]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: Move user-only watchpoint stubs inline
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93 #endif
94
95 #ifdef TARGET_PAGE_BITS_VARY
96 int target_page_bits;
97 bool target_page_bits_decided;
98 #endif
99
100 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
101
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 __thread CPUState *current_cpu;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
109
110 uintptr_t qemu_host_page_size;
111 intptr_t qemu_host_page_mask;
112
113 bool set_preferred_target_page_bits(int bits)
114 {
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
119 */
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
125 }
126 target_page_bits = bits;
127 }
128 #endif
129 return true;
130 }
131
132 #if !defined(CONFIG_USER_ONLY)
133
134 static void finalize_target_page_bits(void)
135 {
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
139 }
140 target_page_bits_decided = true;
141 #endif
142 }
143
144 typedef struct PhysPageEntry PhysPageEntry;
145
146 struct PhysPageEntry {
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148 uint32_t skip : 6;
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 uint32_t ptr : 26;
151 };
152
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
154
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
157
158 #define P_L2_BITS 9
159 #define P_L2_SIZE (1 << P_L2_BITS)
160
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
162
163 typedef PhysPageEntry Node[P_L2_SIZE];
164
165 typedef struct PhysPageMap {
166 struct rcu_head rcu;
167
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174 } PhysPageMap;
175
176 struct AddressSpaceDispatch {
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
182 PhysPageMap map;
183 };
184
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t {
187 MemoryRegion iomem;
188 FlatView *fv;
189 hwaddr base;
190 uint16_t sub_section[];
191 } subpage_t;
192
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
197
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_log_global_after_sync(MemoryListener *listener);
201 static void tcg_commit(MemoryListener *listener);
202
203 static MemoryRegion io_mem_watch;
204
205 /**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212 struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217 };
218
219 struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
223 };
224
225 #endif
226
227 #if !defined(CONFIG_USER_ONLY)
228
229 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
230 {
231 static unsigned alloc_hint = 16;
232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
236 alloc_hint = map->nodes_nb_alloc;
237 }
238 }
239
240 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
241 {
242 unsigned i;
243 uint32_t ret;
244 PhysPageEntry e;
245 PhysPageEntry *p;
246
247 ret = map->nodes_nb++;
248 p = map->nodes[ret];
249 assert(ret != PHYS_MAP_NODE_NIL);
250 assert(ret != map->nodes_nb_alloc);
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
254 for (i = 0; i < P_L2_SIZE; ++i) {
255 memcpy(&p[i], &e, sizeof(e));
256 }
257 return ret;
258 }
259
260 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
262 int level)
263 {
264 PhysPageEntry *p;
265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
266
267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
268 lp->ptr = phys_map_node_alloc(map, level == 0);
269 }
270 p = map->nodes[lp->ptr];
271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
272
273 while (*nb && lp < &p[P_L2_SIZE]) {
274 if ((*index & (step - 1)) == 0 && *nb >= step) {
275 lp->skip = 0;
276 lp->ptr = leaf;
277 *index += step;
278 *nb -= step;
279 } else {
280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
281 }
282 ++lp;
283 }
284 }
285
286 static void phys_page_set(AddressSpaceDispatch *d,
287 hwaddr index, hwaddr nb,
288 uint16_t leaf)
289 {
290 /* Wildly overreserve - it doesn't matter much. */
291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
292
293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
294 }
295
296 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
299 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
300 {
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
319 phys_page_compact(&p[i], nodes);
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347 }
348
349 void address_space_dispatch_compact(AddressSpaceDispatch *d)
350 {
351 if (d->phys_map.skip) {
352 phys_page_compact(&d->phys_map, d->map.nodes);
353 }
354 }
355
356 static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358 {
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
362 return int128_gethi(section->size) ||
363 range_covers_byte(section->offset_within_address_space,
364 int128_getlo(section->size), addr);
365 }
366
367 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
368 {
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
372 hwaddr index = addr >> TARGET_PAGE_BITS;
373 int i;
374
375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
377 return &sections[PHYS_SECTION_UNASSIGNED];
378 }
379 p = nodes[lp.ptr];
380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
381 }
382
383 if (section_covers_addr(&sections[lp.ptr], addr)) {
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
388 }
389
390 /* Called from RCU critical section */
391 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
392 hwaddr addr,
393 bool resolve_subpage)
394 {
395 MemoryRegionSection *section = atomic_read(&d->mru_section);
396 subpage_t *subpage;
397
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
400 section = phys_page_find(d, addr);
401 atomic_set(&d->mru_section, section);
402 }
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
406 }
407 return section;
408 }
409
410 /* Called from RCU critical section */
411 static MemoryRegionSection *
412 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
413 hwaddr *plen, bool resolve_subpage)
414 {
415 MemoryRegionSection *section;
416 MemoryRegion *mr;
417 Int128 diff;
418
419 section = address_space_lookup_region(d, addr, resolve_subpage);
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
422
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
425
426 mr = section->mr;
427
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
434 *
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
438 */
439 if (memory_region_is_ram(mr)) {
440 diff = int128_sub(section->size, int128_make64(addr));
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 }
443 return section;
444 }
445
446 /**
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
449 *
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
463 * @attrs: transaction attributes
464 *
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
467 */
468 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
476 {
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
479
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
485
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
488 }
489
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
492
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
495 }
496
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
502
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
506
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
509
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
512 }
513 return *section;
514
515 unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517 }
518
519 /**
520 * flatview_do_translate - translate an address in FlatView
521 *
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
534 * @target_as: the address space targeted by the IOMMU
535 * @attrs: memory transaction attributes
536 *
537 * This function is called from RCU critical section
538 */
539 static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
544 bool is_write,
545 bool is_mmio,
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
548 {
549 MemoryRegionSection *section;
550 IOMMUMemoryRegion *iommu_mr;
551 hwaddr plen = (hwaddr)(-1);
552
553 if (!plen_out) {
554 plen_out = &plen;
555 }
556
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
560
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
566 target_as, attrs);
567 }
568 if (page_mask_out) {
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
571 }
572
573 return *section;
574 }
575
576 /* Called from RCU critical section */
577 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
578 bool is_write, MemTxAttrs attrs)
579 {
580 MemoryRegionSection section;
581 hwaddr xlat, page_mask;
582
583 /*
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
586 */
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
590
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
594 }
595
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
599
600 return (IOMMUTLBEntry) {
601 .target_as = as,
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
607 };
608
609 iotlb_fail:
610 return (IOMMUTLBEntry) {0};
611 }
612
613 /* Called from RCU critical section */
614 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
617 {
618 MemoryRegion *mr;
619 MemoryRegionSection section;
620 AddressSpace *as = NULL;
621
622 /* This can be MMIO, so setup MMIO bit. */
623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
624 is_write, true, &as, attrs);
625 mr = section.mr;
626
627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
629 *plen = MIN(page, *plen);
630 }
631
632 return mr;
633 }
634
635 typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641 } TCGIOMMUNotifier;
642
643 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644 {
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646
647 if (!notifier->active) {
648 return;
649 }
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
656 */
657 }
658
659 static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
662 {
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
666 */
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
670
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
675 }
676 }
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704 }
705
706 static void tcg_iommu_free_notifier_list(CPUState *cpu)
707 {
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715 g_free(notifier);
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718 }
719
720 /* Called from RCU critical section */
721 MemoryRegionSection *
722 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
725 {
726 MemoryRegionSection *section;
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
768
769 assert(!memory_region_is_iommu(section->mr));
770 *xlat = addr;
771 return section;
772
773 translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775 }
776 #endif
777
778 #if !defined(CONFIG_USER_ONLY)
779
780 static int cpu_common_post_load(void *opaque, int version_id)
781 {
782 CPUState *cpu = opaque;
783
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
786 cpu->interrupt_request &= ~0x01;
787 tlb_flush(cpu);
788
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
796 return 0;
797 }
798
799 static int cpu_common_pre_load(void *opaque)
800 {
801 CPUState *cpu = opaque;
802
803 cpu->exception_index = -1;
804
805 return 0;
806 }
807
808 static bool cpu_common_exception_index_needed(void *opaque)
809 {
810 CPUState *cpu = opaque;
811
812 return tcg_enabled() && cpu->exception_index != -1;
813 }
814
815 static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
819 .needed = cpu_common_exception_index_needed,
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824 };
825
826 static bool cpu_common_crash_occurred_needed(void *opaque)
827 {
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831 }
832
833 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842 };
843
844 const VMStateDescription vmstate_cpu_common = {
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
848 .pre_load = cpu_common_pre_load,
849 .post_load = cpu_common_post_load,
850 .fields = (VMStateField[]) {
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
853 VMSTATE_END_OF_LIST()
854 },
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
857 &vmstate_cpu_common_crash_occurred,
858 NULL
859 }
860 };
861
862 #endif
863
864 CPUState *qemu_get_cpu(int index)
865 {
866 CPUState *cpu;
867
868 CPU_FOREACH(cpu) {
869 if (cpu->cpu_index == index) {
870 return cpu;
871 }
872 }
873
874 return NULL;
875 }
876
877 #if !defined(CONFIG_USER_ONLY)
878 void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
880 {
881 CPUAddressSpace *newas;
882 AddressSpace *as = g_new0(AddressSpace, 1);
883 char *as_name;
884
885 assert(mr);
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
900
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903 }
904
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
908 if (tcg_enabled()) {
909 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
910 newas->tcg_as_listener.commit = tcg_commit;
911 memory_listener_register(&newas->tcg_as_listener, as);
912 }
913 }
914
915 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
916 {
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu->cpu_ases[asidx].as;
919 }
920 #endif
921
922 void cpu_exec_unrealizefn(CPUState *cpu)
923 {
924 CPUClass *cc = CPU_GET_CLASS(cpu);
925
926 cpu_list_remove(cpu);
927
928 if (cc->vmsd != NULL) {
929 vmstate_unregister(NULL, cc->vmsd, cpu);
930 }
931 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
932 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
933 }
934 #ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu);
936 #endif
937 }
938
939 Property cpu_common_props[] = {
940 #ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
946 */
947 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
948 MemoryRegion *),
949 #endif
950 DEFINE_PROP_END_OF_LIST(),
951 };
952
953 void cpu_exec_initfn(CPUState *cpu)
954 {
955 cpu->as = NULL;
956 cpu->num_ases = 0;
957
958 #ifndef CONFIG_USER_ONLY
959 cpu->thread_id = qemu_get_thread_id();
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
962 #endif
963 }
964
965 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
966 {
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 static bool tcg_target_initialized;
969
970 cpu_list_add(cpu);
971
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
974 cc->tcg_initialize();
975 }
976 tlb_init(cpu);
977
978 #ifndef CONFIG_USER_ONLY
979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
981 }
982 if (cc->vmsd != NULL) {
983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
984 }
985
986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987 #endif
988 }
989
990 const char *parse_cpu_option(const char *cpu_option)
991 {
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
996
997 model_pieces = g_strsplit(cpu_option, ",", 2);
998 if (!model_pieces[0]) {
999 error_report("-cpu option cannot be empty");
1000 exit(1);
1001 }
1002
1003 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1004 if (oc == NULL) {
1005 error_report("unable to find CPU model '%s'", model_pieces[0]);
1006 g_strfreev(model_pieces);
1007 exit(EXIT_FAILURE);
1008 }
1009
1010 cpu_type = object_class_get_name(oc);
1011 cc = CPU_CLASS(oc);
1012 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1013 g_strfreev(model_pieces);
1014 return cpu_type;
1015 }
1016
1017 #if defined(CONFIG_USER_ONLY)
1018 void tb_invalidate_phys_addr(target_ulong addr)
1019 {
1020 mmap_lock();
1021 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1022 mmap_unlock();
1023 }
1024
1025 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1026 {
1027 tb_invalidate_phys_addr(pc);
1028 }
1029 #else
1030 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1031 {
1032 ram_addr_t ram_addr;
1033 MemoryRegion *mr;
1034 hwaddr l = 1;
1035
1036 if (!tcg_enabled()) {
1037 return;
1038 }
1039
1040 rcu_read_lock();
1041 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1042 if (!(memory_region_is_ram(mr)
1043 || memory_region_is_romd(mr))) {
1044 rcu_read_unlock();
1045 return;
1046 }
1047 ram_addr = memory_region_get_ram_addr(mr) + addr;
1048 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1049 rcu_read_unlock();
1050 }
1051
1052 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1053 {
1054 MemTxAttrs attrs;
1055 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1056 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1057 if (phys != -1) {
1058 /* Locks grabbed by tb_invalidate_phys_addr */
1059 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1060 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1061 }
1062 }
1063 #endif
1064
1065 #ifndef CONFIG_USER_ONLY
1066 /* Add a watchpoint. */
1067 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags, CPUWatchpoint **watchpoint)
1069 {
1070 CPUWatchpoint *wp;
1071
1072 /* forbid ranges which are empty or run off the end of the address space */
1073 if (len == 0 || (addr + len - 1) < addr) {
1074 error_report("tried to set invalid watchpoint at %"
1075 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1076 return -EINVAL;
1077 }
1078 wp = g_malloc(sizeof(*wp));
1079
1080 wp->vaddr = addr;
1081 wp->len = len;
1082 wp->flags = flags;
1083
1084 /* keep all GDB-injected watchpoints in front */
1085 if (flags & BP_GDB) {
1086 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1087 } else {
1088 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1089 }
1090
1091 tlb_flush_page(cpu, addr);
1092
1093 if (watchpoint)
1094 *watchpoint = wp;
1095 return 0;
1096 }
1097
1098 /* Remove a specific watchpoint. */
1099 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1100 int flags)
1101 {
1102 CPUWatchpoint *wp;
1103
1104 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1105 if (addr == wp->vaddr && len == wp->len
1106 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1107 cpu_watchpoint_remove_by_ref(cpu, wp);
1108 return 0;
1109 }
1110 }
1111 return -ENOENT;
1112 }
1113
1114 /* Remove a specific watchpoint by reference. */
1115 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1116 {
1117 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1118
1119 tlb_flush_page(cpu, watchpoint->vaddr);
1120
1121 g_free(watchpoint);
1122 }
1123
1124 /* Remove all matching watchpoints. */
1125 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1126 {
1127 CPUWatchpoint *wp, *next;
1128
1129 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1130 if (wp->flags & mask) {
1131 cpu_watchpoint_remove_by_ref(cpu, wp);
1132 }
1133 }
1134 }
1135
1136 /* Return true if this watchpoint address matches the specified
1137 * access (ie the address range covered by the watchpoint overlaps
1138 * partially or completely with the address range covered by the
1139 * access).
1140 */
1141 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1142 vaddr addr,
1143 vaddr len)
1144 {
1145 /* We know the lengths are non-zero, but a little caution is
1146 * required to avoid errors in the case where the range ends
1147 * exactly at the top of the address space and so addr + len
1148 * wraps round to zero.
1149 */
1150 vaddr wpend = wp->vaddr + wp->len - 1;
1151 vaddr addrend = addr + len - 1;
1152
1153 return !(addr > wpend || wp->vaddr > addrend);
1154 }
1155 #endif /* !CONFIG_USER_ONLY */
1156
1157 /* Add a breakpoint. */
1158 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1159 CPUBreakpoint **breakpoint)
1160 {
1161 CPUBreakpoint *bp;
1162
1163 bp = g_malloc(sizeof(*bp));
1164
1165 bp->pc = pc;
1166 bp->flags = flags;
1167
1168 /* keep all GDB-injected breakpoints in front */
1169 if (flags & BP_GDB) {
1170 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1171 } else {
1172 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1173 }
1174
1175 breakpoint_invalidate(cpu, pc);
1176
1177 if (breakpoint) {
1178 *breakpoint = bp;
1179 }
1180 return 0;
1181 }
1182
1183 /* Remove a specific breakpoint. */
1184 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1185 {
1186 CPUBreakpoint *bp;
1187
1188 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1189 if (bp->pc == pc && bp->flags == flags) {
1190 cpu_breakpoint_remove_by_ref(cpu, bp);
1191 return 0;
1192 }
1193 }
1194 return -ENOENT;
1195 }
1196
1197 /* Remove a specific breakpoint by reference. */
1198 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1199 {
1200 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1201
1202 breakpoint_invalidate(cpu, breakpoint->pc);
1203
1204 g_free(breakpoint);
1205 }
1206
1207 /* Remove all matching breakpoints. */
1208 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1209 {
1210 CPUBreakpoint *bp, *next;
1211
1212 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1213 if (bp->flags & mask) {
1214 cpu_breakpoint_remove_by_ref(cpu, bp);
1215 }
1216 }
1217 }
1218
1219 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1220 CPU loop after each instruction */
1221 void cpu_single_step(CPUState *cpu, int enabled)
1222 {
1223 if (cpu->singlestep_enabled != enabled) {
1224 cpu->singlestep_enabled = enabled;
1225 if (kvm_enabled()) {
1226 kvm_update_guest_debug(cpu, 0);
1227 } else {
1228 /* must flush all the translated code to avoid inconsistencies */
1229 /* XXX: only flush what is necessary */
1230 tb_flush(cpu);
1231 }
1232 }
1233 }
1234
1235 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1236 {
1237 va_list ap;
1238 va_list ap2;
1239
1240 va_start(ap, fmt);
1241 va_copy(ap2, ap);
1242 fprintf(stderr, "qemu: fatal: ");
1243 vfprintf(stderr, fmt, ap);
1244 fprintf(stderr, "\n");
1245 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1246 if (qemu_log_separate()) {
1247 qemu_log_lock();
1248 qemu_log("qemu: fatal: ");
1249 qemu_log_vprintf(fmt, ap2);
1250 qemu_log("\n");
1251 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1252 qemu_log_flush();
1253 qemu_log_unlock();
1254 qemu_log_close();
1255 }
1256 va_end(ap2);
1257 va_end(ap);
1258 replay_finish();
1259 #if defined(CONFIG_USER_ONLY)
1260 {
1261 struct sigaction act;
1262 sigfillset(&act.sa_mask);
1263 act.sa_handler = SIG_DFL;
1264 act.sa_flags = 0;
1265 sigaction(SIGABRT, &act, NULL);
1266 }
1267 #endif
1268 abort();
1269 }
1270
1271 #if !defined(CONFIG_USER_ONLY)
1272 /* Called from RCU critical section */
1273 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1274 {
1275 RAMBlock *block;
1276
1277 block = atomic_rcu_read(&ram_list.mru_block);
1278 if (block && addr - block->offset < block->max_length) {
1279 return block;
1280 }
1281 RAMBLOCK_FOREACH(block) {
1282 if (addr - block->offset < block->max_length) {
1283 goto found;
1284 }
1285 }
1286
1287 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1288 abort();
1289
1290 found:
1291 /* It is safe to write mru_block outside the iothread lock. This
1292 * is what happens:
1293 *
1294 * mru_block = xxx
1295 * rcu_read_unlock()
1296 * xxx removed from list
1297 * rcu_read_lock()
1298 * read mru_block
1299 * mru_block = NULL;
1300 * call_rcu(reclaim_ramblock, xxx);
1301 * rcu_read_unlock()
1302 *
1303 * atomic_rcu_set is not needed here. The block was already published
1304 * when it was placed into the list. Here we're just making an extra
1305 * copy of the pointer.
1306 */
1307 ram_list.mru_block = block;
1308 return block;
1309 }
1310
1311 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1312 {
1313 CPUState *cpu;
1314 ram_addr_t start1;
1315 RAMBlock *block;
1316 ram_addr_t end;
1317
1318 assert(tcg_enabled());
1319 end = TARGET_PAGE_ALIGN(start + length);
1320 start &= TARGET_PAGE_MASK;
1321
1322 rcu_read_lock();
1323 block = qemu_get_ram_block(start);
1324 assert(block == qemu_get_ram_block(end - 1));
1325 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1326 CPU_FOREACH(cpu) {
1327 tlb_reset_dirty(cpu, start1, length);
1328 }
1329 rcu_read_unlock();
1330 }
1331
1332 /* Note: start and end must be within the same ram block. */
1333 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1334 ram_addr_t length,
1335 unsigned client)
1336 {
1337 DirtyMemoryBlocks *blocks;
1338 unsigned long end, page;
1339 bool dirty = false;
1340 RAMBlock *ramblock;
1341 uint64_t mr_offset, mr_size;
1342
1343 if (length == 0) {
1344 return false;
1345 }
1346
1347 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1348 page = start >> TARGET_PAGE_BITS;
1349
1350 rcu_read_lock();
1351
1352 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1353 ramblock = qemu_get_ram_block(start);
1354 /* Range sanity check on the ramblock */
1355 assert(start >= ramblock->offset &&
1356 start + length <= ramblock->offset + ramblock->used_length);
1357
1358 while (page < end) {
1359 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1360 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1361 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1362
1363 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1364 offset, num);
1365 page += num;
1366 }
1367
1368 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1369 mr_size = (end - page) << TARGET_PAGE_BITS;
1370 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1371
1372 rcu_read_unlock();
1373
1374 if (dirty && tcg_enabled()) {
1375 tlb_reset_dirty_range_all(start, length);
1376 }
1377
1378 return dirty;
1379 }
1380
1381 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1382 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1383 {
1384 DirtyMemoryBlocks *blocks;
1385 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1386 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1387 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1388 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1389 DirtyBitmapSnapshot *snap;
1390 unsigned long page, end, dest;
1391
1392 snap = g_malloc0(sizeof(*snap) +
1393 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1394 snap->start = first;
1395 snap->end = last;
1396
1397 page = first >> TARGET_PAGE_BITS;
1398 end = last >> TARGET_PAGE_BITS;
1399 dest = 0;
1400
1401 rcu_read_lock();
1402
1403 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1404
1405 while (page < end) {
1406 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1407 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1408 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1409
1410 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1411 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1412 offset >>= BITS_PER_LEVEL;
1413
1414 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1415 blocks->blocks[idx] + offset,
1416 num);
1417 page += num;
1418 dest += num >> BITS_PER_LEVEL;
1419 }
1420
1421 rcu_read_unlock();
1422
1423 if (tcg_enabled()) {
1424 tlb_reset_dirty_range_all(start, length);
1425 }
1426
1427 memory_region_clear_dirty_bitmap(mr, offset, length);
1428
1429 return snap;
1430 }
1431
1432 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1433 ram_addr_t start,
1434 ram_addr_t length)
1435 {
1436 unsigned long page, end;
1437
1438 assert(start >= snap->start);
1439 assert(start + length <= snap->end);
1440
1441 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1442 page = (start - snap->start) >> TARGET_PAGE_BITS;
1443
1444 while (page < end) {
1445 if (test_bit(page, snap->dirty)) {
1446 return true;
1447 }
1448 page++;
1449 }
1450 return false;
1451 }
1452
1453 /* Called from RCU critical section */
1454 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1455 MemoryRegionSection *section,
1456 target_ulong vaddr,
1457 hwaddr paddr, hwaddr xlat,
1458 int prot,
1459 target_ulong *address)
1460 {
1461 hwaddr iotlb;
1462 CPUWatchpoint *wp;
1463
1464 if (memory_region_is_ram(section->mr)) {
1465 /* Normal RAM. */
1466 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1467 if (!section->readonly) {
1468 iotlb |= PHYS_SECTION_NOTDIRTY;
1469 } else {
1470 iotlb |= PHYS_SECTION_ROM;
1471 }
1472 } else {
1473 AddressSpaceDispatch *d;
1474
1475 d = flatview_to_dispatch(section->fv);
1476 iotlb = section - d->map.sections;
1477 iotlb += xlat;
1478 }
1479
1480 /* Make accesses to pages with watchpoints go via the
1481 watchpoint trap routines. */
1482 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1483 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1484 /* Avoid trapping reads of pages with a write breakpoint. */
1485 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1486 iotlb = PHYS_SECTION_WATCH + paddr;
1487 *address |= TLB_MMIO;
1488 break;
1489 }
1490 }
1491 }
1492
1493 return iotlb;
1494 }
1495 #endif /* defined(CONFIG_USER_ONLY) */
1496
1497 #if !defined(CONFIG_USER_ONLY)
1498
1499 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1500 uint16_t section);
1501 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1502
1503 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1504 qemu_anon_ram_alloc;
1505
1506 /*
1507 * Set a custom physical guest memory alloator.
1508 * Accelerators with unusual needs may need this. Hopefully, we can
1509 * get rid of it eventually.
1510 */
1511 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1512 {
1513 phys_mem_alloc = alloc;
1514 }
1515
1516 static uint16_t phys_section_add(PhysPageMap *map,
1517 MemoryRegionSection *section)
1518 {
1519 /* The physical section number is ORed with a page-aligned
1520 * pointer to produce the iotlb entries. Thus it should
1521 * never overflow into the page-aligned value.
1522 */
1523 assert(map->sections_nb < TARGET_PAGE_SIZE);
1524
1525 if (map->sections_nb == map->sections_nb_alloc) {
1526 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1527 map->sections = g_renew(MemoryRegionSection, map->sections,
1528 map->sections_nb_alloc);
1529 }
1530 map->sections[map->sections_nb] = *section;
1531 memory_region_ref(section->mr);
1532 return map->sections_nb++;
1533 }
1534
1535 static void phys_section_destroy(MemoryRegion *mr)
1536 {
1537 bool have_sub_page = mr->subpage;
1538
1539 memory_region_unref(mr);
1540
1541 if (have_sub_page) {
1542 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1543 object_unref(OBJECT(&subpage->iomem));
1544 g_free(subpage);
1545 }
1546 }
1547
1548 static void phys_sections_free(PhysPageMap *map)
1549 {
1550 while (map->sections_nb > 0) {
1551 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1552 phys_section_destroy(section->mr);
1553 }
1554 g_free(map->sections);
1555 g_free(map->nodes);
1556 }
1557
1558 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1559 {
1560 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1561 subpage_t *subpage;
1562 hwaddr base = section->offset_within_address_space
1563 & TARGET_PAGE_MASK;
1564 MemoryRegionSection *existing = phys_page_find(d, base);
1565 MemoryRegionSection subsection = {
1566 .offset_within_address_space = base,
1567 .size = int128_make64(TARGET_PAGE_SIZE),
1568 };
1569 hwaddr start, end;
1570
1571 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1572
1573 if (!(existing->mr->subpage)) {
1574 subpage = subpage_init(fv, base);
1575 subsection.fv = fv;
1576 subsection.mr = &subpage->iomem;
1577 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1578 phys_section_add(&d->map, &subsection));
1579 } else {
1580 subpage = container_of(existing->mr, subpage_t, iomem);
1581 }
1582 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1583 end = start + int128_get64(section->size) - 1;
1584 subpage_register(subpage, start, end,
1585 phys_section_add(&d->map, section));
1586 }
1587
1588
1589 static void register_multipage(FlatView *fv,
1590 MemoryRegionSection *section)
1591 {
1592 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1593 hwaddr start_addr = section->offset_within_address_space;
1594 uint16_t section_index = phys_section_add(&d->map, section);
1595 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1596 TARGET_PAGE_BITS));
1597
1598 assert(num_pages);
1599 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1600 }
1601
1602 /*
1603 * The range in *section* may look like this:
1604 *
1605 * |s|PPPPPPP|s|
1606 *
1607 * where s stands for subpage and P for page.
1608 */
1609 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1610 {
1611 MemoryRegionSection remain = *section;
1612 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1613
1614 /* register first subpage */
1615 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1616 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1617 - remain.offset_within_address_space;
1618
1619 MemoryRegionSection now = remain;
1620 now.size = int128_min(int128_make64(left), now.size);
1621 register_subpage(fv, &now);
1622 if (int128_eq(remain.size, now.size)) {
1623 return;
1624 }
1625 remain.size = int128_sub(remain.size, now.size);
1626 remain.offset_within_address_space += int128_get64(now.size);
1627 remain.offset_within_region += int128_get64(now.size);
1628 }
1629
1630 /* register whole pages */
1631 if (int128_ge(remain.size, page_size)) {
1632 MemoryRegionSection now = remain;
1633 now.size = int128_and(now.size, int128_neg(page_size));
1634 register_multipage(fv, &now);
1635 if (int128_eq(remain.size, now.size)) {
1636 return;
1637 }
1638 remain.size = int128_sub(remain.size, now.size);
1639 remain.offset_within_address_space += int128_get64(now.size);
1640 remain.offset_within_region += int128_get64(now.size);
1641 }
1642
1643 /* register last subpage */
1644 register_subpage(fv, &remain);
1645 }
1646
1647 void qemu_flush_coalesced_mmio_buffer(void)
1648 {
1649 if (kvm_enabled())
1650 kvm_flush_coalesced_mmio_buffer();
1651 }
1652
1653 void qemu_mutex_lock_ramlist(void)
1654 {
1655 qemu_mutex_lock(&ram_list.mutex);
1656 }
1657
1658 void qemu_mutex_unlock_ramlist(void)
1659 {
1660 qemu_mutex_unlock(&ram_list.mutex);
1661 }
1662
1663 void ram_block_dump(Monitor *mon)
1664 {
1665 RAMBlock *block;
1666 char *psize;
1667
1668 rcu_read_lock();
1669 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1670 "Block Name", "PSize", "Offset", "Used", "Total");
1671 RAMBLOCK_FOREACH(block) {
1672 psize = size_to_str(block->page_size);
1673 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1674 " 0x%016" PRIx64 "\n", block->idstr, psize,
1675 (uint64_t)block->offset,
1676 (uint64_t)block->used_length,
1677 (uint64_t)block->max_length);
1678 g_free(psize);
1679 }
1680 rcu_read_unlock();
1681 }
1682
1683 #ifdef __linux__
1684 /*
1685 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1686 * may or may not name the same files / on the same filesystem now as
1687 * when we actually open and map them. Iterate over the file
1688 * descriptors instead, and use qemu_fd_getpagesize().
1689 */
1690 static int find_min_backend_pagesize(Object *obj, void *opaque)
1691 {
1692 long *hpsize_min = opaque;
1693
1694 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1695 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1696 long hpsize = host_memory_backend_pagesize(backend);
1697
1698 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1699 *hpsize_min = hpsize;
1700 }
1701 }
1702
1703 return 0;
1704 }
1705
1706 static int find_max_backend_pagesize(Object *obj, void *opaque)
1707 {
1708 long *hpsize_max = opaque;
1709
1710 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1711 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1712 long hpsize = host_memory_backend_pagesize(backend);
1713
1714 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1715 *hpsize_max = hpsize;
1716 }
1717 }
1718
1719 return 0;
1720 }
1721
1722 /*
1723 * TODO: We assume right now that all mapped host memory backends are
1724 * used as RAM, however some might be used for different purposes.
1725 */
1726 long qemu_minrampagesize(void)
1727 {
1728 long hpsize = LONG_MAX;
1729 long mainrampagesize;
1730 Object *memdev_root;
1731
1732 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1733
1734 /* it's possible we have memory-backend objects with
1735 * hugepage-backed RAM. these may get mapped into system
1736 * address space via -numa parameters or memory hotplug
1737 * hooks. we want to take these into account, but we
1738 * also want to make sure these supported hugepage
1739 * sizes are applicable across the entire range of memory
1740 * we may boot from, so we take the min across all
1741 * backends, and assume normal pages in cases where a
1742 * backend isn't backed by hugepages.
1743 */
1744 memdev_root = object_resolve_path("/objects", NULL);
1745 if (memdev_root) {
1746 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1747 }
1748 if (hpsize == LONG_MAX) {
1749 /* No additional memory regions found ==> Report main RAM page size */
1750 return mainrampagesize;
1751 }
1752
1753 /* If NUMA is disabled or the NUMA nodes are not backed with a
1754 * memory-backend, then there is at least one node using "normal" RAM,
1755 * so if its page size is smaller we have got to report that size instead.
1756 */
1757 if (hpsize > mainrampagesize &&
1758 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1759 static bool warned;
1760 if (!warned) {
1761 error_report("Huge page support disabled (n/a for main memory).");
1762 warned = true;
1763 }
1764 return mainrampagesize;
1765 }
1766
1767 return hpsize;
1768 }
1769
1770 long qemu_maxrampagesize(void)
1771 {
1772 long pagesize = qemu_mempath_getpagesize(mem_path);
1773 Object *memdev_root = object_resolve_path("/objects", NULL);
1774
1775 if (memdev_root) {
1776 object_child_foreach(memdev_root, find_max_backend_pagesize,
1777 &pagesize);
1778 }
1779 return pagesize;
1780 }
1781 #else
1782 long qemu_minrampagesize(void)
1783 {
1784 return getpagesize();
1785 }
1786 long qemu_maxrampagesize(void)
1787 {
1788 return getpagesize();
1789 }
1790 #endif
1791
1792 #ifdef CONFIG_POSIX
1793 static int64_t get_file_size(int fd)
1794 {
1795 int64_t size = lseek(fd, 0, SEEK_END);
1796 if (size < 0) {
1797 return -errno;
1798 }
1799 return size;
1800 }
1801
1802 static int file_ram_open(const char *path,
1803 const char *region_name,
1804 bool *created,
1805 Error **errp)
1806 {
1807 char *filename;
1808 char *sanitized_name;
1809 char *c;
1810 int fd = -1;
1811
1812 *created = false;
1813 for (;;) {
1814 fd = open(path, O_RDWR);
1815 if (fd >= 0) {
1816 /* @path names an existing file, use it */
1817 break;
1818 }
1819 if (errno == ENOENT) {
1820 /* @path names a file that doesn't exist, create it */
1821 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1822 if (fd >= 0) {
1823 *created = true;
1824 break;
1825 }
1826 } else if (errno == EISDIR) {
1827 /* @path names a directory, create a file there */
1828 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1829 sanitized_name = g_strdup(region_name);
1830 for (c = sanitized_name; *c != '\0'; c++) {
1831 if (*c == '/') {
1832 *c = '_';
1833 }
1834 }
1835
1836 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1837 sanitized_name);
1838 g_free(sanitized_name);
1839
1840 fd = mkstemp(filename);
1841 if (fd >= 0) {
1842 unlink(filename);
1843 g_free(filename);
1844 break;
1845 }
1846 g_free(filename);
1847 }
1848 if (errno != EEXIST && errno != EINTR) {
1849 error_setg_errno(errp, errno,
1850 "can't open backing store %s for guest RAM",
1851 path);
1852 return -1;
1853 }
1854 /*
1855 * Try again on EINTR and EEXIST. The latter happens when
1856 * something else creates the file between our two open().
1857 */
1858 }
1859
1860 return fd;
1861 }
1862
1863 static void *file_ram_alloc(RAMBlock *block,
1864 ram_addr_t memory,
1865 int fd,
1866 bool truncate,
1867 Error **errp)
1868 {
1869 MachineState *ms = MACHINE(qdev_get_machine());
1870 void *area;
1871
1872 block->page_size = qemu_fd_getpagesize(fd);
1873 if (block->mr->align % block->page_size) {
1874 error_setg(errp, "alignment 0x%" PRIx64
1875 " must be multiples of page size 0x%zx",
1876 block->mr->align, block->page_size);
1877 return NULL;
1878 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1879 error_setg(errp, "alignment 0x%" PRIx64
1880 " must be a power of two", block->mr->align);
1881 return NULL;
1882 }
1883 block->mr->align = MAX(block->page_size, block->mr->align);
1884 #if defined(__s390x__)
1885 if (kvm_enabled()) {
1886 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1887 }
1888 #endif
1889
1890 if (memory < block->page_size) {
1891 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1892 "or larger than page size 0x%zx",
1893 memory, block->page_size);
1894 return NULL;
1895 }
1896
1897 memory = ROUND_UP(memory, block->page_size);
1898
1899 /*
1900 * ftruncate is not supported by hugetlbfs in older
1901 * hosts, so don't bother bailing out on errors.
1902 * If anything goes wrong with it under other filesystems,
1903 * mmap will fail.
1904 *
1905 * Do not truncate the non-empty backend file to avoid corrupting
1906 * the existing data in the file. Disabling shrinking is not
1907 * enough. For example, the current vNVDIMM implementation stores
1908 * the guest NVDIMM labels at the end of the backend file. If the
1909 * backend file is later extended, QEMU will not be able to find
1910 * those labels. Therefore, extending the non-empty backend file
1911 * is disabled as well.
1912 */
1913 if (truncate && ftruncate(fd, memory)) {
1914 perror("ftruncate");
1915 }
1916
1917 area = qemu_ram_mmap(fd, memory, block->mr->align,
1918 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1919 if (area == MAP_FAILED) {
1920 error_setg_errno(errp, errno,
1921 "unable to map backing store for guest RAM");
1922 return NULL;
1923 }
1924
1925 if (mem_prealloc) {
1926 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1927 if (errp && *errp) {
1928 qemu_ram_munmap(fd, area, memory);
1929 return NULL;
1930 }
1931 }
1932
1933 block->fd = fd;
1934 return area;
1935 }
1936 #endif
1937
1938 /* Allocate space within the ram_addr_t space that governs the
1939 * dirty bitmaps.
1940 * Called with the ramlist lock held.
1941 */
1942 static ram_addr_t find_ram_offset(ram_addr_t size)
1943 {
1944 RAMBlock *block, *next_block;
1945 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1946
1947 assert(size != 0); /* it would hand out same offset multiple times */
1948
1949 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1950 return 0;
1951 }
1952
1953 RAMBLOCK_FOREACH(block) {
1954 ram_addr_t candidate, next = RAM_ADDR_MAX;
1955
1956 /* Align blocks to start on a 'long' in the bitmap
1957 * which makes the bitmap sync'ing take the fast path.
1958 */
1959 candidate = block->offset + block->max_length;
1960 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1961
1962 /* Search for the closest following block
1963 * and find the gap.
1964 */
1965 RAMBLOCK_FOREACH(next_block) {
1966 if (next_block->offset >= candidate) {
1967 next = MIN(next, next_block->offset);
1968 }
1969 }
1970
1971 /* If it fits remember our place and remember the size
1972 * of gap, but keep going so that we might find a smaller
1973 * gap to fill so avoiding fragmentation.
1974 */
1975 if (next - candidate >= size && next - candidate < mingap) {
1976 offset = candidate;
1977 mingap = next - candidate;
1978 }
1979
1980 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1981 }
1982
1983 if (offset == RAM_ADDR_MAX) {
1984 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1985 (uint64_t)size);
1986 abort();
1987 }
1988
1989 trace_find_ram_offset(size, offset);
1990
1991 return offset;
1992 }
1993
1994 static unsigned long last_ram_page(void)
1995 {
1996 RAMBlock *block;
1997 ram_addr_t last = 0;
1998
1999 rcu_read_lock();
2000 RAMBLOCK_FOREACH(block) {
2001 last = MAX(last, block->offset + block->max_length);
2002 }
2003 rcu_read_unlock();
2004 return last >> TARGET_PAGE_BITS;
2005 }
2006
2007 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2008 {
2009 int ret;
2010
2011 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2012 if (!machine_dump_guest_core(current_machine)) {
2013 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2014 if (ret) {
2015 perror("qemu_madvise");
2016 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2017 "but dump_guest_core=off specified\n");
2018 }
2019 }
2020 }
2021
2022 const char *qemu_ram_get_idstr(RAMBlock *rb)
2023 {
2024 return rb->idstr;
2025 }
2026
2027 void *qemu_ram_get_host_addr(RAMBlock *rb)
2028 {
2029 return rb->host;
2030 }
2031
2032 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2033 {
2034 return rb->offset;
2035 }
2036
2037 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2038 {
2039 return rb->used_length;
2040 }
2041
2042 bool qemu_ram_is_shared(RAMBlock *rb)
2043 {
2044 return rb->flags & RAM_SHARED;
2045 }
2046
2047 /* Note: Only set at the start of postcopy */
2048 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2049 {
2050 return rb->flags & RAM_UF_ZEROPAGE;
2051 }
2052
2053 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2054 {
2055 rb->flags |= RAM_UF_ZEROPAGE;
2056 }
2057
2058 bool qemu_ram_is_migratable(RAMBlock *rb)
2059 {
2060 return rb->flags & RAM_MIGRATABLE;
2061 }
2062
2063 void qemu_ram_set_migratable(RAMBlock *rb)
2064 {
2065 rb->flags |= RAM_MIGRATABLE;
2066 }
2067
2068 void qemu_ram_unset_migratable(RAMBlock *rb)
2069 {
2070 rb->flags &= ~RAM_MIGRATABLE;
2071 }
2072
2073 /* Called with iothread lock held. */
2074 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2075 {
2076 RAMBlock *block;
2077
2078 assert(new_block);
2079 assert(!new_block->idstr[0]);
2080
2081 if (dev) {
2082 char *id = qdev_get_dev_path(dev);
2083 if (id) {
2084 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2085 g_free(id);
2086 }
2087 }
2088 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2089
2090 rcu_read_lock();
2091 RAMBLOCK_FOREACH(block) {
2092 if (block != new_block &&
2093 !strcmp(block->idstr, new_block->idstr)) {
2094 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2095 new_block->idstr);
2096 abort();
2097 }
2098 }
2099 rcu_read_unlock();
2100 }
2101
2102 /* Called with iothread lock held. */
2103 void qemu_ram_unset_idstr(RAMBlock *block)
2104 {
2105 /* FIXME: arch_init.c assumes that this is not called throughout
2106 * migration. Ignore the problem since hot-unplug during migration
2107 * does not work anyway.
2108 */
2109 if (block) {
2110 memset(block->idstr, 0, sizeof(block->idstr));
2111 }
2112 }
2113
2114 size_t qemu_ram_pagesize(RAMBlock *rb)
2115 {
2116 return rb->page_size;
2117 }
2118
2119 /* Returns the largest size of page in use */
2120 size_t qemu_ram_pagesize_largest(void)
2121 {
2122 RAMBlock *block;
2123 size_t largest = 0;
2124
2125 RAMBLOCK_FOREACH(block) {
2126 largest = MAX(largest, qemu_ram_pagesize(block));
2127 }
2128
2129 return largest;
2130 }
2131
2132 static int memory_try_enable_merging(void *addr, size_t len)
2133 {
2134 if (!machine_mem_merge(current_machine)) {
2135 /* disabled by the user */
2136 return 0;
2137 }
2138
2139 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2140 }
2141
2142 /* Only legal before guest might have detected the memory size: e.g. on
2143 * incoming migration, or right after reset.
2144 *
2145 * As memory core doesn't know how is memory accessed, it is up to
2146 * resize callback to update device state and/or add assertions to detect
2147 * misuse, if necessary.
2148 */
2149 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2150 {
2151 assert(block);
2152
2153 newsize = HOST_PAGE_ALIGN(newsize);
2154
2155 if (block->used_length == newsize) {
2156 return 0;
2157 }
2158
2159 if (!(block->flags & RAM_RESIZEABLE)) {
2160 error_setg_errno(errp, EINVAL,
2161 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2162 " in != 0x" RAM_ADDR_FMT, block->idstr,
2163 newsize, block->used_length);
2164 return -EINVAL;
2165 }
2166
2167 if (block->max_length < newsize) {
2168 error_setg_errno(errp, EINVAL,
2169 "Length too large: %s: 0x" RAM_ADDR_FMT
2170 " > 0x" RAM_ADDR_FMT, block->idstr,
2171 newsize, block->max_length);
2172 return -EINVAL;
2173 }
2174
2175 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2176 block->used_length = newsize;
2177 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2178 DIRTY_CLIENTS_ALL);
2179 memory_region_set_size(block->mr, newsize);
2180 if (block->resized) {
2181 block->resized(block->idstr, newsize, block->host);
2182 }
2183 return 0;
2184 }
2185
2186 /* Called with ram_list.mutex held */
2187 static void dirty_memory_extend(ram_addr_t old_ram_size,
2188 ram_addr_t new_ram_size)
2189 {
2190 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2191 DIRTY_MEMORY_BLOCK_SIZE);
2192 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2193 DIRTY_MEMORY_BLOCK_SIZE);
2194 int i;
2195
2196 /* Only need to extend if block count increased */
2197 if (new_num_blocks <= old_num_blocks) {
2198 return;
2199 }
2200
2201 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2202 DirtyMemoryBlocks *old_blocks;
2203 DirtyMemoryBlocks *new_blocks;
2204 int j;
2205
2206 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2207 new_blocks = g_malloc(sizeof(*new_blocks) +
2208 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2209
2210 if (old_num_blocks) {
2211 memcpy(new_blocks->blocks, old_blocks->blocks,
2212 old_num_blocks * sizeof(old_blocks->blocks[0]));
2213 }
2214
2215 for (j = old_num_blocks; j < new_num_blocks; j++) {
2216 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2217 }
2218
2219 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2220
2221 if (old_blocks) {
2222 g_free_rcu(old_blocks, rcu);
2223 }
2224 }
2225 }
2226
2227 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2228 {
2229 RAMBlock *block;
2230 RAMBlock *last_block = NULL;
2231 ram_addr_t old_ram_size, new_ram_size;
2232 Error *err = NULL;
2233
2234 old_ram_size = last_ram_page();
2235
2236 qemu_mutex_lock_ramlist();
2237 new_block->offset = find_ram_offset(new_block->max_length);
2238
2239 if (!new_block->host) {
2240 if (xen_enabled()) {
2241 xen_ram_alloc(new_block->offset, new_block->max_length,
2242 new_block->mr, &err);
2243 if (err) {
2244 error_propagate(errp, err);
2245 qemu_mutex_unlock_ramlist();
2246 return;
2247 }
2248 } else {
2249 new_block->host = phys_mem_alloc(new_block->max_length,
2250 &new_block->mr->align, shared);
2251 if (!new_block->host) {
2252 error_setg_errno(errp, errno,
2253 "cannot set up guest memory '%s'",
2254 memory_region_name(new_block->mr));
2255 qemu_mutex_unlock_ramlist();
2256 return;
2257 }
2258 memory_try_enable_merging(new_block->host, new_block->max_length);
2259 }
2260 }
2261
2262 new_ram_size = MAX(old_ram_size,
2263 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2264 if (new_ram_size > old_ram_size) {
2265 dirty_memory_extend(old_ram_size, new_ram_size);
2266 }
2267 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2268 * QLIST (which has an RCU-friendly variant) does not have insertion at
2269 * tail, so save the last element in last_block.
2270 */
2271 RAMBLOCK_FOREACH(block) {
2272 last_block = block;
2273 if (block->max_length < new_block->max_length) {
2274 break;
2275 }
2276 }
2277 if (block) {
2278 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2279 } else if (last_block) {
2280 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2281 } else { /* list is empty */
2282 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2283 }
2284 ram_list.mru_block = NULL;
2285
2286 /* Write list before version */
2287 smp_wmb();
2288 ram_list.version++;
2289 qemu_mutex_unlock_ramlist();
2290
2291 cpu_physical_memory_set_dirty_range(new_block->offset,
2292 new_block->used_length,
2293 DIRTY_CLIENTS_ALL);
2294
2295 if (new_block->host) {
2296 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2297 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2298 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2299 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2300 ram_block_notify_add(new_block->host, new_block->max_length);
2301 }
2302 }
2303
2304 #ifdef CONFIG_POSIX
2305 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2306 uint32_t ram_flags, int fd,
2307 Error **errp)
2308 {
2309 RAMBlock *new_block;
2310 Error *local_err = NULL;
2311 int64_t file_size;
2312
2313 /* Just support these ram flags by now. */
2314 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2315
2316 if (xen_enabled()) {
2317 error_setg(errp, "-mem-path not supported with Xen");
2318 return NULL;
2319 }
2320
2321 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2322 error_setg(errp,
2323 "host lacks kvm mmu notifiers, -mem-path unsupported");
2324 return NULL;
2325 }
2326
2327 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2328 /*
2329 * file_ram_alloc() needs to allocate just like
2330 * phys_mem_alloc, but we haven't bothered to provide
2331 * a hook there.
2332 */
2333 error_setg(errp,
2334 "-mem-path not supported with this accelerator");
2335 return NULL;
2336 }
2337
2338 size = HOST_PAGE_ALIGN(size);
2339 file_size = get_file_size(fd);
2340 if (file_size > 0 && file_size < size) {
2341 error_setg(errp, "backing store %s size 0x%" PRIx64
2342 " does not match 'size' option 0x" RAM_ADDR_FMT,
2343 mem_path, file_size, size);
2344 return NULL;
2345 }
2346
2347 new_block = g_malloc0(sizeof(*new_block));
2348 new_block->mr = mr;
2349 new_block->used_length = size;
2350 new_block->max_length = size;
2351 new_block->flags = ram_flags;
2352 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2353 if (!new_block->host) {
2354 g_free(new_block);
2355 return NULL;
2356 }
2357
2358 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2359 if (local_err) {
2360 g_free(new_block);
2361 error_propagate(errp, local_err);
2362 return NULL;
2363 }
2364 return new_block;
2365
2366 }
2367
2368
2369 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2370 uint32_t ram_flags, const char *mem_path,
2371 Error **errp)
2372 {
2373 int fd;
2374 bool created;
2375 RAMBlock *block;
2376
2377 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2378 if (fd < 0) {
2379 return NULL;
2380 }
2381
2382 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2383 if (!block) {
2384 if (created) {
2385 unlink(mem_path);
2386 }
2387 close(fd);
2388 return NULL;
2389 }
2390
2391 return block;
2392 }
2393 #endif
2394
2395 static
2396 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2397 void (*resized)(const char*,
2398 uint64_t length,
2399 void *host),
2400 void *host, bool resizeable, bool share,
2401 MemoryRegion *mr, Error **errp)
2402 {
2403 RAMBlock *new_block;
2404 Error *local_err = NULL;
2405
2406 size = HOST_PAGE_ALIGN(size);
2407 max_size = HOST_PAGE_ALIGN(max_size);
2408 new_block = g_malloc0(sizeof(*new_block));
2409 new_block->mr = mr;
2410 new_block->resized = resized;
2411 new_block->used_length = size;
2412 new_block->max_length = max_size;
2413 assert(max_size >= size);
2414 new_block->fd = -1;
2415 new_block->page_size = getpagesize();
2416 new_block->host = host;
2417 if (host) {
2418 new_block->flags |= RAM_PREALLOC;
2419 }
2420 if (resizeable) {
2421 new_block->flags |= RAM_RESIZEABLE;
2422 }
2423 ram_block_add(new_block, &local_err, share);
2424 if (local_err) {
2425 g_free(new_block);
2426 error_propagate(errp, local_err);
2427 return NULL;
2428 }
2429 return new_block;
2430 }
2431
2432 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2433 MemoryRegion *mr, Error **errp)
2434 {
2435 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2436 false, mr, errp);
2437 }
2438
2439 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2440 MemoryRegion *mr, Error **errp)
2441 {
2442 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2443 share, mr, errp);
2444 }
2445
2446 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2447 void (*resized)(const char*,
2448 uint64_t length,
2449 void *host),
2450 MemoryRegion *mr, Error **errp)
2451 {
2452 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2453 false, mr, errp);
2454 }
2455
2456 static void reclaim_ramblock(RAMBlock *block)
2457 {
2458 if (block->flags & RAM_PREALLOC) {
2459 ;
2460 } else if (xen_enabled()) {
2461 xen_invalidate_map_cache_entry(block->host);
2462 #ifndef _WIN32
2463 } else if (block->fd >= 0) {
2464 qemu_ram_munmap(block->fd, block->host, block->max_length);
2465 close(block->fd);
2466 #endif
2467 } else {
2468 qemu_anon_ram_free(block->host, block->max_length);
2469 }
2470 g_free(block);
2471 }
2472
2473 void qemu_ram_free(RAMBlock *block)
2474 {
2475 if (!block) {
2476 return;
2477 }
2478
2479 if (block->host) {
2480 ram_block_notify_remove(block->host, block->max_length);
2481 }
2482
2483 qemu_mutex_lock_ramlist();
2484 QLIST_REMOVE_RCU(block, next);
2485 ram_list.mru_block = NULL;
2486 /* Write list before version */
2487 smp_wmb();
2488 ram_list.version++;
2489 call_rcu(block, reclaim_ramblock, rcu);
2490 qemu_mutex_unlock_ramlist();
2491 }
2492
2493 #ifndef _WIN32
2494 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2495 {
2496 RAMBlock *block;
2497 ram_addr_t offset;
2498 int flags;
2499 void *area, *vaddr;
2500
2501 RAMBLOCK_FOREACH(block) {
2502 offset = addr - block->offset;
2503 if (offset < block->max_length) {
2504 vaddr = ramblock_ptr(block, offset);
2505 if (block->flags & RAM_PREALLOC) {
2506 ;
2507 } else if (xen_enabled()) {
2508 abort();
2509 } else {
2510 flags = MAP_FIXED;
2511 if (block->fd >= 0) {
2512 flags |= (block->flags & RAM_SHARED ?
2513 MAP_SHARED : MAP_PRIVATE);
2514 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2515 flags, block->fd, offset);
2516 } else {
2517 /*
2518 * Remap needs to match alloc. Accelerators that
2519 * set phys_mem_alloc never remap. If they did,
2520 * we'd need a remap hook here.
2521 */
2522 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2523
2524 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2525 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2526 flags, -1, 0);
2527 }
2528 if (area != vaddr) {
2529 error_report("Could not remap addr: "
2530 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2531 length, addr);
2532 exit(1);
2533 }
2534 memory_try_enable_merging(vaddr, length);
2535 qemu_ram_setup_dump(vaddr, length);
2536 }
2537 }
2538 }
2539 }
2540 #endif /* !_WIN32 */
2541
2542 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2543 * This should not be used for general purpose DMA. Use address_space_map
2544 * or address_space_rw instead. For local memory (e.g. video ram) that the
2545 * device owns, use memory_region_get_ram_ptr.
2546 *
2547 * Called within RCU critical section.
2548 */
2549 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2550 {
2551 RAMBlock *block = ram_block;
2552
2553 if (block == NULL) {
2554 block = qemu_get_ram_block(addr);
2555 addr -= block->offset;
2556 }
2557
2558 if (xen_enabled() && block->host == NULL) {
2559 /* We need to check if the requested address is in the RAM
2560 * because we don't want to map the entire memory in QEMU.
2561 * In that case just map until the end of the page.
2562 */
2563 if (block->offset == 0) {
2564 return xen_map_cache(addr, 0, 0, false);
2565 }
2566
2567 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2568 }
2569 return ramblock_ptr(block, addr);
2570 }
2571
2572 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2573 * but takes a size argument.
2574 *
2575 * Called within RCU critical section.
2576 */
2577 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2578 hwaddr *size, bool lock)
2579 {
2580 RAMBlock *block = ram_block;
2581 if (*size == 0) {
2582 return NULL;
2583 }
2584
2585 if (block == NULL) {
2586 block = qemu_get_ram_block(addr);
2587 addr -= block->offset;
2588 }
2589 *size = MIN(*size, block->max_length - addr);
2590
2591 if (xen_enabled() && block->host == NULL) {
2592 /* We need to check if the requested address is in the RAM
2593 * because we don't want to map the entire memory in QEMU.
2594 * In that case just map the requested area.
2595 */
2596 if (block->offset == 0) {
2597 return xen_map_cache(addr, *size, lock, lock);
2598 }
2599
2600 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2601 }
2602
2603 return ramblock_ptr(block, addr);
2604 }
2605
2606 /* Return the offset of a hostpointer within a ramblock */
2607 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2608 {
2609 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2610 assert((uintptr_t)host >= (uintptr_t)rb->host);
2611 assert(res < rb->max_length);
2612
2613 return res;
2614 }
2615
2616 /*
2617 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2618 * in that RAMBlock.
2619 *
2620 * ptr: Host pointer to look up
2621 * round_offset: If true round the result offset down to a page boundary
2622 * *ram_addr: set to result ram_addr
2623 * *offset: set to result offset within the RAMBlock
2624 *
2625 * Returns: RAMBlock (or NULL if not found)
2626 *
2627 * By the time this function returns, the returned pointer is not protected
2628 * by RCU anymore. If the caller is not within an RCU critical section and
2629 * does not hold the iothread lock, it must have other means of protecting the
2630 * pointer, such as a reference to the region that includes the incoming
2631 * ram_addr_t.
2632 */
2633 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2634 ram_addr_t *offset)
2635 {
2636 RAMBlock *block;
2637 uint8_t *host = ptr;
2638
2639 if (xen_enabled()) {
2640 ram_addr_t ram_addr;
2641 rcu_read_lock();
2642 ram_addr = xen_ram_addr_from_mapcache(ptr);
2643 block = qemu_get_ram_block(ram_addr);
2644 if (block) {
2645 *offset = ram_addr - block->offset;
2646 }
2647 rcu_read_unlock();
2648 return block;
2649 }
2650
2651 rcu_read_lock();
2652 block = atomic_rcu_read(&ram_list.mru_block);
2653 if (block && block->host && host - block->host < block->max_length) {
2654 goto found;
2655 }
2656
2657 RAMBLOCK_FOREACH(block) {
2658 /* This case append when the block is not mapped. */
2659 if (block->host == NULL) {
2660 continue;
2661 }
2662 if (host - block->host < block->max_length) {
2663 goto found;
2664 }
2665 }
2666
2667 rcu_read_unlock();
2668 return NULL;
2669
2670 found:
2671 *offset = (host - block->host);
2672 if (round_offset) {
2673 *offset &= TARGET_PAGE_MASK;
2674 }
2675 rcu_read_unlock();
2676 return block;
2677 }
2678
2679 /*
2680 * Finds the named RAMBlock
2681 *
2682 * name: The name of RAMBlock to find
2683 *
2684 * Returns: RAMBlock (or NULL if not found)
2685 */
2686 RAMBlock *qemu_ram_block_by_name(const char *name)
2687 {
2688 RAMBlock *block;
2689
2690 RAMBLOCK_FOREACH(block) {
2691 if (!strcmp(name, block->idstr)) {
2692 return block;
2693 }
2694 }
2695
2696 return NULL;
2697 }
2698
2699 /* Some of the softmmu routines need to translate from a host pointer
2700 (typically a TLB entry) back to a ram offset. */
2701 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2702 {
2703 RAMBlock *block;
2704 ram_addr_t offset;
2705
2706 block = qemu_ram_block_from_host(ptr, false, &offset);
2707 if (!block) {
2708 return RAM_ADDR_INVALID;
2709 }
2710
2711 return block->offset + offset;
2712 }
2713
2714 /* Called within RCU critical section. */
2715 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2716 CPUState *cpu,
2717 vaddr mem_vaddr,
2718 ram_addr_t ram_addr,
2719 unsigned size)
2720 {
2721 ndi->cpu = cpu;
2722 ndi->ram_addr = ram_addr;
2723 ndi->mem_vaddr = mem_vaddr;
2724 ndi->size = size;
2725 ndi->pages = NULL;
2726
2727 assert(tcg_enabled());
2728 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2729 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2730 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2731 }
2732 }
2733
2734 /* Called within RCU critical section. */
2735 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2736 {
2737 if (ndi->pages) {
2738 assert(tcg_enabled());
2739 page_collection_unlock(ndi->pages);
2740 ndi->pages = NULL;
2741 }
2742
2743 /* Set both VGA and migration bits for simplicity and to remove
2744 * the notdirty callback faster.
2745 */
2746 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2747 DIRTY_CLIENTS_NOCODE);
2748 /* we remove the notdirty callback only if the code has been
2749 flushed */
2750 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2751 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2752 }
2753 }
2754
2755 /* Called within RCU critical section. */
2756 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2757 uint64_t val, unsigned size)
2758 {
2759 NotDirtyInfo ndi;
2760
2761 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2762 ram_addr, size);
2763
2764 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2765 memory_notdirty_write_complete(&ndi);
2766 }
2767
2768 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2769 unsigned size, bool is_write,
2770 MemTxAttrs attrs)
2771 {
2772 return is_write;
2773 }
2774
2775 static const MemoryRegionOps notdirty_mem_ops = {
2776 .write = notdirty_mem_write,
2777 .valid.accepts = notdirty_mem_accepts,
2778 .endianness = DEVICE_NATIVE_ENDIAN,
2779 .valid = {
2780 .min_access_size = 1,
2781 .max_access_size = 8,
2782 .unaligned = false,
2783 },
2784 .impl = {
2785 .min_access_size = 1,
2786 .max_access_size = 8,
2787 .unaligned = false,
2788 },
2789 };
2790
2791 /* Generate a debug exception if a watchpoint has been hit. */
2792 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2793 {
2794 CPUState *cpu = current_cpu;
2795 CPUClass *cc = CPU_GET_CLASS(cpu);
2796 target_ulong vaddr;
2797 CPUWatchpoint *wp;
2798
2799 assert(tcg_enabled());
2800 if (cpu->watchpoint_hit) {
2801 /* We re-entered the check after replacing the TB. Now raise
2802 * the debug interrupt so that is will trigger after the
2803 * current instruction. */
2804 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2805 return;
2806 }
2807 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2808 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2809 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2810 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2811 && (wp->flags & flags)) {
2812 if (flags == BP_MEM_READ) {
2813 wp->flags |= BP_WATCHPOINT_HIT_READ;
2814 } else {
2815 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2816 }
2817 wp->hitaddr = vaddr;
2818 wp->hitattrs = attrs;
2819 if (!cpu->watchpoint_hit) {
2820 if (wp->flags & BP_CPU &&
2821 !cc->debug_check_watchpoint(cpu, wp)) {
2822 wp->flags &= ~BP_WATCHPOINT_HIT;
2823 continue;
2824 }
2825 cpu->watchpoint_hit = wp;
2826
2827 mmap_lock();
2828 tb_check_watchpoint(cpu);
2829 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2830 cpu->exception_index = EXCP_DEBUG;
2831 mmap_unlock();
2832 cpu_loop_exit(cpu);
2833 } else {
2834 /* Force execution of one insn next time. */
2835 cpu->cflags_next_tb = 1 | curr_cflags();
2836 mmap_unlock();
2837 cpu_loop_exit_noexc(cpu);
2838 }
2839 }
2840 } else {
2841 wp->flags &= ~BP_WATCHPOINT_HIT;
2842 }
2843 }
2844 }
2845
2846 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2847 so these check for a hit then pass through to the normal out-of-line
2848 phys routines. */
2849 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2850 unsigned size, MemTxAttrs attrs)
2851 {
2852 MemTxResult res;
2853 uint64_t data;
2854 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2855 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2856
2857 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2858 switch (size) {
2859 case 1:
2860 data = address_space_ldub(as, addr, attrs, &res);
2861 break;
2862 case 2:
2863 data = address_space_lduw(as, addr, attrs, &res);
2864 break;
2865 case 4:
2866 data = address_space_ldl(as, addr, attrs, &res);
2867 break;
2868 case 8:
2869 data = address_space_ldq(as, addr, attrs, &res);
2870 break;
2871 default: abort();
2872 }
2873 *pdata = data;
2874 return res;
2875 }
2876
2877 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2878 uint64_t val, unsigned size,
2879 MemTxAttrs attrs)
2880 {
2881 MemTxResult res;
2882 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2883 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2884
2885 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2886 switch (size) {
2887 case 1:
2888 address_space_stb(as, addr, val, attrs, &res);
2889 break;
2890 case 2:
2891 address_space_stw(as, addr, val, attrs, &res);
2892 break;
2893 case 4:
2894 address_space_stl(as, addr, val, attrs, &res);
2895 break;
2896 case 8:
2897 address_space_stq(as, addr, val, attrs, &res);
2898 break;
2899 default: abort();
2900 }
2901 return res;
2902 }
2903
2904 static const MemoryRegionOps watch_mem_ops = {
2905 .read_with_attrs = watch_mem_read,
2906 .write_with_attrs = watch_mem_write,
2907 .endianness = DEVICE_NATIVE_ENDIAN,
2908 .valid = {
2909 .min_access_size = 1,
2910 .max_access_size = 8,
2911 .unaligned = false,
2912 },
2913 .impl = {
2914 .min_access_size = 1,
2915 .max_access_size = 8,
2916 .unaligned = false,
2917 },
2918 };
2919
2920 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2921 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2922 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2923 const uint8_t *buf, hwaddr len);
2924 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2925 bool is_write, MemTxAttrs attrs);
2926
2927 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2928 unsigned len, MemTxAttrs attrs)
2929 {
2930 subpage_t *subpage = opaque;
2931 uint8_t buf[8];
2932 MemTxResult res;
2933
2934 #if defined(DEBUG_SUBPAGE)
2935 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2936 subpage, len, addr);
2937 #endif
2938 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2939 if (res) {
2940 return res;
2941 }
2942 *data = ldn_p(buf, len);
2943 return MEMTX_OK;
2944 }
2945
2946 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2947 uint64_t value, unsigned len, MemTxAttrs attrs)
2948 {
2949 subpage_t *subpage = opaque;
2950 uint8_t buf[8];
2951
2952 #if defined(DEBUG_SUBPAGE)
2953 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2954 " value %"PRIx64"\n",
2955 __func__, subpage, len, addr, value);
2956 #endif
2957 stn_p(buf, len, value);
2958 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2959 }
2960
2961 static bool subpage_accepts(void *opaque, hwaddr addr,
2962 unsigned len, bool is_write,
2963 MemTxAttrs attrs)
2964 {
2965 subpage_t *subpage = opaque;
2966 #if defined(DEBUG_SUBPAGE)
2967 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2968 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2969 #endif
2970
2971 return flatview_access_valid(subpage->fv, addr + subpage->base,
2972 len, is_write, attrs);
2973 }
2974
2975 static const MemoryRegionOps subpage_ops = {
2976 .read_with_attrs = subpage_read,
2977 .write_with_attrs = subpage_write,
2978 .impl.min_access_size = 1,
2979 .impl.max_access_size = 8,
2980 .valid.min_access_size = 1,
2981 .valid.max_access_size = 8,
2982 .valid.accepts = subpage_accepts,
2983 .endianness = DEVICE_NATIVE_ENDIAN,
2984 };
2985
2986 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2987 uint16_t section)
2988 {
2989 int idx, eidx;
2990
2991 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2992 return -1;
2993 idx = SUBPAGE_IDX(start);
2994 eidx = SUBPAGE_IDX(end);
2995 #if defined(DEBUG_SUBPAGE)
2996 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2997 __func__, mmio, start, end, idx, eidx, section);
2998 #endif
2999 for (; idx <= eidx; idx++) {
3000 mmio->sub_section[idx] = section;
3001 }
3002
3003 return 0;
3004 }
3005
3006 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3007 {
3008 subpage_t *mmio;
3009
3010 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3011 mmio->fv = fv;
3012 mmio->base = base;
3013 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3014 NULL, TARGET_PAGE_SIZE);
3015 mmio->iomem.subpage = true;
3016 #if defined(DEBUG_SUBPAGE)
3017 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3018 mmio, base, TARGET_PAGE_SIZE);
3019 #endif
3020 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3021
3022 return mmio;
3023 }
3024
3025 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3026 {
3027 assert(fv);
3028 MemoryRegionSection section = {
3029 .fv = fv,
3030 .mr = mr,
3031 .offset_within_address_space = 0,
3032 .offset_within_region = 0,
3033 .size = int128_2_64(),
3034 };
3035
3036 return phys_section_add(map, &section);
3037 }
3038
3039 static void readonly_mem_write(void *opaque, hwaddr addr,
3040 uint64_t val, unsigned size)
3041 {
3042 /* Ignore any write to ROM. */
3043 }
3044
3045 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3046 unsigned size, bool is_write,
3047 MemTxAttrs attrs)
3048 {
3049 return is_write;
3050 }
3051
3052 /* This will only be used for writes, because reads are special cased
3053 * to directly access the underlying host ram.
3054 */
3055 static const MemoryRegionOps readonly_mem_ops = {
3056 .write = readonly_mem_write,
3057 .valid.accepts = readonly_mem_accepts,
3058 .endianness = DEVICE_NATIVE_ENDIAN,
3059 .valid = {
3060 .min_access_size = 1,
3061 .max_access_size = 8,
3062 .unaligned = false,
3063 },
3064 .impl = {
3065 .min_access_size = 1,
3066 .max_access_size = 8,
3067 .unaligned = false,
3068 },
3069 };
3070
3071 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3072 hwaddr index, MemTxAttrs attrs)
3073 {
3074 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3075 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3076 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3077 MemoryRegionSection *sections = d->map.sections;
3078
3079 return &sections[index & ~TARGET_PAGE_MASK];
3080 }
3081
3082 static void io_mem_init(void)
3083 {
3084 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3085 NULL, NULL, UINT64_MAX);
3086 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3087 NULL, UINT64_MAX);
3088
3089 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3090 * which can be called without the iothread mutex.
3091 */
3092 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3093 NULL, UINT64_MAX);
3094 memory_region_clear_global_locking(&io_mem_notdirty);
3095
3096 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3097 NULL, UINT64_MAX);
3098 }
3099
3100 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3101 {
3102 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3103 uint16_t n;
3104
3105 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3106 assert(n == PHYS_SECTION_UNASSIGNED);
3107 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3108 assert(n == PHYS_SECTION_NOTDIRTY);
3109 n = dummy_section(&d->map, fv, &io_mem_rom);
3110 assert(n == PHYS_SECTION_ROM);
3111 n = dummy_section(&d->map, fv, &io_mem_watch);
3112 assert(n == PHYS_SECTION_WATCH);
3113
3114 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3115
3116 return d;
3117 }
3118
3119 void address_space_dispatch_free(AddressSpaceDispatch *d)
3120 {
3121 phys_sections_free(&d->map);
3122 g_free(d);
3123 }
3124
3125 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
3126 {
3127 }
3128
3129 static void tcg_log_global_after_sync(MemoryListener *listener)
3130 {
3131 CPUAddressSpace *cpuas;
3132
3133 /* Wait for the CPU to end the current TB. This avoids the following
3134 * incorrect race:
3135 *
3136 * vCPU migration
3137 * ---------------------- -------------------------
3138 * TLB check -> slow path
3139 * notdirty_mem_write
3140 * write to RAM
3141 * mark dirty
3142 * clear dirty flag
3143 * TLB check -> fast path
3144 * read memory
3145 * write to RAM
3146 *
3147 * by pushing the migration thread's memory read after the vCPU thread has
3148 * written the memory.
3149 */
3150 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3151 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3152 }
3153
3154 static void tcg_commit(MemoryListener *listener)
3155 {
3156 CPUAddressSpace *cpuas;
3157 AddressSpaceDispatch *d;
3158
3159 assert(tcg_enabled());
3160 /* since each CPU stores ram addresses in its TLB cache, we must
3161 reset the modified entries */
3162 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3163 cpu_reloading_memory_map();
3164 /* The CPU and TLB are protected by the iothread lock.
3165 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3166 * may have split the RCU critical section.
3167 */
3168 d = address_space_to_dispatch(cpuas->as);
3169 atomic_rcu_set(&cpuas->memory_dispatch, d);
3170 tlb_flush(cpuas->cpu);
3171 }
3172
3173 static void memory_map_init(void)
3174 {
3175 system_memory = g_malloc(sizeof(*system_memory));
3176
3177 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3178 address_space_init(&address_space_memory, system_memory, "memory");
3179
3180 system_io = g_malloc(sizeof(*system_io));
3181 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3182 65536);
3183 address_space_init(&address_space_io, system_io, "I/O");
3184 }
3185
3186 MemoryRegion *get_system_memory(void)
3187 {
3188 return system_memory;
3189 }
3190
3191 MemoryRegion *get_system_io(void)
3192 {
3193 return system_io;
3194 }
3195
3196 #endif /* !defined(CONFIG_USER_ONLY) */
3197
3198 /* physical memory access (slow version, mainly for debug) */
3199 #if defined(CONFIG_USER_ONLY)
3200 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3201 uint8_t *buf, target_ulong len, int is_write)
3202 {
3203 int flags;
3204 target_ulong l, page;
3205 void * p;
3206
3207 while (len > 0) {
3208 page = addr & TARGET_PAGE_MASK;
3209 l = (page + TARGET_PAGE_SIZE) - addr;
3210 if (l > len)
3211 l = len;
3212 flags = page_get_flags(page);
3213 if (!(flags & PAGE_VALID))
3214 return -1;
3215 if (is_write) {
3216 if (!(flags & PAGE_WRITE))
3217 return -1;
3218 /* XXX: this code should not depend on lock_user */
3219 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3220 return -1;
3221 memcpy(p, buf, l);
3222 unlock_user(p, addr, l);
3223 } else {
3224 if (!(flags & PAGE_READ))
3225 return -1;
3226 /* XXX: this code should not depend on lock_user */
3227 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3228 return -1;
3229 memcpy(buf, p, l);
3230 unlock_user(p, addr, 0);
3231 }
3232 len -= l;
3233 buf += l;
3234 addr += l;
3235 }
3236 return 0;
3237 }
3238
3239 #else
3240
3241 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3242 hwaddr length)
3243 {
3244 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3245 addr += memory_region_get_ram_addr(mr);
3246
3247 /* No early return if dirty_log_mask is or becomes 0, because
3248 * cpu_physical_memory_set_dirty_range will still call
3249 * xen_modified_memory.
3250 */
3251 if (dirty_log_mask) {
3252 dirty_log_mask =
3253 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3254 }
3255 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3256 assert(tcg_enabled());
3257 tb_invalidate_phys_range(addr, addr + length);
3258 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3259 }
3260 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3261 }
3262
3263 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3264 {
3265 /*
3266 * In principle this function would work on other memory region types too,
3267 * but the ROM device use case is the only one where this operation is
3268 * necessary. Other memory regions should use the
3269 * address_space_read/write() APIs.
3270 */
3271 assert(memory_region_is_romd(mr));
3272
3273 invalidate_and_set_dirty(mr, addr, size);
3274 }
3275
3276 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3277 {
3278 unsigned access_size_max = mr->ops->valid.max_access_size;
3279
3280 /* Regions are assumed to support 1-4 byte accesses unless
3281 otherwise specified. */
3282 if (access_size_max == 0) {
3283 access_size_max = 4;
3284 }
3285
3286 /* Bound the maximum access by the alignment of the address. */
3287 if (!mr->ops->impl.unaligned) {
3288 unsigned align_size_max = addr & -addr;
3289 if (align_size_max != 0 && align_size_max < access_size_max) {
3290 access_size_max = align_size_max;
3291 }
3292 }
3293
3294 /* Don't attempt accesses larger than the maximum. */
3295 if (l > access_size_max) {
3296 l = access_size_max;
3297 }
3298 l = pow2floor(l);
3299
3300 return l;
3301 }
3302
3303 static bool prepare_mmio_access(MemoryRegion *mr)
3304 {
3305 bool unlocked = !qemu_mutex_iothread_locked();
3306 bool release_lock = false;
3307
3308 if (unlocked && mr->global_locking) {
3309 qemu_mutex_lock_iothread();
3310 unlocked = false;
3311 release_lock = true;
3312 }
3313 if (mr->flush_coalesced_mmio) {
3314 if (unlocked) {
3315 qemu_mutex_lock_iothread();
3316 }
3317 qemu_flush_coalesced_mmio_buffer();
3318 if (unlocked) {
3319 qemu_mutex_unlock_iothread();
3320 }
3321 }
3322
3323 return release_lock;
3324 }
3325
3326 /* Called within RCU critical section. */
3327 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3328 MemTxAttrs attrs,
3329 const uint8_t *buf,
3330 hwaddr len, hwaddr addr1,
3331 hwaddr l, MemoryRegion *mr)
3332 {
3333 uint8_t *ptr;
3334 uint64_t val;
3335 MemTxResult result = MEMTX_OK;
3336 bool release_lock = false;
3337
3338 for (;;) {
3339 if (!memory_access_is_direct(mr, true)) {
3340 release_lock |= prepare_mmio_access(mr);
3341 l = memory_access_size(mr, l, addr1);
3342 /* XXX: could force current_cpu to NULL to avoid
3343 potential bugs */
3344 val = ldn_he_p(buf, l);
3345 result |= memory_region_dispatch_write(mr, addr1, val,
3346 size_memop(l), attrs);
3347 } else {
3348 /* RAM case */
3349 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3350 memcpy(ptr, buf, l);
3351 invalidate_and_set_dirty(mr, addr1, l);
3352 }
3353
3354 if (release_lock) {
3355 qemu_mutex_unlock_iothread();
3356 release_lock = false;
3357 }
3358
3359 len -= l;
3360 buf += l;
3361 addr += l;
3362
3363 if (!len) {
3364 break;
3365 }
3366
3367 l = len;
3368 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3369 }
3370
3371 return result;
3372 }
3373
3374 /* Called from RCU critical section. */
3375 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3376 const uint8_t *buf, hwaddr len)
3377 {
3378 hwaddr l;
3379 hwaddr addr1;
3380 MemoryRegion *mr;
3381 MemTxResult result = MEMTX_OK;
3382
3383 l = len;
3384 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3385 result = flatview_write_continue(fv, addr, attrs, buf, len,
3386 addr1, l, mr);
3387
3388 return result;
3389 }
3390
3391 /* Called within RCU critical section. */
3392 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3393 MemTxAttrs attrs, uint8_t *buf,
3394 hwaddr len, hwaddr addr1, hwaddr l,
3395 MemoryRegion *mr)
3396 {
3397 uint8_t *ptr;
3398 uint64_t val;
3399 MemTxResult result = MEMTX_OK;
3400 bool release_lock = false;
3401
3402 for (;;) {
3403 if (!memory_access_is_direct(mr, false)) {
3404 /* I/O case */
3405 release_lock |= prepare_mmio_access(mr);
3406 l = memory_access_size(mr, l, addr1);
3407 result |= memory_region_dispatch_read(mr, addr1, &val,
3408 size_memop(l), attrs);
3409 stn_he_p(buf, l, val);
3410 } else {
3411 /* RAM case */
3412 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3413 memcpy(buf, ptr, l);
3414 }
3415
3416 if (release_lock) {
3417 qemu_mutex_unlock_iothread();
3418 release_lock = false;
3419 }
3420
3421 len -= l;
3422 buf += l;
3423 addr += l;
3424
3425 if (!len) {
3426 break;
3427 }
3428
3429 l = len;
3430 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3431 }
3432
3433 return result;
3434 }
3435
3436 /* Called from RCU critical section. */
3437 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3438 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3439 {
3440 hwaddr l;
3441 hwaddr addr1;
3442 MemoryRegion *mr;
3443
3444 l = len;
3445 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3446 return flatview_read_continue(fv, addr, attrs, buf, len,
3447 addr1, l, mr);
3448 }
3449
3450 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3451 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3452 {
3453 MemTxResult result = MEMTX_OK;
3454 FlatView *fv;
3455
3456 if (len > 0) {
3457 rcu_read_lock();
3458 fv = address_space_to_flatview(as);
3459 result = flatview_read(fv, addr, attrs, buf, len);
3460 rcu_read_unlock();
3461 }
3462
3463 return result;
3464 }
3465
3466 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3467 MemTxAttrs attrs,
3468 const uint8_t *buf, hwaddr len)
3469 {
3470 MemTxResult result = MEMTX_OK;
3471 FlatView *fv;
3472
3473 if (len > 0) {
3474 rcu_read_lock();
3475 fv = address_space_to_flatview(as);
3476 result = flatview_write(fv, addr, attrs, buf, len);
3477 rcu_read_unlock();
3478 }
3479
3480 return result;
3481 }
3482
3483 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3484 uint8_t *buf, hwaddr len, bool is_write)
3485 {
3486 if (is_write) {
3487 return address_space_write(as, addr, attrs, buf, len);
3488 } else {
3489 return address_space_read_full(as, addr, attrs, buf, len);
3490 }
3491 }
3492
3493 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3494 hwaddr len, int is_write)
3495 {
3496 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3497 buf, len, is_write);
3498 }
3499
3500 enum write_rom_type {
3501 WRITE_DATA,
3502 FLUSH_CACHE,
3503 };
3504
3505 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3506 hwaddr addr,
3507 MemTxAttrs attrs,
3508 const uint8_t *buf,
3509 hwaddr len,
3510 enum write_rom_type type)
3511 {
3512 hwaddr l;
3513 uint8_t *ptr;
3514 hwaddr addr1;
3515 MemoryRegion *mr;
3516
3517 rcu_read_lock();
3518 while (len > 0) {
3519 l = len;
3520 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3521
3522 if (!(memory_region_is_ram(mr) ||
3523 memory_region_is_romd(mr))) {
3524 l = memory_access_size(mr, l, addr1);
3525 } else {
3526 /* ROM/RAM case */
3527 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3528 switch (type) {
3529 case WRITE_DATA:
3530 memcpy(ptr, buf, l);
3531 invalidate_and_set_dirty(mr, addr1, l);
3532 break;
3533 case FLUSH_CACHE:
3534 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3535 break;
3536 }
3537 }
3538 len -= l;
3539 buf += l;
3540 addr += l;
3541 }
3542 rcu_read_unlock();
3543 return MEMTX_OK;
3544 }
3545
3546 /* used for ROM loading : can write in RAM and ROM */
3547 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3548 MemTxAttrs attrs,
3549 const uint8_t *buf, hwaddr len)
3550 {
3551 return address_space_write_rom_internal(as, addr, attrs,
3552 buf, len, WRITE_DATA);
3553 }
3554
3555 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3556 {
3557 /*
3558 * This function should do the same thing as an icache flush that was
3559 * triggered from within the guest. For TCG we are always cache coherent,
3560 * so there is no need to flush anything. For KVM / Xen we need to flush
3561 * the host's instruction cache at least.
3562 */
3563 if (tcg_enabled()) {
3564 return;
3565 }
3566
3567 address_space_write_rom_internal(&address_space_memory,
3568 start, MEMTXATTRS_UNSPECIFIED,
3569 NULL, len, FLUSH_CACHE);
3570 }
3571
3572 typedef struct {
3573 MemoryRegion *mr;
3574 void *buffer;
3575 hwaddr addr;
3576 hwaddr len;
3577 bool in_use;
3578 } BounceBuffer;
3579
3580 static BounceBuffer bounce;
3581
3582 typedef struct MapClient {
3583 QEMUBH *bh;
3584 QLIST_ENTRY(MapClient) link;
3585 } MapClient;
3586
3587 QemuMutex map_client_list_lock;
3588 static QLIST_HEAD(, MapClient) map_client_list
3589 = QLIST_HEAD_INITIALIZER(map_client_list);
3590
3591 static void cpu_unregister_map_client_do(MapClient *client)
3592 {
3593 QLIST_REMOVE(client, link);
3594 g_free(client);
3595 }
3596
3597 static void cpu_notify_map_clients_locked(void)
3598 {
3599 MapClient *client;
3600
3601 while (!QLIST_EMPTY(&map_client_list)) {
3602 client = QLIST_FIRST(&map_client_list);
3603 qemu_bh_schedule(client->bh);
3604 cpu_unregister_map_client_do(client);
3605 }
3606 }
3607
3608 void cpu_register_map_client(QEMUBH *bh)
3609 {
3610 MapClient *client = g_malloc(sizeof(*client));
3611
3612 qemu_mutex_lock(&map_client_list_lock);
3613 client->bh = bh;
3614 QLIST_INSERT_HEAD(&map_client_list, client, link);
3615 if (!atomic_read(&bounce.in_use)) {
3616 cpu_notify_map_clients_locked();
3617 }
3618 qemu_mutex_unlock(&map_client_list_lock);
3619 }
3620
3621 void cpu_exec_init_all(void)
3622 {
3623 qemu_mutex_init(&ram_list.mutex);
3624 /* The data structures we set up here depend on knowing the page size,
3625 * so no more changes can be made after this point.
3626 * In an ideal world, nothing we did before we had finished the
3627 * machine setup would care about the target page size, and we could
3628 * do this much later, rather than requiring board models to state
3629 * up front what their requirements are.
3630 */
3631 finalize_target_page_bits();
3632 io_mem_init();
3633 memory_map_init();
3634 qemu_mutex_init(&map_client_list_lock);
3635 }
3636
3637 void cpu_unregister_map_client(QEMUBH *bh)
3638 {
3639 MapClient *client;
3640
3641 qemu_mutex_lock(&map_client_list_lock);
3642 QLIST_FOREACH(client, &map_client_list, link) {
3643 if (client->bh == bh) {
3644 cpu_unregister_map_client_do(client);
3645 break;
3646 }
3647 }
3648 qemu_mutex_unlock(&map_client_list_lock);
3649 }
3650
3651 static void cpu_notify_map_clients(void)
3652 {
3653 qemu_mutex_lock(&map_client_list_lock);
3654 cpu_notify_map_clients_locked();
3655 qemu_mutex_unlock(&map_client_list_lock);
3656 }
3657
3658 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3659 bool is_write, MemTxAttrs attrs)
3660 {
3661 MemoryRegion *mr;
3662 hwaddr l, xlat;
3663
3664 while (len > 0) {
3665 l = len;
3666 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3667 if (!memory_access_is_direct(mr, is_write)) {
3668 l = memory_access_size(mr, l, addr);
3669 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3670 return false;
3671 }
3672 }
3673
3674 len -= l;
3675 addr += l;
3676 }
3677 return true;
3678 }
3679
3680 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3681 hwaddr len, bool is_write,
3682 MemTxAttrs attrs)
3683 {
3684 FlatView *fv;
3685 bool result;
3686
3687 rcu_read_lock();
3688 fv = address_space_to_flatview(as);
3689 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3690 rcu_read_unlock();
3691 return result;
3692 }
3693
3694 static hwaddr
3695 flatview_extend_translation(FlatView *fv, hwaddr addr,
3696 hwaddr target_len,
3697 MemoryRegion *mr, hwaddr base, hwaddr len,
3698 bool is_write, MemTxAttrs attrs)
3699 {
3700 hwaddr done = 0;
3701 hwaddr xlat;
3702 MemoryRegion *this_mr;
3703
3704 for (;;) {
3705 target_len -= len;
3706 addr += len;
3707 done += len;
3708 if (target_len == 0) {
3709 return done;
3710 }
3711
3712 len = target_len;
3713 this_mr = flatview_translate(fv, addr, &xlat,
3714 &len, is_write, attrs);
3715 if (this_mr != mr || xlat != base + done) {
3716 return done;
3717 }
3718 }
3719 }
3720
3721 /* Map a physical memory region into a host virtual address.
3722 * May map a subset of the requested range, given by and returned in *plen.
3723 * May return NULL if resources needed to perform the mapping are exhausted.
3724 * Use only for reads OR writes - not for read-modify-write operations.
3725 * Use cpu_register_map_client() to know when retrying the map operation is
3726 * likely to succeed.
3727 */
3728 void *address_space_map(AddressSpace *as,
3729 hwaddr addr,
3730 hwaddr *plen,
3731 bool is_write,
3732 MemTxAttrs attrs)
3733 {
3734 hwaddr len = *plen;
3735 hwaddr l, xlat;
3736 MemoryRegion *mr;
3737 void *ptr;
3738 FlatView *fv;
3739
3740 if (len == 0) {
3741 return NULL;
3742 }
3743
3744 l = len;
3745 rcu_read_lock();
3746 fv = address_space_to_flatview(as);
3747 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3748
3749 if (!memory_access_is_direct(mr, is_write)) {
3750 if (atomic_xchg(&bounce.in_use, true)) {
3751 rcu_read_unlock();
3752 return NULL;
3753 }
3754 /* Avoid unbounded allocations */
3755 l = MIN(l, TARGET_PAGE_SIZE);
3756 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3757 bounce.addr = addr;
3758 bounce.len = l;
3759
3760 memory_region_ref(mr);
3761 bounce.mr = mr;
3762 if (!is_write) {
3763 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3764 bounce.buffer, l);
3765 }
3766
3767 rcu_read_unlock();
3768 *plen = l;
3769 return bounce.buffer;
3770 }
3771
3772
3773 memory_region_ref(mr);
3774 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3775 l, is_write, attrs);
3776 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3777 rcu_read_unlock();
3778
3779 return ptr;
3780 }
3781
3782 /* Unmaps a memory region previously mapped by address_space_map().
3783 * Will also mark the memory as dirty if is_write == 1. access_len gives
3784 * the amount of memory that was actually read or written by the caller.
3785 */
3786 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3787 int is_write, hwaddr access_len)
3788 {
3789 if (buffer != bounce.buffer) {
3790 MemoryRegion *mr;
3791 ram_addr_t addr1;
3792
3793 mr = memory_region_from_host(buffer, &addr1);
3794 assert(mr != NULL);
3795 if (is_write) {
3796 invalidate_and_set_dirty(mr, addr1, access_len);
3797 }
3798 if (xen_enabled()) {
3799 xen_invalidate_map_cache_entry(buffer);
3800 }
3801 memory_region_unref(mr);
3802 return;
3803 }
3804 if (is_write) {
3805 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3806 bounce.buffer, access_len);
3807 }
3808 qemu_vfree(bounce.buffer);
3809 bounce.buffer = NULL;
3810 memory_region_unref(bounce.mr);
3811 atomic_mb_set(&bounce.in_use, false);
3812 cpu_notify_map_clients();
3813 }
3814
3815 void *cpu_physical_memory_map(hwaddr addr,
3816 hwaddr *plen,
3817 int is_write)
3818 {
3819 return address_space_map(&address_space_memory, addr, plen, is_write,
3820 MEMTXATTRS_UNSPECIFIED);
3821 }
3822
3823 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3824 int is_write, hwaddr access_len)
3825 {
3826 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3827 }
3828
3829 #define ARG1_DECL AddressSpace *as
3830 #define ARG1 as
3831 #define SUFFIX
3832 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3833 #define RCU_READ_LOCK(...) rcu_read_lock()
3834 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3835 #include "memory_ldst.inc.c"
3836
3837 int64_t address_space_cache_init(MemoryRegionCache *cache,
3838 AddressSpace *as,
3839 hwaddr addr,
3840 hwaddr len,
3841 bool is_write)
3842 {
3843 AddressSpaceDispatch *d;
3844 hwaddr l;
3845 MemoryRegion *mr;
3846
3847 assert(len > 0);
3848
3849 l = len;
3850 cache->fv = address_space_get_flatview(as);
3851 d = flatview_to_dispatch(cache->fv);
3852 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3853
3854 mr = cache->mrs.mr;
3855 memory_region_ref(mr);
3856 if (memory_access_is_direct(mr, is_write)) {
3857 /* We don't care about the memory attributes here as we're only
3858 * doing this if we found actual RAM, which behaves the same
3859 * regardless of attributes; so UNSPECIFIED is fine.
3860 */
3861 l = flatview_extend_translation(cache->fv, addr, len, mr,
3862 cache->xlat, l, is_write,
3863 MEMTXATTRS_UNSPECIFIED);
3864 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3865 } else {
3866 cache->ptr = NULL;
3867 }
3868
3869 cache->len = l;
3870 cache->is_write = is_write;
3871 return l;
3872 }
3873
3874 void address_space_cache_invalidate(MemoryRegionCache *cache,
3875 hwaddr addr,
3876 hwaddr access_len)
3877 {
3878 assert(cache->is_write);
3879 if (likely(cache->ptr)) {
3880 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3881 }
3882 }
3883
3884 void address_space_cache_destroy(MemoryRegionCache *cache)
3885 {
3886 if (!cache->mrs.mr) {
3887 return;
3888 }
3889
3890 if (xen_enabled()) {
3891 xen_invalidate_map_cache_entry(cache->ptr);
3892 }
3893 memory_region_unref(cache->mrs.mr);
3894 flatview_unref(cache->fv);
3895 cache->mrs.mr = NULL;
3896 cache->fv = NULL;
3897 }
3898
3899 /* Called from RCU critical section. This function has the same
3900 * semantics as address_space_translate, but it only works on a
3901 * predefined range of a MemoryRegion that was mapped with
3902 * address_space_cache_init.
3903 */
3904 static inline MemoryRegion *address_space_translate_cached(
3905 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3906 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3907 {
3908 MemoryRegionSection section;
3909 MemoryRegion *mr;
3910 IOMMUMemoryRegion *iommu_mr;
3911 AddressSpace *target_as;
3912
3913 assert(!cache->ptr);
3914 *xlat = addr + cache->xlat;
3915
3916 mr = cache->mrs.mr;
3917 iommu_mr = memory_region_get_iommu(mr);
3918 if (!iommu_mr) {
3919 /* MMIO region. */
3920 return mr;
3921 }
3922
3923 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3924 NULL, is_write, true,
3925 &target_as, attrs);
3926 return section.mr;
3927 }
3928
3929 /* Called from RCU critical section. address_space_read_cached uses this
3930 * out of line function when the target is an MMIO or IOMMU region.
3931 */
3932 void
3933 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3934 void *buf, hwaddr len)
3935 {
3936 hwaddr addr1, l;
3937 MemoryRegion *mr;
3938
3939 l = len;
3940 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3941 MEMTXATTRS_UNSPECIFIED);
3942 flatview_read_continue(cache->fv,
3943 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3944 addr1, l, mr);
3945 }
3946
3947 /* Called from RCU critical section. address_space_write_cached uses this
3948 * out of line function when the target is an MMIO or IOMMU region.
3949 */
3950 void
3951 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3952 const void *buf, hwaddr len)
3953 {
3954 hwaddr addr1, l;
3955 MemoryRegion *mr;
3956
3957 l = len;
3958 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3959 MEMTXATTRS_UNSPECIFIED);
3960 flatview_write_continue(cache->fv,
3961 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3962 addr1, l, mr);
3963 }
3964
3965 #define ARG1_DECL MemoryRegionCache *cache
3966 #define ARG1 cache
3967 #define SUFFIX _cached_slow
3968 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3969 #define RCU_READ_LOCK() ((void)0)
3970 #define RCU_READ_UNLOCK() ((void)0)
3971 #include "memory_ldst.inc.c"
3972
3973 /* virtual memory access for debug (includes writing to ROM) */
3974 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3975 uint8_t *buf, target_ulong len, int is_write)
3976 {
3977 hwaddr phys_addr;
3978 target_ulong l, page;
3979
3980 cpu_synchronize_state(cpu);
3981 while (len > 0) {
3982 int asidx;
3983 MemTxAttrs attrs;
3984
3985 page = addr & TARGET_PAGE_MASK;
3986 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3987 asidx = cpu_asidx_from_attrs(cpu, attrs);
3988 /* if no physical page mapped, return an error */
3989 if (phys_addr == -1)
3990 return -1;
3991 l = (page + TARGET_PAGE_SIZE) - addr;
3992 if (l > len)
3993 l = len;
3994 phys_addr += (addr & ~TARGET_PAGE_MASK);
3995 if (is_write) {
3996 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3997 attrs, buf, l);
3998 } else {
3999 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
4000 attrs, buf, l, 0);
4001 }
4002 len -= l;
4003 buf += l;
4004 addr += l;
4005 }
4006 return 0;
4007 }
4008
4009 /*
4010 * Allows code that needs to deal with migration bitmaps etc to still be built
4011 * target independent.
4012 */
4013 size_t qemu_target_page_size(void)
4014 {
4015 return TARGET_PAGE_SIZE;
4016 }
4017
4018 int qemu_target_page_bits(void)
4019 {
4020 return TARGET_PAGE_BITS;
4021 }
4022
4023 int qemu_target_page_bits_min(void)
4024 {
4025 return TARGET_PAGE_BITS_MIN;
4026 }
4027 #endif
4028
4029 bool target_words_bigendian(void)
4030 {
4031 #if defined(TARGET_WORDS_BIGENDIAN)
4032 return true;
4033 #else
4034 return false;
4035 #endif
4036 }
4037
4038 #ifndef CONFIG_USER_ONLY
4039 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4040 {
4041 MemoryRegion*mr;
4042 hwaddr l = 1;
4043 bool res;
4044
4045 rcu_read_lock();
4046 mr = address_space_translate(&address_space_memory,
4047 phys_addr, &phys_addr, &l, false,
4048 MEMTXATTRS_UNSPECIFIED);
4049
4050 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4051 rcu_read_unlock();
4052 return res;
4053 }
4054
4055 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4056 {
4057 RAMBlock *block;
4058 int ret = 0;
4059
4060 rcu_read_lock();
4061 RAMBLOCK_FOREACH(block) {
4062 ret = func(block, opaque);
4063 if (ret) {
4064 break;
4065 }
4066 }
4067 rcu_read_unlock();
4068 return ret;
4069 }
4070
4071 /*
4072 * Unmap pages of memory from start to start+length such that
4073 * they a) read as 0, b) Trigger whatever fault mechanism
4074 * the OS provides for postcopy.
4075 * The pages must be unmapped by the end of the function.
4076 * Returns: 0 on success, none-0 on failure
4077 *
4078 */
4079 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4080 {
4081 int ret = -1;
4082
4083 uint8_t *host_startaddr = rb->host + start;
4084
4085 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4086 error_report("ram_block_discard_range: Unaligned start address: %p",
4087 host_startaddr);
4088 goto err;
4089 }
4090
4091 if ((start + length) <= rb->used_length) {
4092 bool need_madvise, need_fallocate;
4093 uint8_t *host_endaddr = host_startaddr + length;
4094 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4095 error_report("ram_block_discard_range: Unaligned end address: %p",
4096 host_endaddr);
4097 goto err;
4098 }
4099
4100 errno = ENOTSUP; /* If we are missing MADVISE etc */
4101
4102 /* The logic here is messy;
4103 * madvise DONTNEED fails for hugepages
4104 * fallocate works on hugepages and shmem
4105 */
4106 need_madvise = (rb->page_size == qemu_host_page_size);
4107 need_fallocate = rb->fd != -1;
4108 if (need_fallocate) {
4109 /* For a file, this causes the area of the file to be zero'd
4110 * if read, and for hugetlbfs also causes it to be unmapped
4111 * so a userfault will trigger.
4112 */
4113 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4114 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4115 start, length);
4116 if (ret) {
4117 ret = -errno;
4118 error_report("ram_block_discard_range: Failed to fallocate "
4119 "%s:%" PRIx64 " +%zx (%d)",
4120 rb->idstr, start, length, ret);
4121 goto err;
4122 }
4123 #else
4124 ret = -ENOSYS;
4125 error_report("ram_block_discard_range: fallocate not available/file"
4126 "%s:%" PRIx64 " +%zx (%d)",
4127 rb->idstr, start, length, ret);
4128 goto err;
4129 #endif
4130 }
4131 if (need_madvise) {
4132 /* For normal RAM this causes it to be unmapped,
4133 * for shared memory it causes the local mapping to disappear
4134 * and to fall back on the file contents (which we just
4135 * fallocate'd away).
4136 */
4137 #if defined(CONFIG_MADVISE)
4138 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4139 if (ret) {
4140 ret = -errno;
4141 error_report("ram_block_discard_range: Failed to discard range "
4142 "%s:%" PRIx64 " +%zx (%d)",
4143 rb->idstr, start, length, ret);
4144 goto err;
4145 }
4146 #else
4147 ret = -ENOSYS;
4148 error_report("ram_block_discard_range: MADVISE not available"
4149 "%s:%" PRIx64 " +%zx (%d)",
4150 rb->idstr, start, length, ret);
4151 goto err;
4152 #endif
4153 }
4154 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4155 need_madvise, need_fallocate, ret);
4156 } else {
4157 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4158 "/%zx/" RAM_ADDR_FMT")",
4159 rb->idstr, start, length, rb->used_length);
4160 }
4161
4162 err:
4163 return ret;
4164 }
4165
4166 bool ramblock_is_pmem(RAMBlock *rb)
4167 {
4168 return rb->flags & RAM_PMEM;
4169 }
4170
4171 #endif
4172
4173 void page_size_init(void)
4174 {
4175 /* NOTE: we can always suppose that qemu_host_page_size >=
4176 TARGET_PAGE_SIZE */
4177 if (qemu_host_page_size == 0) {
4178 qemu_host_page_size = qemu_real_host_page_size;
4179 }
4180 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4181 qemu_host_page_size = TARGET_PAGE_SIZE;
4182 }
4183 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4184 }
4185
4186 #if !defined(CONFIG_USER_ONLY)
4187
4188 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4189 {
4190 if (start == end - 1) {
4191 qemu_printf("\t%3d ", start);
4192 } else {
4193 qemu_printf("\t%3d..%-3d ", start, end - 1);
4194 }
4195 qemu_printf(" skip=%d ", skip);
4196 if (ptr == PHYS_MAP_NODE_NIL) {
4197 qemu_printf(" ptr=NIL");
4198 } else if (!skip) {
4199 qemu_printf(" ptr=#%d", ptr);
4200 } else {
4201 qemu_printf(" ptr=[%d]", ptr);
4202 }
4203 qemu_printf("\n");
4204 }
4205
4206 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4207 int128_sub((size), int128_one())) : 0)
4208
4209 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4210 {
4211 int i;
4212
4213 qemu_printf(" Dispatch\n");
4214 qemu_printf(" Physical sections\n");
4215
4216 for (i = 0; i < d->map.sections_nb; ++i) {
4217 MemoryRegionSection *s = d->map.sections + i;
4218 const char *names[] = { " [unassigned]", " [not dirty]",
4219 " [ROM]", " [watch]" };
4220
4221 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4222 " %s%s%s%s%s",
4223 i,
4224 s->offset_within_address_space,
4225 s->offset_within_address_space + MR_SIZE(s->mr->size),
4226 s->mr->name ? s->mr->name : "(noname)",
4227 i < ARRAY_SIZE(names) ? names[i] : "",
4228 s->mr == root ? " [ROOT]" : "",
4229 s == d->mru_section ? " [MRU]" : "",
4230 s->mr->is_iommu ? " [iommu]" : "");
4231
4232 if (s->mr->alias) {
4233 qemu_printf(" alias=%s", s->mr->alias->name ?
4234 s->mr->alias->name : "noname");
4235 }
4236 qemu_printf("\n");
4237 }
4238
4239 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4240 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4241 for (i = 0; i < d->map.nodes_nb; ++i) {
4242 int j, jprev;
4243 PhysPageEntry prev;
4244 Node *n = d->map.nodes + i;
4245
4246 qemu_printf(" [%d]\n", i);
4247
4248 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4249 PhysPageEntry *pe = *n + j;
4250
4251 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4252 continue;
4253 }
4254
4255 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4256
4257 jprev = j;
4258 prev = *pe;
4259 }
4260
4261 if (jprev != ARRAY_SIZE(*n)) {
4262 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4263 }
4264 }
4265 }
4266
4267 #endif