]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec.c: Use subpages for large unaligned mappings
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #include "cputlb.h"
61
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
64
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 //#define DEBUG_UNASSIGNED
68
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
116
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
119
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
122
123 #endif
124
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
161
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
182
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
186
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
189
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
196
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
201 };
202
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
208
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
212
213 static void io_mem_init(void);
214 static void memory_map_init(void);
215
216 static MemoryRegion io_mem_watch;
217 #endif
218
219 /* statistics */
220 static int tb_flush_count;
221 static int tb_phys_invalidate_count;
222
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
225 {
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230 }
231 #else
232 static void map_exec(void *addr, long size)
233 {
234 unsigned long start, end, page_size;
235
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
239
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246 }
247 #endif
248
249 static void page_init(void)
250 {
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
270 {
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
289 } else {
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 #endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300 #else
301 FILE *f;
302
303 last_brk = (unsigned long)sbrk(0);
304
305 f = fopen("/compat/linux/proc/self/maps", "r");
306 if (f) {
307 mmap_lock();
308
309 do {
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
324 }
325 } while (!feof(f));
326
327 fclose(f);
328 mmap_unlock();
329 }
330 #endif
331 }
332 #endif
333 }
334
335 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
336 {
337 PageDesc *pd;
338 void **lp;
339 int i;
340
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
347 } while (0)
348 #else
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
351 #endif
352
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
366 }
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
378 }
379
380 #undef ALLOC
381
382 return pd + (index & (L2_SIZE - 1));
383 }
384
385 static inline PageDesc *page_find(tb_page_addr_t index)
386 {
387 return page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391
392 static void phys_map_node_reserve(unsigned nodes)
393 {
394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
402 }
403
404 static uint16_t phys_map_node_alloc(void)
405 {
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
412 for (i = 0; i < L2_SIZE; ++i) {
413 phys_map_nodes[ret][i].is_leaf = 0;
414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
415 }
416 return ret;
417 }
418
419 static void phys_map_nodes_reset(void)
420 {
421 phys_map_nodes_nb = 0;
422 }
423
424
425 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
428 {
429 PhysPageEntry *p;
430 int i;
431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
432
433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
438 p[i].is_leaf = 1;
439 p[i].ptr = phys_section_unassigned;
440 }
441 }
442 } else {
443 p = phys_map_nodes[lp->ptr];
444 }
445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
446
447 while (*nb && lp < &p[L2_SIZE]) {
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
450 lp->ptr = leaf;
451 *index += step;
452 *nb -= step;
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
457 }
458 }
459
460 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
462 {
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS);
465
466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
467 }
468
469 MemoryRegionSection *phys_page_find(target_phys_addr_t index)
470 {
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
474 uint16_t s_index = phys_section_unassigned;
475
476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
478 goto not_found;
479 }
480 p = phys_map_nodes[lp.ptr];
481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
482 }
483
484 s_index = lp.ptr;
485 not_found:
486 return &phys_sections[s_index];
487 }
488
489 bool memory_region_is_unassigned(MemoryRegion *mr)
490 {
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494 }
495
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
498 #endif
499
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
506 #endif
507
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
511 #endif
512
513 static void code_gen_alloc(unsigned long tb_size)
514 {
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519 #else
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 #else
525 /* XXX: needs adjustments */
526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
527 #endif
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
534 {
535 int flags;
536 void *start = NULL;
537
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #elif defined(__sparc_v9__)
545 // Map the buffer below 2G, so we can use direct calls and branches
546 flags |= MAP_FIXED;
547 start = (void *) 0x60000000UL;
548 if (code_gen_buffer_size > (512 * 1024 * 1024))
549 code_gen_buffer_size = (512 * 1024 * 1024);
550 #elif defined(__arm__)
551 /* Keep the buffer no bigger than 16MB to branch between blocks */
552 if (code_gen_buffer_size > 16 * 1024 * 1024)
553 code_gen_buffer_size = 16 * 1024 * 1024;
554 #elif defined(__s390x__)
555 /* Map the buffer so that we can use direct calls and branches. */
556 /* We have a +- 4GB range on the branches; leave some slop. */
557 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
558 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
559 }
560 start = (void *)0x90000000UL;
561 #endif
562 code_gen_buffer = mmap(start, code_gen_buffer_size,
563 PROT_WRITE | PROT_READ | PROT_EXEC,
564 flags, -1, 0);
565 if (code_gen_buffer == MAP_FAILED) {
566 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
567 exit(1);
568 }
569 }
570 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
571 || defined(__DragonFly__) || defined(__OpenBSD__) \
572 || defined(__NetBSD__)
573 {
574 int flags;
575 void *addr = NULL;
576 flags = MAP_PRIVATE | MAP_ANONYMOUS;
577 #if defined(__x86_64__)
578 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
579 * 0x40000000 is free */
580 flags |= MAP_FIXED;
581 addr = (void *)0x40000000;
582 /* Cannot map more than that */
583 if (code_gen_buffer_size > (800 * 1024 * 1024))
584 code_gen_buffer_size = (800 * 1024 * 1024);
585 #elif defined(__sparc_v9__)
586 // Map the buffer below 2G, so we can use direct calls and branches
587 flags |= MAP_FIXED;
588 addr = (void *) 0x60000000UL;
589 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
590 code_gen_buffer_size = (512 * 1024 * 1024);
591 }
592 #endif
593 code_gen_buffer = mmap(addr, code_gen_buffer_size,
594 PROT_WRITE | PROT_READ | PROT_EXEC,
595 flags, -1, 0);
596 if (code_gen_buffer == MAP_FAILED) {
597 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
598 exit(1);
599 }
600 }
601 #else
602 code_gen_buffer = g_malloc(code_gen_buffer_size);
603 map_exec(code_gen_buffer, code_gen_buffer_size);
604 #endif
605 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
606 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
607 code_gen_buffer_max_size = code_gen_buffer_size -
608 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
609 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
610 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
611 }
612
613 /* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
615 size. */
616 void tcg_exec_init(unsigned long tb_size)
617 {
618 cpu_gen_init();
619 code_gen_alloc(tb_size);
620 code_gen_ptr = code_gen_buffer;
621 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
622 page_init();
623 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx);
627 #endif
628 }
629
630 bool tcg_enabled(void)
631 {
632 return code_gen_buffer != NULL;
633 }
634
635 void cpu_exec_init_all(void)
636 {
637 #if !defined(CONFIG_USER_ONLY)
638 memory_map_init();
639 io_mem_init();
640 #endif
641 }
642
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644
645 static int cpu_common_post_load(void *opaque, int version_id)
646 {
647 CPUArchState *env = opaque;
648
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env->interrupt_request &= ~0x01;
652 tlb_flush(env, 1);
653
654 return 0;
655 }
656
657 static const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField []) {
664 VMSTATE_UINT32(halted, CPUArchState),
665 VMSTATE_UINT32(interrupt_request, CPUArchState),
666 VMSTATE_END_OF_LIST()
667 }
668 };
669 #endif
670
671 CPUArchState *qemu_get_cpu(int cpu)
672 {
673 CPUArchState *env = first_cpu;
674
675 while (env) {
676 if (env->cpu_index == cpu)
677 break;
678 env = env->next_cpu;
679 }
680
681 return env;
682 }
683
684 void cpu_exec_init(CPUArchState *env)
685 {
686 CPUArchState **penv;
687 int cpu_index;
688
689 #if defined(CONFIG_USER_ONLY)
690 cpu_list_lock();
691 #endif
692 env->next_cpu = NULL;
693 penv = &first_cpu;
694 cpu_index = 0;
695 while (*penv != NULL) {
696 penv = &(*penv)->next_cpu;
697 cpu_index++;
698 }
699 env->cpu_index = cpu_index;
700 env->numa_node = 0;
701 QTAILQ_INIT(&env->breakpoints);
702 QTAILQ_INIT(&env->watchpoints);
703 #ifndef CONFIG_USER_ONLY
704 env->thread_id = qemu_get_thread_id();
705 #endif
706 *penv = env;
707 #if defined(CONFIG_USER_ONLY)
708 cpu_list_unlock();
709 #endif
710 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
711 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
712 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
713 cpu_save, cpu_load, env);
714 #endif
715 }
716
717 /* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719 static TranslationBlock *tb_alloc(target_ulong pc)
720 {
721 TranslationBlock *tb;
722
723 if (nb_tbs >= code_gen_max_blocks ||
724 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
725 return NULL;
726 tb = &tbs[nb_tbs++];
727 tb->pc = pc;
728 tb->cflags = 0;
729 return tb;
730 }
731
732 void tb_free(TranslationBlock *tb)
733 {
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
738 code_gen_ptr = tb->tc_ptr;
739 nb_tbs--;
740 }
741 }
742
743 static inline void invalidate_page_bitmap(PageDesc *p)
744 {
745 if (p->code_bitmap) {
746 g_free(p->code_bitmap);
747 p->code_bitmap = NULL;
748 }
749 p->code_write_count = 0;
750 }
751
752 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
753
754 static void page_flush_tb_1 (int level, void **lp)
755 {
756 int i;
757
758 if (*lp == NULL) {
759 return;
760 }
761 if (level == 0) {
762 PageDesc *pd = *lp;
763 for (i = 0; i < L2_SIZE; ++i) {
764 pd[i].first_tb = NULL;
765 invalidate_page_bitmap(pd + i);
766 }
767 } else {
768 void **pp = *lp;
769 for (i = 0; i < L2_SIZE; ++i) {
770 page_flush_tb_1 (level - 1, pp + i);
771 }
772 }
773 }
774
775 static void page_flush_tb(void)
776 {
777 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
780 }
781 }
782
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState *env1)
786 {
787 CPUArchState *env;
788 #if defined(DEBUG_FLUSH)
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr - code_gen_buffer),
791 nb_tbs, nb_tbs > 0 ?
792 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
793 #endif
794 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
795 cpu_abort(env1, "Internal error: code buffer overflow\n");
796
797 nb_tbs = 0;
798
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
801 }
802
803 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
804 page_flush_tb();
805
806 code_gen_ptr = code_gen_buffer;
807 /* XXX: flush processor icache at this point if cache flush is
808 expensive */
809 tb_flush_count++;
810 }
811
812 #ifdef DEBUG_TB_CHECK
813
814 static void tb_invalidate_check(target_ulong address)
815 {
816 TranslationBlock *tb;
817 int i;
818 address &= TARGET_PAGE_MASK;
819 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
820 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
821 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
822 address >= tb->pc + tb->size)) {
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
825 address, (long)tb->pc, tb->size);
826 }
827 }
828 }
829 }
830
831 /* verify that all the pages have correct rights for code */
832 static void tb_page_check(void)
833 {
834 TranslationBlock *tb;
835 int i, flags1, flags2;
836
837 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
838 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
839 flags1 = page_get_flags(tb->pc);
840 flags2 = page_get_flags(tb->pc + tb->size - 1);
841 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
843 (long)tb->pc, tb->size, flags1, flags2);
844 }
845 }
846 }
847 }
848
849 #endif
850
851 /* invalidate one TB */
852 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
853 int next_offset)
854 {
855 TranslationBlock *tb1;
856 for(;;) {
857 tb1 = *ptb;
858 if (tb1 == tb) {
859 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
860 break;
861 }
862 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
863 }
864 }
865
866 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
867 {
868 TranslationBlock *tb1;
869 unsigned int n1;
870
871 for(;;) {
872 tb1 = *ptb;
873 n1 = (uintptr_t)tb1 & 3;
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
875 if (tb1 == tb) {
876 *ptb = tb1->page_next[n1];
877 break;
878 }
879 ptb = &tb1->page_next[n1];
880 }
881 }
882
883 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
884 {
885 TranslationBlock *tb1, **ptb;
886 unsigned int n1;
887
888 ptb = &tb->jmp_next[n];
889 tb1 = *ptb;
890 if (tb1) {
891 /* find tb(n) in circular list */
892 for(;;) {
893 tb1 = *ptb;
894 n1 = (uintptr_t)tb1 & 3;
895 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
896 if (n1 == n && tb1 == tb)
897 break;
898 if (n1 == 2) {
899 ptb = &tb1->jmp_first;
900 } else {
901 ptb = &tb1->jmp_next[n1];
902 }
903 }
904 /* now we can suppress tb(n) from the list */
905 *ptb = tb->jmp_next[n];
906
907 tb->jmp_next[n] = NULL;
908 }
909 }
910
911 /* reset the jump entry 'n' of a TB so that it is not chained to
912 another TB */
913 static inline void tb_reset_jump(TranslationBlock *tb, int n)
914 {
915 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
916 }
917
918 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
919 {
920 CPUArchState *env;
921 PageDesc *p;
922 unsigned int h, n1;
923 tb_page_addr_t phys_pc;
924 TranslationBlock *tb1, *tb2;
925
926 /* remove the TB from the hash list */
927 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
928 h = tb_phys_hash_func(phys_pc);
929 tb_remove(&tb_phys_hash[h], tb,
930 offsetof(TranslationBlock, phys_hash_next));
931
932 /* remove the TB from the page list */
933 if (tb->page_addr[0] != page_addr) {
934 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
937 }
938 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
939 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943
944 tb_invalidated_flag = 1;
945
946 /* remove the TB from the hash list */
947 h = tb_jmp_cache_hash_func(tb->pc);
948 for(env = first_cpu; env != NULL; env = env->next_cpu) {
949 if (env->tb_jmp_cache[h] == tb)
950 env->tb_jmp_cache[h] = NULL;
951 }
952
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb, 0);
955 tb_jmp_remove(tb, 1);
956
957 /* suppress any remaining jumps to this TB */
958 tb1 = tb->jmp_first;
959 for(;;) {
960 n1 = (uintptr_t)tb1 & 3;
961 if (n1 == 2)
962 break;
963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
964 tb2 = tb1->jmp_next[n1];
965 tb_reset_jump(tb1, n1);
966 tb1->jmp_next[n1] = NULL;
967 tb1 = tb2;
968 }
969 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
970
971 tb_phys_invalidate_count++;
972 }
973
974 static inline void set_bits(uint8_t *tab, int start, int len)
975 {
976 int end, mask, end1;
977
978 end = start + len;
979 tab += start >> 3;
980 mask = 0xff << (start & 7);
981 if ((start & ~7) == (end & ~7)) {
982 if (start < end) {
983 mask &= ~(0xff << (end & 7));
984 *tab |= mask;
985 }
986 } else {
987 *tab++ |= mask;
988 start = (start + 8) & ~7;
989 end1 = end & ~7;
990 while (start < end1) {
991 *tab++ = 0xff;
992 start += 8;
993 }
994 if (start < end) {
995 mask = ~(0xff << (end & 7));
996 *tab |= mask;
997 }
998 }
999 }
1000
1001 static void build_page_bitmap(PageDesc *p)
1002 {
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
1005
1006 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1007
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE)
1019 tb_end = TARGET_PAGE_SIZE;
1020 } else {
1021 tb_start = 0;
1022 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1025 tb = tb->page_next[n];
1026 }
1027 }
1028
1029 TranslationBlock *tb_gen_code(CPUArchState *env,
1030 target_ulong pc, target_ulong cs_base,
1031 int flags, int cflags)
1032 {
1033 TranslationBlock *tb;
1034 uint8_t *tc_ptr;
1035 tb_page_addr_t phys_pc, phys_page2;
1036 target_ulong virt_page2;
1037 int code_gen_size;
1038
1039 phys_pc = get_page_addr_code(env, pc);
1040 tb = tb_alloc(pc);
1041 if (!tb) {
1042 /* flush must be done */
1043 tb_flush(env);
1044 /* cannot fail at this point */
1045 tb = tb_alloc(pc);
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag = 1;
1048 }
1049 tc_ptr = code_gen_ptr;
1050 tb->tc_ptr = tc_ptr;
1051 tb->cs_base = cs_base;
1052 tb->flags = flags;
1053 tb->cflags = cflags;
1054 cpu_gen_code(env, tb, &code_gen_size);
1055 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1056 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1057
1058 /* check next page if needed */
1059 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1060 phys_page2 = -1;
1061 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1062 phys_page2 = get_page_addr_code(env, virt_page2);
1063 }
1064 tb_link_page(tb, phys_pc, phys_page2);
1065 return tb;
1066 }
1067
1068 /*
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1073 * this TB.
1074 */
1075 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1076 int is_cpu_write_access)
1077 {
1078 while (start < end) {
1079 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1080 start &= TARGET_PAGE_MASK;
1081 start += TARGET_PAGE_SIZE;
1082 }
1083 }
1084
1085 /*
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1090 * this TB.
1091 */
1092 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1093 int is_cpu_write_access)
1094 {
1095 TranslationBlock *tb, *tb_next, *saved_tb;
1096 CPUArchState *env = cpu_single_env;
1097 tb_page_addr_t tb_start, tb_end;
1098 PageDesc *p;
1099 int n;
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found = is_cpu_write_access;
1102 TranslationBlock *current_tb = NULL;
1103 int current_tb_modified = 0;
1104 target_ulong current_pc = 0;
1105 target_ulong current_cs_base = 0;
1106 int current_flags = 0;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1108
1109 p = page_find(start >> TARGET_PAGE_BITS);
1110 if (!p)
1111 return;
1112 if (!p->code_bitmap &&
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1117 }
1118
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1121 tb = p->first_tb;
1122 while (tb != NULL) {
1123 n = (uintptr_t)tb & 3;
1124 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1125 tb_next = tb->page_next[n];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1131 tb_end = tb_start + tb->size;
1132 } else {
1133 tb_start = tb->page_addr[1];
1134 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1135 }
1136 if (!(tb_end <= start || tb_start >= end)) {
1137 #ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found) {
1139 current_tb_not_found = 0;
1140 current_tb = NULL;
1141 if (env->mem_io_pc) {
1142 /* now we have a real cpu fault */
1143 current_tb = tb_find_pc(env->mem_io_pc);
1144 }
1145 }
1146 if (current_tb == tb &&
1147 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
1153
1154 current_tb_modified = 1;
1155 cpu_restore_state(current_tb, env, env->mem_io_pc);
1156 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1157 &current_flags);
1158 }
1159 #endif /* TARGET_HAS_PRECISE_SMC */
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1162 saved_tb = NULL;
1163 if (env) {
1164 saved_tb = env->current_tb;
1165 env->current_tb = NULL;
1166 }
1167 tb_phys_invalidate(tb, -1);
1168 if (env) {
1169 env->current_tb = saved_tb;
1170 if (env->interrupt_request && env->current_tb)
1171 cpu_interrupt(env, env->interrupt_request);
1172 }
1173 }
1174 tb = tb_next;
1175 }
1176 #if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1178 if (!p->first_tb) {
1179 invalidate_page_bitmap(p);
1180 if (is_cpu_write_access) {
1181 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1182 }
1183 }
1184 #endif
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1189 itself */
1190 env->current_tb = NULL;
1191 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1192 cpu_resume_from_signal(env, NULL);
1193 }
1194 #endif
1195 }
1196
1197 /* len must be <= 8 and start must be a multiple of len */
1198 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1199 {
1200 PageDesc *p;
1201 int offset, b;
1202 #if 0
1203 if (1) {
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env->mem_io_vaddr, len,
1206 cpu_single_env->eip,
1207 cpu_single_env->eip +
1208 (intptr_t)cpu_single_env->segs[R_CS].base);
1209 }
1210 #endif
1211 p = page_find(start >> TARGET_PAGE_BITS);
1212 if (!p)
1213 return;
1214 if (p->code_bitmap) {
1215 offset = start & ~TARGET_PAGE_MASK;
1216 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1217 if (b & ((1 << len) - 1))
1218 goto do_invalidate;
1219 } else {
1220 do_invalidate:
1221 tb_invalidate_phys_page_range(start, start + len, 1);
1222 }
1223 }
1224
1225 #if !defined(CONFIG_SOFTMMU)
1226 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1227 uintptr_t pc, void *puc)
1228 {
1229 TranslationBlock *tb;
1230 PageDesc *p;
1231 int n;
1232 #ifdef TARGET_HAS_PRECISE_SMC
1233 TranslationBlock *current_tb = NULL;
1234 CPUArchState *env = cpu_single_env;
1235 int current_tb_modified = 0;
1236 target_ulong current_pc = 0;
1237 target_ulong current_cs_base = 0;
1238 int current_flags = 0;
1239 #endif
1240
1241 addr &= TARGET_PAGE_MASK;
1242 p = page_find(addr >> TARGET_PAGE_BITS);
1243 if (!p)
1244 return;
1245 tb = p->first_tb;
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb && pc != 0) {
1248 current_tb = tb_find_pc(pc);
1249 }
1250 #endif
1251 while (tb != NULL) {
1252 n = (uintptr_t)tb & 3;
1253 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb == tb &&
1256 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
1262
1263 current_tb_modified = 1;
1264 cpu_restore_state(current_tb, env, pc);
1265 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1266 &current_flags);
1267 }
1268 #endif /* TARGET_HAS_PRECISE_SMC */
1269 tb_phys_invalidate(tb, addr);
1270 tb = tb->page_next[n];
1271 }
1272 p->first_tb = NULL;
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1277 itself */
1278 env->current_tb = NULL;
1279 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1280 cpu_resume_from_signal(env, puc);
1281 }
1282 #endif
1283 }
1284 #endif
1285
1286 /* add the tb in the target page and protect it if necessary */
1287 static inline void tb_alloc_page(TranslationBlock *tb,
1288 unsigned int n, tb_page_addr_t page_addr)
1289 {
1290 PageDesc *p;
1291 #ifndef CONFIG_USER_ONLY
1292 bool page_already_protected;
1293 #endif
1294
1295 tb->page_addr[n] = page_addr;
1296 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1297 tb->page_next[n] = p->first_tb;
1298 #ifndef CONFIG_USER_ONLY
1299 page_already_protected = p->first_tb != NULL;
1300 #endif
1301 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1302 invalidate_page_bitmap(p);
1303
1304 #if defined(TARGET_HAS_SMC) || 1
1305
1306 #if defined(CONFIG_USER_ONLY)
1307 if (p->flags & PAGE_WRITE) {
1308 target_ulong addr;
1309 PageDesc *p2;
1310 int prot;
1311
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
1314 page_addr &= qemu_host_page_mask;
1315 prot = 0;
1316 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1317 addr += TARGET_PAGE_SIZE) {
1318
1319 p2 = page_find (addr >> TARGET_PAGE_BITS);
1320 if (!p2)
1321 continue;
1322 prot |= p2->flags;
1323 p2->flags &= ~PAGE_WRITE;
1324 }
1325 mprotect(g2h(page_addr), qemu_host_page_size,
1326 (prot & PAGE_BITS) & ~PAGE_WRITE);
1327 #ifdef DEBUG_TB_INVALIDATE
1328 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1329 page_addr);
1330 #endif
1331 }
1332 #else
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
1336 if (!page_already_protected) {
1337 tlb_protect_code(page_addr);
1338 }
1339 #endif
1340
1341 #endif /* TARGET_HAS_SMC */
1342 }
1343
1344 /* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
1346 void tb_link_page(TranslationBlock *tb,
1347 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1348 {
1349 unsigned int h;
1350 TranslationBlock **ptb;
1351
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1354 mmap_lock();
1355 /* add in the physical hash table */
1356 h = tb_phys_hash_func(phys_pc);
1357 ptb = &tb_phys_hash[h];
1358 tb->phys_hash_next = *ptb;
1359 *ptb = tb;
1360
1361 /* add in the page list */
1362 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1363 if (phys_page2 != -1)
1364 tb_alloc_page(tb, 1, phys_page2);
1365 else
1366 tb->page_addr[1] = -1;
1367
1368 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1369 tb->jmp_next[0] = NULL;
1370 tb->jmp_next[1] = NULL;
1371
1372 /* init original jump addresses */
1373 if (tb->tb_next_offset[0] != 0xffff)
1374 tb_reset_jump(tb, 0);
1375 if (tb->tb_next_offset[1] != 0xffff)
1376 tb_reset_jump(tb, 1);
1377
1378 #ifdef DEBUG_TB_CHECK
1379 tb_page_check();
1380 #endif
1381 mmap_unlock();
1382 }
1383
1384 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
1386 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1387 {
1388 int m_min, m_max, m;
1389 uintptr_t v;
1390 TranslationBlock *tb;
1391
1392 if (nb_tbs <= 0)
1393 return NULL;
1394 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1395 tc_ptr >= (uintptr_t)code_gen_ptr) {
1396 return NULL;
1397 }
1398 /* binary search (cf Knuth) */
1399 m_min = 0;
1400 m_max = nb_tbs - 1;
1401 while (m_min <= m_max) {
1402 m = (m_min + m_max) >> 1;
1403 tb = &tbs[m];
1404 v = (uintptr_t)tb->tc_ptr;
1405 if (v == tc_ptr)
1406 return tb;
1407 else if (tc_ptr < v) {
1408 m_max = m - 1;
1409 } else {
1410 m_min = m + 1;
1411 }
1412 }
1413 return &tbs[m_max];
1414 }
1415
1416 static void tb_reset_jump_recursive(TranslationBlock *tb);
1417
1418 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1419 {
1420 TranslationBlock *tb1, *tb_next, **ptb;
1421 unsigned int n1;
1422
1423 tb1 = tb->jmp_next[n];
1424 if (tb1 != NULL) {
1425 /* find head of list */
1426 for(;;) {
1427 n1 = (uintptr_t)tb1 & 3;
1428 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1429 if (n1 == 2)
1430 break;
1431 tb1 = tb1->jmp_next[n1];
1432 }
1433 /* we are now sure now that tb jumps to tb1 */
1434 tb_next = tb1;
1435
1436 /* remove tb from the jmp_first list */
1437 ptb = &tb_next->jmp_first;
1438 for(;;) {
1439 tb1 = *ptb;
1440 n1 = (uintptr_t)tb1 & 3;
1441 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1442 if (n1 == n && tb1 == tb)
1443 break;
1444 ptb = &tb1->jmp_next[n1];
1445 }
1446 *ptb = tb->jmp_next[n];
1447 tb->jmp_next[n] = NULL;
1448
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb, n);
1451
1452 /* suppress jumps in the tb on which we could have jumped */
1453 tb_reset_jump_recursive(tb_next);
1454 }
1455 }
1456
1457 static void tb_reset_jump_recursive(TranslationBlock *tb)
1458 {
1459 tb_reset_jump_recursive2(tb, 0);
1460 tb_reset_jump_recursive2(tb, 1);
1461 }
1462
1463 #if defined(TARGET_HAS_ICE)
1464 #if defined(CONFIG_USER_ONLY)
1465 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1466 {
1467 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1468 }
1469 #else
1470 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1471 {
1472 ram_addr_t ram_addr;
1473 MemoryRegionSection *section;
1474
1475 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1476 if (!(memory_region_is_ram(section->mr)
1477 || (section->mr->rom_device && section->mr->readable))) {
1478 return;
1479 }
1480 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1481 + memory_region_section_addr(section, addr);
1482 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1483 }
1484
1485 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1486 {
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1488 (pc & ~TARGET_PAGE_MASK));
1489 }
1490 #endif
1491 #endif /* TARGET_HAS_ICE */
1492
1493 #if defined(CONFIG_USER_ONLY)
1494 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1495
1496 {
1497 }
1498
1499 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1500 int flags, CPUWatchpoint **watchpoint)
1501 {
1502 return -ENOSYS;
1503 }
1504 #else
1505 /* Add a watchpoint. */
1506 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1507 int flags, CPUWatchpoint **watchpoint)
1508 {
1509 target_ulong len_mask = ~(len - 1);
1510 CPUWatchpoint *wp;
1511
1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1513 if ((len & (len - 1)) || (addr & ~len_mask) ||
1514 len == 0 || len > TARGET_PAGE_SIZE) {
1515 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1517 return -EINVAL;
1518 }
1519 wp = g_malloc(sizeof(*wp));
1520
1521 wp->vaddr = addr;
1522 wp->len_mask = len_mask;
1523 wp->flags = flags;
1524
1525 /* keep all GDB-injected watchpoints in front */
1526 if (flags & BP_GDB)
1527 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1528 else
1529 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1530
1531 tlb_flush_page(env, addr);
1532
1533 if (watchpoint)
1534 *watchpoint = wp;
1535 return 0;
1536 }
1537
1538 /* Remove a specific watchpoint. */
1539 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1540 int flags)
1541 {
1542 target_ulong len_mask = ~(len - 1);
1543 CPUWatchpoint *wp;
1544
1545 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1546 if (addr == wp->vaddr && len_mask == wp->len_mask
1547 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1548 cpu_watchpoint_remove_by_ref(env, wp);
1549 return 0;
1550 }
1551 }
1552 return -ENOENT;
1553 }
1554
1555 /* Remove a specific watchpoint by reference. */
1556 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1557 {
1558 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1559
1560 tlb_flush_page(env, watchpoint->vaddr);
1561
1562 g_free(watchpoint);
1563 }
1564
1565 /* Remove all matching watchpoints. */
1566 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1567 {
1568 CPUWatchpoint *wp, *next;
1569
1570 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1571 if (wp->flags & mask)
1572 cpu_watchpoint_remove_by_ref(env, wp);
1573 }
1574 }
1575 #endif
1576
1577 /* Add a breakpoint. */
1578 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1579 CPUBreakpoint **breakpoint)
1580 {
1581 #if defined(TARGET_HAS_ICE)
1582 CPUBreakpoint *bp;
1583
1584 bp = g_malloc(sizeof(*bp));
1585
1586 bp->pc = pc;
1587 bp->flags = flags;
1588
1589 /* keep all GDB-injected breakpoints in front */
1590 if (flags & BP_GDB)
1591 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1592 else
1593 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1594
1595 breakpoint_invalidate(env, pc);
1596
1597 if (breakpoint)
1598 *breakpoint = bp;
1599 return 0;
1600 #else
1601 return -ENOSYS;
1602 #endif
1603 }
1604
1605 /* Remove a specific breakpoint. */
1606 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1607 {
1608 #if defined(TARGET_HAS_ICE)
1609 CPUBreakpoint *bp;
1610
1611 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1612 if (bp->pc == pc && bp->flags == flags) {
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 return 0;
1615 }
1616 }
1617 return -ENOENT;
1618 #else
1619 return -ENOSYS;
1620 #endif
1621 }
1622
1623 /* Remove a specific breakpoint by reference. */
1624 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1625 {
1626 #if defined(TARGET_HAS_ICE)
1627 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1628
1629 breakpoint_invalidate(env, breakpoint->pc);
1630
1631 g_free(breakpoint);
1632 #endif
1633 }
1634
1635 /* Remove all matching breakpoints. */
1636 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1637 {
1638 #if defined(TARGET_HAS_ICE)
1639 CPUBreakpoint *bp, *next;
1640
1641 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1642 if (bp->flags & mask)
1643 cpu_breakpoint_remove_by_ref(env, bp);
1644 }
1645 #endif
1646 }
1647
1648 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
1650 void cpu_single_step(CPUArchState *env, int enabled)
1651 {
1652 #if defined(TARGET_HAS_ICE)
1653 if (env->singlestep_enabled != enabled) {
1654 env->singlestep_enabled = enabled;
1655 if (kvm_enabled())
1656 kvm_update_guest_debug(env, 0);
1657 else {
1658 /* must flush all the translated code to avoid inconsistencies */
1659 /* XXX: only flush what is necessary */
1660 tb_flush(env);
1661 }
1662 }
1663 #endif
1664 }
1665
1666 static void cpu_unlink_tb(CPUArchState *env)
1667 {
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
1672 TranslationBlock *tb;
1673 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1674
1675 spin_lock(&interrupt_lock);
1676 tb = env->current_tb;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
1679 if (tb) {
1680 env->current_tb = NULL;
1681 tb_reset_jump_recursive(tb);
1682 }
1683 spin_unlock(&interrupt_lock);
1684 }
1685
1686 #ifndef CONFIG_USER_ONLY
1687 /* mask must never be zero, except for A20 change call */
1688 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1689 {
1690 int old_mask;
1691
1692 old_mask = env->interrupt_request;
1693 env->interrupt_request |= mask;
1694
1695 /*
1696 * If called from iothread context, wake the target cpu in
1697 * case its halted.
1698 */
1699 if (!qemu_cpu_is_self(env)) {
1700 qemu_cpu_kick(env);
1701 return;
1702 }
1703
1704 if (use_icount) {
1705 env->icount_decr.u16.high = 0xffff;
1706 if (!can_do_io(env)
1707 && (mask & ~old_mask) != 0) {
1708 cpu_abort(env, "Raised interrupt while not in I/O function");
1709 }
1710 } else {
1711 cpu_unlink_tb(env);
1712 }
1713 }
1714
1715 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1716
1717 #else /* CONFIG_USER_ONLY */
1718
1719 void cpu_interrupt(CPUArchState *env, int mask)
1720 {
1721 env->interrupt_request |= mask;
1722 cpu_unlink_tb(env);
1723 }
1724 #endif /* CONFIG_USER_ONLY */
1725
1726 void cpu_reset_interrupt(CPUArchState *env, int mask)
1727 {
1728 env->interrupt_request &= ~mask;
1729 }
1730
1731 void cpu_exit(CPUArchState *env)
1732 {
1733 env->exit_request = 1;
1734 cpu_unlink_tb(env);
1735 }
1736
1737 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1738 {
1739 va_list ap;
1740 va_list ap2;
1741
1742 va_start(ap, fmt);
1743 va_copy(ap2, ap);
1744 fprintf(stderr, "qemu: fatal: ");
1745 vfprintf(stderr, fmt, ap);
1746 fprintf(stderr, "\n");
1747 #ifdef TARGET_I386
1748 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1749 #else
1750 cpu_dump_state(env, stderr, fprintf, 0);
1751 #endif
1752 if (qemu_log_enabled()) {
1753 qemu_log("qemu: fatal: ");
1754 qemu_log_vprintf(fmt, ap2);
1755 qemu_log("\n");
1756 #ifdef TARGET_I386
1757 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1758 #else
1759 log_cpu_state(env, 0);
1760 #endif
1761 qemu_log_flush();
1762 qemu_log_close();
1763 }
1764 va_end(ap2);
1765 va_end(ap);
1766 #if defined(CONFIG_USER_ONLY)
1767 {
1768 struct sigaction act;
1769 sigfillset(&act.sa_mask);
1770 act.sa_handler = SIG_DFL;
1771 sigaction(SIGABRT, &act, NULL);
1772 }
1773 #endif
1774 abort();
1775 }
1776
1777 CPUArchState *cpu_copy(CPUArchState *env)
1778 {
1779 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1780 CPUArchState *next_cpu = new_env->next_cpu;
1781 int cpu_index = new_env->cpu_index;
1782 #if defined(TARGET_HAS_ICE)
1783 CPUBreakpoint *bp;
1784 CPUWatchpoint *wp;
1785 #endif
1786
1787 memcpy(new_env, env, sizeof(CPUArchState));
1788
1789 /* Preserve chaining and index. */
1790 new_env->next_cpu = next_cpu;
1791 new_env->cpu_index = cpu_index;
1792
1793 /* Clone all break/watchpoints.
1794 Note: Once we support ptrace with hw-debug register access, make sure
1795 BP_CPU break/watchpoints are handled correctly on clone. */
1796 QTAILQ_INIT(&env->breakpoints);
1797 QTAILQ_INIT(&env->watchpoints);
1798 #if defined(TARGET_HAS_ICE)
1799 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1800 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1801 }
1802 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1803 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1804 wp->flags, NULL);
1805 }
1806 #endif
1807
1808 return new_env;
1809 }
1810
1811 #if !defined(CONFIG_USER_ONLY)
1812 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1813 {
1814 unsigned int i;
1815
1816 /* Discard jump cache entries for any tb which might potentially
1817 overlap the flushed page. */
1818 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1819 memset (&env->tb_jmp_cache[i], 0,
1820 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1821
1822 i = tb_jmp_cache_hash_page(addr);
1823 memset (&env->tb_jmp_cache[i], 0,
1824 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1825 }
1826
1827 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1828 uintptr_t length)
1829 {
1830 uintptr_t start1;
1831
1832 /* we modify the TLB cache so that the dirty bit will be set again
1833 when accessing the range */
1834 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1835 /* Check that we don't span multiple blocks - this breaks the
1836 address comparisons below. */
1837 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1838 != (end - 1) - start) {
1839 abort();
1840 }
1841 cpu_tlb_reset_dirty_all(start1, length);
1842
1843 }
1844
1845 /* Note: start and end must be within the same ram block. */
1846 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1847 int dirty_flags)
1848 {
1849 uintptr_t length;
1850
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1853
1854 length = end - start;
1855 if (length == 0)
1856 return;
1857 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1858
1859 if (tcg_enabled()) {
1860 tlb_reset_dirty_range_all(start, end, length);
1861 }
1862 }
1863
1864 int cpu_physical_memory_set_dirty_tracking(int enable)
1865 {
1866 int ret = 0;
1867 in_migration = enable;
1868 return ret;
1869 }
1870
1871 target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1872 MemoryRegionSection *section,
1873 target_ulong vaddr,
1874 target_phys_addr_t paddr,
1875 int prot,
1876 target_ulong *address)
1877 {
1878 target_phys_addr_t iotlb;
1879 CPUWatchpoint *wp;
1880
1881 if (memory_region_is_ram(section->mr)) {
1882 /* Normal RAM. */
1883 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1884 + memory_region_section_addr(section, paddr);
1885 if (!section->readonly) {
1886 iotlb |= phys_section_notdirty;
1887 } else {
1888 iotlb |= phys_section_rom;
1889 }
1890 } else {
1891 /* IO handlers are currently passed a physical address.
1892 It would be nice to pass an offset from the base address
1893 of that region. This would avoid having to special case RAM,
1894 and avoid full address decoding in every device.
1895 We can't use the high bits of pd for this because
1896 IO_MEM_ROMD uses these as a ram address. */
1897 iotlb = section - phys_sections;
1898 iotlb += memory_region_section_addr(section, paddr);
1899 }
1900
1901 /* Make accesses to pages with watchpoints go via the
1902 watchpoint trap routines. */
1903 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1904 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1905 /* Avoid trapping reads of pages with a write breakpoint. */
1906 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1907 iotlb = phys_section_watch + paddr;
1908 *address |= TLB_MMIO;
1909 break;
1910 }
1911 }
1912 }
1913
1914 return iotlb;
1915 }
1916
1917 #else
1918 /*
1919 * Walks guest process memory "regions" one by one
1920 * and calls callback function 'fn' for each region.
1921 */
1922
1923 struct walk_memory_regions_data
1924 {
1925 walk_memory_regions_fn fn;
1926 void *priv;
1927 uintptr_t start;
1928 int prot;
1929 };
1930
1931 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1932 abi_ulong end, int new_prot)
1933 {
1934 if (data->start != -1ul) {
1935 int rc = data->fn(data->priv, data->start, end, data->prot);
1936 if (rc != 0) {
1937 return rc;
1938 }
1939 }
1940
1941 data->start = (new_prot ? end : -1ul);
1942 data->prot = new_prot;
1943
1944 return 0;
1945 }
1946
1947 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1948 abi_ulong base, int level, void **lp)
1949 {
1950 abi_ulong pa;
1951 int i, rc;
1952
1953 if (*lp == NULL) {
1954 return walk_memory_regions_end(data, base, 0);
1955 }
1956
1957 if (level == 0) {
1958 PageDesc *pd = *lp;
1959 for (i = 0; i < L2_SIZE; ++i) {
1960 int prot = pd[i].flags;
1961
1962 pa = base | (i << TARGET_PAGE_BITS);
1963 if (prot != data->prot) {
1964 rc = walk_memory_regions_end(data, pa, prot);
1965 if (rc != 0) {
1966 return rc;
1967 }
1968 }
1969 }
1970 } else {
1971 void **pp = *lp;
1972 for (i = 0; i < L2_SIZE; ++i) {
1973 pa = base | ((abi_ulong)i <<
1974 (TARGET_PAGE_BITS + L2_BITS * level));
1975 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1976 if (rc != 0) {
1977 return rc;
1978 }
1979 }
1980 }
1981
1982 return 0;
1983 }
1984
1985 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1986 {
1987 struct walk_memory_regions_data data;
1988 uintptr_t i;
1989
1990 data.fn = fn;
1991 data.priv = priv;
1992 data.start = -1ul;
1993 data.prot = 0;
1994
1995 for (i = 0; i < V_L1_SIZE; i++) {
1996 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1997 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1998 if (rc != 0) {
1999 return rc;
2000 }
2001 }
2002
2003 return walk_memory_regions_end(&data, 0, 0);
2004 }
2005
2006 static int dump_region(void *priv, abi_ulong start,
2007 abi_ulong end, unsigned long prot)
2008 {
2009 FILE *f = (FILE *)priv;
2010
2011 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2012 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2013 start, end, end - start,
2014 ((prot & PAGE_READ) ? 'r' : '-'),
2015 ((prot & PAGE_WRITE) ? 'w' : '-'),
2016 ((prot & PAGE_EXEC) ? 'x' : '-'));
2017
2018 return (0);
2019 }
2020
2021 /* dump memory mappings */
2022 void page_dump(FILE *f)
2023 {
2024 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2025 "start", "end", "size", "prot");
2026 walk_memory_regions(f, dump_region);
2027 }
2028
2029 int page_get_flags(target_ulong address)
2030 {
2031 PageDesc *p;
2032
2033 p = page_find(address >> TARGET_PAGE_BITS);
2034 if (!p)
2035 return 0;
2036 return p->flags;
2037 }
2038
2039 /* Modify the flags of a page and invalidate the code if necessary.
2040 The flag PAGE_WRITE_ORG is positioned automatically depending
2041 on PAGE_WRITE. The mmap_lock should already be held. */
2042 void page_set_flags(target_ulong start, target_ulong end, int flags)
2043 {
2044 target_ulong addr, len;
2045
2046 /* This function should never be called with addresses outside the
2047 guest address space. If this assert fires, it probably indicates
2048 a missing call to h2g_valid. */
2049 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2050 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2051 #endif
2052 assert(start < end);
2053
2054 start = start & TARGET_PAGE_MASK;
2055 end = TARGET_PAGE_ALIGN(end);
2056
2057 if (flags & PAGE_WRITE) {
2058 flags |= PAGE_WRITE_ORG;
2059 }
2060
2061 for (addr = start, len = end - start;
2062 len != 0;
2063 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2064 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2065
2066 /* If the write protection bit is set, then we invalidate
2067 the code inside. */
2068 if (!(p->flags & PAGE_WRITE) &&
2069 (flags & PAGE_WRITE) &&
2070 p->first_tb) {
2071 tb_invalidate_phys_page(addr, 0, NULL);
2072 }
2073 p->flags = flags;
2074 }
2075 }
2076
2077 int page_check_range(target_ulong start, target_ulong len, int flags)
2078 {
2079 PageDesc *p;
2080 target_ulong end;
2081 target_ulong addr;
2082
2083 /* This function should never be called with addresses outside the
2084 guest address space. If this assert fires, it probably indicates
2085 a missing call to h2g_valid. */
2086 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2087 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2088 #endif
2089
2090 if (len == 0) {
2091 return 0;
2092 }
2093 if (start + len - 1 < start) {
2094 /* We've wrapped around. */
2095 return -1;
2096 }
2097
2098 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2099 start = start & TARGET_PAGE_MASK;
2100
2101 for (addr = start, len = end - start;
2102 len != 0;
2103 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2104 p = page_find(addr >> TARGET_PAGE_BITS);
2105 if( !p )
2106 return -1;
2107 if( !(p->flags & PAGE_VALID) )
2108 return -1;
2109
2110 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2111 return -1;
2112 if (flags & PAGE_WRITE) {
2113 if (!(p->flags & PAGE_WRITE_ORG))
2114 return -1;
2115 /* unprotect the page if it was put read-only because it
2116 contains translated code */
2117 if (!(p->flags & PAGE_WRITE)) {
2118 if (!page_unprotect(addr, 0, NULL))
2119 return -1;
2120 }
2121 return 0;
2122 }
2123 }
2124 return 0;
2125 }
2126
2127 /* called from signal handler: invalidate the code and unprotect the
2128 page. Return TRUE if the fault was successfully handled. */
2129 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2130 {
2131 unsigned int prot;
2132 PageDesc *p;
2133 target_ulong host_start, host_end, addr;
2134
2135 /* Technically this isn't safe inside a signal handler. However we
2136 know this only ever happens in a synchronous SEGV handler, so in
2137 practice it seems to be ok. */
2138 mmap_lock();
2139
2140 p = page_find(address >> TARGET_PAGE_BITS);
2141 if (!p) {
2142 mmap_unlock();
2143 return 0;
2144 }
2145
2146 /* if the page was really writable, then we change its
2147 protection back to writable */
2148 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2149 host_start = address & qemu_host_page_mask;
2150 host_end = host_start + qemu_host_page_size;
2151
2152 prot = 0;
2153 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2154 p = page_find(addr >> TARGET_PAGE_BITS);
2155 p->flags |= PAGE_WRITE;
2156 prot |= p->flags;
2157
2158 /* and since the content will be modified, we must invalidate
2159 the corresponding translated code. */
2160 tb_invalidate_phys_page(addr, pc, puc);
2161 #ifdef DEBUG_TB_CHECK
2162 tb_invalidate_check(addr);
2163 #endif
2164 }
2165 mprotect((void *)g2h(host_start), qemu_host_page_size,
2166 prot & PAGE_BITS);
2167
2168 mmap_unlock();
2169 return 1;
2170 }
2171 mmap_unlock();
2172 return 0;
2173 }
2174 #endif /* defined(CONFIG_USER_ONLY) */
2175
2176 #if !defined(CONFIG_USER_ONLY)
2177
2178 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2179 typedef struct subpage_t {
2180 MemoryRegion iomem;
2181 target_phys_addr_t base;
2182 uint16_t sub_section[TARGET_PAGE_SIZE];
2183 } subpage_t;
2184
2185 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2186 uint16_t section);
2187 static subpage_t *subpage_init(target_phys_addr_t base);
2188 static void destroy_page_desc(uint16_t section_index)
2189 {
2190 MemoryRegionSection *section = &phys_sections[section_index];
2191 MemoryRegion *mr = section->mr;
2192
2193 if (mr->subpage) {
2194 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2195 memory_region_destroy(&subpage->iomem);
2196 g_free(subpage);
2197 }
2198 }
2199
2200 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2201 {
2202 unsigned i;
2203 PhysPageEntry *p;
2204
2205 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2206 return;
2207 }
2208
2209 p = phys_map_nodes[lp->ptr];
2210 for (i = 0; i < L2_SIZE; ++i) {
2211 if (!p[i].is_leaf) {
2212 destroy_l2_mapping(&p[i], level - 1);
2213 } else {
2214 destroy_page_desc(p[i].ptr);
2215 }
2216 }
2217 lp->is_leaf = 0;
2218 lp->ptr = PHYS_MAP_NODE_NIL;
2219 }
2220
2221 static void destroy_all_mappings(void)
2222 {
2223 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2224 phys_map_nodes_reset();
2225 }
2226
2227 static uint16_t phys_section_add(MemoryRegionSection *section)
2228 {
2229 if (phys_sections_nb == phys_sections_nb_alloc) {
2230 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2231 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2232 phys_sections_nb_alloc);
2233 }
2234 phys_sections[phys_sections_nb] = *section;
2235 return phys_sections_nb++;
2236 }
2237
2238 static void phys_sections_clear(void)
2239 {
2240 phys_sections_nb = 0;
2241 }
2242
2243 /* register physical memory.
2244 For RAM, 'size' must be a multiple of the target page size.
2245 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2246 io memory page. The address used when calling the IO function is
2247 the offset from the start of the region, plus region_offset. Both
2248 start_addr and region_offset are rounded down to a page boundary
2249 before calculating this offset. This should not be a problem unless
2250 the low bits of start_addr and region_offset differ. */
2251 static void register_subpage(MemoryRegionSection *section)
2252 {
2253 subpage_t *subpage;
2254 target_phys_addr_t base = section->offset_within_address_space
2255 & TARGET_PAGE_MASK;
2256 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2257 MemoryRegionSection subsection = {
2258 .offset_within_address_space = base,
2259 .size = TARGET_PAGE_SIZE,
2260 };
2261 target_phys_addr_t start, end;
2262
2263 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2264
2265 if (!(existing->mr->subpage)) {
2266 subpage = subpage_init(base);
2267 subsection.mr = &subpage->iomem;
2268 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2269 phys_section_add(&subsection));
2270 } else {
2271 subpage = container_of(existing->mr, subpage_t, iomem);
2272 }
2273 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2274 end = start + section->size - 1;
2275 subpage_register(subpage, start, end, phys_section_add(section));
2276 }
2277
2278
2279 static void register_multipage(MemoryRegionSection *section)
2280 {
2281 target_phys_addr_t start_addr = section->offset_within_address_space;
2282 ram_addr_t size = section->size;
2283 target_phys_addr_t addr;
2284 uint16_t section_index = phys_section_add(section);
2285
2286 assert(size);
2287
2288 addr = start_addr;
2289 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2290 section_index);
2291 }
2292
2293 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2294 bool readonly)
2295 {
2296 MemoryRegionSection now = *section, remain = *section;
2297
2298 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2299 || (now.size < TARGET_PAGE_SIZE)) {
2300 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2301 - now.offset_within_address_space,
2302 now.size);
2303 register_subpage(&now);
2304 remain.size -= now.size;
2305 remain.offset_within_address_space += now.size;
2306 remain.offset_within_region += now.size;
2307 }
2308 while (remain.size >= TARGET_PAGE_SIZE) {
2309 now = remain;
2310 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
2311 now.size = TARGET_PAGE_SIZE;
2312 register_subpage(&now);
2313 } else {
2314 now.size &= TARGET_PAGE_MASK;
2315 register_multipage(&now);
2316 }
2317 remain.size -= now.size;
2318 remain.offset_within_address_space += now.size;
2319 remain.offset_within_region += now.size;
2320 }
2321 now = remain;
2322 if (now.size) {
2323 register_subpage(&now);
2324 }
2325 }
2326
2327
2328 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2329 {
2330 if (kvm_enabled())
2331 kvm_coalesce_mmio_region(addr, size);
2332 }
2333
2334 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2335 {
2336 if (kvm_enabled())
2337 kvm_uncoalesce_mmio_region(addr, size);
2338 }
2339
2340 void qemu_flush_coalesced_mmio_buffer(void)
2341 {
2342 if (kvm_enabled())
2343 kvm_flush_coalesced_mmio_buffer();
2344 }
2345
2346 #if defined(__linux__) && !defined(TARGET_S390X)
2347
2348 #include <sys/vfs.h>
2349
2350 #define HUGETLBFS_MAGIC 0x958458f6
2351
2352 static long gethugepagesize(const char *path)
2353 {
2354 struct statfs fs;
2355 int ret;
2356
2357 do {
2358 ret = statfs(path, &fs);
2359 } while (ret != 0 && errno == EINTR);
2360
2361 if (ret != 0) {
2362 perror(path);
2363 return 0;
2364 }
2365
2366 if (fs.f_type != HUGETLBFS_MAGIC)
2367 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2368
2369 return fs.f_bsize;
2370 }
2371
2372 static void *file_ram_alloc(RAMBlock *block,
2373 ram_addr_t memory,
2374 const char *path)
2375 {
2376 char *filename;
2377 void *area;
2378 int fd;
2379 #ifdef MAP_POPULATE
2380 int flags;
2381 #endif
2382 unsigned long hpagesize;
2383
2384 hpagesize = gethugepagesize(path);
2385 if (!hpagesize) {
2386 return NULL;
2387 }
2388
2389 if (memory < hpagesize) {
2390 return NULL;
2391 }
2392
2393 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2394 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2395 return NULL;
2396 }
2397
2398 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2399 return NULL;
2400 }
2401
2402 fd = mkstemp(filename);
2403 if (fd < 0) {
2404 perror("unable to create backing store for hugepages");
2405 free(filename);
2406 return NULL;
2407 }
2408 unlink(filename);
2409 free(filename);
2410
2411 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2412
2413 /*
2414 * ftruncate is not supported by hugetlbfs in older
2415 * hosts, so don't bother bailing out on errors.
2416 * If anything goes wrong with it under other filesystems,
2417 * mmap will fail.
2418 */
2419 if (ftruncate(fd, memory))
2420 perror("ftruncate");
2421
2422 #ifdef MAP_POPULATE
2423 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2424 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2425 * to sidestep this quirk.
2426 */
2427 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2428 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2429 #else
2430 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2431 #endif
2432 if (area == MAP_FAILED) {
2433 perror("file_ram_alloc: can't mmap RAM pages");
2434 close(fd);
2435 return (NULL);
2436 }
2437 block->fd = fd;
2438 return area;
2439 }
2440 #endif
2441
2442 static ram_addr_t find_ram_offset(ram_addr_t size)
2443 {
2444 RAMBlock *block, *next_block;
2445 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2446
2447 if (QLIST_EMPTY(&ram_list.blocks))
2448 return 0;
2449
2450 QLIST_FOREACH(block, &ram_list.blocks, next) {
2451 ram_addr_t end, next = RAM_ADDR_MAX;
2452
2453 end = block->offset + block->length;
2454
2455 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2456 if (next_block->offset >= end) {
2457 next = MIN(next, next_block->offset);
2458 }
2459 }
2460 if (next - end >= size && next - end < mingap) {
2461 offset = end;
2462 mingap = next - end;
2463 }
2464 }
2465
2466 if (offset == RAM_ADDR_MAX) {
2467 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2468 (uint64_t)size);
2469 abort();
2470 }
2471
2472 return offset;
2473 }
2474
2475 static ram_addr_t last_ram_offset(void)
2476 {
2477 RAMBlock *block;
2478 ram_addr_t last = 0;
2479
2480 QLIST_FOREACH(block, &ram_list.blocks, next)
2481 last = MAX(last, block->offset + block->length);
2482
2483 return last;
2484 }
2485
2486 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2487 {
2488 RAMBlock *new_block, *block;
2489
2490 new_block = NULL;
2491 QLIST_FOREACH(block, &ram_list.blocks, next) {
2492 if (block->offset == addr) {
2493 new_block = block;
2494 break;
2495 }
2496 }
2497 assert(new_block);
2498 assert(!new_block->idstr[0]);
2499
2500 if (dev) {
2501 char *id = qdev_get_dev_path(dev);
2502 if (id) {
2503 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2504 g_free(id);
2505 }
2506 }
2507 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2508
2509 QLIST_FOREACH(block, &ram_list.blocks, next) {
2510 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2511 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2512 new_block->idstr);
2513 abort();
2514 }
2515 }
2516 }
2517
2518 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2519 MemoryRegion *mr)
2520 {
2521 RAMBlock *new_block;
2522
2523 size = TARGET_PAGE_ALIGN(size);
2524 new_block = g_malloc0(sizeof(*new_block));
2525
2526 new_block->mr = mr;
2527 new_block->offset = find_ram_offset(size);
2528 if (host) {
2529 new_block->host = host;
2530 new_block->flags |= RAM_PREALLOC_MASK;
2531 } else {
2532 if (mem_path) {
2533 #if defined (__linux__) && !defined(TARGET_S390X)
2534 new_block->host = file_ram_alloc(new_block, size, mem_path);
2535 if (!new_block->host) {
2536 new_block->host = qemu_vmalloc(size);
2537 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2538 }
2539 #else
2540 fprintf(stderr, "-mem-path option unsupported\n");
2541 exit(1);
2542 #endif
2543 } else {
2544 if (xen_enabled()) {
2545 xen_ram_alloc(new_block->offset, size, mr);
2546 } else if (kvm_enabled()) {
2547 /* some s390/kvm configurations have special constraints */
2548 new_block->host = kvm_vmalloc(size);
2549 } else {
2550 new_block->host = qemu_vmalloc(size);
2551 }
2552 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2553 }
2554 }
2555 new_block->length = size;
2556
2557 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2558
2559 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2560 last_ram_offset() >> TARGET_PAGE_BITS);
2561 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
2562
2563 if (kvm_enabled())
2564 kvm_setup_guest_memory(new_block->host, size);
2565
2566 return new_block->offset;
2567 }
2568
2569 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2570 {
2571 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2572 }
2573
2574 void qemu_ram_free_from_ptr(ram_addr_t addr)
2575 {
2576 RAMBlock *block;
2577
2578 QLIST_FOREACH(block, &ram_list.blocks, next) {
2579 if (addr == block->offset) {
2580 QLIST_REMOVE(block, next);
2581 g_free(block);
2582 return;
2583 }
2584 }
2585 }
2586
2587 void qemu_ram_free(ram_addr_t addr)
2588 {
2589 RAMBlock *block;
2590
2591 QLIST_FOREACH(block, &ram_list.blocks, next) {
2592 if (addr == block->offset) {
2593 QLIST_REMOVE(block, next);
2594 if (block->flags & RAM_PREALLOC_MASK) {
2595 ;
2596 } else if (mem_path) {
2597 #if defined (__linux__) && !defined(TARGET_S390X)
2598 if (block->fd) {
2599 munmap(block->host, block->length);
2600 close(block->fd);
2601 } else {
2602 qemu_vfree(block->host);
2603 }
2604 #else
2605 abort();
2606 #endif
2607 } else {
2608 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2609 munmap(block->host, block->length);
2610 #else
2611 if (xen_enabled()) {
2612 xen_invalidate_map_cache_entry(block->host);
2613 } else {
2614 qemu_vfree(block->host);
2615 }
2616 #endif
2617 }
2618 g_free(block);
2619 return;
2620 }
2621 }
2622
2623 }
2624
2625 #ifndef _WIN32
2626 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2627 {
2628 RAMBlock *block;
2629 ram_addr_t offset;
2630 int flags;
2631 void *area, *vaddr;
2632
2633 QLIST_FOREACH(block, &ram_list.blocks, next) {
2634 offset = addr - block->offset;
2635 if (offset < block->length) {
2636 vaddr = block->host + offset;
2637 if (block->flags & RAM_PREALLOC_MASK) {
2638 ;
2639 } else {
2640 flags = MAP_FIXED;
2641 munmap(vaddr, length);
2642 if (mem_path) {
2643 #if defined(__linux__) && !defined(TARGET_S390X)
2644 if (block->fd) {
2645 #ifdef MAP_POPULATE
2646 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2647 MAP_PRIVATE;
2648 #else
2649 flags |= MAP_PRIVATE;
2650 #endif
2651 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2652 flags, block->fd, offset);
2653 } else {
2654 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2655 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2656 flags, -1, 0);
2657 }
2658 #else
2659 abort();
2660 #endif
2661 } else {
2662 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2663 flags |= MAP_SHARED | MAP_ANONYMOUS;
2664 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2665 flags, -1, 0);
2666 #else
2667 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2668 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2669 flags, -1, 0);
2670 #endif
2671 }
2672 if (area != vaddr) {
2673 fprintf(stderr, "Could not remap addr: "
2674 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2675 length, addr);
2676 exit(1);
2677 }
2678 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2679 }
2680 return;
2681 }
2682 }
2683 }
2684 #endif /* !_WIN32 */
2685
2686 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2687 With the exception of the softmmu code in this file, this should
2688 only be used for local memory (e.g. video ram) that the device owns,
2689 and knows it isn't going to access beyond the end of the block.
2690
2691 It should not be used for general purpose DMA.
2692 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2693 */
2694 void *qemu_get_ram_ptr(ram_addr_t addr)
2695 {
2696 RAMBlock *block;
2697
2698 QLIST_FOREACH(block, &ram_list.blocks, next) {
2699 if (addr - block->offset < block->length) {
2700 /* Move this entry to to start of the list. */
2701 if (block != QLIST_FIRST(&ram_list.blocks)) {
2702 QLIST_REMOVE(block, next);
2703 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2704 }
2705 if (xen_enabled()) {
2706 /* We need to check if the requested address is in the RAM
2707 * because we don't want to map the entire memory in QEMU.
2708 * In that case just map until the end of the page.
2709 */
2710 if (block->offset == 0) {
2711 return xen_map_cache(addr, 0, 0);
2712 } else if (block->host == NULL) {
2713 block->host =
2714 xen_map_cache(block->offset, block->length, 1);
2715 }
2716 }
2717 return block->host + (addr - block->offset);
2718 }
2719 }
2720
2721 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2722 abort();
2723
2724 return NULL;
2725 }
2726
2727 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2728 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2729 */
2730 void *qemu_safe_ram_ptr(ram_addr_t addr)
2731 {
2732 RAMBlock *block;
2733
2734 QLIST_FOREACH(block, &ram_list.blocks, next) {
2735 if (addr - block->offset < block->length) {
2736 if (xen_enabled()) {
2737 /* We need to check if the requested address is in the RAM
2738 * because we don't want to map the entire memory in QEMU.
2739 * In that case just map until the end of the page.
2740 */
2741 if (block->offset == 0) {
2742 return xen_map_cache(addr, 0, 0);
2743 } else if (block->host == NULL) {
2744 block->host =
2745 xen_map_cache(block->offset, block->length, 1);
2746 }
2747 }
2748 return block->host + (addr - block->offset);
2749 }
2750 }
2751
2752 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2753 abort();
2754
2755 return NULL;
2756 }
2757
2758 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2759 * but takes a size argument */
2760 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
2761 {
2762 if (*size == 0) {
2763 return NULL;
2764 }
2765 if (xen_enabled()) {
2766 return xen_map_cache(addr, *size, 1);
2767 } else {
2768 RAMBlock *block;
2769
2770 QLIST_FOREACH(block, &ram_list.blocks, next) {
2771 if (addr - block->offset < block->length) {
2772 if (addr - block->offset + *size > block->length)
2773 *size = block->length - addr + block->offset;
2774 return block->host + (addr - block->offset);
2775 }
2776 }
2777
2778 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2779 abort();
2780 }
2781 }
2782
2783 void qemu_put_ram_ptr(void *addr)
2784 {
2785 trace_qemu_put_ram_ptr(addr);
2786 }
2787
2788 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2789 {
2790 RAMBlock *block;
2791 uint8_t *host = ptr;
2792
2793 if (xen_enabled()) {
2794 *ram_addr = xen_ram_addr_from_mapcache(ptr);
2795 return 0;
2796 }
2797
2798 QLIST_FOREACH(block, &ram_list.blocks, next) {
2799 /* This case append when the block is not mapped. */
2800 if (block->host == NULL) {
2801 continue;
2802 }
2803 if (host - block->host < block->length) {
2804 *ram_addr = block->offset + (host - block->host);
2805 return 0;
2806 }
2807 }
2808
2809 return -1;
2810 }
2811
2812 /* Some of the softmmu routines need to translate from a host pointer
2813 (typically a TLB entry) back to a ram offset. */
2814 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2815 {
2816 ram_addr_t ram_addr;
2817
2818 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2819 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2820 abort();
2821 }
2822 return ram_addr;
2823 }
2824
2825 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2826 unsigned size)
2827 {
2828 #ifdef DEBUG_UNASSIGNED
2829 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2830 #endif
2831 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2832 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
2833 #endif
2834 return 0;
2835 }
2836
2837 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2838 uint64_t val, unsigned size)
2839 {
2840 #ifdef DEBUG_UNASSIGNED
2841 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
2842 #endif
2843 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2844 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
2845 #endif
2846 }
2847
2848 static const MemoryRegionOps unassigned_mem_ops = {
2849 .read = unassigned_mem_read,
2850 .write = unassigned_mem_write,
2851 .endianness = DEVICE_NATIVE_ENDIAN,
2852 };
2853
2854 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2855 unsigned size)
2856 {
2857 abort();
2858 }
2859
2860 static void error_mem_write(void *opaque, target_phys_addr_t addr,
2861 uint64_t value, unsigned size)
2862 {
2863 abort();
2864 }
2865
2866 static const MemoryRegionOps error_mem_ops = {
2867 .read = error_mem_read,
2868 .write = error_mem_write,
2869 .endianness = DEVICE_NATIVE_ENDIAN,
2870 };
2871
2872 static const MemoryRegionOps rom_mem_ops = {
2873 .read = error_mem_read,
2874 .write = unassigned_mem_write,
2875 .endianness = DEVICE_NATIVE_ENDIAN,
2876 };
2877
2878 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2879 uint64_t val, unsigned size)
2880 {
2881 int dirty_flags;
2882 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2883 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2884 #if !defined(CONFIG_USER_ONLY)
2885 tb_invalidate_phys_page_fast(ram_addr, size);
2886 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2887 #endif
2888 }
2889 switch (size) {
2890 case 1:
2891 stb_p(qemu_get_ram_ptr(ram_addr), val);
2892 break;
2893 case 2:
2894 stw_p(qemu_get_ram_ptr(ram_addr), val);
2895 break;
2896 case 4:
2897 stl_p(qemu_get_ram_ptr(ram_addr), val);
2898 break;
2899 default:
2900 abort();
2901 }
2902 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2903 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2904 /* we remove the notdirty callback only if the code has been
2905 flushed */
2906 if (dirty_flags == 0xff)
2907 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2908 }
2909
2910 static const MemoryRegionOps notdirty_mem_ops = {
2911 .read = error_mem_read,
2912 .write = notdirty_mem_write,
2913 .endianness = DEVICE_NATIVE_ENDIAN,
2914 };
2915
2916 /* Generate a debug exception if a watchpoint has been hit. */
2917 static void check_watchpoint(int offset, int len_mask, int flags)
2918 {
2919 CPUArchState *env = cpu_single_env;
2920 target_ulong pc, cs_base;
2921 TranslationBlock *tb;
2922 target_ulong vaddr;
2923 CPUWatchpoint *wp;
2924 int cpu_flags;
2925
2926 if (env->watchpoint_hit) {
2927 /* We re-entered the check after replacing the TB. Now raise
2928 * the debug interrupt so that is will trigger after the
2929 * current instruction. */
2930 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2931 return;
2932 }
2933 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2934 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2935 if ((vaddr == (wp->vaddr & len_mask) ||
2936 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2937 wp->flags |= BP_WATCHPOINT_HIT;
2938 if (!env->watchpoint_hit) {
2939 env->watchpoint_hit = wp;
2940 tb = tb_find_pc(env->mem_io_pc);
2941 if (!tb) {
2942 cpu_abort(env, "check_watchpoint: could not find TB for "
2943 "pc=%p", (void *)env->mem_io_pc);
2944 }
2945 cpu_restore_state(tb, env, env->mem_io_pc);
2946 tb_phys_invalidate(tb, -1);
2947 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2948 env->exception_index = EXCP_DEBUG;
2949 cpu_loop_exit(env);
2950 } else {
2951 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2952 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2953 cpu_resume_from_signal(env, NULL);
2954 }
2955 }
2956 } else {
2957 wp->flags &= ~BP_WATCHPOINT_HIT;
2958 }
2959 }
2960 }
2961
2962 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2963 so these check for a hit then pass through to the normal out-of-line
2964 phys routines. */
2965 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2966 unsigned size)
2967 {
2968 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2969 switch (size) {
2970 case 1: return ldub_phys(addr);
2971 case 2: return lduw_phys(addr);
2972 case 4: return ldl_phys(addr);
2973 default: abort();
2974 }
2975 }
2976
2977 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2978 uint64_t val, unsigned size)
2979 {
2980 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2981 switch (size) {
2982 case 1:
2983 stb_phys(addr, val);
2984 break;
2985 case 2:
2986 stw_phys(addr, val);
2987 break;
2988 case 4:
2989 stl_phys(addr, val);
2990 break;
2991 default: abort();
2992 }
2993 }
2994
2995 static const MemoryRegionOps watch_mem_ops = {
2996 .read = watch_mem_read,
2997 .write = watch_mem_write,
2998 .endianness = DEVICE_NATIVE_ENDIAN,
2999 };
3000
3001 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3002 unsigned len)
3003 {
3004 subpage_t *mmio = opaque;
3005 unsigned int idx = SUBPAGE_IDX(addr);
3006 MemoryRegionSection *section;
3007 #if defined(DEBUG_SUBPAGE)
3008 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3009 mmio, len, addr, idx);
3010 #endif
3011
3012 section = &phys_sections[mmio->sub_section[idx]];
3013 addr += mmio->base;
3014 addr -= section->offset_within_address_space;
3015 addr += section->offset_within_region;
3016 return io_mem_read(section->mr, addr, len);
3017 }
3018
3019 static void subpage_write(void *opaque, target_phys_addr_t addr,
3020 uint64_t value, unsigned len)
3021 {
3022 subpage_t *mmio = opaque;
3023 unsigned int idx = SUBPAGE_IDX(addr);
3024 MemoryRegionSection *section;
3025 #if defined(DEBUG_SUBPAGE)
3026 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3027 " idx %d value %"PRIx64"\n",
3028 __func__, mmio, len, addr, idx, value);
3029 #endif
3030
3031 section = &phys_sections[mmio->sub_section[idx]];
3032 addr += mmio->base;
3033 addr -= section->offset_within_address_space;
3034 addr += section->offset_within_region;
3035 io_mem_write(section->mr, addr, value, len);
3036 }
3037
3038 static const MemoryRegionOps subpage_ops = {
3039 .read = subpage_read,
3040 .write = subpage_write,
3041 .endianness = DEVICE_NATIVE_ENDIAN,
3042 };
3043
3044 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3045 unsigned size)
3046 {
3047 ram_addr_t raddr = addr;
3048 void *ptr = qemu_get_ram_ptr(raddr);
3049 switch (size) {
3050 case 1: return ldub_p(ptr);
3051 case 2: return lduw_p(ptr);
3052 case 4: return ldl_p(ptr);
3053 default: abort();
3054 }
3055 }
3056
3057 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3058 uint64_t value, unsigned size)
3059 {
3060 ram_addr_t raddr = addr;
3061 void *ptr = qemu_get_ram_ptr(raddr);
3062 switch (size) {
3063 case 1: return stb_p(ptr, value);
3064 case 2: return stw_p(ptr, value);
3065 case 4: return stl_p(ptr, value);
3066 default: abort();
3067 }
3068 }
3069
3070 static const MemoryRegionOps subpage_ram_ops = {
3071 .read = subpage_ram_read,
3072 .write = subpage_ram_write,
3073 .endianness = DEVICE_NATIVE_ENDIAN,
3074 };
3075
3076 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3077 uint16_t section)
3078 {
3079 int idx, eidx;
3080
3081 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3082 return -1;
3083 idx = SUBPAGE_IDX(start);
3084 eidx = SUBPAGE_IDX(end);
3085 #if defined(DEBUG_SUBPAGE)
3086 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3087 mmio, start, end, idx, eidx, memory);
3088 #endif
3089 if (memory_region_is_ram(phys_sections[section].mr)) {
3090 MemoryRegionSection new_section = phys_sections[section];
3091 new_section.mr = &io_mem_subpage_ram;
3092 section = phys_section_add(&new_section);
3093 }
3094 for (; idx <= eidx; idx++) {
3095 mmio->sub_section[idx] = section;
3096 }
3097
3098 return 0;
3099 }
3100
3101 static subpage_t *subpage_init(target_phys_addr_t base)
3102 {
3103 subpage_t *mmio;
3104
3105 mmio = g_malloc0(sizeof(subpage_t));
3106
3107 mmio->base = base;
3108 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3109 "subpage", TARGET_PAGE_SIZE);
3110 mmio->iomem.subpage = true;
3111 #if defined(DEBUG_SUBPAGE)
3112 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3113 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3114 #endif
3115 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3116
3117 return mmio;
3118 }
3119
3120 static uint16_t dummy_section(MemoryRegion *mr)
3121 {
3122 MemoryRegionSection section = {
3123 .mr = mr,
3124 .offset_within_address_space = 0,
3125 .offset_within_region = 0,
3126 .size = UINT64_MAX,
3127 };
3128
3129 return phys_section_add(&section);
3130 }
3131
3132 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3133 {
3134 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3135 }
3136
3137 static void io_mem_init(void)
3138 {
3139 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3140 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3141 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3142 "unassigned", UINT64_MAX);
3143 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3144 "notdirty", UINT64_MAX);
3145 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3146 "subpage-ram", UINT64_MAX);
3147 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3148 "watch", UINT64_MAX);
3149 }
3150
3151 static void core_begin(MemoryListener *listener)
3152 {
3153 destroy_all_mappings();
3154 phys_sections_clear();
3155 phys_map.ptr = PHYS_MAP_NODE_NIL;
3156 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3157 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3158 phys_section_rom = dummy_section(&io_mem_rom);
3159 phys_section_watch = dummy_section(&io_mem_watch);
3160 }
3161
3162 static void core_commit(MemoryListener *listener)
3163 {
3164 CPUArchState *env;
3165
3166 /* since each CPU stores ram addresses in its TLB cache, we must
3167 reset the modified entries */
3168 /* XXX: slow ! */
3169 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3170 tlb_flush(env, 1);
3171 }
3172 }
3173
3174 static void core_region_add(MemoryListener *listener,
3175 MemoryRegionSection *section)
3176 {
3177 cpu_register_physical_memory_log(section, section->readonly);
3178 }
3179
3180 static void core_region_del(MemoryListener *listener,
3181 MemoryRegionSection *section)
3182 {
3183 }
3184
3185 static void core_region_nop(MemoryListener *listener,
3186 MemoryRegionSection *section)
3187 {
3188 cpu_register_physical_memory_log(section, section->readonly);
3189 }
3190
3191 static void core_log_start(MemoryListener *listener,
3192 MemoryRegionSection *section)
3193 {
3194 }
3195
3196 static void core_log_stop(MemoryListener *listener,
3197 MemoryRegionSection *section)
3198 {
3199 }
3200
3201 static void core_log_sync(MemoryListener *listener,
3202 MemoryRegionSection *section)
3203 {
3204 }
3205
3206 static void core_log_global_start(MemoryListener *listener)
3207 {
3208 cpu_physical_memory_set_dirty_tracking(1);
3209 }
3210
3211 static void core_log_global_stop(MemoryListener *listener)
3212 {
3213 cpu_physical_memory_set_dirty_tracking(0);
3214 }
3215
3216 static void core_eventfd_add(MemoryListener *listener,
3217 MemoryRegionSection *section,
3218 bool match_data, uint64_t data, EventNotifier *e)
3219 {
3220 }
3221
3222 static void core_eventfd_del(MemoryListener *listener,
3223 MemoryRegionSection *section,
3224 bool match_data, uint64_t data, EventNotifier *e)
3225 {
3226 }
3227
3228 static void io_begin(MemoryListener *listener)
3229 {
3230 }
3231
3232 static void io_commit(MemoryListener *listener)
3233 {
3234 }
3235
3236 static void io_region_add(MemoryListener *listener,
3237 MemoryRegionSection *section)
3238 {
3239 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3240
3241 mrio->mr = section->mr;
3242 mrio->offset = section->offset_within_region;
3243 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3244 section->offset_within_address_space, section->size);
3245 ioport_register(&mrio->iorange);
3246 }
3247
3248 static void io_region_del(MemoryListener *listener,
3249 MemoryRegionSection *section)
3250 {
3251 isa_unassign_ioport(section->offset_within_address_space, section->size);
3252 }
3253
3254 static void io_region_nop(MemoryListener *listener,
3255 MemoryRegionSection *section)
3256 {
3257 }
3258
3259 static void io_log_start(MemoryListener *listener,
3260 MemoryRegionSection *section)
3261 {
3262 }
3263
3264 static void io_log_stop(MemoryListener *listener,
3265 MemoryRegionSection *section)
3266 {
3267 }
3268
3269 static void io_log_sync(MemoryListener *listener,
3270 MemoryRegionSection *section)
3271 {
3272 }
3273
3274 static void io_log_global_start(MemoryListener *listener)
3275 {
3276 }
3277
3278 static void io_log_global_stop(MemoryListener *listener)
3279 {
3280 }
3281
3282 static void io_eventfd_add(MemoryListener *listener,
3283 MemoryRegionSection *section,
3284 bool match_data, uint64_t data, EventNotifier *e)
3285 {
3286 }
3287
3288 static void io_eventfd_del(MemoryListener *listener,
3289 MemoryRegionSection *section,
3290 bool match_data, uint64_t data, EventNotifier *e)
3291 {
3292 }
3293
3294 static MemoryListener core_memory_listener = {
3295 .begin = core_begin,
3296 .commit = core_commit,
3297 .region_add = core_region_add,
3298 .region_del = core_region_del,
3299 .region_nop = core_region_nop,
3300 .log_start = core_log_start,
3301 .log_stop = core_log_stop,
3302 .log_sync = core_log_sync,
3303 .log_global_start = core_log_global_start,
3304 .log_global_stop = core_log_global_stop,
3305 .eventfd_add = core_eventfd_add,
3306 .eventfd_del = core_eventfd_del,
3307 .priority = 0,
3308 };
3309
3310 static MemoryListener io_memory_listener = {
3311 .begin = io_begin,
3312 .commit = io_commit,
3313 .region_add = io_region_add,
3314 .region_del = io_region_del,
3315 .region_nop = io_region_nop,
3316 .log_start = io_log_start,
3317 .log_stop = io_log_stop,
3318 .log_sync = io_log_sync,
3319 .log_global_start = io_log_global_start,
3320 .log_global_stop = io_log_global_stop,
3321 .eventfd_add = io_eventfd_add,
3322 .eventfd_del = io_eventfd_del,
3323 .priority = 0,
3324 };
3325
3326 static void memory_map_init(void)
3327 {
3328 system_memory = g_malloc(sizeof(*system_memory));
3329 memory_region_init(system_memory, "system", INT64_MAX);
3330 set_system_memory_map(system_memory);
3331
3332 system_io = g_malloc(sizeof(*system_io));
3333 memory_region_init(system_io, "io", 65536);
3334 set_system_io_map(system_io);
3335
3336 memory_listener_register(&core_memory_listener, system_memory);
3337 memory_listener_register(&io_memory_listener, system_io);
3338 }
3339
3340 MemoryRegion *get_system_memory(void)
3341 {
3342 return system_memory;
3343 }
3344
3345 MemoryRegion *get_system_io(void)
3346 {
3347 return system_io;
3348 }
3349
3350 #endif /* !defined(CONFIG_USER_ONLY) */
3351
3352 /* physical memory access (slow version, mainly for debug) */
3353 #if defined(CONFIG_USER_ONLY)
3354 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3355 uint8_t *buf, int len, int is_write)
3356 {
3357 int l, flags;
3358 target_ulong page;
3359 void * p;
3360
3361 while (len > 0) {
3362 page = addr & TARGET_PAGE_MASK;
3363 l = (page + TARGET_PAGE_SIZE) - addr;
3364 if (l > len)
3365 l = len;
3366 flags = page_get_flags(page);
3367 if (!(flags & PAGE_VALID))
3368 return -1;
3369 if (is_write) {
3370 if (!(flags & PAGE_WRITE))
3371 return -1;
3372 /* XXX: this code should not depend on lock_user */
3373 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3374 return -1;
3375 memcpy(p, buf, l);
3376 unlock_user(p, addr, l);
3377 } else {
3378 if (!(flags & PAGE_READ))
3379 return -1;
3380 /* XXX: this code should not depend on lock_user */
3381 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3382 return -1;
3383 memcpy(buf, p, l);
3384 unlock_user(p, addr, 0);
3385 }
3386 len -= l;
3387 buf += l;
3388 addr += l;
3389 }
3390 return 0;
3391 }
3392
3393 #else
3394 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3395 int len, int is_write)
3396 {
3397 int l;
3398 uint8_t *ptr;
3399 uint32_t val;
3400 target_phys_addr_t page;
3401 MemoryRegionSection *section;
3402
3403 while (len > 0) {
3404 page = addr & TARGET_PAGE_MASK;
3405 l = (page + TARGET_PAGE_SIZE) - addr;
3406 if (l > len)
3407 l = len;
3408 section = phys_page_find(page >> TARGET_PAGE_BITS);
3409
3410 if (is_write) {
3411 if (!memory_region_is_ram(section->mr)) {
3412 target_phys_addr_t addr1;
3413 addr1 = memory_region_section_addr(section, addr);
3414 /* XXX: could force cpu_single_env to NULL to avoid
3415 potential bugs */
3416 if (l >= 4 && ((addr1 & 3) == 0)) {
3417 /* 32 bit write access */
3418 val = ldl_p(buf);
3419 io_mem_write(section->mr, addr1, val, 4);
3420 l = 4;
3421 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3422 /* 16 bit write access */
3423 val = lduw_p(buf);
3424 io_mem_write(section->mr, addr1, val, 2);
3425 l = 2;
3426 } else {
3427 /* 8 bit write access */
3428 val = ldub_p(buf);
3429 io_mem_write(section->mr, addr1, val, 1);
3430 l = 1;
3431 }
3432 } else if (!section->readonly) {
3433 ram_addr_t addr1;
3434 addr1 = memory_region_get_ram_addr(section->mr)
3435 + memory_region_section_addr(section, addr);
3436 /* RAM case */
3437 ptr = qemu_get_ram_ptr(addr1);
3438 memcpy(ptr, buf, l);
3439 if (!cpu_physical_memory_is_dirty(addr1)) {
3440 /* invalidate code */
3441 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3442 /* set dirty bit */
3443 cpu_physical_memory_set_dirty_flags(
3444 addr1, (0xff & ~CODE_DIRTY_FLAG));
3445 }
3446 qemu_put_ram_ptr(ptr);
3447 }
3448 } else {
3449 if (!(memory_region_is_ram(section->mr) ||
3450 memory_region_is_romd(section->mr))) {
3451 target_phys_addr_t addr1;
3452 /* I/O case */
3453 addr1 = memory_region_section_addr(section, addr);
3454 if (l >= 4 && ((addr1 & 3) == 0)) {
3455 /* 32 bit read access */
3456 val = io_mem_read(section->mr, addr1, 4);
3457 stl_p(buf, val);
3458 l = 4;
3459 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3460 /* 16 bit read access */
3461 val = io_mem_read(section->mr, addr1, 2);
3462 stw_p(buf, val);
3463 l = 2;
3464 } else {
3465 /* 8 bit read access */
3466 val = io_mem_read(section->mr, addr1, 1);
3467 stb_p(buf, val);
3468 l = 1;
3469 }
3470 } else {
3471 /* RAM case */
3472 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3473 + memory_region_section_addr(section,
3474 addr));
3475 memcpy(buf, ptr, l);
3476 qemu_put_ram_ptr(ptr);
3477 }
3478 }
3479 len -= l;
3480 buf += l;
3481 addr += l;
3482 }
3483 }
3484
3485 /* used for ROM loading : can write in RAM and ROM */
3486 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3487 const uint8_t *buf, int len)
3488 {
3489 int l;
3490 uint8_t *ptr;
3491 target_phys_addr_t page;
3492 MemoryRegionSection *section;
3493
3494 while (len > 0) {
3495 page = addr & TARGET_PAGE_MASK;
3496 l = (page + TARGET_PAGE_SIZE) - addr;
3497 if (l > len)
3498 l = len;
3499 section = phys_page_find(page >> TARGET_PAGE_BITS);
3500
3501 if (!(memory_region_is_ram(section->mr) ||
3502 memory_region_is_romd(section->mr))) {
3503 /* do nothing */
3504 } else {
3505 unsigned long addr1;
3506 addr1 = memory_region_get_ram_addr(section->mr)
3507 + memory_region_section_addr(section, addr);
3508 /* ROM/RAM case */
3509 ptr = qemu_get_ram_ptr(addr1);
3510 memcpy(ptr, buf, l);
3511 qemu_put_ram_ptr(ptr);
3512 }
3513 len -= l;
3514 buf += l;
3515 addr += l;
3516 }
3517 }
3518
3519 typedef struct {
3520 void *buffer;
3521 target_phys_addr_t addr;
3522 target_phys_addr_t len;
3523 } BounceBuffer;
3524
3525 static BounceBuffer bounce;
3526
3527 typedef struct MapClient {
3528 void *opaque;
3529 void (*callback)(void *opaque);
3530 QLIST_ENTRY(MapClient) link;
3531 } MapClient;
3532
3533 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3534 = QLIST_HEAD_INITIALIZER(map_client_list);
3535
3536 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3537 {
3538 MapClient *client = g_malloc(sizeof(*client));
3539
3540 client->opaque = opaque;
3541 client->callback = callback;
3542 QLIST_INSERT_HEAD(&map_client_list, client, link);
3543 return client;
3544 }
3545
3546 void cpu_unregister_map_client(void *_client)
3547 {
3548 MapClient *client = (MapClient *)_client;
3549
3550 QLIST_REMOVE(client, link);
3551 g_free(client);
3552 }
3553
3554 static void cpu_notify_map_clients(void)
3555 {
3556 MapClient *client;
3557
3558 while (!QLIST_EMPTY(&map_client_list)) {
3559 client = QLIST_FIRST(&map_client_list);
3560 client->callback(client->opaque);
3561 cpu_unregister_map_client(client);
3562 }
3563 }
3564
3565 /* Map a physical memory region into a host virtual address.
3566 * May map a subset of the requested range, given by and returned in *plen.
3567 * May return NULL if resources needed to perform the mapping are exhausted.
3568 * Use only for reads OR writes - not for read-modify-write operations.
3569 * Use cpu_register_map_client() to know when retrying the map operation is
3570 * likely to succeed.
3571 */
3572 void *cpu_physical_memory_map(target_phys_addr_t addr,
3573 target_phys_addr_t *plen,
3574 int is_write)
3575 {
3576 target_phys_addr_t len = *plen;
3577 target_phys_addr_t todo = 0;
3578 int l;
3579 target_phys_addr_t page;
3580 MemoryRegionSection *section;
3581 ram_addr_t raddr = RAM_ADDR_MAX;
3582 ram_addr_t rlen;
3583 void *ret;
3584
3585 while (len > 0) {
3586 page = addr & TARGET_PAGE_MASK;
3587 l = (page + TARGET_PAGE_SIZE) - addr;
3588 if (l > len)
3589 l = len;
3590 section = phys_page_find(page >> TARGET_PAGE_BITS);
3591
3592 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3593 if (todo || bounce.buffer) {
3594 break;
3595 }
3596 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3597 bounce.addr = addr;
3598 bounce.len = l;
3599 if (!is_write) {
3600 cpu_physical_memory_read(addr, bounce.buffer, l);
3601 }
3602
3603 *plen = l;
3604 return bounce.buffer;
3605 }
3606 if (!todo) {
3607 raddr = memory_region_get_ram_addr(section->mr)
3608 + memory_region_section_addr(section, addr);
3609 }
3610
3611 len -= l;
3612 addr += l;
3613 todo += l;
3614 }
3615 rlen = todo;
3616 ret = qemu_ram_ptr_length(raddr, &rlen);
3617 *plen = rlen;
3618 return ret;
3619 }
3620
3621 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3622 * Will also mark the memory as dirty if is_write == 1. access_len gives
3623 * the amount of memory that was actually read or written by the caller.
3624 */
3625 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3626 int is_write, target_phys_addr_t access_len)
3627 {
3628 if (buffer != bounce.buffer) {
3629 if (is_write) {
3630 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3631 while (access_len) {
3632 unsigned l;
3633 l = TARGET_PAGE_SIZE;
3634 if (l > access_len)
3635 l = access_len;
3636 if (!cpu_physical_memory_is_dirty(addr1)) {
3637 /* invalidate code */
3638 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3639 /* set dirty bit */
3640 cpu_physical_memory_set_dirty_flags(
3641 addr1, (0xff & ~CODE_DIRTY_FLAG));
3642 }
3643 addr1 += l;
3644 access_len -= l;
3645 }
3646 }
3647 if (xen_enabled()) {
3648 xen_invalidate_map_cache_entry(buffer);
3649 }
3650 return;
3651 }
3652 if (is_write) {
3653 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3654 }
3655 qemu_vfree(bounce.buffer);
3656 bounce.buffer = NULL;
3657 cpu_notify_map_clients();
3658 }
3659
3660 /* warning: addr must be aligned */
3661 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3662 enum device_endian endian)
3663 {
3664 uint8_t *ptr;
3665 uint32_t val;
3666 MemoryRegionSection *section;
3667
3668 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3669
3670 if (!(memory_region_is_ram(section->mr) ||
3671 memory_region_is_romd(section->mr))) {
3672 /* I/O case */
3673 addr = memory_region_section_addr(section, addr);
3674 val = io_mem_read(section->mr, addr, 4);
3675 #if defined(TARGET_WORDS_BIGENDIAN)
3676 if (endian == DEVICE_LITTLE_ENDIAN) {
3677 val = bswap32(val);
3678 }
3679 #else
3680 if (endian == DEVICE_BIG_ENDIAN) {
3681 val = bswap32(val);
3682 }
3683 #endif
3684 } else {
3685 /* RAM case */
3686 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3687 & TARGET_PAGE_MASK)
3688 + memory_region_section_addr(section, addr));
3689 switch (endian) {
3690 case DEVICE_LITTLE_ENDIAN:
3691 val = ldl_le_p(ptr);
3692 break;
3693 case DEVICE_BIG_ENDIAN:
3694 val = ldl_be_p(ptr);
3695 break;
3696 default:
3697 val = ldl_p(ptr);
3698 break;
3699 }
3700 }
3701 return val;
3702 }
3703
3704 uint32_t ldl_phys(target_phys_addr_t addr)
3705 {
3706 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3707 }
3708
3709 uint32_t ldl_le_phys(target_phys_addr_t addr)
3710 {
3711 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3712 }
3713
3714 uint32_t ldl_be_phys(target_phys_addr_t addr)
3715 {
3716 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3717 }
3718
3719 /* warning: addr must be aligned */
3720 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3721 enum device_endian endian)
3722 {
3723 uint8_t *ptr;
3724 uint64_t val;
3725 MemoryRegionSection *section;
3726
3727 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3728
3729 if (!(memory_region_is_ram(section->mr) ||
3730 memory_region_is_romd(section->mr))) {
3731 /* I/O case */
3732 addr = memory_region_section_addr(section, addr);
3733
3734 /* XXX This is broken when device endian != cpu endian.
3735 Fix and add "endian" variable check */
3736 #ifdef TARGET_WORDS_BIGENDIAN
3737 val = io_mem_read(section->mr, addr, 4) << 32;
3738 val |= io_mem_read(section->mr, addr + 4, 4);
3739 #else
3740 val = io_mem_read(section->mr, addr, 4);
3741 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
3742 #endif
3743 } else {
3744 /* RAM case */
3745 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3746 & TARGET_PAGE_MASK)
3747 + memory_region_section_addr(section, addr));
3748 switch (endian) {
3749 case DEVICE_LITTLE_ENDIAN:
3750 val = ldq_le_p(ptr);
3751 break;
3752 case DEVICE_BIG_ENDIAN:
3753 val = ldq_be_p(ptr);
3754 break;
3755 default:
3756 val = ldq_p(ptr);
3757 break;
3758 }
3759 }
3760 return val;
3761 }
3762
3763 uint64_t ldq_phys(target_phys_addr_t addr)
3764 {
3765 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3766 }
3767
3768 uint64_t ldq_le_phys(target_phys_addr_t addr)
3769 {
3770 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3771 }
3772
3773 uint64_t ldq_be_phys(target_phys_addr_t addr)
3774 {
3775 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3776 }
3777
3778 /* XXX: optimize */
3779 uint32_t ldub_phys(target_phys_addr_t addr)
3780 {
3781 uint8_t val;
3782 cpu_physical_memory_read(addr, &val, 1);
3783 return val;
3784 }
3785
3786 /* warning: addr must be aligned */
3787 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3788 enum device_endian endian)
3789 {
3790 uint8_t *ptr;
3791 uint64_t val;
3792 MemoryRegionSection *section;
3793
3794 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3795
3796 if (!(memory_region_is_ram(section->mr) ||
3797 memory_region_is_romd(section->mr))) {
3798 /* I/O case */
3799 addr = memory_region_section_addr(section, addr);
3800 val = io_mem_read(section->mr, addr, 2);
3801 #if defined(TARGET_WORDS_BIGENDIAN)
3802 if (endian == DEVICE_LITTLE_ENDIAN) {
3803 val = bswap16(val);
3804 }
3805 #else
3806 if (endian == DEVICE_BIG_ENDIAN) {
3807 val = bswap16(val);
3808 }
3809 #endif
3810 } else {
3811 /* RAM case */
3812 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3813 & TARGET_PAGE_MASK)
3814 + memory_region_section_addr(section, addr));
3815 switch (endian) {
3816 case DEVICE_LITTLE_ENDIAN:
3817 val = lduw_le_p(ptr);
3818 break;
3819 case DEVICE_BIG_ENDIAN:
3820 val = lduw_be_p(ptr);
3821 break;
3822 default:
3823 val = lduw_p(ptr);
3824 break;
3825 }
3826 }
3827 return val;
3828 }
3829
3830 uint32_t lduw_phys(target_phys_addr_t addr)
3831 {
3832 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3833 }
3834
3835 uint32_t lduw_le_phys(target_phys_addr_t addr)
3836 {
3837 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3838 }
3839
3840 uint32_t lduw_be_phys(target_phys_addr_t addr)
3841 {
3842 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3843 }
3844
3845 /* warning: addr must be aligned. The ram page is not masked as dirty
3846 and the code inside is not invalidated. It is useful if the dirty
3847 bits are used to track modified PTEs */
3848 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3849 {
3850 uint8_t *ptr;
3851 MemoryRegionSection *section;
3852
3853 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3854
3855 if (!memory_region_is_ram(section->mr) || section->readonly) {
3856 addr = memory_region_section_addr(section, addr);
3857 if (memory_region_is_ram(section->mr)) {
3858 section = &phys_sections[phys_section_rom];
3859 }
3860 io_mem_write(section->mr, addr, val, 4);
3861 } else {
3862 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
3863 & TARGET_PAGE_MASK)
3864 + memory_region_section_addr(section, addr);
3865 ptr = qemu_get_ram_ptr(addr1);
3866 stl_p(ptr, val);
3867
3868 if (unlikely(in_migration)) {
3869 if (!cpu_physical_memory_is_dirty(addr1)) {
3870 /* invalidate code */
3871 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3872 /* set dirty bit */
3873 cpu_physical_memory_set_dirty_flags(
3874 addr1, (0xff & ~CODE_DIRTY_FLAG));
3875 }
3876 }
3877 }
3878 }
3879
3880 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3881 {
3882 uint8_t *ptr;
3883 MemoryRegionSection *section;
3884
3885 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3886
3887 if (!memory_region_is_ram(section->mr) || section->readonly) {
3888 addr = memory_region_section_addr(section, addr);
3889 if (memory_region_is_ram(section->mr)) {
3890 section = &phys_sections[phys_section_rom];
3891 }
3892 #ifdef TARGET_WORDS_BIGENDIAN
3893 io_mem_write(section->mr, addr, val >> 32, 4);
3894 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
3895 #else
3896 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3897 io_mem_write(section->mr, addr + 4, val >> 32, 4);
3898 #endif
3899 } else {
3900 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3901 & TARGET_PAGE_MASK)
3902 + memory_region_section_addr(section, addr));
3903 stq_p(ptr, val);
3904 }
3905 }
3906
3907 /* warning: addr must be aligned */
3908 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3909 enum device_endian endian)
3910 {
3911 uint8_t *ptr;
3912 MemoryRegionSection *section;
3913
3914 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3915
3916 if (!memory_region_is_ram(section->mr) || section->readonly) {
3917 addr = memory_region_section_addr(section, addr);
3918 if (memory_region_is_ram(section->mr)) {
3919 section = &phys_sections[phys_section_rom];
3920 }
3921 #if defined(TARGET_WORDS_BIGENDIAN)
3922 if (endian == DEVICE_LITTLE_ENDIAN) {
3923 val = bswap32(val);
3924 }
3925 #else
3926 if (endian == DEVICE_BIG_ENDIAN) {
3927 val = bswap32(val);
3928 }
3929 #endif
3930 io_mem_write(section->mr, addr, val, 4);
3931 } else {
3932 unsigned long addr1;
3933 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3934 + memory_region_section_addr(section, addr);
3935 /* RAM case */
3936 ptr = qemu_get_ram_ptr(addr1);
3937 switch (endian) {
3938 case DEVICE_LITTLE_ENDIAN:
3939 stl_le_p(ptr, val);
3940 break;
3941 case DEVICE_BIG_ENDIAN:
3942 stl_be_p(ptr, val);
3943 break;
3944 default:
3945 stl_p(ptr, val);
3946 break;
3947 }
3948 if (!cpu_physical_memory_is_dirty(addr1)) {
3949 /* invalidate code */
3950 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3951 /* set dirty bit */
3952 cpu_physical_memory_set_dirty_flags(addr1,
3953 (0xff & ~CODE_DIRTY_FLAG));
3954 }
3955 }
3956 }
3957
3958 void stl_phys(target_phys_addr_t addr, uint32_t val)
3959 {
3960 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3961 }
3962
3963 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3964 {
3965 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3966 }
3967
3968 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3969 {
3970 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3971 }
3972
3973 /* XXX: optimize */
3974 void stb_phys(target_phys_addr_t addr, uint32_t val)
3975 {
3976 uint8_t v = val;
3977 cpu_physical_memory_write(addr, &v, 1);
3978 }
3979
3980 /* warning: addr must be aligned */
3981 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3982 enum device_endian endian)
3983 {
3984 uint8_t *ptr;
3985 MemoryRegionSection *section;
3986
3987 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3988
3989 if (!memory_region_is_ram(section->mr) || section->readonly) {
3990 addr = memory_region_section_addr(section, addr);
3991 if (memory_region_is_ram(section->mr)) {
3992 section = &phys_sections[phys_section_rom];
3993 }
3994 #if defined(TARGET_WORDS_BIGENDIAN)
3995 if (endian == DEVICE_LITTLE_ENDIAN) {
3996 val = bswap16(val);
3997 }
3998 #else
3999 if (endian == DEVICE_BIG_ENDIAN) {
4000 val = bswap16(val);
4001 }
4002 #endif
4003 io_mem_write(section->mr, addr, val, 2);
4004 } else {
4005 unsigned long addr1;
4006 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4007 + memory_region_section_addr(section, addr);
4008 /* RAM case */
4009 ptr = qemu_get_ram_ptr(addr1);
4010 switch (endian) {
4011 case DEVICE_LITTLE_ENDIAN:
4012 stw_le_p(ptr, val);
4013 break;
4014 case DEVICE_BIG_ENDIAN:
4015 stw_be_p(ptr, val);
4016 break;
4017 default:
4018 stw_p(ptr, val);
4019 break;
4020 }
4021 if (!cpu_physical_memory_is_dirty(addr1)) {
4022 /* invalidate code */
4023 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4024 /* set dirty bit */
4025 cpu_physical_memory_set_dirty_flags(addr1,
4026 (0xff & ~CODE_DIRTY_FLAG));
4027 }
4028 }
4029 }
4030
4031 void stw_phys(target_phys_addr_t addr, uint32_t val)
4032 {
4033 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4034 }
4035
4036 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4037 {
4038 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4039 }
4040
4041 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4042 {
4043 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4044 }
4045
4046 /* XXX: optimize */
4047 void stq_phys(target_phys_addr_t addr, uint64_t val)
4048 {
4049 val = tswap64(val);
4050 cpu_physical_memory_write(addr, &val, 8);
4051 }
4052
4053 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4054 {
4055 val = cpu_to_le64(val);
4056 cpu_physical_memory_write(addr, &val, 8);
4057 }
4058
4059 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4060 {
4061 val = cpu_to_be64(val);
4062 cpu_physical_memory_write(addr, &val, 8);
4063 }
4064
4065 /* virtual memory access for debug (includes writing to ROM) */
4066 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4067 uint8_t *buf, int len, int is_write)
4068 {
4069 int l;
4070 target_phys_addr_t phys_addr;
4071 target_ulong page;
4072
4073 while (len > 0) {
4074 page = addr & TARGET_PAGE_MASK;
4075 phys_addr = cpu_get_phys_page_debug(env, page);
4076 /* if no physical page mapped, return an error */
4077 if (phys_addr == -1)
4078 return -1;
4079 l = (page + TARGET_PAGE_SIZE) - addr;
4080 if (l > len)
4081 l = len;
4082 phys_addr += (addr & ~TARGET_PAGE_MASK);
4083 if (is_write)
4084 cpu_physical_memory_write_rom(phys_addr, buf, l);
4085 else
4086 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4087 len -= l;
4088 buf += l;
4089 addr += l;
4090 }
4091 return 0;
4092 }
4093 #endif
4094
4095 /* in deterministic execution mode, instructions doing device I/Os
4096 must be at the end of the TB */
4097 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4098 {
4099 TranslationBlock *tb;
4100 uint32_t n, cflags;
4101 target_ulong pc, cs_base;
4102 uint64_t flags;
4103
4104 tb = tb_find_pc(retaddr);
4105 if (!tb) {
4106 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4107 (void *)retaddr);
4108 }
4109 n = env->icount_decr.u16.low + tb->icount;
4110 cpu_restore_state(tb, env, retaddr);
4111 /* Calculate how many instructions had been executed before the fault
4112 occurred. */
4113 n = n - env->icount_decr.u16.low;
4114 /* Generate a new TB ending on the I/O insn. */
4115 n++;
4116 /* On MIPS and SH, delay slot instructions can only be restarted if
4117 they were already the first instruction in the TB. If this is not
4118 the first instruction in a TB then re-execute the preceding
4119 branch. */
4120 #if defined(TARGET_MIPS)
4121 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4122 env->active_tc.PC -= 4;
4123 env->icount_decr.u16.low++;
4124 env->hflags &= ~MIPS_HFLAG_BMASK;
4125 }
4126 #elif defined(TARGET_SH4)
4127 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4128 && n > 1) {
4129 env->pc -= 2;
4130 env->icount_decr.u16.low++;
4131 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4132 }
4133 #endif
4134 /* This should never happen. */
4135 if (n > CF_COUNT_MASK)
4136 cpu_abort(env, "TB too big during recompile");
4137
4138 cflags = n | CF_LAST_IO;
4139 pc = tb->pc;
4140 cs_base = tb->cs_base;
4141 flags = tb->flags;
4142 tb_phys_invalidate(tb, -1);
4143 /* FIXME: In theory this could raise an exception. In practice
4144 we have already translated the block once so it's probably ok. */
4145 tb_gen_code(env, pc, cs_base, flags, cflags);
4146 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4147 the first in the TB) then we end up generating a whole new TB and
4148 repeating the fault, which is horribly inefficient.
4149 Better would be to execute just this insn uncached, or generate a
4150 second new TB. */
4151 cpu_resume_from_signal(env, NULL);
4152 }
4153
4154 #if !defined(CONFIG_USER_ONLY)
4155
4156 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4157 {
4158 int i, target_code_size, max_target_code_size;
4159 int direct_jmp_count, direct_jmp2_count, cross_page;
4160 TranslationBlock *tb;
4161
4162 target_code_size = 0;
4163 max_target_code_size = 0;
4164 cross_page = 0;
4165 direct_jmp_count = 0;
4166 direct_jmp2_count = 0;
4167 for(i = 0; i < nb_tbs; i++) {
4168 tb = &tbs[i];
4169 target_code_size += tb->size;
4170 if (tb->size > max_target_code_size)
4171 max_target_code_size = tb->size;
4172 if (tb->page_addr[1] != -1)
4173 cross_page++;
4174 if (tb->tb_next_offset[0] != 0xffff) {
4175 direct_jmp_count++;
4176 if (tb->tb_next_offset[1] != 0xffff) {
4177 direct_jmp2_count++;
4178 }
4179 }
4180 }
4181 /* XXX: avoid using doubles ? */
4182 cpu_fprintf(f, "Translation buffer state:\n");
4183 cpu_fprintf(f, "gen code size %td/%ld\n",
4184 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4185 cpu_fprintf(f, "TB count %d/%d\n",
4186 nb_tbs, code_gen_max_blocks);
4187 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4188 nb_tbs ? target_code_size / nb_tbs : 0,
4189 max_target_code_size);
4190 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4191 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4192 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4193 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4194 cross_page,
4195 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4196 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4197 direct_jmp_count,
4198 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4199 direct_jmp2_count,
4200 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4201 cpu_fprintf(f, "\nStatistics:\n");
4202 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4203 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4204 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4205 tcg_dump_info(f, cpu_fprintf);
4206 }
4207
4208 /*
4209 * A helper function for the _utterly broken_ virtio device model to find out if
4210 * it's running on a big endian machine. Don't do this at home kids!
4211 */
4212 bool virtio_is_big_endian(void);
4213 bool virtio_is_big_endian(void)
4214 {
4215 #if defined(TARGET_WORDS_BIGENDIAN)
4216 return true;
4217 #else
4218 return false;
4219 #endif
4220 }
4221
4222 #endif
4223
4224 #ifndef CONFIG_USER_ONLY
4225 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4226 {
4227 MemoryRegionSection *section;
4228
4229 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4230
4231 return !(memory_region_is_ram(section->mr) ||
4232 memory_region_is_romd(section->mr));
4233 }
4234 #endif