044 != (end - 1) - start) {
2045 abort();
2046 }
2047
2048 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2049 int mmu_idx;
2050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2051 for(i = 0; i < CPU_TLB_SIZE; i++)
2052 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2053 start1, length);
2054 }
2055 }
2056 }
2057
2058 int cpu_physical_memory_set_dirty_tracking(int enable)
2059 {
2060 int ret = 0;
2061 in_migration = enable;
2062 ret = cpu_notify_migration_log(!!enable);
2063 return ret;
2064 }
2065
2066 int cpu_physical_memory_get_dirty_tracking(void)
2067 {
2068 return in_migration;
2069 }
2070
2071 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2072 target_phys_addr_t end_addr)
2073 {
2074 int ret;
2075
2076 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2077 return ret;
2078 }
2079
2080 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2081 {
2082 ram_addr_t ram_addr;
2083 void *p;
2084
2085 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2086 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2087 + tlb_entry->addend);
2088 ram_addr = qemu_ram_addr_from_host(p);
2089 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2090 tlb_entry->addr_write |= TLB_NOTDIRTY;
2091 }
2092 }
2093 }
2094
2095 /* update the TLB according to the current state of the dirty bits */
2096 void cpu_tlb_update_dirty(CPUState *env)
2097 {
2098 int i;
2099 int mmu_idx;
2100 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2101 for(i = 0; i < CPU_TLB_SIZE; i++)
2102 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2103 }
2104 }
2105
2106 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2107 {
2108 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2109 tlb_entry->addr_write = vaddr;
2110 }
2111
2112 /* update the TLB corresponding to virtual page vaddr
2113 so that it is no longer dirty */
2114 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2115 {
2116 int i;
2117 int mmu_idx;
2118
2119 vaddr &= TARGET_PAGE_MASK;
2120 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2121 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2122 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2123 }
2124
2125 /* Our TLB does not support large pages, so remember the area covered by
2126 large pages and trigger a full TLB flush if these are invalidated. */
2127 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2128 target_ulong size)
2129 {
2130 target_ulong mask = ~(size - 1);
2131
2132 if (env->tlb_flush_addr == (target_ulong)-1) {
2133 env->tlb_flush_addr = vaddr & mask;
2134 env->tlb_flush_mask = mask;
2135 return;
2136 }
2137 /* Extend the existing region to include the new page.
2138 This is a compromise between unnecessary flushes and the cost
2139 of maintaining a full variable size TLB. */
2140 mask &= env->tlb_flush_mask;
2141 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2142 mask <<= 1;
2143 }
2144 env->tlb_flush_addr &= mask;
2145 env->tlb_flush_mask = mask;
2146 }
2147
2148 /* Add a new TLB entry. At most one entry for a given virtual address
2149 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2150 supplied size is only used by tlb_flush_page. */
2151 void tlb_set_page(CPUState *env, target_ulong vaddr,
2152 target_phys_addr_t paddr, int prot,
2153 int mmu_idx, target_ulong size)
2154 {
2155 PhysPageDesc *p;
2156 unsigned long pd;
2157 unsigned int index;
2158 target_ulong address;
2159 target_ulong code_address;
2160 unsigned long addend;
2161 CPUTLBEntry *te;
2162 CPUWatchpoint *wp;
2163 target_phys_addr_t iotlb;
2164
2165 assert(size >= TARGET_PAGE_SIZE);
2166 if (size != TARGET_PAGE_SIZE) {
2167 tlb_add_large_page(env, vaddr, size);
2168 }
2169 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2170 if (!p) {
2171 pd = IO_MEM_UNASSIGNED;
2172 } else {
2173 pd = p->phys_offset;
2174 }
2175 #if defined(DEBUG_TLB)
2176 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2177 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2178 #endif
2179
2180 address = vaddr;
2181 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2182 /* IO memory case (romd handled later) */
2183 address |= TLB_MMIO;
2184 }
2185 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2186 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2187 /* Normal RAM. */
2188 iotlb = pd & TARGET_PAGE_MASK;
2189 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2190 iotlb |= IO_MEM_NOTDIRTY;
2191 else
2192 iotlb |= IO_MEM_ROM;
2193 } else {
2194 /* IO handlers are currently passed a physical address.
2195 It would be nice to pass an offset from the base address
2196 of that region. This would avoid having to special case RAM,
2197 and avoid full address decoding in every device.
2198 We can't use the high bits of pd for this because
2199 IO_MEM_ROMD uses these as a ram address. */
2200 iotlb = (pd & ~TARGET_PAGE_MASK);
2201 if (p) {
2202 iotlb += p->region_offset;
2203 } else {
2204 iotlb += paddr;
2205 }
2206 }
2207
2208 code_address = address;
2209 /* Make accesses to pages with watchpoints go via the
2210 watchpoint trap routines. */
2211 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2212 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2213 /* Avoid trapping reads of pages with a write breakpoint. */
2214 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2215 iotlb = io_mem_watch + paddr;
2216 address |= TLB_MMIO;
2217 break;
2218 }
2219 }
2220 }
2221
2222 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2223 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2224 te = &env->tlb_table[mmu_idx][index];
2225 te->addend = addend - vaddr;
2226 if (prot & PAGE_READ) {
2227 te->addr_read = address;
2228 } else {
2229 te->addr_read = -1;
2230 }
2231
2232 if (prot & PAGE_EXEC) {
2233 te->addr_code = code_address;
2234 } else {
2235 te->addr_code = -1;
2236 }
2237 if (prot & PAGE_WRITE) {
2238 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2239 (pd & IO_MEM_ROMD)) {
2240 /* Write access calls the I/O callback. */
2241 te->addr_write = address | TLB_MMIO;
2242 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2243 !cpu_physical_memory_is_dirty(pd)) {
2244 te->addr_write = address | TLB_NOTDIRTY;
2245 } else {
2246 te->addr_write = address;
2247 }
2248 } else {
2249 te->addr_write = -1;
2250 }
2251 }
2252
2253 #else
2254
2255 void tlb_flush(CPUState *env, int flush_global)
2256 {
2257 }
2258
2259 void tlb_flush_page(CPUState *env, target_ulong addr)
2260 {
2261 }
2262
2263 /*
2264 * Walks guest process memory "regions" one by one
2265 * and calls callback function 'fn' for each region.
2266 */
2267
2268 struct walk_memory_regions_data
2269 {
2270 walk_memory_regions_fn fn;
2271 void *priv;
2272 unsigned long start;
2273 int prot;
2274 };
2275
2276 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2277 abi_ulong end, int new_prot)
2278 {
2279 if (data->start != -1ul) {
2280 int rc = data->fn(data->priv, data->start, end, data->prot);
2281 if (rc != 0) {
2282 return rc;
2283 }
2284 }
2285
2286 data->start = (new_prot ? end : -1ul);
2287 data->prot = new_prot;
2288
2289 return 0;
2290 }
2291
2292 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2293 abi_ulong base, int level, void **lp)
2294 {
2295 abi_ulong pa;
2296 int i, rc;
2297
2298 if (*lp == NULL) {
2299 return walk_memory_regions_end(data, base, 0);
2300 }
2301
2302 if (level == 0) {
2303 PageDesc *pd = *lp;
2304 for (i = 0; i < L2_SIZE; ++i) {
2305 int prot = pd[i].flags;
2306
2307 pa = base | (i << TARGET_PAGE_BITS);
2308 if (prot != data->prot) {
2309 rc = walk_memory_regions_end(data, pa, prot);
2310 if (rc != 0) {
2311 return rc;
2312 }
2313 }
2314 }
2315 } else {
2316 void **pp = *lp;
2317 for (i = 0; i < L2_SIZE; ++i) {
2318 pa = base | ((abi_ulong)i <<
2319 (TARGET_PAGE_BITS + L2_BITS * level));
2320 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2321 if (rc != 0) {
2322 return rc;
2323 }
2324 }
2325 }
2326
2327 return 0;
2328 }
2329
2330 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2331 {
2332 struct walk_memory_regions_data data;
2333 unsigned long i;
2334
2335 data.fn = fn;
2336 data.priv = priv;
2337 data.start = -1ul;
2338 data.prot = 0;
2339
2340 for (i = 0; i < V_L1_SIZE; i++) {
2341 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2342 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2343 if (rc != 0) {
2344 return rc;
2345 }
2346 }
2347
2348 return walk_memory_regions_end(&data, 0, 0);
2349 }
2350
2351 static int dump_region(void *priv, abi_ulong start,
2352 abi_ulong end, unsigned long prot)
2353 {
2354 FILE *f = (FILE *)priv;
2355
2356 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2357 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2358 start, end, end - start,
2359 ((prot & PAGE_READ) ? 'r' : '-'),
2360 ((prot & PAGE_WRITE) ? 'w' : '-'),
2361 ((prot & PAGE_EXEC) ? 'x' : '-'));
2362
2363 return (0);
2364 }
2365
2366 /* dump memory mappings */
2367 void page_dump(FILE *f)
2368 {
2369 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2370 "start", "end", "size", "prot");
2371 walk_memory_regions(f, dump_region);
2372 }
2373
2374 int page_get_flags(target_ulong address)
2375 {
2376 PageDesc *p;
2377
2378 p = page_find(address >> TARGET_PAGE_BITS);
2379 if (!p)
2380 return 0;
2381 return p->flags;
2382 }
2383
2384 /* Modify the flags of a page and invalidate the code if necessary.
2385 The flag PAGE_WRITE_ORG is positioned automatically depending
2386 on PAGE_WRITE. The mmap_lock should already be held. */
2387 void page_set_flags(target_ulong start, target_ulong end, int flags)
2388 {
2389 target_ulong addr, len;
2390
2391 /* This function should never be called with addresses outside the
2392 guest address space. If this assert fires, it probably indicates
2393 a missing call to h2g_valid. */
2394 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2395 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2396 #endif
2397 assert(start < end);
2398
2399 start = start & TARGET_PAGE_MASK;
2400 end = TARGET_PAGE_ALIGN(end);
2401
2402 if (flags & PAGE_WRITE) {
2403 flags |= PAGE_WRITE_ORG;
2404 }
2405
2406 for (addr = start, len = end - start;
2407 len != 0;
2408 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2409 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2410
2411 /* If the write protection bit is set, then we invalidate
2412 the code inside. */
2413 if (!(p->flags & PAGE_WRITE) &&
2414 (flags & PAGE_WRITE) &&
2415 p->first_tb) {
2416 tb_invalidate_phys_page(addr, 0, NULL);
2417 }
2418 p->flags = flags;
2419 }
2420 }
2421
2422 int page_check_range(target_ulong start, target_ulong len, int flags)
2423 {
2424 PageDesc *p;
2425 target_ulong end;
2426 target_ulong addr;
2427
2428 /* This function should never be called with addresses outside the
2429 guest address space. If this assert fires, it probably indicates
2430 a missing call to h2g_valid. */
2431 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2432 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2433 #endif
2434
2435 if (len == 0) {
2436 return 0;
2437 }
2438 if (start + len - 1 < start) {
2439 /* We've wrapped around. */
2440 return -1;
2441 }
2442
2443 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2444 start = start & TARGET_PAGE_MASK;
2445
2446 for (addr = start, len = end - start;
2447 len != 0;
2448 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2449 p = page_find(addr >> TARGET_PAGE_BITS);
2450 if( !p )
2451 return -1;
2452 if( !(p->flags & PAGE_VALID) )
2453 return -1;
2454
2455 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2456 return -1;
2457 if (flags & PAGE_WRITE) {
2458 if (!(p->flags & PAGE_WRITE_ORG))
2459 return -1;
2460 /* unprotect the page if it was put read-only because it
2461 contains translated code */
2462 if (!(p->flags & PAGE_WRITE)) {
2463 if (!page_unprotect(addr, 0, NULL))
2464 return -1;
2465 }
2466 return 0;
2467 }
2468 }
2469 return 0;
2470 }
2471
2472 /* called from signal handler: invalidate the code and unprotect the
2473 page. Return TRUE if the fault was successfully handled. */
2474 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2475 {
2476 unsigned int prot;
2477 PageDesc *p;
2478 target_ulong host_start, host_end, addr;
2479
2480 /* Technically this isn't safe inside a signal handler. However we
2481 know this only ever happens in a synchronous SEGV handler, so in
2482 practice it seems to be ok. */
2483 mmap_lock();
2484
2485 p = page_find(address >> TARGET_PAGE_BITS);
2486 if (!p) {
2487 mmap_unlock();
2488 return 0;
2489 }
2490
2491 /* if the page was really writable, then we change its
2492 protection back to writable */
2493 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2494 host_start = address & qemu_host_page_mask;
2495 host_end = host_start + qemu_host_page_size;
2496
2497 prot = 0;
2498 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2499 p = page_find(addr >> TARGET_PAGE_BITS);
2500 p->flags |= PAGE_WRITE;
2501 prot |= p->flags;
2502
2503 /* and since the content will be modified, we must invalidate
2504 the corresponding translated code. */
2505 tb_invalidate_phys_page(addr, pc, puc);
2506 #ifdef DEBUG_TB_CHECK
2507 tb_invalidate_check(addr);
2508 #endif
2509 }
2510 mprotect((void *)g2h(host_start), qemu_host_page_size,
2511 prot & PAGE_BITS);
2512
2513 mmap_unlock();
2514 return 1;
2515 }
2516 mmap_unlock();
2517 return 0;
2518 }
2519
2520 static inline void tlb_set_dirty(CPUState *env,
2521 unsigned long addr, target_ulong vaddr)
2522 {
2523 }
2524 #endif /* defined(CONFIG_USER_ONLY) */
2525
2526 #if !defined(CONFIG_USER_ONLY)
2527
2528 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2529 typedef struct subpage_t {
2530 target_phys_addr_t base;
2531 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2532 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2533 } subpage_t;
2534
2535 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2536 ram_addr_t memory, ram_addr_t region_offset);
2537 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2538 ram_addr_t orig_memory,
2539 ram_addr_t region_offset);
2540 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2541 need_subpage) \
2542 do { \
2543 if (addr > start_addr) \
2544 start_addr2 = 0; \
2545 else { \
2546 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2547 if (start_addr2 > 0) \
2548 need_subpage = 1; \
2549 } \
2550 \
2551 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2552 end_addr2 = TARGET_PAGE_SIZE - 1; \
2553 else { \
2554 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2555 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2556 need_subpage = 1; \
2557 } \
2558 } while (0)
2559
2560 /* register physical memory.
2561 For RAM, 'size' must be a multiple of the target page size.
2562 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2563 io memory page. The address used when calling the IO function is
2564 the offset from the start of the region, plus region_offset. Both
2565 start_addr and region_offset are rounded down to a page boundary
2566 before calculating this offset. This should not be a problem unless
2567 the low bits of start_addr and region_offset differ. */
2568 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2569 ram_addr_t size,
2570 ram_addr_t phys_offset,
2571 ram_addr_t region_offset)
2572 {
2573 target_phys_addr_t addr, end_addr;
2574 PhysPageDesc *p;
2575 CPUState *env;
2576 ram_addr_t orig_size = size;
2577 subpage_t *subpage;
2578
2579 cpu_notify_set_memory(start_addr, size, phys_offset);
2580
2581 if (phys_offset == IO_MEM_UNASSIGNED) {
2582 region_offset = start_addr;
2583 }
2584 region_offset &= TARGET_PAGE_MASK;
2585 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2586 end_addr = start_addr + (target_phys_addr_t)size;
2587 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2588 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2589 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2590 ram_addr_t orig_memory = p->phys_offset;
2591 target_phys_addr_t start_addr2, end_addr2;
2592 int need_subpage = 0;
2593
2594 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2595 need_subpage);
2596 if (need_subpage) {
2597 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2598 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2599 &p->phys_offset, orig_memory,
2600 p->region_offset);
2601 } else {
2602 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2603 >> IO_MEM_SHIFT];
2604 }
2605 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2606 region_offset);
2607 p->region_offset = 0;
2608 } else {
2609 p->phys_offset = phys_offset;
2610 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2611 (phys_offset & IO_MEM_ROMD))
2612 phys_offset += TARGET_PAGE_SIZE;
2613 }
2614 } else {
2615 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2616 p->phys_offset = phys_offset;
2617 p->region_offset = region_offset;
2618 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2619 (phys_offset & IO_MEM_ROMD)) {
2620 phys_offset += TARGET_PAGE_SIZE;
2621 } else {
2622 target_phys_addr_t start_addr2, end_addr2;
2623 int need_subpage = 0;
2624
2625 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2626 end_addr2, need_subpage);
2627
2628 if (need_subpage) {
2629 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2630 &p->phys_offset, IO_MEM_UNASSIGNED,
2631 addr & TARGET_PAGE_MASK);
2632 subpage_register(subpage, start_addr2, end_addr2,
2633 phys_offset, region_offset);
2634 p->region_offset = 0;
2635 }
2636 }
2637 }
2638 region_offset += TARGET_PAGE_SIZE;
2639 }
2640
2641 /* since each CPU stores ram addresses in its TLB cache, we must
2642 reset the modified entries */
2643 /* XXX: slow ! */
2644 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2645 tlb_flush(env, 1);
2646 }
2647 }
2648
2649 /* XXX: temporary until new memory mapping API */
2650 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2651 {
2652 PhysPageDesc *p;
2653
2654 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2655 if (!p)
2656 return IO_MEM_UNASSIGNED;
2657 return p->phys_offset;
2658 }
2659
2660 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2661 {
2662 if (kvm_enabled())
2663 kvm_coalesce_mmio_region(addr, size);
2664 }
2665
2666 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2667 {
2668 if (kvm_enabled())
2669 kvm_uncoalesce_mmio_region(addr, size);
2670 }
2671
2672 void qemu_flush_coalesced_mmio_buffer(void)
2673 {
2674 if (kvm_enabled())
2675 kvm_flush_coalesced_mmio_buffer();
2676 }
2677
2678 #if defined(__linux__) && !defined(TARGET_S390X)
2679
2680 #include <sys/vfs.h>
2681
2682 #define HUGETLBFS_MAGIC 0x958458f6
2683
2684 static long gethugepagesize(const char *path)
2685 {
2686 struct statfs fs;
2687 int ret;
2688
2689 do {
2690 ret = statfs(path, &fs);
2691 } while (ret != 0 && errno == EINTR);
2692
2693 if (ret != 0) {
2694 perror(path);
2695 return 0;
2696 }
2697
2698 if (fs.f_type != HUGETLBFS_MAGIC)
2699 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2700
2701 return fs.f_bsize;
2702 }
2703
2704 static void *file_ram_alloc(RAMBlock *block,
2705 ram_addr_t memory,
2706 const char *path)
2707 {
2708 char *filename;
2709 void *area;
2710 int fd;
2711 #ifdef MAP_POPULATE
2712 int flags;
2713 #endif
2714 unsigned long hpagesize;
2715
2716 hpagesize = gethugepagesize(path);
2717 if (!hpagesize) {
2718 return NULL;
2719 }
2720
2721 if (memory < hpagesize) {
2722 return NULL;
2723 }
2724
2725 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2726 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2727 return NULL;
2728 }
2729
2730 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2731 return NULL;
2732 }
2733
2734 fd = mkstemp(filename);
2735 if (fd < 0) {
2736 perror("unable to create backing store for hugepages");
2737 free(filename);
2738 return NULL;
2739 }
2740 unlink(filename);
2741 free(filename);
2742
2743 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2744
2745 /*
2746 * ftruncate is not supported by hugetlbfs in older
2747 * hosts, so don't bother bailing out on errors.
2748 * If anything goes wrong with it under other filesystems,
2749 * mmap will fail.
2750 */
2751 if (ftruncate(fd, memory))
2752 perror("ftruncate");
2753
2754 #ifdef MAP_POPULATE
2755 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2756 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2757 * to sidestep this quirk.
2758 */
2759 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2760 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2761 #else
2762 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2763 #endif
2764 if (area == MAP_FAILED) {
2765 perror("file_ram_alloc: can't mmap RAM pages");
2766 close(fd);
2767 return (NULL);
2768 }
2769 block->fd = fd;
2770 return area;
2771 }
2772 #endif
2773
2774 static ram_addr_t find_ram_offset(ram_addr_t size)
2775 {
2776 RAMBlock *block, *next_block;
2777 ram_addr_t offset = 0, mingap = ULONG_MAX;
2778
2779 if (QLIST_EMPTY(&ram_list.blocks))
2780 return 0;
2781
2782 QLIST_FOREACH(block, &ram_list.blocks, next) {
2783 ram_addr_t end, next = ULONG_MAX;
2784
2785 end = block->offset + block->length;
2786
2787 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2788 if (next_block->offset >= end) {
2789 next = MIN(next, next_block->offset);
2790 }
2791 }
2792 if (next - end >= size && next - end < mingap) {
2793 offset = end;
2794 mingap = next - end;
2795 }
2796 }
2797 return offset;
2798 }
2799
2800 static ram_addr_t last_ram_offset(void)
2801 {
2802 RAMBlock *block;
2803 ram_addr_t last = 0;
2804
2805 QLIST_FOREACH(block, &ram_list.blocks, next)
2806 last = MAX(last, block->offset + block->length);
2807
2808 return last;
2809 }
2810
2811 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2812 ram_addr_t size, void *host)
2813 {
2814 RAMBlock *new_block, *block;
2815
2816 size = TARGET_PAGE_ALIGN(size);
2817 new_block = qemu_mallocz(sizeof(*new_block));
2818
2819 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2820 char *id = dev->parent_bus->info->get_dev_path(dev);
2821 if (id) {
2822 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2823 qemu_free(id);
2824 }
2825 }
2826 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2827
2828 QLIST_FOREACH(block, &ram_list.blocks, next) {
2829 if (!strcmp(block->idstr, new_block->idstr)) {
2830 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2831 new_block->idstr);
2832 abort();
2833 }
2834 }
2835
2836 if (host) {
2837 new_block->host = host;
2838 } else {
2839 if (mem_path) {
2840 #if defined (__linux__) && !defined(TARGET_S390X)
2841 new_block->host = file_ram_alloc(new_block, size, mem_path);
2842 if (!new_block->host) {
2843 new_block->host = qemu_vmalloc(size);
2844 #ifdef MADV_MERGEABLE
2845 madvise(new_block->host, size, MADV_MERGEABLE);
2846 #endif
2847 }
2848 #else
2849 fprintf(stderr, "-mem-path option unsupported\n");
2850 exit(1);
2851 #endif
2852 } else {
2853 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2854 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2855 new_block->host = mmap((void*)0x1000000, size,
2856 PROT_EXEC|PROT_READ|PROT_WRITE,
2857 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2858 #else
2859 new_block->host = qemu_vmalloc(size);
2860 #endif
2861 #ifdef MADV_MERGEABLE
2862 madvise(new_block->host, size, MADV_MERGEABLE);
2863 #endif
2864 }
2865 }
2866
2867 new_block->offset = find_ram_offset(size);
2868 new_block->length = size;
2869
2870 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2871
2872 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2873 last_ram_offset() >> TARGET_PAGE_BITS);
2874 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2875 0xff, size >> TARGET_PAGE_BITS);
2876
2877 if (kvm_enabled())
2878 kvm_setup_guest_memory(new_block->host, size);
2879
2880 return new_block->offset;
2881 }
2882
2883 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2884 {
2885 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2886 }
2887
2888 void qemu_ram_free(ram_addr_t addr)
2889 {
2890 RAMBlock *block;
2891
2892 QLIST_FOREACH(block, &ram_list.blocks, next) {
2893 if (addr == block->offset) {
2894 QLIST_REMOVE(block, next);
2895 if (mem_path) {
2896 #if defined (__linux__) && !defined(TARGET_S390X)
2897 if (block->fd) {
2898 munmap(block->host, block->length);
2899 close(block->fd);
2900 } else {
2901 qemu_vfree(block->host);
2902 }
2903 #endif
2904 } else {
2905 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2906 munmap(block->host, block->length);
2907 #else
2908 qemu_vfree(block->host);
2909 #endif
2910 }
2911 qemu_free(block);
2912 return;
2913 }
2914 }
2915
2916 }
2917
2918 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2919 With the exception of the softmmu code in this file, this should
2920 only be used for local memory (e.g. video ram) that the device owns,
2921 and knows it isn't going to access beyond the end of the block.
2922
2923 It should not be used for general purpose DMA.
2924 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2925 */
2926 void *qemu_get_ram_ptr(ram_addr_t addr)
2927 {
2928 RAMBlock *block;
2929
2930 QLIST_FOREACH(block, &ram_list.blocks, next) {
2931 if (addr - block->offset < block->length) {
2932 QLIST_REMOVE(block, next);
2933 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2934 return block->host + (addr - block->offset);
2935 }
2936 }
2937
2938 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2939 abort();
2940
2941 return NULL;
2942 }
2943
2944 /* Some of the softmmu routines need to translate from a host pointer
2945 (typically a TLB entry) back to a ram offset. */
2946 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2947 {
2948 RAMBlock *block;
2949 uint8_t *host = ptr;
2950
2951 QLIST_FOREACH(block, &ram_list.blocks, next) {
2952 if (host - block->host < block->length) {
2953 return block->offset + (host - block->host);
2954 }
2955 }
2956
2957 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2958 abort();
2959
2960 return 0;
2961 }
2962
2963 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2964 {
2965 #ifdef DEBUG_UNASSIGNED
2966 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2967 #endif
2968 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2969 do_unassigned_access(addr, 0, 0, 0, 1);
2970 #endif
2971 return 0;
2972 }
2973
2974 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2975 {
2976 #ifdef DEBUG_UNASSIGNED
2977 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2978 #endif
2979 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2980 do_unassigned_access(addr, 0, 0, 0, 2);
2981 #endif
2982 return 0;
2983 }
2984
2985 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2986 {
2987 #ifdef DEBUG_UNASSIGNED
2988 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2989 #endif
2990 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2991 do_unassigned_access(addr, 0, 0, 0, 4);
2992 #endif
2993 return 0;
2994 }
2995
2996 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2997 {
2998 #ifdef DEBUG_UNASSIGNED
2999 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3000 #endif
3001 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3002 do_unassigned_access(addr, 1, 0, 0, 1);
3003 #endif
3004 }
3005
3006 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3007 {
3008 #ifdef DEBUG_UNASSIGNED
3009 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3010 #endif
3011 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3012 do_unassigned_access(addr, 1, 0, 0, 2);
3013 #endif
3014 }
3015
3016 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3017 {
3018 #ifdef DEBUG_UNASSIGNED
3019 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3020 #endif
3021 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3022 do_unassigned_access(addr, 1, 0, 0, 4);
3023 #endif
3024 }
3025
3026 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3027 unassigned_mem_readb,
3028 unassigned_mem_readw,
3029 unassigned_mem_readl,
3030 };
3031
3032 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3033 unassigned_mem_writeb,
3034 unassigned_mem_writew,
3035 unassigned_mem_writel,
3036 };
3037
3038 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3039 uint32_t val)
3040 {
3041 int dirty_flags;
3042 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3043 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3044 #if !defined(CONFIG_USER_ONLY)
3045 tb_invalidate_phys_page_fast(ram_addr, 1);
3046 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3047 #endif
3048 }
3049 stb_p(qemu_get_ram_ptr(ram_addr), val);
3050 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3051 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3052 /* we remove the notdirty callback only if the code has been
3053 flushed */
3054 if (dirty_flags == 0xff)
3055 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3056 }
3057
3058 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3059 uint32_t val)
3060 {
3061 int dirty_flags;
3062 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3063 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3064 #if !defined(CONFIG_USER_ONLY)
3065 tb_invalidate_phys_page_fast(ram_addr, 2);
3066 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3067 #endif
3068 }
3069 stw_p(qemu_get_ram_ptr(ram_addr), val);
3070 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3071 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3072 /* we remove the notdirty callback only if the code has been
3073 flushed */
3074 if (dirty_flags == 0xff)
3075 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3076 }
3077
3078 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3079 uint32_t val)
3080 {
3081 int dirty_flags;
3082 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3083 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3084 #if !defined(CONFIG_USER_ONLY)
3085 tb_invalidate_phys_page_fast(ram_addr, 4);
3086 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3087 #endif
3088 }
3089 stl_p(qemu_get_ram_ptr(ram_addr), val);
3090 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3091 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3092 /* we remove the notdirty callback only if the code has been
3093 flushed */
3094 if (dirty_flags == 0xff)
3095 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3096 }
3097
3098 static CPUReadMemoryFunc * const error_mem_read[3] = {
3099 NULL, /* never used */
3100 NULL, /* never used */
3101 NULL, /* never used */
3102 };
3103
3104 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3105 notdirty_mem_writeb,
3106 notdirty_mem_writew,
3107 notdirty_mem_writel,
3108 };
3109
3110 /* Generate a debug exception if a watchpoint has been hit. */
3111 static void check_watchpoint(int offset, int len_mask, int flags)
3112 {
3113 CPUState *env = cpu_single_env;
3114 target_ulong pc, cs_base;
3115 TranslationBlock *tb;
3116 target_ulong vaddr;
3117 CPUWatchpoint *wp;
3118 int cpu_flags;
3119
3120 if (env->watchpoint_hit) {
3121 /* We re-entered the check after replacing the TB. Now raise
3122 * the debug interrupt so that is will trigger after the
3123 * current instruction. */
3124 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3125 return;
3126 }
3127 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3128 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3129 if ((vaddr == (wp->vaddr & len_mask) ||
3130 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3131 wp->flags |= BP_WATCHPOINT_HIT;
3132 if (!env->watchpoint_hit) {
3133 env->watchpoint_hit = wp;
3134 tb = tb_find_pc(env->mem_io_pc);
3135 if (!tb) {
3136 cpu_abort(env, "check_watchpoint: could not find TB for "
3137 "pc=%p", (void *)env->mem_io_pc);
3138 }
3139 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3140 tb_phys_invalidate(tb, -1);
3141 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3142 env->exception_index = EXCP_DEBUG;
3143 } else {
3144 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3145 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3146 }
3147 cpu_resume_from_signal(env, NULL);
3148 }
3149 } else {
3150 wp->flags &= ~BP_WATCHPOINT_HIT;
3151 }
3152 }
3153 }
3154
3155 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3156 so these check for a hit then pass through to the normal out-of-line
3157 phys routines. */
3158 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3159 {
3160 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3161 return ldub_phys(addr);
3162 }
3163
3164 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3165 {
3166 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3167 return lduw_phys(addr);
3168 }
3169
3170 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3171 {
3172 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3173 return ldl_phys(addr);
3174 }
3175
3176 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3177 uint32_t val)
3178 {
3179 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3180 stb_phys(addr, val);
3181 }
3182
3183 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3184 uint32_t val)
3185 {
3186 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3187 stw_phys(addr, val);
3188 }
3189
3190 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3191 uint32_t val)
3192 {
3193 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3194 stl_phys(addr, val);
3195 }
3196
3197 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3198 watch_mem_readb,
3199 watch_mem_readw,
3200 watch_mem_readl,
3201 };
3202
3203 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3204 watch_mem_writeb,
3205 watch_mem_writew,
3206 watch_mem_writel,
3207 };
3208
3209 static inline uint32_t subpage_readlen (subpage_t *mmio,
3210 target_phys_addr_t addr,
3211 unsigned int len)
3212 {
3213 unsigned int idx = SUBPAGE_IDX(addr);
3214 #if defined(DEBUG_SUBPAGE)
3215 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3216 mmio, len, addr, idx);
3217 #endif
3218
3219 addr += mmio->region_offset[idx];
3220 idx = mmio->sub_io_index[idx];
3221 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3222 }
3223
3224 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3225 uint32_t value, unsigned int len)
3226 {
3227 unsigned int idx = SUBPAGE_IDX(addr);
3228 #if defined(DEBUG_SUBPAGE)
3229 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3230 __func__, mmio, len, addr, idx, value);
3231 #endif
3232
3233 addr += mmio->region_offset[idx];
3234 idx = mmio->sub_io_index[idx];
3235 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3236 }
3237
3238 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3239 {
3240 return subpage_readlen(opaque, addr, 0);
3241 }
3242
3243 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3244 uint32_t value)
3245 {
3246 subpage_writelen(opaque, addr, value, 0);
3247 }
3248
3249 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3250 {
3251 return subpage_readlen(opaque, addr, 1);
3252 }
3253
3254 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3255 uint32_t value)
3256 {
3257 subpage_writelen(opaque, addr, value, 1);
3258 }
3259
3260 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3261 {
3262 return subpage_readlen(opaque, addr, 2);
3263 }
3264
3265 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3266 uint32_t value)
3267 {
3268 subpage_writelen(opaque, addr, value, 2);
3269 }
3270
3271 static CPUReadMemoryFunc * const subpage_read[] = {
3272 &subpage_readb,
3273 &subpage_readw,
3274 &subpage_readl,
3275 };
3276
3277 static CPUWriteMemoryFunc * const subpage_write[] = {
3278 &subpage_writeb,
3279 &subpage_writew,
3280 &subpage_writel,
3281 };
3282
3283 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3284 ram_addr_t memory, ram_addr_t region_offset)
3285 {
3286 int idx, eidx;
3287
3288 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3289 return -1;
3290 idx = SUBPAGE_IDX(start);
3291 eidx = SUBPAGE_IDX(end);
3292 #if defined(DEBUG_SUBPAGE)
3293 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3294 mmio, start, end, idx, eidx, memory);
3295 #endif
3296 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3297 for (; idx <= eidx; idx++) {
3298 mmio->sub_io_index[idx] = memory;
3299 mmio->region_offset[idx] = region_offset;
3300 }
3301
3302 return 0;
3303 }
3304
3305 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3306 ram_addr_t orig_memory,
3307 ram_addr_t region_offset)
3308 {
3309 subpage_t *mmio;
3310 int subpage_memory;
3311
3312 mmio = qemu_mallocz(sizeof(subpage_t));
3313
3314 mmio->base = base;
3315 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3316 #if defined(DEBUG_SUBPAGE)
3317 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3318 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3319 #endif
3320 *phys = subpage_memory | IO_MEM_SUBPAGE;
3321 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3322
3323 return mmio;
3324 }
3325
3326 static int get_free_io_mem_idx(void)
3327 {
3328 int i;
3329
3330 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3331 if (!io_mem_used[i]) {
3332 io_mem_used[i] = 1;
3333 return i;
3334 }
3335 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3336 return -1;
3337 }
3338
3339 /* mem_read and mem_write are arrays of functions containing the
3340 function to access byte (index 0), word (index 1) and dword (index
3341 2). Functions can be omitted with a NULL function pointer.
3342 If io_index is non zero, the corresponding io zone is
3343 modified. If it is zero, a new io zone is allocated. The return
3344 value can be used with cpu_register_physical_memory(). (-1) is
3345 returned if error. */
3346 static int cpu_register_io_memory_fixed(int io_index,
3347 CPUReadMemoryFunc * const *mem_read,
3348 CPUWriteMemoryFunc * const *mem_write,
3349 void *opaque)
3350 {
3351 int i;
3352
3353 if (io_index <= 0) {
3354 io_index = get_free_io_mem_idx();
3355 if (io_index == -1)
3356 return io_index;
3357 } else {
3358 io_index >>= IO_MEM_SHIFT;
3359 if (io_index >= IO_MEM_NB_ENTRIES)
3360 return -1;
3361 }
3362
3363 for (i = 0; i < 3; ++i) {
3364 io_mem_read[io_index][i]
3365 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3366 }
3367 for (i = 0; i < 3; ++i) {
3368 io_mem_write[io_index][i]
3369 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3370 }
3371 io_mem_opaque[io_index] = opaque;
3372
3373 return (io_index << IO_MEM_SHIFT);
3374 }
3375
3376 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3377 CPUWriteMemoryFunc * const *mem_write,
3378 void *opaque)
3379 {
3380 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3381 }
3382
3383 void cpu_unregister_io_memory(int io_table_address)
3384 {
3385 int i;
3386 int io_index = io_table_address >> IO_MEM_SHIFT;
3387
3388 for (i=0;i < 3; i++) {
3389 io_mem_read[io_index][i] = unassigned_mem_read[i];
3390 io_mem_write[io_index][i] = unassigned_mem_write[i];
3391 }
3392 io_mem_opaque[io_index] = NULL;
3393 io_mem_used[io_index] = 0;
3394 }
3395
3396 static void io_mem_init(void)
3397 {
3398 int i;
3399
3400 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3401 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3402 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3403 for (i=0; i<5; i++)
3404 io_mem_used[i] = 1;
3405
3406 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3407 watch_mem_write, NULL);
3408 }
3409
3410 #endif /* !defined(CONFIG_USER_ONLY) */
3411
3412 /* physical memory access (slow version, mainly for debug) */
3413 #if defined(CONFIG_USER_ONLY)
3414 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3415 uint8_t *buf, int len, int is_write)
3416 {
3417 int l, flags;
3418 target_ulong page;
3419 void * p;
3420
3421 while (len > 0) {
3422 page = addr & TARGET_PAGE_MASK;
3423 l = (page + TARGET_PAGE_SIZE) - addr;
3424 if (l > len)
3425 l = len;
3426 flags = page_get_flags(page);
3427 if (!(flags & PAGE_VALID))
3428 return -1;
3429 if (is_write) {
3430 if (!(flags & PAGE_WRITE))
3431 return -1;
3432 /* XXX: this code should not depend on lock_user */
3433 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3434 return -1;
3435 memcpy(p, buf, l);
3436 unlock_user(p, addr, l);
3437 } else {
3438 if (!(flags & PAGE_READ))
3439 return -1;
3440 /* XXX: this code should not depend on lock_user */
3441 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3442 return -1;
3443 memcpy(buf, p, l);
3444 unlock_user(p, addr, 0);
3445 }
3446 len -= l;
3447 buf += l;
3448 addr += l;
3449 }
3450 return 0;
3451 }
3452
3453 #else
3454 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3455 int len, int is_write)
3456 {
3457 int l, io_index;
3458 uint8_t *ptr;
3459 uint32_t val;
3460 target_phys_addr_t page;
3461 unsigned long pd;
3462 PhysPageDesc *p;
3463
3464 while (len > 0) {
3465 page = addr & TARGET_PAGE_MASK;
3466 l = (page + TARGET_PAGE_SIZE) - addr;
3467 if (l > len)
3468 l = len;
3469 p = phys_page_find(page >> TARGET_PAGE_BITS);
3470 if (!p) {
3471 pd = IO_MEM_UNASSIGNED;
3472 } else {
3473 pd = p->phys_offset;
3474 }
3475
3476 if (is_write) {
3477 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3478 target_phys_addr_t addr1 = addr;
3479 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3480 if (p)
3481 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3482 /* XXX: could force cpu_single_env to NULL to avoid
3483 potential bugs */
3484 if (l >= 4 && ((addr1 & 3) == 0)) {
3485 /* 32 bit write access */
3486 val = ldl_p(buf);
3487 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3488 l = 4;
3489 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3490 /* 16 bit write access */
3491 val = lduw_p(buf);
3492 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3493 l = 2;
3494 } else {
3495 /* 8 bit write access */
3496 val = ldub_p(buf);
3497 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3498 l = 1;
3499 }
3500 } else {
3501 unsigned long addr1;
3502 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3503 /* RAM case */
3504 ptr = qemu_get_ram_ptr(addr1);
3505 memcpy(ptr, buf, l);
3506 if (!cpu_physical_memory_is_dirty(addr1)) {
3507 /* invalidate code */
3508 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3509 /* set dirty bit */
3510 cpu_physical_memory_set_dirty_flags(
3511 addr1, (0xff & ~CODE_DIRTY_FLAG));
3512 }
3513 }
3514 } else {
3515 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3516 !(pd & IO_MEM_ROMD)) {
3517 target_phys_addr_t addr1 = addr;
3518 /* I/O case */
3519 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3520 if (p)
3521 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3522 if (l >= 4 && ((addr1 & 3) == 0)) {
3523 /* 32 bit read access */
3524 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3525 stl_p(buf, val);
3526 l = 4;
3527 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3528 /* 16 bit read access */
3529 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3530 stw_p(buf, val);
3531 l = 2;
3532 } else {
3533 /* 8 bit read access */
3534 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3535 stb_p(buf, val);
3536 l = 1;
3537 }
3538 } else {
3539 /* RAM case */
3540 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3541 (addr & ~TARGET_PAGE_MASK);
3542 memcpy(buf, ptr, l);
3543 }
3544 }
3545 len -= l;
3546 buf += l;
3547 addr += l;
3548 }
3549 }
3550
3551 /* used for ROM loading : can write in RAM and ROM */
3552 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3553 const uint8_t *buf, int len)
3554 {
3555 int l;
3556 uint8_t *ptr;
3557 target_phys_addr_t page;
3558 unsigned long pd;
3559 PhysPageDesc *p;
3560
3561 while (len > 0) {
3562 page = addr & TARGET_PAGE_MASK;
3563 l = (page + TARGET_PAGE_SIZE) - addr;
3564 if (l > len)
3565 l = len;
3566 p = phys_page_find(page >> TARGET_PAGE_BITS);
3567 if (!p) {
3568 pd = IO_MEM_UNASSIGNED;
3569 } else {
3570 pd = p->phys_offset;
3571 }
3572
3573 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3574 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3575 !(pd & IO_MEM_ROMD)) {
3576 /* do nothing */
3577 } else {
3578 unsigned long addr1;
3579 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3580 /* ROM/RAM case */
3581 ptr = qemu_get_ram_ptr(addr1);
3582 memcpy(ptr, buf, l);
3583 }
3584 len -= l;
3585 buf += l;
3586 addr += l;
3587 }
3588 }
3589
3590 typedef struct {
3591 void *buffer;
3592 target_phys_addr_t addr;
3593 target_phys_addr_t len;
3594 } BounceBuffer;
3595
3596 static BounceBuffer bounce;
3597
3598 typedef struct MapClient {
3599 void *opaque;
3600 void (*callback)(void *opaque);
3601 QLIST_ENTRY(MapClient) link;
3602 } MapClient;
3603
3604 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3605 = QLIST_HEAD_INITIALIZER(map_client_list);
3606
3607 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3608 {
3609 MapClient *client = qemu_malloc(sizeof(*client));
3610
3611 client->opaque = opaque;
3612 client->callback = callback;
3613 QLIST_INSERT_HEAD(&map_client_list, client, link);
3614 return client;
3615 }
3616
3617 void cpu_unregister_map_client(void *_client)
3618 {
3619 MapClient *client = (MapClient *)_client;
3620
3621 QLIST_REMOVE(client, link);
3622 qemu_free(client);
3623 }
3624
3625 static void cpu_notify_map_clients(void)
3626 {
3627 MapClient *client;
3628
3629 while (!QLIST_EMPTY(&map_client_list)) {
3630 client = QLIST_FIRST(&map_client_list);
3631 client->callback(client->opaque);
3632 cpu_unregister_map_client(client);
3633 }
3634 }
3635
3636 /* Map a physical memory region into a host virtual address.
3637 * May map a subset of the requested range, given by and returned in *plen.
3638 * May return NULL if resources needed to perform the mapping are exhausted.
3639 * Use only for reads OR writes - not for read-modify-write operations.
3640 * Use cpu_register_map_client() to know when retrying the map operation is
3641 * likely to succeed.
3642 */
3643 void *cpu_physical_memory_map(target_phys_addr_t addr,
3644 target_phys_addr_t *plen,
3645 int is_write)
3646 {
3647 target_phys_addr_t len = *plen;
3648 target_phys_addr_t done = 0;
3649 int l;
3650 uint8_t *ret = NULL;
3651 uint8_t *ptr;
3652 target_phys_addr_t page;
3653 unsigned long pd;
3654 PhysPageDesc *p;
3655 unsigned long addr1;
3656
3657 while (len > 0) {
3658 page = addr & TARGET_PAGE_MASK;
3659 l = (page + TARGET_PAGE_SIZE) - addr;
3660 if (l > len)
3661 l = len;
3662 p = phys_page_find(page >> TARGET_PAGE_BITS);
3663 if (!p) {
3664 pd = IO_MEM_UNASSIGNED;
3665 } else {
3666 pd = p->phys_offset;
3667 }
3668
3669 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3670 if (done || bounce.buffer) {
3671 break;
3672 }
3673 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3674 bounce.addr = addr;
3675 bounce.len = l;
3676 if (!is_write) {
3677 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3678 }
3679 ptr = bounce.buffer;
3680 } else {
3681 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3682 ptr = qemu_get_ram_ptr(addr1);
3683 }
3684 if (!done) {
3685 ret = ptr;
3686 } else if (ret + done != ptr) {
3687 break;
3688 }
3689
3690 len -= l;
3691 addr += l;
3692 done += l;
3693 }
3694 *plen = done;
3695 return ret;
3696 }
3697
3698 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3699 * Will also mark the memory as dirty if is_write == 1. access_len gives
3700 * the amount of memory that was actually read or written by the caller.
3701 */
3702 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3703 int is_write, target_phys_addr_t access_len)
3704 {
3705 if (buffer != bounce.buffer) {
3706 if (is_write) {
3707 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3708 while (access_len) {
3709 unsigned l;
3710 l = TARGET_PAGE_SIZE;
3711 if (l > access_len)
3712 l = access_len;
3713 if (!cpu_physical_memory_is_dirty(addr1)) {
3714 /* invalidate code */
3715 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3716 /* set dirty bit */
3717 cpu_physical_memory_set_dirty_flags(
3718 addr1, (0xff & ~CODE_DIRTY_FLAG));
3719 }
3720 addr1 += l;
3721 access_len -= l;
3722 }
3723 }
3724 return;
3725 }
3726 if (is_write) {
3727 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3728 }
3729 qemu_vfree(bounce.buffer);
3730 bounce.buffer = NULL;
3731 cpu_notify_map_clients();
3732 }
3733
3734 /* warning: addr must be aligned */
3735 uint32_t ldl_phys(target_phys_addr_t addr)
3736 {
3737 int io_index;
3738 uint8_t *ptr;
3739 uint32_t val;
3740 unsigned long pd;
3741 PhysPageDesc *p;
3742
3743 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3744 if (!p) {
3745 pd = IO_MEM_UNASSIGNED;
3746 } else {
3747 pd = p->phys_offset;
3748 }
3749
3750 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3751 !(pd & IO_MEM_ROMD)) {
3752 /* I/O case */
3753 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3754 if (p)
3755 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3756 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3757 } else {
3758 /* RAM case */
3759 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3760 (addr & ~TARGET_PAGE_MASK);
3761 val = ldl_p(ptr);
3762 }
3763 return val;
3764 }
3765
3766 /* warning: addr must be aligned */
3767 uint64_t ldq_phys(target_phys_addr_t addr)
3768 {
3769 int io_index;
3770 uint8_t *ptr;
3771 uint64_t val;
3772 unsigned long pd;
3773 PhysPageDesc *p;
3774
3775 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3776 if (!p) {
3777 pd = IO_MEM_UNASSIGNED;
3778 } else {
3779 pd = p->phys_offset;
3780 }
3781
3782 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3783 !(pd & IO_MEM_ROMD)) {
3784 /* I/O case */
3785 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3786 if (p)
3787 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3788 #ifdef TARGET_WORDS_BIGENDIAN
3789 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3790 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3791 #else
3792 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3793 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3794 #endif
3795 } else {
3796 /* RAM case */
3797 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3798 (addr & ~TARGET_PAGE_MASK);
3799 val = ldq_p(ptr);
3800 }
3801 return val;
3802 }
3803
3804 /* XXX: optimize */
3805 uint32_t ldub_phys(target_phys_addr_t addr)
3806 {
3807 uint8_t val;
3808 cpu_physical_memory_read(addr, &val, 1);
3809 return val;
3810 }
3811
3812 /* warning: addr must be aligned */
3813 uint32_t lduw_phys(target_phys_addr_t addr)
3814 {
3815 int io_index;
3816 uint8_t *ptr;
3817 uint64_t val;
3818 unsigned long pd;
3819 PhysPageDesc *p;
3820
3821 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3822 if (!p) {
3823 pd = IO_MEM_UNASSIGNED;
3824 } else {
3825 pd = p->phys_offset;
3826 }
3827
3828 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3829 !(pd & IO_MEM_ROMD)) {
3830 /* I/O case */
3831 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3832 if (p)
3833 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3834 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3835 } else {
3836 /* RAM case */
3837 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3838 (addr & ~TARGET_PAGE_MASK);
3839 val = lduw_p(ptr);
3840 }
3841 return val;
3842 }
3843
3844 /* warning: addr must be aligned. The ram page is not masked as dirty
3845 and the code inside is not invalidated. It is useful if the dirty
3846 bits are used to track modified PTEs */
3847 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3848 {
3849 int io_index;
3850 uint8_t *ptr;
3851 unsigned long pd;
3852 PhysPageDesc *p;
3853
3854 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3855 if (!p) {
3856 pd = IO_MEM_UNASSIGNED;
3857 } else {
3858 pd = p->phys_offset;
3859 }
3860
3861 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3862 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3863 if (p)
3864 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3865 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3866 } else {
3867 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3868 ptr = qemu_get_ram_ptr(addr1);
3869 stl_p(ptr, val);
3870
3871 if (unlikely(in_migration)) {
3872 if (!cpu_physical_memory_is_dirty(addr1)) {
3873 /* invalidate code */
3874 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3875 /* set dirty bit */
3876 cpu_physical_memory_set_dirty_flags(
3877 addr1, (0xff & ~CODE_DIRTY_FLAG));
3878 }
3879 }
3880 }
3881 }
3882
3883 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3884 {
3885 int io_index;
3886 uint8_t *ptr;
3887 unsigned long pd;
3888 PhysPageDesc *p;
3889
3890 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3891 if (!p) {
3892 pd = IO_MEM_UNASSIGNED;
3893 } else {
3894 pd = p->phys_offset;
3895 }
3896
3897 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3898 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3899 if (p)
3900 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3901 #ifdef TARGET_WORDS_BIGENDIAN
3902 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3903 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3904 #else
3905 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3906 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3907 #endif
3908 } else {
3909 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3910 (addr & ~TARGET_PAGE_MASK);
3911 stq_p(ptr, val);
3912 }
3913 }
3914
3915 /* warning: addr must be aligned */
3916 void stl_phys(target_phys_addr_t addr, uint32_t val)
3917 {
3918 int io_index;
3919 uint8_t *ptr;
3920 unsigned long pd;
3921 PhysPageDesc *p;
3922
3923 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3924 if (!p) {
3925 pd = IO_MEM_UNASSIGNED;
3926 } else {
3927 pd = p->phys_offset;
3928 }
3929
3930 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3931 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3932 if (p)
3933 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3934 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3935 } else {
3936 unsigned long addr1;
3937 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3938 /* RAM case */
3939 ptr = qemu_get_ram_ptr(addr1);
3940 stl_p(ptr, val);
3941 if (!cpu_physical_memory_is_dirty(addr1)) {
3942 /* invalidate code */
3943 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3944 /* set dirty bit */
3945 cpu_physical_memory_set_dirty_flags(addr1,
3946 (0xff & ~CODE_DIRTY_FLAG));
3947 }
3948 }
3949 }
3950
3951 /* XXX: optimize */
3952 void stb_phys(target_phys_addr_t addr, uint32_t val)
3953 {
3954 uint8_t v = val;
3955 cpu_physical_memory_write(addr, &v, 1);
3956 }
3957
3958 /* warning: addr must be aligned */
3959 void stw_phys(target_phys_addr_t addr, uint32_t val)
3960 {
3961 int io_index;
3962 uint8_t *ptr;
3963 unsigned long pd;
3964 PhysPageDesc *p;
3965
3966 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3967 if (!p) {
3968 pd = IO_MEM_UNASSIGNED;
3969 } else {
3970 pd = p->phys_offset;
3971 }
3972
3973 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3974 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3975 if (p)
3976 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3977 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3978 } else {
3979 unsigned long addr1;
3980 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3981 /* RAM case */
3982 ptr = qemu_get_ram_ptr(addr1);
3983 stw_p(ptr, val);
3984 if (!cpu_physical_memory_is_dirty(addr1)) {
3985 /* invalidate code */
3986 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3987 /* set dirty bit */
3988 cpu_physical_memory_set_dirty_flags(addr1,
3989 (0xff & ~CODE_DIRTY_FLAG));
3990 }
3991 }
3992 }
3993
3994 /* XXX: optimize */
3995 void stq_phys(target_phys_addr_t addr, uint64_t val)
3996 {
3997 val = tswap64(val);
3998 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3999 }
4000
4001 /* virtual memory access for debug (includes writing to ROM) */
4002 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4003 uint8_t *buf, int len, int is_write)
4004 {
4005 int l;
4006 target_phys_addr_t phys_addr;
4007 target_ulong page;
4008
4009 while (len > 0) {
4010 page = addr & TARGET_PAGE_MASK;
4011 phys_addr = cpu_get_phys_page_debug(env, page);
4012 /* if no physical page mapped, return an error */
4013 if (phys_addr == -1)
4014 return -1;
4015 l = (page + TARGET_PAGE_SIZE) - addr;
4016 if (l > len)
4017 l = len;
4018 phys_addr += (addr & ~TARGET_PAGE_MASK);
4019 if (is_write)
4020 cpu_physical_memory_write_rom(phys_addr, buf, l);
4021 else
4022 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4023 len -= l;
4024 buf += l;
4025 addr += l;
4026 }
4027 return 0;
4028 }
4029 #endif
4030
4031 /* in deterministic execution mode, instructions doing device I/Os
4032 must be at the end of the TB */
4033 void cpu_io_recompile(CPUState *env, void *retaddr)
4034 {
4035 TranslationBlock *tb;
4036 uint32_t n, cflags;
4037 target_ulong pc, cs_base;
4038 uint64_t flags;
4039
4040 tb = tb_find_pc((unsigned long)retaddr);
4041 if (!tb) {
4042 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4043 retaddr);
4044 }
4045 n = env->icount_decr.u16.low + tb->icount;
4046 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4047 /* Calculate how many instructions had been executed before the fault
4048 occurred. */
4049 n = n - env->icount_decr.u16.low;
4050 /* Generate a new TB ending on the I/O insn. */
4051 n++;
4052 /* On MIPS and SH, delay slot instructions can only be restarted if
4053 they were already the first instruction in the TB. If this is not
4054 the first instruction in a TB then re-execute the preceding
4055 branch. */
4056 #if defined(TARGET_MIPS)
4057 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4058 env->active_tc.PC -= 4;
4059 env->icount_decr.u16.low++;
4060 env->hflags &= ~MIPS_HFLAG_BMASK;
4061 }
4062 #elif defined(TARGET_SH4)
4063 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4064 && n > 1) {
4065 env->pc -= 2;
4066 env->icount_decr.u16.low++;
4067 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4068 }
4069 #endif
4070 /* This should never happen. */
4071 if (n > CF_COUNT_MASK)
4072 cpu_abort(env, "TB too big during recompile");
4073
4074 cflags = n | CF_LAST_IO;
4075 pc = tb->pc;
4076 cs_base = tb->cs_base;
4077 flags = tb->flags;
4078 tb_phys_invalidate(tb, -1);
4079 /* FIXME: In theory this could raise an exception. In practice
4080 we have already translated the block once so it's probably ok. */
4081 tb_gen_code(env, pc, cs_base, flags, cflags);
4082 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4083 the first in the TB) then we end up generating a whole new TB and
4084 repeating the fault, which is horribly inefficient.
4085 Better would be to execute just this insn uncached, or generate a
4086 second new TB. */
4087 cpu_resume_from_signal(env, NULL);
4088 }
4089
4090 #if !defined(CONFIG_USER_ONLY)
4091
4092 void dump_exec_info(FILE *f,
4093 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4094 {
4095 int i, target_code_size, max_target_code_size;
4096 int direct_jmp_count, direct_jmp2_count, cross_page;
4097 TranslationBlock *tb;
4098
4099 target_code_size = 0;
4100 max_target_code_size = 0;
4101 cross_page = 0;
4102 direct_jmp_count = 0;
4103 direct_jmp2_count = 0;
4104 for(i = 0; i < nb_tbs; i++) {
4105 tb = &tbs[i];
4106 target_code_size += tb->size;
4107 if (tb->size > max_target_code_size)
4108 max_target_code_size = tb->size;
4109 if (tb->page_addr[1] != -1)
4110 cross_page++;
4111 if (tb->tb_next_offset[0] != 0xffff) {
4112 direct_jmp_count++;
4113 if (tb->tb_next_offset[1] != 0xffff) {
4114 direct_jmp2_count++;
4115 }
4116 }
4117 }
4118 /* XXX: avoid using doubles ? */
4119 cpu_fprintf(f, "Translation buffer state:\n");
4120 cpu_fprintf(f, "gen code size %ld/%ld\n",
4121 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4122 cpu_fprintf(f, "TB count %d/%d\n",
4123 nb_tbs, code_gen_max_blocks);
4124 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4125 nb_tbs ? target_code_size / nb_tbs : 0,
4126 max_target_code_size);
4127 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4128 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4129 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4130 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4131 cross_page,
4132 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4133 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4134 direct_jmp_count,
4135 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4136 direct_jmp2_count,
4137 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4138 cpu_fprintf(f, "\nStatistics:\n");
4139 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4140 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4141 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4142 tcg_dump_info(f, cpu_fprintf);
4143 }
4144
4145 #define MMUSUFFIX _cmmu
4146 #define GETPC() NULL
4147 #define env cpu_single_env
4148 #define SOFTMMU_CODE_ACCESS
4149
4150 #define SHIFT 0
4151 #include "softmmu_template.h"
4152
4153 #define SHIFT 1
4154 #include "softmmu_template.h"
4155
4156 #define SHIFT 2
4157 #include "softmmu_template.h"
4158
4159 #define SHIFT 3
4160 #include "softmmu_template.h"
4161
4162 #undef env
4163
4164 #endif