]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: remove dead code
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 static TranslationBlock *tbs;
66 int code_gen_max_blocks;
67 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
68 static int nb_tbs;
69 /* any access to the tbs or the page table must use this lock */
70 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
71
72 #if defined(__arm__) || defined(__sparc_v9__)
73 /* The prologue must be reachable with a direct jump. ARM and Sparc64
74 have limited branch ranges (possibly also PPC) so place it in a
75 section close to code segment. */
76 #define code_gen_section \
77 __attribute__((__section__(".gen_code"))) \
78 __attribute__((aligned (32)))
79 #elif defined(_WIN32)
80 /* Maximum alignment for Win32 is 16. */
81 #define code_gen_section \
82 __attribute__((aligned (16)))
83 #else
84 #define code_gen_section \
85 __attribute__((aligned (32)))
86 #endif
87
88 uint8_t code_gen_prologue[1024] code_gen_section;
89 static uint8_t *code_gen_buffer;
90 static unsigned long code_gen_buffer_size;
91 /* threshold to flush the translated code buffer */
92 static unsigned long code_gen_buffer_max_size;
93 uint8_t *code_gen_ptr;
94
95 #if !defined(CONFIG_USER_ONLY)
96 int phys_ram_fd;
97 uint8_t *phys_ram_dirty;
98 static int in_migration;
99
100 typedef struct RAMBlock {
101 uint8_t *host;
102 ram_addr_t offset;
103 ram_addr_t length;
104 struct RAMBlock *next;
105 } RAMBlock;
106
107 static RAMBlock *ram_blocks;
108 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
109 then we can no longer assume contiguous ram offsets, and external uses
110 of this variable will break. */
111 ram_addr_t last_ram_offset;
112 #endif
113
114 CPUState *first_cpu;
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 CPUState *cpu_single_env;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount = 0;
122 /* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124 int64_t qemu_icount;
125
126 typedef struct PageDesc {
127 /* list of TBs intersecting this ram page */
128 TranslationBlock *first_tb;
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133 #if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135 #endif
136 } PageDesc;
137
138 /* In system mode we want L1_MAP to be based on ram offsets,
139 while in user mode we want it to be based on virtual addresses. */
140 #if !defined(CONFIG_USER_ONLY)
141 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
143 #else
144 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 #endif
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 #endif
149
150 /* Size of the L2 (and L3, etc) page tables. */
151 #define L2_BITS 10
152 #define L2_SIZE (1 << L2_BITS)
153
154 /* The bits remaining after N lower levels of page tables. */
155 #define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157 #define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159
160 /* Size of the L1 page table. Avoid silly small sizes. */
161 #if P_L1_BITS_REM < 4
162 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
163 #else
164 #define P_L1_BITS P_L1_BITS_REM
165 #endif
166
167 #if V_L1_BITS_REM < 4
168 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
169 #else
170 #define V_L1_BITS V_L1_BITS_REM
171 #endif
172
173 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
175
176 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 unsigned long qemu_real_host_page_size;
180 unsigned long qemu_host_page_bits;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193 } PhysPageDesc;
194
195 /* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197 static void *l1_phys_map[P_L1_SIZE];
198
199 static void io_mem_init(void);
200
201 /* io memory support */
202 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
203 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
204 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
205 static char io_mem_used[IO_MEM_NB_ENTRIES];
206 static int io_mem_watch;
207 #endif
208
209 /* log support */
210 #ifdef WIN32
211 static const char *logfilename = "qemu.log";
212 #else
213 static const char *logfilename = "/tmp/qemu.log";
214 #endif
215 FILE *logfile;
216 int loglevel;
217 static int log_append = 0;
218
219 /* statistics */
220 #if !defined(CONFIG_USER_ONLY)
221 static int tlb_flush_count;
222 #endif
223 static int tb_flush_count;
224 static int tb_phys_invalidate_count;
225
226 #ifdef _WIN32
227 static void map_exec(void *addr, long size)
228 {
229 DWORD old_protect;
230 VirtualProtect(addr, size,
231 PAGE_EXECUTE_READWRITE, &old_protect);
232
233 }
234 #else
235 static void map_exec(void *addr, long size)
236 {
237 unsigned long start, end, page_size;
238
239 page_size = getpagesize();
240 start = (unsigned long)addr;
241 start &= ~(page_size - 1);
242
243 end = (unsigned long)addr + size;
244 end += page_size - 1;
245 end &= ~(page_size - 1);
246
247 mprotect((void *)start, end - start,
248 PROT_READ | PROT_WRITE | PROT_EXEC);
249 }
250 #endif
251
252 static void page_init(void)
253 {
254 /* NOTE: we can always suppose that qemu_host_page_size >=
255 TARGET_PAGE_SIZE */
256 #ifdef _WIN32
257 {
258 SYSTEM_INFO system_info;
259
260 GetSystemInfo(&system_info);
261 qemu_real_host_page_size = system_info.dwPageSize;
262 }
263 #else
264 qemu_real_host_page_size = getpagesize();
265 #endif
266 if (qemu_host_page_size == 0)
267 qemu_host_page_size = qemu_real_host_page_size;
268 if (qemu_host_page_size < TARGET_PAGE_SIZE)
269 qemu_host_page_size = TARGET_PAGE_SIZE;
270 qemu_host_page_bits = 0;
271 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
272 qemu_host_page_bits++;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
274
275 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
276 {
277 FILE *f;
278
279 last_brk = (unsigned long)sbrk(0);
280
281 f = fopen("/proc/self/maps", "r");
282 if (f) {
283 mmap_lock();
284
285 do {
286 unsigned long startaddr, endaddr;
287 int n;
288
289 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
290
291 if (n == 2 && h2g_valid(startaddr)) {
292 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
293
294 if (h2g_valid(endaddr)) {
295 endaddr = h2g(endaddr);
296 } else {
297 endaddr = ~0ul;
298 }
299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
300 }
301 } while (!feof(f));
302
303 fclose(f);
304 mmap_unlock();
305 }
306 }
307 #endif
308 }
309
310 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
311 {
312 PageDesc *pd;
313 void **lp;
314 int i;
315
316 #if defined(CONFIG_USER_ONLY)
317 /* We can't use qemu_malloc because it may recurse into a locked mutex.
318 Neither can we record the new pages we reserve while allocating a
319 given page because that may recurse into an unallocated page table
320 entry. Stuff the allocations we do make into a queue and process
321 them after having completed one entire page table allocation. */
322
323 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
324 int reserve_idx = 0;
325
326 # define ALLOC(P, SIZE) \
327 do { \
328 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
329 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
330 if (h2g_valid(P)) { \
331 reserve[reserve_idx] = h2g(P); \
332 reserve[reserve_idx + 1] = SIZE; \
333 reserve_idx += 2; \
334 } \
335 } while (0)
336 #else
337 # define ALLOC(P, SIZE) \
338 do { P = qemu_mallocz(SIZE); } while (0)
339 #endif
340
341 /* Level 1. Always allocated. */
342 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
343
344 /* Level 2..N-1. */
345 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
346 void **p = *lp;
347
348 if (p == NULL) {
349 if (!alloc) {
350 return NULL;
351 }
352 ALLOC(p, sizeof(void *) * L2_SIZE);
353 *lp = p;
354 }
355
356 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
357 }
358
359 pd = *lp;
360 if (pd == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
365 *lp = pd;
366 }
367
368 #undef ALLOC
369 #if defined(CONFIG_USER_ONLY)
370 for (i = 0; i < reserve_idx; i += 2) {
371 unsigned long addr = reserve[i];
372 unsigned long len = reserve[i + 1];
373
374 page_set_flags(addr & TARGET_PAGE_MASK,
375 TARGET_PAGE_ALIGN(addr + len),
376 PAGE_RESERVED);
377 }
378 #endif
379
380 return pd + (index & (L2_SIZE - 1));
381 }
382
383 static inline PageDesc *page_find(tb_page_addr_t index)
384 {
385 return page_find_alloc(index, 0);
386 }
387
388 #if !defined(CONFIG_USER_ONLY)
389 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
390 {
391 PhysPageDesc *pd;
392 void **lp;
393 int i;
394
395 /* Level 1. Always allocated. */
396 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
397
398 /* Level 2..N-1. */
399 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
400 void **p = *lp;
401 if (p == NULL) {
402 if (!alloc) {
403 return NULL;
404 }
405 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
406 }
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 int i;
413
414 if (!alloc) {
415 return NULL;
416 }
417
418 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
419
420 for (i = 0; i < L2_SIZE; i++) {
421 pd[i].phys_offset = IO_MEM_UNASSIGNED;
422 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
423 }
424 }
425
426 return pd + (index & (L2_SIZE - 1));
427 }
428
429 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
430 {
431 return phys_page_find_alloc(index, 0);
432 }
433
434 static void tlb_protect_code(ram_addr_t ram_addr);
435 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
436 target_ulong vaddr);
437 #define mmap_lock() do { } while(0)
438 #define mmap_unlock() do { } while(0)
439 #endif
440
441 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
442
443 #if defined(CONFIG_USER_ONLY)
444 /* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used */
446 #define USE_STATIC_CODE_GEN_BUFFER
447 #endif
448
449 #ifdef USE_STATIC_CODE_GEN_BUFFER
450 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
451 #endif
452
453 static void code_gen_alloc(unsigned long tb_size)
454 {
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 code_gen_buffer = static_code_gen_buffer;
457 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
458 map_exec(code_gen_buffer, code_gen_buffer_size);
459 #else
460 code_gen_buffer_size = tb_size;
461 if (code_gen_buffer_size == 0) {
462 #if defined(CONFIG_USER_ONLY)
463 /* in user mode, phys_ram_size is not meaningful */
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 #else
466 /* XXX: needs adjustments */
467 code_gen_buffer_size = (unsigned long)(ram_size / 4);
468 #endif
469 }
470 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
471 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
472 /* The code gen buffer location may have constraints depending on
473 the host cpu and OS */
474 #if defined(__linux__)
475 {
476 int flags;
477 void *start = NULL;
478
479 flags = MAP_PRIVATE | MAP_ANONYMOUS;
480 #if defined(__x86_64__)
481 flags |= MAP_32BIT;
482 /* Cannot map more than that */
483 if (code_gen_buffer_size > (800 * 1024 * 1024))
484 code_gen_buffer_size = (800 * 1024 * 1024);
485 #elif defined(__sparc_v9__)
486 // Map the buffer below 2G, so we can use direct calls and branches
487 flags |= MAP_FIXED;
488 start = (void *) 0x60000000UL;
489 if (code_gen_buffer_size > (512 * 1024 * 1024))
490 code_gen_buffer_size = (512 * 1024 * 1024);
491 #elif defined(__arm__)
492 /* Map the buffer below 32M, so we can use direct calls and branches */
493 flags |= MAP_FIXED;
494 start = (void *) 0x01000000UL;
495 if (code_gen_buffer_size > 16 * 1024 * 1024)
496 code_gen_buffer_size = 16 * 1024 * 1024;
497 #endif
498 code_gen_buffer = mmap(start, code_gen_buffer_size,
499 PROT_WRITE | PROT_READ | PROT_EXEC,
500 flags, -1, 0);
501 if (code_gen_buffer == MAP_FAILED) {
502 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
503 exit(1);
504 }
505 }
506 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
507 {
508 int flags;
509 void *addr = NULL;
510 flags = MAP_PRIVATE | MAP_ANONYMOUS;
511 #if defined(__x86_64__)
512 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
513 * 0x40000000 is free */
514 flags |= MAP_FIXED;
515 addr = (void *)0x40000000;
516 /* Cannot map more than that */
517 if (code_gen_buffer_size > (800 * 1024 * 1024))
518 code_gen_buffer_size = (800 * 1024 * 1024);
519 #endif
520 code_gen_buffer = mmap(addr, code_gen_buffer_size,
521 PROT_WRITE | PROT_READ | PROT_EXEC,
522 flags, -1, 0);
523 if (code_gen_buffer == MAP_FAILED) {
524 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
525 exit(1);
526 }
527 }
528 #else
529 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
530 map_exec(code_gen_buffer, code_gen_buffer_size);
531 #endif
532 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
533 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
534 code_gen_buffer_max_size = code_gen_buffer_size -
535 code_gen_max_block_size();
536 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
537 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
538 }
539
540 /* Must be called before using the QEMU cpus. 'tb_size' is the size
541 (in bytes) allocated to the translation buffer. Zero means default
542 size. */
543 void cpu_exec_init_all(unsigned long tb_size)
544 {
545 cpu_gen_init();
546 code_gen_alloc(tb_size);
547 code_gen_ptr = code_gen_buffer;
548 page_init();
549 #if !defined(CONFIG_USER_ONLY)
550 io_mem_init();
551 #endif
552 }
553
554 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
555
556 static int cpu_common_post_load(void *opaque, int version_id)
557 {
558 CPUState *env = opaque;
559
560 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
561 version_id is increased. */
562 env->interrupt_request &= ~0x01;
563 tlb_flush(env, 1);
564
565 return 0;
566 }
567
568 static const VMStateDescription vmstate_cpu_common = {
569 .name = "cpu_common",
570 .version_id = 1,
571 .minimum_version_id = 1,
572 .minimum_version_id_old = 1,
573 .post_load = cpu_common_post_load,
574 .fields = (VMStateField []) {
575 VMSTATE_UINT32(halted, CPUState),
576 VMSTATE_UINT32(interrupt_request, CPUState),
577 VMSTATE_END_OF_LIST()
578 }
579 };
580 #endif
581
582 CPUState *qemu_get_cpu(int cpu)
583 {
584 CPUState *env = first_cpu;
585
586 while (env) {
587 if (env->cpu_index == cpu)
588 break;
589 env = env->next_cpu;
590 }
591
592 return env;
593 }
594
595 void cpu_exec_init(CPUState *env)
596 {
597 CPUState **penv;
598 int cpu_index;
599
600 #if defined(CONFIG_USER_ONLY)
601 cpu_list_lock();
602 #endif
603 env->next_cpu = NULL;
604 penv = &first_cpu;
605 cpu_index = 0;
606 while (*penv != NULL) {
607 penv = &(*penv)->next_cpu;
608 cpu_index++;
609 }
610 env->cpu_index = cpu_index;
611 env->numa_node = 0;
612 QTAILQ_INIT(&env->breakpoints);
613 QTAILQ_INIT(&env->watchpoints);
614 *penv = env;
615 #if defined(CONFIG_USER_ONLY)
616 cpu_list_unlock();
617 #endif
618 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
619 vmstate_register(cpu_index, &vmstate_cpu_common, env);
620 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
621 cpu_save, cpu_load, env);
622 #endif
623 }
624
625 static inline void invalidate_page_bitmap(PageDesc *p)
626 {
627 if (p->code_bitmap) {
628 qemu_free(p->code_bitmap);
629 p->code_bitmap = NULL;
630 }
631 p->code_write_count = 0;
632 }
633
634 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
635
636 static void page_flush_tb_1 (int level, void **lp)
637 {
638 int i;
639
640 if (*lp == NULL) {
641 return;
642 }
643 if (level == 0) {
644 PageDesc *pd = *lp;
645 for (i = 0; i < L2_SIZE; ++i) {
646 pd[i].first_tb = NULL;
647 invalidate_page_bitmap(pd + i);
648 }
649 } else {
650 void **pp = *lp;
651 for (i = 0; i < L2_SIZE; ++i) {
652 page_flush_tb_1 (level - 1, pp + i);
653 }
654 }
655 }
656
657 static void page_flush_tb(void)
658 {
659 int i;
660 for (i = 0; i < V_L1_SIZE; i++) {
661 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
662 }
663 }
664
665 /* flush all the translation blocks */
666 /* XXX: tb_flush is currently not thread safe */
667 void tb_flush(CPUState *env1)
668 {
669 CPUState *env;
670 #if defined(DEBUG_FLUSH)
671 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
672 (unsigned long)(code_gen_ptr - code_gen_buffer),
673 nb_tbs, nb_tbs > 0 ?
674 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
675 #endif
676 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
677 cpu_abort(env1, "Internal error: code buffer overflow\n");
678
679 nb_tbs = 0;
680
681 for(env = first_cpu; env != NULL; env = env->next_cpu) {
682 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
683 }
684
685 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
686 page_flush_tb();
687
688 code_gen_ptr = code_gen_buffer;
689 /* XXX: flush processor icache at this point if cache flush is
690 expensive */
691 tb_flush_count++;
692 }
693
694 #ifdef DEBUG_TB_CHECK
695
696 static void tb_invalidate_check(target_ulong address)
697 {
698 TranslationBlock *tb;
699 int i;
700 address &= TARGET_PAGE_MASK;
701 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
702 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
703 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
704 address >= tb->pc + tb->size)) {
705 printf("ERROR invalidate: address=" TARGET_FMT_lx
706 " PC=%08lx size=%04x\n",
707 address, (long)tb->pc, tb->size);
708 }
709 }
710 }
711 }
712
713 /* verify that all the pages have correct rights for code */
714 static void tb_page_check(void)
715 {
716 TranslationBlock *tb;
717 int i, flags1, flags2;
718
719 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
720 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
721 flags1 = page_get_flags(tb->pc);
722 flags2 = page_get_flags(tb->pc + tb->size - 1);
723 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
724 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
725 (long)tb->pc, tb->size, flags1, flags2);
726 }
727 }
728 }
729 }
730
731 #endif
732
733 /* invalidate one TB */
734 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
735 int next_offset)
736 {
737 TranslationBlock *tb1;
738 for(;;) {
739 tb1 = *ptb;
740 if (tb1 == tb) {
741 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
742 break;
743 }
744 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
745 }
746 }
747
748 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
749 {
750 TranslationBlock *tb1;
751 unsigned int n1;
752
753 for(;;) {
754 tb1 = *ptb;
755 n1 = (long)tb1 & 3;
756 tb1 = (TranslationBlock *)((long)tb1 & ~3);
757 if (tb1 == tb) {
758 *ptb = tb1->page_next[n1];
759 break;
760 }
761 ptb = &tb1->page_next[n1];
762 }
763 }
764
765 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
766 {
767 TranslationBlock *tb1, **ptb;
768 unsigned int n1;
769
770 ptb = &tb->jmp_next[n];
771 tb1 = *ptb;
772 if (tb1) {
773 /* find tb(n) in circular list */
774 for(;;) {
775 tb1 = *ptb;
776 n1 = (long)tb1 & 3;
777 tb1 = (TranslationBlock *)((long)tb1 & ~3);
778 if (n1 == n && tb1 == tb)
779 break;
780 if (n1 == 2) {
781 ptb = &tb1->jmp_first;
782 } else {
783 ptb = &tb1->jmp_next[n1];
784 }
785 }
786 /* now we can suppress tb(n) from the list */
787 *ptb = tb->jmp_next[n];
788
789 tb->jmp_next[n] = NULL;
790 }
791 }
792
793 /* reset the jump entry 'n' of a TB so that it is not chained to
794 another TB */
795 static inline void tb_reset_jump(TranslationBlock *tb, int n)
796 {
797 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
798 }
799
800 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
801 {
802 CPUState *env;
803 PageDesc *p;
804 unsigned int h, n1;
805 tb_page_addr_t phys_pc;
806 TranslationBlock *tb1, *tb2;
807
808 /* remove the TB from the hash list */
809 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
810 h = tb_phys_hash_func(phys_pc);
811 tb_remove(&tb_phys_hash[h], tb,
812 offsetof(TranslationBlock, phys_hash_next));
813
814 /* remove the TB from the page list */
815 if (tb->page_addr[0] != page_addr) {
816 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
817 tb_page_remove(&p->first_tb, tb);
818 invalidate_page_bitmap(p);
819 }
820 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
821 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
822 tb_page_remove(&p->first_tb, tb);
823 invalidate_page_bitmap(p);
824 }
825
826 tb_invalidated_flag = 1;
827
828 /* remove the TB from the hash list */
829 h = tb_jmp_cache_hash_func(tb->pc);
830 for(env = first_cpu; env != NULL; env = env->next_cpu) {
831 if (env->tb_jmp_cache[h] == tb)
832 env->tb_jmp_cache[h] = NULL;
833 }
834
835 /* suppress this TB from the two jump lists */
836 tb_jmp_remove(tb, 0);
837 tb_jmp_remove(tb, 1);
838
839 /* suppress any remaining jumps to this TB */
840 tb1 = tb->jmp_first;
841 for(;;) {
842 n1 = (long)tb1 & 3;
843 if (n1 == 2)
844 break;
845 tb1 = (TranslationBlock *)((long)tb1 & ~3);
846 tb2 = tb1->jmp_next[n1];
847 tb_reset_jump(tb1, n1);
848 tb1->jmp_next[n1] = NULL;
849 tb1 = tb2;
850 }
851 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
852
853 tb_phys_invalidate_count++;
854 }
855
856 static inline void set_bits(uint8_t *tab, int start, int len)
857 {
858 int end, mask, end1;
859
860 end = start + len;
861 tab += start >> 3;
862 mask = 0xff << (start & 7);
863 if ((start & ~7) == (end & ~7)) {
864 if (start < end) {
865 mask &= ~(0xff << (end & 7));
866 *tab |= mask;
867 }
868 } else {
869 *tab++ |= mask;
870 start = (start + 8) & ~7;
871 end1 = end & ~7;
872 while (start < end1) {
873 *tab++ = 0xff;
874 start += 8;
875 }
876 if (start < end) {
877 mask = ~(0xff << (end & 7));
878 *tab |= mask;
879 }
880 }
881 }
882
883 static void build_page_bitmap(PageDesc *p)
884 {
885 int n, tb_start, tb_end;
886 TranslationBlock *tb;
887
888 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
889
890 tb = p->first_tb;
891 while (tb != NULL) {
892 n = (long)tb & 3;
893 tb = (TranslationBlock *)((long)tb & ~3);
894 /* NOTE: this is subtle as a TB may span two physical pages */
895 if (n == 0) {
896 /* NOTE: tb_end may be after the end of the page, but
897 it is not a problem */
898 tb_start = tb->pc & ~TARGET_PAGE_MASK;
899 tb_end = tb_start + tb->size;
900 if (tb_end > TARGET_PAGE_SIZE)
901 tb_end = TARGET_PAGE_SIZE;
902 } else {
903 tb_start = 0;
904 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
905 }
906 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
907 tb = tb->page_next[n];
908 }
909 }
910
911 TranslationBlock *tb_gen_code(CPUState *env,
912 target_ulong pc, target_ulong cs_base,
913 int flags, int cflags)
914 {
915 TranslationBlock *tb;
916 uint8_t *tc_ptr;
917 tb_page_addr_t phys_pc, phys_page2;
918 target_ulong virt_page2;
919 int code_gen_size;
920
921 phys_pc = get_page_addr_code(env, pc);
922 tb = tb_alloc(pc);
923 if (!tb) {
924 /* flush must be done */
925 tb_flush(env);
926 /* cannot fail at this point */
927 tb = tb_alloc(pc);
928 /* Don't forget to invalidate previous TB info. */
929 tb_invalidated_flag = 1;
930 }
931 tc_ptr = code_gen_ptr;
932 tb->tc_ptr = tc_ptr;
933 tb->cs_base = cs_base;
934 tb->flags = flags;
935 tb->cflags = cflags;
936 cpu_gen_code(env, tb, &code_gen_size);
937 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
938
939 /* check next page if needed */
940 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
941 phys_page2 = -1;
942 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
943 phys_page2 = get_page_addr_code(env, virt_page2);
944 }
945 tb_link_page(tb, phys_pc, phys_page2);
946 return tb;
947 }
948
949 /* invalidate all TBs which intersect with the target physical page
950 starting in range [start;end[. NOTE: start and end must refer to
951 the same physical page. 'is_cpu_write_access' should be true if called
952 from a real cpu write access: the virtual CPU will exit the current
953 TB if code is modified inside this TB. */
954 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
955 int is_cpu_write_access)
956 {
957 TranslationBlock *tb, *tb_next, *saved_tb;
958 CPUState *env = cpu_single_env;
959 tb_page_addr_t tb_start, tb_end;
960 PageDesc *p;
961 int n;
962 #ifdef TARGET_HAS_PRECISE_SMC
963 int current_tb_not_found = is_cpu_write_access;
964 TranslationBlock *current_tb = NULL;
965 int current_tb_modified = 0;
966 target_ulong current_pc = 0;
967 target_ulong current_cs_base = 0;
968 int current_flags = 0;
969 #endif /* TARGET_HAS_PRECISE_SMC */
970
971 p = page_find(start >> TARGET_PAGE_BITS);
972 if (!p)
973 return;
974 if (!p->code_bitmap &&
975 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
976 is_cpu_write_access) {
977 /* build code bitmap */
978 build_page_bitmap(p);
979 }
980
981 /* we remove all the TBs in the range [start, end[ */
982 /* XXX: see if in some cases it could be faster to invalidate all the code */
983 tb = p->first_tb;
984 while (tb != NULL) {
985 n = (long)tb & 3;
986 tb = (TranslationBlock *)((long)tb & ~3);
987 tb_next = tb->page_next[n];
988 /* NOTE: this is subtle as a TB may span two physical pages */
989 if (n == 0) {
990 /* NOTE: tb_end may be after the end of the page, but
991 it is not a problem */
992 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
993 tb_end = tb_start + tb->size;
994 } else {
995 tb_start = tb->page_addr[1];
996 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
997 }
998 if (!(tb_end <= start || tb_start >= end)) {
999 #ifdef TARGET_HAS_PRECISE_SMC
1000 if (current_tb_not_found) {
1001 current_tb_not_found = 0;
1002 current_tb = NULL;
1003 if (env->mem_io_pc) {
1004 /* now we have a real cpu fault */
1005 current_tb = tb_find_pc(env->mem_io_pc);
1006 }
1007 }
1008 if (current_tb == tb &&
1009 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1010 /* If we are modifying the current TB, we must stop
1011 its execution. We could be more precise by checking
1012 that the modification is after the current PC, but it
1013 would require a specialized function to partially
1014 restore the CPU state */
1015
1016 current_tb_modified = 1;
1017 cpu_restore_state(current_tb, env,
1018 env->mem_io_pc, NULL);
1019 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1020 &current_flags);
1021 }
1022 #endif /* TARGET_HAS_PRECISE_SMC */
1023 /* we need to do that to handle the case where a signal
1024 occurs while doing tb_phys_invalidate() */
1025 saved_tb = NULL;
1026 if (env) {
1027 saved_tb = env->current_tb;
1028 env->current_tb = NULL;
1029 }
1030 tb_phys_invalidate(tb, -1);
1031 if (env) {
1032 env->current_tb = saved_tb;
1033 if (env->interrupt_request && env->current_tb)
1034 cpu_interrupt(env, env->interrupt_request);
1035 }
1036 }
1037 tb = tb_next;
1038 }
1039 #if !defined(CONFIG_USER_ONLY)
1040 /* if no code remaining, no need to continue to use slow writes */
1041 if (!p->first_tb) {
1042 invalidate_page_bitmap(p);
1043 if (is_cpu_write_access) {
1044 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1045 }
1046 }
1047 #endif
1048 #ifdef TARGET_HAS_PRECISE_SMC
1049 if (current_tb_modified) {
1050 /* we generate a block containing just the instruction
1051 modifying the memory. It will ensure that it cannot modify
1052 itself */
1053 env->current_tb = NULL;
1054 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1055 cpu_resume_from_signal(env, NULL);
1056 }
1057 #endif
1058 }
1059
1060 /* len must be <= 8 and start must be a multiple of len */
1061 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1062 {
1063 PageDesc *p;
1064 int offset, b;
1065 #if 0
1066 if (1) {
1067 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1068 cpu_single_env->mem_io_vaddr, len,
1069 cpu_single_env->eip,
1070 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1071 }
1072 #endif
1073 p = page_find(start >> TARGET_PAGE_BITS);
1074 if (!p)
1075 return;
1076 if (p->code_bitmap) {
1077 offset = start & ~TARGET_PAGE_MASK;
1078 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1079 if (b & ((1 << len) - 1))
1080 goto do_invalidate;
1081 } else {
1082 do_invalidate:
1083 tb_invalidate_phys_page_range(start, start + len, 1);
1084 }
1085 }
1086
1087 #if !defined(CONFIG_SOFTMMU)
1088 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1089 unsigned long pc, void *puc)
1090 {
1091 TranslationBlock *tb;
1092 PageDesc *p;
1093 int n;
1094 #ifdef TARGET_HAS_PRECISE_SMC
1095 TranslationBlock *current_tb = NULL;
1096 CPUState *env = cpu_single_env;
1097 int current_tb_modified = 0;
1098 target_ulong current_pc = 0;
1099 target_ulong current_cs_base = 0;
1100 int current_flags = 0;
1101 #endif
1102
1103 addr &= TARGET_PAGE_MASK;
1104 p = page_find(addr >> TARGET_PAGE_BITS);
1105 if (!p)
1106 return;
1107 tb = p->first_tb;
1108 #ifdef TARGET_HAS_PRECISE_SMC
1109 if (tb && pc != 0) {
1110 current_tb = tb_find_pc(pc);
1111 }
1112 #endif
1113 while (tb != NULL) {
1114 n = (long)tb & 3;
1115 tb = (TranslationBlock *)((long)tb & ~3);
1116 #ifdef TARGET_HAS_PRECISE_SMC
1117 if (current_tb == tb &&
1118 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1119 /* If we are modifying the current TB, we must stop
1120 its execution. We could be more precise by checking
1121 that the modification is after the current PC, but it
1122 would require a specialized function to partially
1123 restore the CPU state */
1124
1125 current_tb_modified = 1;
1126 cpu_restore_state(current_tb, env, pc, puc);
1127 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1128 &current_flags);
1129 }
1130 #endif /* TARGET_HAS_PRECISE_SMC */
1131 tb_phys_invalidate(tb, addr);
1132 tb = tb->page_next[n];
1133 }
1134 p->first_tb = NULL;
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_modified) {
1137 /* we generate a block containing just the instruction
1138 modifying the memory. It will ensure that it cannot modify
1139 itself */
1140 env->current_tb = NULL;
1141 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1142 cpu_resume_from_signal(env, puc);
1143 }
1144 #endif
1145 }
1146 #endif
1147
1148 /* add the tb in the target page and protect it if necessary */
1149 static inline void tb_alloc_page(TranslationBlock *tb,
1150 unsigned int n, tb_page_addr_t page_addr)
1151 {
1152 PageDesc *p;
1153 TranslationBlock *last_first_tb;
1154
1155 tb->page_addr[n] = page_addr;
1156 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1157 tb->page_next[n] = p->first_tb;
1158 last_first_tb = p->first_tb;
1159 p->first_tb = (TranslationBlock *)((long)tb | n);
1160 invalidate_page_bitmap(p);
1161
1162 #if defined(TARGET_HAS_SMC) || 1
1163
1164 #if defined(CONFIG_USER_ONLY)
1165 if (p->flags & PAGE_WRITE) {
1166 target_ulong addr;
1167 PageDesc *p2;
1168 int prot;
1169
1170 /* force the host page as non writable (writes will have a
1171 page fault + mprotect overhead) */
1172 page_addr &= qemu_host_page_mask;
1173 prot = 0;
1174 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1175 addr += TARGET_PAGE_SIZE) {
1176
1177 p2 = page_find (addr >> TARGET_PAGE_BITS);
1178 if (!p2)
1179 continue;
1180 prot |= p2->flags;
1181 p2->flags &= ~PAGE_WRITE;
1182 }
1183 mprotect(g2h(page_addr), qemu_host_page_size,
1184 (prot & PAGE_BITS) & ~PAGE_WRITE);
1185 #ifdef DEBUG_TB_INVALIDATE
1186 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1187 page_addr);
1188 #endif
1189 }
1190 #else
1191 /* if some code is already present, then the pages are already
1192 protected. So we handle the case where only the first TB is
1193 allocated in a physical page */
1194 if (!last_first_tb) {
1195 tlb_protect_code(page_addr);
1196 }
1197 #endif
1198
1199 #endif /* TARGET_HAS_SMC */
1200 }
1201
1202 /* Allocate a new translation block. Flush the translation buffer if
1203 too many translation blocks or too much generated code. */
1204 TranslationBlock *tb_alloc(target_ulong pc)
1205 {
1206 TranslationBlock *tb;
1207
1208 if (nb_tbs >= code_gen_max_blocks ||
1209 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1210 return NULL;
1211 tb = &tbs[nb_tbs++];
1212 tb->pc = pc;
1213 tb->cflags = 0;
1214 return tb;
1215 }
1216
1217 void tb_free(TranslationBlock *tb)
1218 {
1219 /* In practice this is mostly used for single use temporary TB
1220 Ignore the hard cases and just back up if this TB happens to
1221 be the last one generated. */
1222 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1223 code_gen_ptr = tb->tc_ptr;
1224 nb_tbs--;
1225 }
1226 }
1227
1228 /* add a new TB and link it to the physical page tables. phys_page2 is
1229 (-1) to indicate that only one page contains the TB. */
1230 void tb_link_page(TranslationBlock *tb,
1231 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1232 {
1233 unsigned int h;
1234 TranslationBlock **ptb;
1235
1236 /* Grab the mmap lock to stop another thread invalidating this TB
1237 before we are done. */
1238 mmap_lock();
1239 /* add in the physical hash table */
1240 h = tb_phys_hash_func(phys_pc);
1241 ptb = &tb_phys_hash[h];
1242 tb->phys_hash_next = *ptb;
1243 *ptb = tb;
1244
1245 /* add in the page list */
1246 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1247 if (phys_page2 != -1)
1248 tb_alloc_page(tb, 1, phys_page2);
1249 else
1250 tb->page_addr[1] = -1;
1251
1252 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1253 tb->jmp_next[0] = NULL;
1254 tb->jmp_next[1] = NULL;
1255
1256 /* init original jump addresses */
1257 if (tb->tb_next_offset[0] != 0xffff)
1258 tb_reset_jump(tb, 0);
1259 if (tb->tb_next_offset[1] != 0xffff)
1260 tb_reset_jump(tb, 1);
1261
1262 #ifdef DEBUG_TB_CHECK
1263 tb_page_check();
1264 #endif
1265 mmap_unlock();
1266 }
1267
1268 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1269 tb[1].tc_ptr. Return NULL if not found */
1270 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1271 {
1272 int m_min, m_max, m;
1273 unsigned long v;
1274 TranslationBlock *tb;
1275
1276 if (nb_tbs <= 0)
1277 return NULL;
1278 if (tc_ptr < (unsigned long)code_gen_buffer ||
1279 tc_ptr >= (unsigned long)code_gen_ptr)
1280 return NULL;
1281 /* binary search (cf Knuth) */
1282 m_min = 0;
1283 m_max = nb_tbs - 1;
1284 while (m_min <= m_max) {
1285 m = (m_min + m_max) >> 1;
1286 tb = &tbs[m];
1287 v = (unsigned long)tb->tc_ptr;
1288 if (v == tc_ptr)
1289 return tb;
1290 else if (tc_ptr < v) {
1291 m_max = m - 1;
1292 } else {
1293 m_min = m + 1;
1294 }
1295 }
1296 return &tbs[m_max];
1297 }
1298
1299 static void tb_reset_jump_recursive(TranslationBlock *tb);
1300
1301 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1302 {
1303 TranslationBlock *tb1, *tb_next, **ptb;
1304 unsigned int n1;
1305
1306 tb1 = tb->jmp_next[n];
1307 if (tb1 != NULL) {
1308 /* find head of list */
1309 for(;;) {
1310 n1 = (long)tb1 & 3;
1311 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1312 if (n1 == 2)
1313 break;
1314 tb1 = tb1->jmp_next[n1];
1315 }
1316 /* we are now sure now that tb jumps to tb1 */
1317 tb_next = tb1;
1318
1319 /* remove tb from the jmp_first list */
1320 ptb = &tb_next->jmp_first;
1321 for(;;) {
1322 tb1 = *ptb;
1323 n1 = (long)tb1 & 3;
1324 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1325 if (n1 == n && tb1 == tb)
1326 break;
1327 ptb = &tb1->jmp_next[n1];
1328 }
1329 *ptb = tb->jmp_next[n];
1330 tb->jmp_next[n] = NULL;
1331
1332 /* suppress the jump to next tb in generated code */
1333 tb_reset_jump(tb, n);
1334
1335 /* suppress jumps in the tb on which we could have jumped */
1336 tb_reset_jump_recursive(tb_next);
1337 }
1338 }
1339
1340 static void tb_reset_jump_recursive(TranslationBlock *tb)
1341 {
1342 tb_reset_jump_recursive2(tb, 0);
1343 tb_reset_jump_recursive2(tb, 1);
1344 }
1345
1346 #if defined(TARGET_HAS_ICE)
1347 #if defined(CONFIG_USER_ONLY)
1348 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1349 {
1350 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1351 }
1352 #else
1353 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1354 {
1355 target_phys_addr_t addr;
1356 target_ulong pd;
1357 ram_addr_t ram_addr;
1358 PhysPageDesc *p;
1359
1360 addr = cpu_get_phys_page_debug(env, pc);
1361 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1362 if (!p) {
1363 pd = IO_MEM_UNASSIGNED;
1364 } else {
1365 pd = p->phys_offset;
1366 }
1367 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1368 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1369 }
1370 #endif
1371 #endif /* TARGET_HAS_ICE */
1372
1373 #if defined(CONFIG_USER_ONLY)
1374 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1375
1376 {
1377 }
1378
1379 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1380 int flags, CPUWatchpoint **watchpoint)
1381 {
1382 return -ENOSYS;
1383 }
1384 #else
1385 /* Add a watchpoint. */
1386 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1387 int flags, CPUWatchpoint **watchpoint)
1388 {
1389 target_ulong len_mask = ~(len - 1);
1390 CPUWatchpoint *wp;
1391
1392 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1393 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1394 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1395 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1396 return -EINVAL;
1397 }
1398 wp = qemu_malloc(sizeof(*wp));
1399
1400 wp->vaddr = addr;
1401 wp->len_mask = len_mask;
1402 wp->flags = flags;
1403
1404 /* keep all GDB-injected watchpoints in front */
1405 if (flags & BP_GDB)
1406 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1407 else
1408 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1409
1410 tlb_flush_page(env, addr);
1411
1412 if (watchpoint)
1413 *watchpoint = wp;
1414 return 0;
1415 }
1416
1417 /* Remove a specific watchpoint. */
1418 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1419 int flags)
1420 {
1421 target_ulong len_mask = ~(len - 1);
1422 CPUWatchpoint *wp;
1423
1424 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1425 if (addr == wp->vaddr && len_mask == wp->len_mask
1426 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1427 cpu_watchpoint_remove_by_ref(env, wp);
1428 return 0;
1429 }
1430 }
1431 return -ENOENT;
1432 }
1433
1434 /* Remove a specific watchpoint by reference. */
1435 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1436 {
1437 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1438
1439 tlb_flush_page(env, watchpoint->vaddr);
1440
1441 qemu_free(watchpoint);
1442 }
1443
1444 /* Remove all matching watchpoints. */
1445 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1446 {
1447 CPUWatchpoint *wp, *next;
1448
1449 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1450 if (wp->flags & mask)
1451 cpu_watchpoint_remove_by_ref(env, wp);
1452 }
1453 }
1454 #endif
1455
1456 /* Add a breakpoint. */
1457 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1458 CPUBreakpoint **breakpoint)
1459 {
1460 #if defined(TARGET_HAS_ICE)
1461 CPUBreakpoint *bp;
1462
1463 bp = qemu_malloc(sizeof(*bp));
1464
1465 bp->pc = pc;
1466 bp->flags = flags;
1467
1468 /* keep all GDB-injected breakpoints in front */
1469 if (flags & BP_GDB)
1470 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1471 else
1472 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1473
1474 breakpoint_invalidate(env, pc);
1475
1476 if (breakpoint)
1477 *breakpoint = bp;
1478 return 0;
1479 #else
1480 return -ENOSYS;
1481 #endif
1482 }
1483
1484 /* Remove a specific breakpoint. */
1485 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1486 {
1487 #if defined(TARGET_HAS_ICE)
1488 CPUBreakpoint *bp;
1489
1490 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1491 if (bp->pc == pc && bp->flags == flags) {
1492 cpu_breakpoint_remove_by_ref(env, bp);
1493 return 0;
1494 }
1495 }
1496 return -ENOENT;
1497 #else
1498 return -ENOSYS;
1499 #endif
1500 }
1501
1502 /* Remove a specific breakpoint by reference. */
1503 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1504 {
1505 #if defined(TARGET_HAS_ICE)
1506 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1507
1508 breakpoint_invalidate(env, breakpoint->pc);
1509
1510 qemu_free(breakpoint);
1511 #endif
1512 }
1513
1514 /* Remove all matching breakpoints. */
1515 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1516 {
1517 #if defined(TARGET_HAS_ICE)
1518 CPUBreakpoint *bp, *next;
1519
1520 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1521 if (bp->flags & mask)
1522 cpu_breakpoint_remove_by_ref(env, bp);
1523 }
1524 #endif
1525 }
1526
1527 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1528 CPU loop after each instruction */
1529 void cpu_single_step(CPUState *env, int enabled)
1530 {
1531 #if defined(TARGET_HAS_ICE)
1532 if (env->singlestep_enabled != enabled) {
1533 env->singlestep_enabled = enabled;
1534 if (kvm_enabled())
1535 kvm_update_guest_debug(env, 0);
1536 else {
1537 /* must flush all the translated code to avoid inconsistencies */
1538 /* XXX: only flush what is necessary */
1539 tb_flush(env);
1540 }
1541 }
1542 #endif
1543 }
1544
1545 /* enable or disable low levels log */
1546 void cpu_set_log(int log_flags)
1547 {
1548 loglevel = log_flags;
1549 if (loglevel && !logfile) {
1550 logfile = fopen(logfilename, log_append ? "a" : "w");
1551 if (!logfile) {
1552 perror(logfilename);
1553 _exit(1);
1554 }
1555 #if !defined(CONFIG_SOFTMMU)
1556 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1557 {
1558 static char logfile_buf[4096];
1559 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1560 }
1561 #elif !defined(_WIN32)
1562 /* Win32 doesn't support line-buffering and requires size >= 2 */
1563 setvbuf(logfile, NULL, _IOLBF, 0);
1564 #endif
1565 log_append = 1;
1566 }
1567 if (!loglevel && logfile) {
1568 fclose(logfile);
1569 logfile = NULL;
1570 }
1571 }
1572
1573 void cpu_set_log_filename(const char *filename)
1574 {
1575 logfilename = strdup(filename);
1576 if (logfile) {
1577 fclose(logfile);
1578 logfile = NULL;
1579 }
1580 cpu_set_log(loglevel);
1581 }
1582
1583 static void cpu_unlink_tb(CPUState *env)
1584 {
1585 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1586 problem and hope the cpu will stop of its own accord. For userspace
1587 emulation this often isn't actually as bad as it sounds. Often
1588 signals are used primarily to interrupt blocking syscalls. */
1589 TranslationBlock *tb;
1590 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1591
1592 spin_lock(&interrupt_lock);
1593 tb = env->current_tb;
1594 /* if the cpu is currently executing code, we must unlink it and
1595 all the potentially executing TB */
1596 if (tb) {
1597 env->current_tb = NULL;
1598 tb_reset_jump_recursive(tb);
1599 }
1600 spin_unlock(&interrupt_lock);
1601 }
1602
1603 /* mask must never be zero, except for A20 change call */
1604 void cpu_interrupt(CPUState *env, int mask)
1605 {
1606 int old_mask;
1607
1608 old_mask = env->interrupt_request;
1609 env->interrupt_request |= mask;
1610
1611 #ifndef CONFIG_USER_ONLY
1612 /*
1613 * If called from iothread context, wake the target cpu in
1614 * case its halted.
1615 */
1616 if (!qemu_cpu_self(env)) {
1617 qemu_cpu_kick(env);
1618 return;
1619 }
1620 #endif
1621
1622 if (use_icount) {
1623 env->icount_decr.u16.high = 0xffff;
1624 #ifndef CONFIG_USER_ONLY
1625 if (!can_do_io(env)
1626 && (mask & ~old_mask) != 0) {
1627 cpu_abort(env, "Raised interrupt while not in I/O function");
1628 }
1629 #endif
1630 } else {
1631 cpu_unlink_tb(env);
1632 }
1633 }
1634
1635 void cpu_reset_interrupt(CPUState *env, int mask)
1636 {
1637 env->interrupt_request &= ~mask;
1638 }
1639
1640 void cpu_exit(CPUState *env)
1641 {
1642 env->exit_request = 1;
1643 cpu_unlink_tb(env);
1644 }
1645
1646 const CPULogItem cpu_log_items[] = {
1647 { CPU_LOG_TB_OUT_ASM, "out_asm",
1648 "show generated host assembly code for each compiled TB" },
1649 { CPU_LOG_TB_IN_ASM, "in_asm",
1650 "show target assembly code for each compiled TB" },
1651 { CPU_LOG_TB_OP, "op",
1652 "show micro ops for each compiled TB" },
1653 { CPU_LOG_TB_OP_OPT, "op_opt",
1654 "show micro ops "
1655 #ifdef TARGET_I386
1656 "before eflags optimization and "
1657 #endif
1658 "after liveness analysis" },
1659 { CPU_LOG_INT, "int",
1660 "show interrupts/exceptions in short format" },
1661 { CPU_LOG_EXEC, "exec",
1662 "show trace before each executed TB (lots of logs)" },
1663 { CPU_LOG_TB_CPU, "cpu",
1664 "show CPU state before block translation" },
1665 #ifdef TARGET_I386
1666 { CPU_LOG_PCALL, "pcall",
1667 "show protected mode far calls/returns/exceptions" },
1668 { CPU_LOG_RESET, "cpu_reset",
1669 "show CPU state before CPU resets" },
1670 #endif
1671 #ifdef DEBUG_IOPORT
1672 { CPU_LOG_IOPORT, "ioport",
1673 "show all i/o ports accesses" },
1674 #endif
1675 { 0, NULL, NULL },
1676 };
1677
1678 #ifndef CONFIG_USER_ONLY
1679 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1680 = QLIST_HEAD_INITIALIZER(memory_client_list);
1681
1682 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1683 ram_addr_t size,
1684 ram_addr_t phys_offset)
1685 {
1686 CPUPhysMemoryClient *client;
1687 QLIST_FOREACH(client, &memory_client_list, list) {
1688 client->set_memory(client, start_addr, size, phys_offset);
1689 }
1690 }
1691
1692 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1693 target_phys_addr_t end)
1694 {
1695 CPUPhysMemoryClient *client;
1696 QLIST_FOREACH(client, &memory_client_list, list) {
1697 int r = client->sync_dirty_bitmap(client, start, end);
1698 if (r < 0)
1699 return r;
1700 }
1701 return 0;
1702 }
1703
1704 static int cpu_notify_migration_log(int enable)
1705 {
1706 CPUPhysMemoryClient *client;
1707 QLIST_FOREACH(client, &memory_client_list, list) {
1708 int r = client->migration_log(client, enable);
1709 if (r < 0)
1710 return r;
1711 }
1712 return 0;
1713 }
1714
1715 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1716 int level, void **lp)
1717 {
1718 int i;
1719
1720 if (*lp == NULL) {
1721 return;
1722 }
1723 if (level == 0) {
1724 PhysPageDesc *pd = *lp;
1725 for (i = 0; i < L2_SIZE; ++i) {
1726 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1727 client->set_memory(client, pd[i].region_offset,
1728 TARGET_PAGE_SIZE, pd[i].phys_offset);
1729 }
1730 }
1731 } else {
1732 void **pp = *lp;
1733 for (i = 0; i < L2_SIZE; ++i) {
1734 phys_page_for_each_1(client, level - 1, pp + i);
1735 }
1736 }
1737 }
1738
1739 static void phys_page_for_each(CPUPhysMemoryClient *client)
1740 {
1741 int i;
1742 for (i = 0; i < P_L1_SIZE; ++i) {
1743 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1744 l1_phys_map + 1);
1745 }
1746 }
1747
1748 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1749 {
1750 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1751 phys_page_for_each(client);
1752 }
1753
1754 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1755 {
1756 QLIST_REMOVE(client, list);
1757 }
1758 #endif
1759
1760 static int cmp1(const char *s1, int n, const char *s2)
1761 {
1762 if (strlen(s2) != n)
1763 return 0;
1764 return memcmp(s1, s2, n) == 0;
1765 }
1766
1767 /* takes a comma separated list of log masks. Return 0 if error. */
1768 int cpu_str_to_log_mask(const char *str)
1769 {
1770 const CPULogItem *item;
1771 int mask;
1772 const char *p, *p1;
1773
1774 p = str;
1775 mask = 0;
1776 for(;;) {
1777 p1 = strchr(p, ',');
1778 if (!p1)
1779 p1 = p + strlen(p);
1780 if(cmp1(p,p1-p,"all")) {
1781 for(item = cpu_log_items; item->mask != 0; item++) {
1782 mask |= item->mask;
1783 }
1784 } else {
1785 for(item = cpu_log_items; item->mask != 0; item++) {
1786 if (cmp1(p, p1 - p, item->name))
1787 goto found;
1788 }
1789 return 0;
1790 }
1791 found:
1792 mask |= item->mask;
1793 if (*p1 != ',')
1794 break;
1795 p = p1 + 1;
1796 }
1797 return mask;
1798 }
1799
1800 void cpu_abort(CPUState *env, const char *fmt, ...)
1801 {
1802 va_list ap;
1803 va_list ap2;
1804
1805 va_start(ap, fmt);
1806 va_copy(ap2, ap);
1807 fprintf(stderr, "qemu: fatal: ");
1808 vfprintf(stderr, fmt, ap);
1809 fprintf(stderr, "\n");
1810 #ifdef TARGET_I386
1811 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1812 #else
1813 cpu_dump_state(env, stderr, fprintf, 0);
1814 #endif
1815 if (qemu_log_enabled()) {
1816 qemu_log("qemu: fatal: ");
1817 qemu_log_vprintf(fmt, ap2);
1818 qemu_log("\n");
1819 #ifdef TARGET_I386
1820 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1821 #else
1822 log_cpu_state(env, 0);
1823 #endif
1824 qemu_log_flush();
1825 qemu_log_close();
1826 }
1827 va_end(ap2);
1828 va_end(ap);
1829 #if defined(CONFIG_USER_ONLY)
1830 {
1831 struct sigaction act;
1832 sigfillset(&act.sa_mask);
1833 act.sa_handler = SIG_DFL;
1834 sigaction(SIGABRT, &act, NULL);
1835 }
1836 #endif
1837 abort();
1838 }
1839
1840 CPUState *cpu_copy(CPUState *env)
1841 {
1842 CPUState *new_env = cpu_init(env->cpu_model_str);
1843 CPUState *next_cpu = new_env->next_cpu;
1844 int cpu_index = new_env->cpu_index;
1845 #if defined(TARGET_HAS_ICE)
1846 CPUBreakpoint *bp;
1847 CPUWatchpoint *wp;
1848 #endif
1849
1850 memcpy(new_env, env, sizeof(CPUState));
1851
1852 /* Preserve chaining and index. */
1853 new_env->next_cpu = next_cpu;
1854 new_env->cpu_index = cpu_index;
1855
1856 /* Clone all break/watchpoints.
1857 Note: Once we support ptrace with hw-debug register access, make sure
1858 BP_CPU break/watchpoints are handled correctly on clone. */
1859 QTAILQ_INIT(&env->breakpoints);
1860 QTAILQ_INIT(&env->watchpoints);
1861 #if defined(TARGET_HAS_ICE)
1862 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1863 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1864 }
1865 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1866 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1867 wp->flags, NULL);
1868 }
1869 #endif
1870
1871 return new_env;
1872 }
1873
1874 #if !defined(CONFIG_USER_ONLY)
1875
1876 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1877 {
1878 unsigned int i;
1879
1880 /* Discard jump cache entries for any tb which might potentially
1881 overlap the flushed page. */
1882 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1883 memset (&env->tb_jmp_cache[i], 0,
1884 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1885
1886 i = tb_jmp_cache_hash_page(addr);
1887 memset (&env->tb_jmp_cache[i], 0,
1888 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1889 }
1890
1891 static CPUTLBEntry s_cputlb_empty_entry = {
1892 .addr_read = -1,
1893 .addr_write = -1,
1894 .addr_code = -1,
1895 .addend = -1,
1896 };
1897
1898 /* NOTE: if flush_global is true, also flush global entries (not
1899 implemented yet) */
1900 void tlb_flush(CPUState *env, int flush_global)
1901 {
1902 int i;
1903
1904 #if defined(DEBUG_TLB)
1905 printf("tlb_flush:\n");
1906 #endif
1907 /* must reset current TB so that interrupts cannot modify the
1908 links while we are modifying them */
1909 env->current_tb = NULL;
1910
1911 for(i = 0; i < CPU_TLB_SIZE; i++) {
1912 int mmu_idx;
1913 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1914 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1915 }
1916 }
1917
1918 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1919
1920 env->tlb_flush_addr = -1;
1921 env->tlb_flush_mask = 0;
1922 tlb_flush_count++;
1923 }
1924
1925 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1926 {
1927 if (addr == (tlb_entry->addr_read &
1928 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1929 addr == (tlb_entry->addr_write &
1930 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1931 addr == (tlb_entry->addr_code &
1932 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1933 *tlb_entry = s_cputlb_empty_entry;
1934 }
1935 }
1936
1937 void tlb_flush_page(CPUState *env, target_ulong addr)
1938 {
1939 int i;
1940 int mmu_idx;
1941
1942 #if defined(DEBUG_TLB)
1943 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1944 #endif
1945 /* Check if we need to flush due to large pages. */
1946 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1947 #if defined(DEBUG_TLB)
1948 printf("tlb_flush_page: forced full flush ("
1949 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1950 env->tlb_flush_addr, env->tlb_flush_mask);
1951 #endif
1952 tlb_flush(env, 1);
1953 return;
1954 }
1955 /* must reset current TB so that interrupts cannot modify the
1956 links while we are modifying them */
1957 env->current_tb = NULL;
1958
1959 addr &= TARGET_PAGE_MASK;
1960 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1961 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1962 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1963
1964 tlb_flush_jmp_cache(env, addr);
1965 }
1966
1967 /* update the TLBs so that writes to code in the virtual page 'addr'
1968 can be detected */
1969 static void tlb_protect_code(ram_addr_t ram_addr)
1970 {
1971 cpu_physical_memory_reset_dirty(ram_addr,
1972 ram_addr + TARGET_PAGE_SIZE,
1973 CODE_DIRTY_FLAG);
1974 }
1975
1976 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1977 tested for self modifying code */
1978 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1979 target_ulong vaddr)
1980 {
1981 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1982 }
1983
1984 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1985 unsigned long start, unsigned long length)
1986 {
1987 unsigned long addr;
1988 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1989 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1990 if ((addr - start) < length) {
1991 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1992 }
1993 }
1994 }
1995
1996 /* Note: start and end must be within the same ram block. */
1997 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1998 int dirty_flags)
1999 {
2000 CPUState *env;
2001 unsigned long length, start1;
2002 int i, mask, len;
2003 uint8_t *p;
2004
2005 start &= TARGET_PAGE_MASK;
2006 end = TARGET_PAGE_ALIGN(end);
2007
2008 length = end - start;
2009 if (length == 0)
2010 return;
2011 len = length >> TARGET_PAGE_BITS;
2012 mask = ~dirty_flags;
2013 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2014 for(i = 0; i < len; i++)
2015 p[i] &= mask;
2016
2017 /* we modify the TLB cache so that the dirty bit will be set again
2018 when accessing the range */
2019 start1 = (unsigned long)qemu_get_ram_ptr(start);
2020 /* Chek that we don't span multiple blocks - this breaks the
2021 address comparisons below. */
2022 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2023 != (end - 1) - start) {
2024 abort();
2025 }
2026
2027 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2028 int mmu_idx;
2029 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2030 for(i = 0; i < CPU_TLB_SIZE; i++)
2031 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2032 start1, length);
2033 }
2034 }
2035 }
2036
2037 int cpu_physical_memory_set_dirty_tracking(int enable)
2038 {
2039 int ret = 0;
2040 in_migration = enable;
2041 ret = cpu_notify_migration_log(!!enable);
2042 return ret;
2043 }
2044
2045 int cpu_physical_memory_get_dirty_tracking(void)
2046 {
2047 return in_migration;
2048 }
2049
2050 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2051 target_phys_addr_t end_addr)
2052 {
2053 int ret;
2054
2055 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2056 return ret;
2057 }
2058
2059 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2060 {
2061 ram_addr_t ram_addr;
2062 void *p;
2063
2064 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2065 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2066 + tlb_entry->addend);
2067 ram_addr = qemu_ram_addr_from_host(p);
2068 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2069 tlb_entry->addr_write |= TLB_NOTDIRTY;
2070 }
2071 }
2072 }
2073
2074 /* update the TLB according to the current state of the dirty bits */
2075 void cpu_tlb_update_dirty(CPUState *env)
2076 {
2077 int i;
2078 int mmu_idx;
2079 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2080 for(i = 0; i < CPU_TLB_SIZE; i++)
2081 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2082 }
2083 }
2084
2085 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2086 {
2087 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2088 tlb_entry->addr_write = vaddr;
2089 }
2090
2091 /* update the TLB corresponding to virtual page vaddr
2092 so that it is no longer dirty */
2093 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2094 {
2095 int i;
2096 int mmu_idx;
2097
2098 vaddr &= TARGET_PAGE_MASK;
2099 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2100 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2101 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2102 }
2103
2104 /* Our TLB does not support large pages, so remember the area covered by
2105 large pages and trigger a full TLB flush if these are invalidated. */
2106 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2107 target_ulong size)
2108 {
2109 target_ulong mask = ~(size - 1);
2110
2111 if (env->tlb_flush_addr == (target_ulong)-1) {
2112 env->tlb_flush_addr = vaddr & mask;
2113 env->tlb_flush_mask = mask;
2114 return;
2115 }
2116 /* Extend the existing region to include the new page.
2117 This is a compromise between unnecessary flushes and the cost
2118 of maintaining a full variable size TLB. */
2119 mask &= env->tlb_flush_mask;
2120 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2121 mask <<= 1;
2122 }
2123 env->tlb_flush_addr &= mask;
2124 env->tlb_flush_mask = mask;
2125 }
2126
2127 /* Add a new TLB entry. At most one entry for a given virtual address
2128 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2129 supplied size is only used by tlb_flush_page. */
2130 void tlb_set_page(CPUState *env, target_ulong vaddr,
2131 target_phys_addr_t paddr, int prot,
2132 int mmu_idx, target_ulong size)
2133 {
2134 PhysPageDesc *p;
2135 unsigned long pd;
2136 unsigned int index;
2137 target_ulong address;
2138 target_ulong code_address;
2139 target_phys_addr_t addend;
2140 CPUTLBEntry *te;
2141 CPUWatchpoint *wp;
2142 target_phys_addr_t iotlb;
2143
2144 assert(size >= TARGET_PAGE_SIZE);
2145 if (size != TARGET_PAGE_SIZE) {
2146 tlb_add_large_page(env, vaddr, size);
2147 }
2148 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2149 if (!p) {
2150 pd = IO_MEM_UNASSIGNED;
2151 } else {
2152 pd = p->phys_offset;
2153 }
2154 #if defined(DEBUG_TLB)
2155 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2156 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2157 #endif
2158
2159 address = vaddr;
2160 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2161 /* IO memory case (romd handled later) */
2162 address |= TLB_MMIO;
2163 }
2164 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2165 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2166 /* Normal RAM. */
2167 iotlb = pd & TARGET_PAGE_MASK;
2168 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2169 iotlb |= IO_MEM_NOTDIRTY;
2170 else
2171 iotlb |= IO_MEM_ROM;
2172 } else {
2173 /* IO handlers are currently passed a physical address.
2174 It would be nice to pass an offset from the base address
2175 of that region. This would avoid having to special case RAM,
2176 and avoid full address decoding in every device.
2177 We can't use the high bits of pd for this because
2178 IO_MEM_ROMD uses these as a ram address. */
2179 iotlb = (pd & ~TARGET_PAGE_MASK);
2180 if (p) {
2181 iotlb += p->region_offset;
2182 } else {
2183 iotlb += paddr;
2184 }
2185 }
2186
2187 code_address = address;
2188 /* Make accesses to pages with watchpoints go via the
2189 watchpoint trap routines. */
2190 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2191 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2192 iotlb = io_mem_watch + paddr;
2193 /* TODO: The memory case can be optimized by not trapping
2194 reads of pages with a write breakpoint. */
2195 address |= TLB_MMIO;
2196 }
2197 }
2198
2199 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2200 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2201 te = &env->tlb_table[mmu_idx][index];
2202 te->addend = addend - vaddr;
2203 if (prot & PAGE_READ) {
2204 te->addr_read = address;
2205 } else {
2206 te->addr_read = -1;
2207 }
2208
2209 if (prot & PAGE_EXEC) {
2210 te->addr_code = code_address;
2211 } else {
2212 te->addr_code = -1;
2213 }
2214 if (prot & PAGE_WRITE) {
2215 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2216 (pd & IO_MEM_ROMD)) {
2217 /* Write access calls the I/O callback. */
2218 te->addr_write = address | TLB_MMIO;
2219 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2220 !cpu_physical_memory_is_dirty(pd)) {
2221 te->addr_write = address | TLB_NOTDIRTY;
2222 } else {
2223 te->addr_write = address;
2224 }
2225 } else {
2226 te->addr_write = -1;
2227 }
2228 }
2229
2230 #else
2231
2232 void tlb_flush(CPUState *env, int flush_global)
2233 {
2234 }
2235
2236 void tlb_flush_page(CPUState *env, target_ulong addr)
2237 {
2238 }
2239
2240 /*
2241 * Walks guest process memory "regions" one by one
2242 * and calls callback function 'fn' for each region.
2243 */
2244
2245 struct walk_memory_regions_data
2246 {
2247 walk_memory_regions_fn fn;
2248 void *priv;
2249 unsigned long start;
2250 int prot;
2251 };
2252
2253 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2254 abi_ulong end, int new_prot)
2255 {
2256 if (data->start != -1ul) {
2257 int rc = data->fn(data->priv, data->start, end, data->prot);
2258 if (rc != 0) {
2259 return rc;
2260 }
2261 }
2262
2263 data->start = (new_prot ? end : -1ul);
2264 data->prot = new_prot;
2265
2266 return 0;
2267 }
2268
2269 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2270 abi_ulong base, int level, void **lp)
2271 {
2272 abi_ulong pa;
2273 int i, rc;
2274
2275 if (*lp == NULL) {
2276 return walk_memory_regions_end(data, base, 0);
2277 }
2278
2279 if (level == 0) {
2280 PageDesc *pd = *lp;
2281 for (i = 0; i < L2_SIZE; ++i) {
2282 int prot = pd[i].flags;
2283
2284 pa = base | (i << TARGET_PAGE_BITS);
2285 if (prot != data->prot) {
2286 rc = walk_memory_regions_end(data, pa, prot);
2287 if (rc != 0) {
2288 return rc;
2289 }
2290 }
2291 }
2292 } else {
2293 void **pp = *lp;
2294 for (i = 0; i < L2_SIZE; ++i) {
2295 pa = base | ((abi_ulong)i <<
2296 (TARGET_PAGE_BITS + L2_BITS * level));
2297 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2298 if (rc != 0) {
2299 return rc;
2300 }
2301 }
2302 }
2303
2304 return 0;
2305 }
2306
2307 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2308 {
2309 struct walk_memory_regions_data data;
2310 unsigned long i;
2311
2312 data.fn = fn;
2313 data.priv = priv;
2314 data.start = -1ul;
2315 data.prot = 0;
2316
2317 for (i = 0; i < V_L1_SIZE; i++) {
2318 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2319 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2320 if (rc != 0) {
2321 return rc;
2322 }
2323 }
2324
2325 return walk_memory_regions_end(&data, 0, 0);
2326 }
2327
2328 static int dump_region(void *priv, abi_ulong start,
2329 abi_ulong end, unsigned long prot)
2330 {
2331 FILE *f = (FILE *)priv;
2332
2333 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2334 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2335 start, end, end - start,
2336 ((prot & PAGE_READ) ? 'r' : '-'),
2337 ((prot & PAGE_WRITE) ? 'w' : '-'),
2338 ((prot & PAGE_EXEC) ? 'x' : '-'));
2339
2340 return (0);
2341 }
2342
2343 /* dump memory mappings */
2344 void page_dump(FILE *f)
2345 {
2346 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2347 "start", "end", "size", "prot");
2348 walk_memory_regions(f, dump_region);
2349 }
2350
2351 int page_get_flags(target_ulong address)
2352 {
2353 PageDesc *p;
2354
2355 p = page_find(address >> TARGET_PAGE_BITS);
2356 if (!p)
2357 return 0;
2358 return p->flags;
2359 }
2360
2361 /* Modify the flags of a page and invalidate the code if necessary.
2362 The flag PAGE_WRITE_ORG is positioned automatically depending
2363 on PAGE_WRITE. The mmap_lock should already be held. */
2364 void page_set_flags(target_ulong start, target_ulong end, int flags)
2365 {
2366 target_ulong addr, len;
2367
2368 /* This function should never be called with addresses outside the
2369 guest address space. If this assert fires, it probably indicates
2370 a missing call to h2g_valid. */
2371 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2372 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2373 #endif
2374 assert(start < end);
2375
2376 start = start & TARGET_PAGE_MASK;
2377 end = TARGET_PAGE_ALIGN(end);
2378
2379 if (flags & PAGE_WRITE) {
2380 flags |= PAGE_WRITE_ORG;
2381 }
2382
2383 for (addr = start, len = end - start;
2384 len != 0;
2385 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2386 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2387
2388 /* If the write protection bit is set, then we invalidate
2389 the code inside. */
2390 if (!(p->flags & PAGE_WRITE) &&
2391 (flags & PAGE_WRITE) &&
2392 p->first_tb) {
2393 tb_invalidate_phys_page(addr, 0, NULL);
2394 }
2395 p->flags = flags;
2396 }
2397 }
2398
2399 int page_check_range(target_ulong start, target_ulong len, int flags)
2400 {
2401 PageDesc *p;
2402 target_ulong end;
2403 target_ulong addr;
2404
2405 /* This function should never be called with addresses outside the
2406 guest address space. If this assert fires, it probably indicates
2407 a missing call to h2g_valid. */
2408 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2409 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2410 #endif
2411
2412 if (start + len - 1 < start) {
2413 /* We've wrapped around. */
2414 return -1;
2415 }
2416
2417 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2418 start = start & TARGET_PAGE_MASK;
2419
2420 for (addr = start, len = end - start;
2421 len != 0;
2422 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2423 p = page_find(addr >> TARGET_PAGE_BITS);
2424 if( !p )
2425 return -1;
2426 if( !(p->flags & PAGE_VALID) )
2427 return -1;
2428
2429 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2430 return -1;
2431 if (flags & PAGE_WRITE) {
2432 if (!(p->flags & PAGE_WRITE_ORG))
2433 return -1;
2434 /* unprotect the page if it was put read-only because it
2435 contains translated code */
2436 if (!(p->flags & PAGE_WRITE)) {
2437 if (!page_unprotect(addr, 0, NULL))
2438 return -1;
2439 }
2440 return 0;
2441 }
2442 }
2443 return 0;
2444 }
2445
2446 /* called from signal handler: invalidate the code and unprotect the
2447 page. Return TRUE if the fault was successfully handled. */
2448 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2449 {
2450 unsigned int page_index, prot, pindex;
2451 PageDesc *p, *p1;
2452 target_ulong host_start, host_end, addr;
2453
2454 /* Technically this isn't safe inside a signal handler. However we
2455 know this only ever happens in a synchronous SEGV handler, so in
2456 practice it seems to be ok. */
2457 mmap_lock();
2458
2459 host_start = address & qemu_host_page_mask;
2460 page_index = host_start >> TARGET_PAGE_BITS;
2461 p1 = page_find(page_index);
2462 if (!p1) {
2463 mmap_unlock();
2464 return 0;
2465 }
2466 host_end = host_start + qemu_host_page_size;
2467 p = p1;
2468 prot = 0;
2469 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2470 prot |= p->flags;
2471 p++;
2472 }
2473 /* if the page was really writable, then we change its
2474 protection back to writable */
2475 if (prot & PAGE_WRITE_ORG) {
2476 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2477 if (!(p1[pindex].flags & PAGE_WRITE)) {
2478 mprotect((void *)g2h(host_start), qemu_host_page_size,
2479 (prot & PAGE_BITS) | PAGE_WRITE);
2480 p1[pindex].flags |= PAGE_WRITE;
2481 /* and since the content will be modified, we must invalidate
2482 the corresponding translated code. */
2483 tb_invalidate_phys_page(address, pc, puc);
2484 #ifdef DEBUG_TB_CHECK
2485 tb_invalidate_check(address);
2486 #endif
2487 mmap_unlock();
2488 return 1;
2489 }
2490 }
2491 mmap_unlock();
2492 return 0;
2493 }
2494
2495 static inline void tlb_set_dirty(CPUState *env,
2496 unsigned long addr, target_ulong vaddr)
2497 {
2498 }
2499 #endif /* defined(CONFIG_USER_ONLY) */
2500
2501 #if !defined(CONFIG_USER_ONLY)
2502
2503 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2504 typedef struct subpage_t {
2505 target_phys_addr_t base;
2506 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2507 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2508 void *opaque[TARGET_PAGE_SIZE][2][4];
2509 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2510 } subpage_t;
2511
2512 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2513 ram_addr_t memory, ram_addr_t region_offset);
2514 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2515 ram_addr_t orig_memory, ram_addr_t region_offset);
2516 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2517 need_subpage) \
2518 do { \
2519 if (addr > start_addr) \
2520 start_addr2 = 0; \
2521 else { \
2522 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2523 if (start_addr2 > 0) \
2524 need_subpage = 1; \
2525 } \
2526 \
2527 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2528 end_addr2 = TARGET_PAGE_SIZE - 1; \
2529 else { \
2530 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2531 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2532 need_subpage = 1; \
2533 } \
2534 } while (0)
2535
2536 /* register physical memory.
2537 For RAM, 'size' must be a multiple of the target page size.
2538 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2539 io memory page. The address used when calling the IO function is
2540 the offset from the start of the region, plus region_offset. Both
2541 start_addr and region_offset are rounded down to a page boundary
2542 before calculating this offset. This should not be a problem unless
2543 the low bits of start_addr and region_offset differ. */
2544 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2545 ram_addr_t size,
2546 ram_addr_t phys_offset,
2547 ram_addr_t region_offset)
2548 {
2549 target_phys_addr_t addr, end_addr;
2550 PhysPageDesc *p;
2551 CPUState *env;
2552 ram_addr_t orig_size = size;
2553 void *subpage;
2554
2555 cpu_notify_set_memory(start_addr, size, phys_offset);
2556
2557 if (phys_offset == IO_MEM_UNASSIGNED) {
2558 region_offset = start_addr;
2559 }
2560 region_offset &= TARGET_PAGE_MASK;
2561 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2562 end_addr = start_addr + (target_phys_addr_t)size;
2563 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2564 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2565 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2566 ram_addr_t orig_memory = p->phys_offset;
2567 target_phys_addr_t start_addr2, end_addr2;
2568 int need_subpage = 0;
2569
2570 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2571 need_subpage);
2572 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2573 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2574 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2575 &p->phys_offset, orig_memory,
2576 p->region_offset);
2577 } else {
2578 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2579 >> IO_MEM_SHIFT];
2580 }
2581 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2582 region_offset);
2583 p->region_offset = 0;
2584 } else {
2585 p->phys_offset = phys_offset;
2586 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2587 (phys_offset & IO_MEM_ROMD))
2588 phys_offset += TARGET_PAGE_SIZE;
2589 }
2590 } else {
2591 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2592 p->phys_offset = phys_offset;
2593 p->region_offset = region_offset;
2594 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2595 (phys_offset & IO_MEM_ROMD)) {
2596 phys_offset += TARGET_PAGE_SIZE;
2597 } else {
2598 target_phys_addr_t start_addr2, end_addr2;
2599 int need_subpage = 0;
2600
2601 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2602 end_addr2, need_subpage);
2603
2604 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2605 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2606 &p->phys_offset, IO_MEM_UNASSIGNED,
2607 addr & TARGET_PAGE_MASK);
2608 subpage_register(subpage, start_addr2, end_addr2,
2609 phys_offset, region_offset);
2610 p->region_offset = 0;
2611 }
2612 }
2613 }
2614 region_offset += TARGET_PAGE_SIZE;
2615 }
2616
2617 /* since each CPU stores ram addresses in its TLB cache, we must
2618 reset the modified entries */
2619 /* XXX: slow ! */
2620 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2621 tlb_flush(env, 1);
2622 }
2623 }
2624
2625 /* XXX: temporary until new memory mapping API */
2626 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2627 {
2628 PhysPageDesc *p;
2629
2630 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2631 if (!p)
2632 return IO_MEM_UNASSIGNED;
2633 return p->phys_offset;
2634 }
2635
2636 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2637 {
2638 if (kvm_enabled())
2639 kvm_coalesce_mmio_region(addr, size);
2640 }
2641
2642 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2643 {
2644 if (kvm_enabled())
2645 kvm_uncoalesce_mmio_region(addr, size);
2646 }
2647
2648 void qemu_flush_coalesced_mmio_buffer(void)
2649 {
2650 if (kvm_enabled())
2651 kvm_flush_coalesced_mmio_buffer();
2652 }
2653
2654 #if defined(__linux__) && !defined(TARGET_S390X)
2655
2656 #include <sys/vfs.h>
2657
2658 #define HUGETLBFS_MAGIC 0x958458f6
2659
2660 static long gethugepagesize(const char *path)
2661 {
2662 struct statfs fs;
2663 int ret;
2664
2665 do {
2666 ret = statfs(path, &fs);
2667 } while (ret != 0 && errno == EINTR);
2668
2669 if (ret != 0) {
2670 perror(path);
2671 return 0;
2672 }
2673
2674 if (fs.f_type != HUGETLBFS_MAGIC)
2675 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2676
2677 return fs.f_bsize;
2678 }
2679
2680 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2681 {
2682 char *filename;
2683 void *area;
2684 int fd;
2685 #ifdef MAP_POPULATE
2686 int flags;
2687 #endif
2688 unsigned long hpagesize;
2689
2690 hpagesize = gethugepagesize(path);
2691 if (!hpagesize) {
2692 return NULL;
2693 }
2694
2695 if (memory < hpagesize) {
2696 return NULL;
2697 }
2698
2699 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2700 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2701 return NULL;
2702 }
2703
2704 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2705 return NULL;
2706 }
2707
2708 fd = mkstemp(filename);
2709 if (fd < 0) {
2710 perror("unable to create backing store for hugepages");
2711 free(filename);
2712 return NULL;
2713 }
2714 unlink(filename);
2715 free(filename);
2716
2717 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2718
2719 /*
2720 * ftruncate is not supported by hugetlbfs in older
2721 * hosts, so don't bother bailing out on errors.
2722 * If anything goes wrong with it under other filesystems,
2723 * mmap will fail.
2724 */
2725 if (ftruncate(fd, memory))
2726 perror("ftruncate");
2727
2728 #ifdef MAP_POPULATE
2729 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2730 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2731 * to sidestep this quirk.
2732 */
2733 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2734 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2735 #else
2736 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2737 #endif
2738 if (area == MAP_FAILED) {
2739 perror("file_ram_alloc: can't mmap RAM pages");
2740 close(fd);
2741 return (NULL);
2742 }
2743 return area;
2744 }
2745 #endif
2746
2747 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2748 {
2749 RAMBlock *new_block;
2750
2751 size = TARGET_PAGE_ALIGN(size);
2752 new_block = qemu_malloc(sizeof(*new_block));
2753
2754 if (mem_path) {
2755 #if defined (__linux__) && !defined(TARGET_S390X)
2756 new_block->host = file_ram_alloc(size, mem_path);
2757 if (!new_block->host)
2758 exit(1);
2759 #else
2760 fprintf(stderr, "-mem-path option unsupported\n");
2761 exit(1);
2762 #endif
2763 } else {
2764 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2765 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2766 new_block->host = mmap((void*)0x1000000, size,
2767 PROT_EXEC|PROT_READ|PROT_WRITE,
2768 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2769 #else
2770 new_block->host = qemu_vmalloc(size);
2771 #endif
2772 #ifdef MADV_MERGEABLE
2773 madvise(new_block->host, size, MADV_MERGEABLE);
2774 #endif
2775 }
2776 new_block->offset = last_ram_offset;
2777 new_block->length = size;
2778
2779 new_block->next = ram_blocks;
2780 ram_blocks = new_block;
2781
2782 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2783 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2784 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2785 0xff, size >> TARGET_PAGE_BITS);
2786
2787 last_ram_offset += size;
2788
2789 if (kvm_enabled())
2790 kvm_setup_guest_memory(new_block->host, size);
2791
2792 return new_block->offset;
2793 }
2794
2795 void qemu_ram_free(ram_addr_t addr)
2796 {
2797 /* TODO: implement this. */
2798 }
2799
2800 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2801 With the exception of the softmmu code in this file, this should
2802 only be used for local memory (e.g. video ram) that the device owns,
2803 and knows it isn't going to access beyond the end of the block.
2804
2805 It should not be used for general purpose DMA.
2806 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2807 */
2808 void *qemu_get_ram_ptr(ram_addr_t addr)
2809 {
2810 RAMBlock *prev;
2811 RAMBlock **prevp;
2812 RAMBlock *block;
2813
2814 prev = NULL;
2815 prevp = &ram_blocks;
2816 block = ram_blocks;
2817 while (block && (block->offset > addr
2818 || block->offset + block->length <= addr)) {
2819 if (prev)
2820 prevp = &prev->next;
2821 prev = block;
2822 block = block->next;
2823 }
2824 if (!block) {
2825 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2826 abort();
2827 }
2828 /* Move this entry to to start of the list. */
2829 if (prev) {
2830 prev->next = block->next;
2831 block->next = *prevp;
2832 *prevp = block;
2833 }
2834 return block->host + (addr - block->offset);
2835 }
2836
2837 /* Some of the softmmu routines need to translate from a host pointer
2838 (typically a TLB entry) back to a ram offset. */
2839 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2840 {
2841 RAMBlock *prev;
2842 RAMBlock *block;
2843 uint8_t *host = ptr;
2844
2845 prev = NULL;
2846 block = ram_blocks;
2847 while (block && (block->host > host
2848 || block->host + block->length <= host)) {
2849 prev = block;
2850 block = block->next;
2851 }
2852 if (!block) {
2853 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2854 abort();
2855 }
2856 return block->offset + (host - block->host);
2857 }
2858
2859 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2860 {
2861 #ifdef DEBUG_UNASSIGNED
2862 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2863 #endif
2864 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2865 do_unassigned_access(addr, 0, 0, 0, 1);
2866 #endif
2867 return 0;
2868 }
2869
2870 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2871 {
2872 #ifdef DEBUG_UNASSIGNED
2873 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2874 #endif
2875 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2876 do_unassigned_access(addr, 0, 0, 0, 2);
2877 #endif
2878 return 0;
2879 }
2880
2881 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2882 {
2883 #ifdef DEBUG_UNASSIGNED
2884 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2885 #endif
2886 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2887 do_unassigned_access(addr, 0, 0, 0, 4);
2888 #endif
2889 return 0;
2890 }
2891
2892 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2893 {
2894 #ifdef DEBUG_UNASSIGNED
2895 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2896 #endif
2897 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2898 do_unassigned_access(addr, 1, 0, 0, 1);
2899 #endif
2900 }
2901
2902 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2903 {
2904 #ifdef DEBUG_UNASSIGNED
2905 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2906 #endif
2907 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2908 do_unassigned_access(addr, 1, 0, 0, 2);
2909 #endif
2910 }
2911
2912 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2913 {
2914 #ifdef DEBUG_UNASSIGNED
2915 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2916 #endif
2917 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2918 do_unassigned_access(addr, 1, 0, 0, 4);
2919 #endif
2920 }
2921
2922 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2923 unassigned_mem_readb,
2924 unassigned_mem_readw,
2925 unassigned_mem_readl,
2926 };
2927
2928 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2929 unassigned_mem_writeb,
2930 unassigned_mem_writew,
2931 unassigned_mem_writel,
2932 };
2933
2934 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2935 uint32_t val)
2936 {
2937 int dirty_flags;
2938 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2939 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2940 #if !defined(CONFIG_USER_ONLY)
2941 tb_invalidate_phys_page_fast(ram_addr, 1);
2942 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2943 #endif
2944 }
2945 stb_p(qemu_get_ram_ptr(ram_addr), val);
2946 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2947 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2948 /* we remove the notdirty callback only if the code has been
2949 flushed */
2950 if (dirty_flags == 0xff)
2951 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2952 }
2953
2954 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2955 uint32_t val)
2956 {
2957 int dirty_flags;
2958 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2959 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2960 #if !defined(CONFIG_USER_ONLY)
2961 tb_invalidate_phys_page_fast(ram_addr, 2);
2962 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2963 #endif
2964 }
2965 stw_p(qemu_get_ram_ptr(ram_addr), val);
2966 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2967 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2968 /* we remove the notdirty callback only if the code has been
2969 flushed */
2970 if (dirty_flags == 0xff)
2971 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2972 }
2973
2974 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2975 uint32_t val)
2976 {
2977 int dirty_flags;
2978 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2979 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2980 #if !defined(CONFIG_USER_ONLY)
2981 tb_invalidate_phys_page_fast(ram_addr, 4);
2982 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2983 #endif
2984 }
2985 stl_p(qemu_get_ram_ptr(ram_addr), val);
2986 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2987 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2988 /* we remove the notdirty callback only if the code has been
2989 flushed */
2990 if (dirty_flags == 0xff)
2991 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2992 }
2993
2994 static CPUReadMemoryFunc * const error_mem_read[3] = {
2995 NULL, /* never used */
2996 NULL, /* never used */
2997 NULL, /* never used */
2998 };
2999
3000 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3001 notdirty_mem_writeb,
3002 notdirty_mem_writew,
3003 notdirty_mem_writel,
3004 };
3005
3006 /* Generate a debug exception if a watchpoint has been hit. */
3007 static void check_watchpoint(int offset, int len_mask, int flags)
3008 {
3009 CPUState *env = cpu_single_env;
3010 target_ulong pc, cs_base;
3011 TranslationBlock *tb;
3012 target_ulong vaddr;
3013 CPUWatchpoint *wp;
3014 int cpu_flags;
3015
3016 if (env->watchpoint_hit) {
3017 /* We re-entered the check after replacing the TB. Now raise
3018 * the debug interrupt so that is will trigger after the
3019 * current instruction. */
3020 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3021 return;
3022 }
3023 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3024 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3025 if ((vaddr == (wp->vaddr & len_mask) ||
3026 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3027 wp->flags |= BP_WATCHPOINT_HIT;
3028 if (!env->watchpoint_hit) {
3029 env->watchpoint_hit = wp;
3030 tb = tb_find_pc(env->mem_io_pc);
3031 if (!tb) {
3032 cpu_abort(env, "check_watchpoint: could not find TB for "
3033 "pc=%p", (void *)env->mem_io_pc);
3034 }
3035 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3036 tb_phys_invalidate(tb, -1);
3037 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3038 env->exception_index = EXCP_DEBUG;
3039 } else {
3040 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3041 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3042 }
3043 cpu_resume_from_signal(env, NULL);
3044 }
3045 } else {
3046 wp->flags &= ~BP_WATCHPOINT_HIT;
3047 }
3048 }
3049 }
3050
3051 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3052 so these check for a hit then pass through to the normal out-of-line
3053 phys routines. */
3054 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3055 {
3056 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3057 return ldub_phys(addr);
3058 }
3059
3060 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3061 {
3062 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3063 return lduw_phys(addr);
3064 }
3065
3066 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3067 {
3068 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3069 return ldl_phys(addr);
3070 }
3071
3072 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3073 uint32_t val)
3074 {
3075 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3076 stb_phys(addr, val);
3077 }
3078
3079 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3080 uint32_t val)
3081 {
3082 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3083 stw_phys(addr, val);
3084 }
3085
3086 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3087 uint32_t val)
3088 {
3089 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3090 stl_phys(addr, val);
3091 }
3092
3093 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3094 watch_mem_readb,
3095 watch_mem_readw,
3096 watch_mem_readl,
3097 };
3098
3099 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3100 watch_mem_writeb,
3101 watch_mem_writew,
3102 watch_mem_writel,
3103 };
3104
3105 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
3106 unsigned int len)
3107 {
3108 uint32_t ret;
3109 unsigned int idx;
3110
3111 idx = SUBPAGE_IDX(addr);
3112 #if defined(DEBUG_SUBPAGE)
3113 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3114 mmio, len, addr, idx);
3115 #endif
3116 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3117 addr + mmio->region_offset[idx][0][len]);
3118
3119 return ret;
3120 }
3121
3122 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3123 uint32_t value, unsigned int len)
3124 {
3125 unsigned int idx;
3126
3127 idx = SUBPAGE_IDX(addr);
3128 #if defined(DEBUG_SUBPAGE)
3129 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3130 mmio, len, addr, idx, value);
3131 #endif
3132 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3133 addr + mmio->region_offset[idx][1][len],
3134 value);
3135 }
3136
3137 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3138 {
3139 #if defined(DEBUG_SUBPAGE)
3140 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3141 #endif
3142
3143 return subpage_readlen(opaque, addr, 0);
3144 }
3145
3146 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3147 uint32_t value)
3148 {
3149 #if defined(DEBUG_SUBPAGE)
3150 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3151 #endif
3152 subpage_writelen(opaque, addr, value, 0);
3153 }
3154
3155 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3156 {
3157 #if defined(DEBUG_SUBPAGE)
3158 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3159 #endif
3160
3161 return subpage_readlen(opaque, addr, 1);
3162 }
3163
3164 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3165 uint32_t value)
3166 {
3167 #if defined(DEBUG_SUBPAGE)
3168 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3169 #endif
3170 subpage_writelen(opaque, addr, value, 1);
3171 }
3172
3173 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3174 {
3175 #if defined(DEBUG_SUBPAGE)
3176 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3177 #endif
3178
3179 return subpage_readlen(opaque, addr, 2);
3180 }
3181
3182 static void subpage_writel (void *opaque,
3183 target_phys_addr_t addr, uint32_t value)
3184 {
3185 #if defined(DEBUG_SUBPAGE)
3186 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3187 #endif
3188 subpage_writelen(opaque, addr, value, 2);
3189 }
3190
3191 static CPUReadMemoryFunc * const subpage_read[] = {
3192 &subpage_readb,
3193 &subpage_readw,
3194 &subpage_readl,
3195 };
3196
3197 static CPUWriteMemoryFunc * const subpage_write[] = {
3198 &subpage_writeb,
3199 &subpage_writew,
3200 &subpage_writel,
3201 };
3202
3203 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3204 ram_addr_t memory, ram_addr_t region_offset)
3205 {
3206 int idx, eidx;
3207 unsigned int i;
3208
3209 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3210 return -1;
3211 idx = SUBPAGE_IDX(start);
3212 eidx = SUBPAGE_IDX(end);
3213 #if defined(DEBUG_SUBPAGE)
3214 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3215 mmio, start, end, idx, eidx, memory);
3216 #endif
3217 memory >>= IO_MEM_SHIFT;
3218 for (; idx <= eidx; idx++) {
3219 for (i = 0; i < 4; i++) {
3220 if (io_mem_read[memory][i]) {
3221 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3222 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3223 mmio->region_offset[idx][0][i] = region_offset;
3224 }
3225 if (io_mem_write[memory][i]) {
3226 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3227 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3228 mmio->region_offset[idx][1][i] = region_offset;
3229 }
3230 }
3231 }
3232
3233 return 0;
3234 }
3235
3236 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3237 ram_addr_t orig_memory, ram_addr_t region_offset)
3238 {
3239 subpage_t *mmio;
3240 int subpage_memory;
3241
3242 mmio = qemu_mallocz(sizeof(subpage_t));
3243
3244 mmio->base = base;
3245 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3246 #if defined(DEBUG_SUBPAGE)
3247 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3248 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3249 #endif
3250 *phys = subpage_memory | IO_MEM_SUBPAGE;
3251 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3252 region_offset);
3253
3254 return mmio;
3255 }
3256
3257 static int get_free_io_mem_idx(void)
3258 {
3259 int i;
3260
3261 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3262 if (!io_mem_used[i]) {
3263 io_mem_used[i] = 1;
3264 return i;
3265 }
3266 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3267 return -1;
3268 }
3269
3270 /* mem_read and mem_write are arrays of functions containing the
3271 function to access byte (index 0), word (index 1) and dword (index
3272 2). Functions can be omitted with a NULL function pointer.
3273 If io_index is non zero, the corresponding io zone is
3274 modified. If it is zero, a new io zone is allocated. The return
3275 value can be used with cpu_register_physical_memory(). (-1) is
3276 returned if error. */
3277 static int cpu_register_io_memory_fixed(int io_index,
3278 CPUReadMemoryFunc * const *mem_read,
3279 CPUWriteMemoryFunc * const *mem_write,
3280 void *opaque)
3281 {
3282 int i, subwidth = 0;
3283
3284 if (io_index <= 0) {
3285 io_index = get_free_io_mem_idx();
3286 if (io_index == -1)
3287 return io_index;
3288 } else {
3289 io_index >>= IO_MEM_SHIFT;
3290 if (io_index >= IO_MEM_NB_ENTRIES)
3291 return -1;
3292 }
3293
3294 for(i = 0;i < 3; i++) {
3295 if (!mem_read[i] || !mem_write[i])
3296 subwidth = IO_MEM_SUBWIDTH;
3297 io_mem_read[io_index][i] = mem_read[i];
3298 io_mem_write[io_index][i] = mem_write[i];
3299 }
3300 io_mem_opaque[io_index] = opaque;
3301 return (io_index << IO_MEM_SHIFT) | subwidth;
3302 }
3303
3304 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3305 CPUWriteMemoryFunc * const *mem_write,
3306 void *opaque)
3307 {
3308 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3309 }
3310
3311 void cpu_unregister_io_memory(int io_table_address)
3312 {
3313 int i;
3314 int io_index = io_table_address >> IO_MEM_SHIFT;
3315
3316 for (i=0;i < 3; i++) {
3317 io_mem_read[io_index][i] = unassigned_mem_read[i];
3318 io_mem_write[io_index][i] = unassigned_mem_write[i];
3319 }
3320 io_mem_opaque[io_index] = NULL;
3321 io_mem_used[io_index] = 0;
3322 }
3323
3324 static void io_mem_init(void)
3325 {
3326 int i;
3327
3328 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3329 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3330 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3331 for (i=0; i<5; i++)
3332 io_mem_used[i] = 1;
3333
3334 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3335 watch_mem_write, NULL);
3336 }
3337
3338 #endif /* !defined(CONFIG_USER_ONLY) */
3339
3340 /* physical memory access (slow version, mainly for debug) */
3341 #if defined(CONFIG_USER_ONLY)
3342 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3343 uint8_t *buf, int len, int is_write)
3344 {
3345 int l, flags;
3346 target_ulong page;
3347 void * p;
3348
3349 while (len > 0) {
3350 page = addr & TARGET_PAGE_MASK;
3351 l = (page + TARGET_PAGE_SIZE) - addr;
3352 if (l > len)
3353 l = len;
3354 flags = page_get_flags(page);
3355 if (!(flags & PAGE_VALID))
3356 return -1;
3357 if (is_write) {
3358 if (!(flags & PAGE_WRITE))
3359 return -1;
3360 /* XXX: this code should not depend on lock_user */
3361 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3362 return -1;
3363 memcpy(p, buf, l);
3364 unlock_user(p, addr, l);
3365 } else {
3366 if (!(flags & PAGE_READ))
3367 return -1;
3368 /* XXX: this code should not depend on lock_user */
3369 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3370 return -1;
3371 memcpy(buf, p, l);
3372 unlock_user(p, addr, 0);
3373 }
3374 len -= l;
3375 buf += l;
3376 addr += l;
3377 }
3378 return 0;
3379 }
3380
3381 #else
3382 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3383 int len, int is_write)
3384 {
3385 int l, io_index;
3386 uint8_t *ptr;
3387 uint32_t val;
3388 target_phys_addr_t page;
3389 unsigned long pd;
3390 PhysPageDesc *p;
3391
3392 while (len > 0) {
3393 page = addr & TARGET_PAGE_MASK;
3394 l = (page + TARGET_PAGE_SIZE) - addr;
3395 if (l > len)
3396 l = len;
3397 p = phys_page_find(page >> TARGET_PAGE_BITS);
3398 if (!p) {
3399 pd = IO_MEM_UNASSIGNED;
3400 } else {
3401 pd = p->phys_offset;
3402 }
3403
3404 if (is_write) {
3405 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3406 target_phys_addr_t addr1 = addr;
3407 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3408 if (p)
3409 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3410 /* XXX: could force cpu_single_env to NULL to avoid
3411 potential bugs */
3412 if (l >= 4 && ((addr1 & 3) == 0)) {
3413 /* 32 bit write access */
3414 val = ldl_p(buf);
3415 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3416 l = 4;
3417 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3418 /* 16 bit write access */
3419 val = lduw_p(buf);
3420 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3421 l = 2;
3422 } else {
3423 /* 8 bit write access */
3424 val = ldub_p(buf);
3425 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3426 l = 1;
3427 }
3428 } else {
3429 unsigned long addr1;
3430 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3431 /* RAM case */
3432 ptr = qemu_get_ram_ptr(addr1);
3433 memcpy(ptr, buf, l);
3434 if (!cpu_physical_memory_is_dirty(addr1)) {
3435 /* invalidate code */
3436 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3437 /* set dirty bit */
3438 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3439 (0xff & ~CODE_DIRTY_FLAG);
3440 }
3441 }
3442 } else {
3443 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3444 !(pd & IO_MEM_ROMD)) {
3445 target_phys_addr_t addr1 = addr;
3446 /* I/O case */
3447 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3448 if (p)
3449 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3450 if (l >= 4 && ((addr1 & 3) == 0)) {
3451 /* 32 bit read access */
3452 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3453 stl_p(buf, val);
3454 l = 4;
3455 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3456 /* 16 bit read access */
3457 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3458 stw_p(buf, val);
3459 l = 2;
3460 } else {
3461 /* 8 bit read access */
3462 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3463 stb_p(buf, val);
3464 l = 1;
3465 }
3466 } else {
3467 /* RAM case */
3468 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3469 (addr & ~TARGET_PAGE_MASK);
3470 memcpy(buf, ptr, l);
3471 }
3472 }
3473 len -= l;
3474 buf += l;
3475 addr += l;
3476 }
3477 }
3478
3479 /* used for ROM loading : can write in RAM and ROM */
3480 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3481 const uint8_t *buf, int len)
3482 {
3483 int l;
3484 uint8_t *ptr;
3485 target_phys_addr_t page;
3486 unsigned long pd;
3487 PhysPageDesc *p;
3488
3489 while (len > 0) {
3490 page = addr & TARGET_PAGE_MASK;
3491 l = (page + TARGET_PAGE_SIZE) - addr;
3492 if (l > len)
3493 l = len;
3494 p = phys_page_find(page >> TARGET_PAGE_BITS);
3495 if (!p) {
3496 pd = IO_MEM_UNASSIGNED;
3497 } else {
3498 pd = p->phys_offset;
3499 }
3500
3501 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3502 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3503 !(pd & IO_MEM_ROMD)) {
3504 /* do nothing */
3505 } else {
3506 unsigned long addr1;
3507 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3508 /* ROM/RAM case */
3509 ptr = qemu_get_ram_ptr(addr1);
3510 memcpy(ptr, buf, l);
3511 }
3512 len -= l;
3513 buf += l;
3514 addr += l;
3515 }
3516 }
3517
3518 typedef struct {
3519 void *buffer;
3520 target_phys_addr_t addr;
3521 target_phys_addr_t len;
3522 } BounceBuffer;
3523
3524 static BounceBuffer bounce;
3525
3526 typedef struct MapClient {
3527 void *opaque;
3528 void (*callback)(void *opaque);
3529 QLIST_ENTRY(MapClient) link;
3530 } MapClient;
3531
3532 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3533 = QLIST_HEAD_INITIALIZER(map_client_list);
3534
3535 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3536 {
3537 MapClient *client = qemu_malloc(sizeof(*client));
3538
3539 client->opaque = opaque;
3540 client->callback = callback;
3541 QLIST_INSERT_HEAD(&map_client_list, client, link);
3542 return client;
3543 }
3544
3545 void cpu_unregister_map_client(void *_client)
3546 {
3547 MapClient *client = (MapClient *)_client;
3548
3549 QLIST_REMOVE(client, link);
3550 qemu_free(client);
3551 }
3552
3553 static void cpu_notify_map_clients(void)
3554 {
3555 MapClient *client;
3556
3557 while (!QLIST_EMPTY(&map_client_list)) {
3558 client = QLIST_FIRST(&map_client_list);
3559 client->callback(client->opaque);
3560 cpu_unregister_map_client(client);
3561 }
3562 }
3563
3564 /* Map a physical memory region into a host virtual address.
3565 * May map a subset of the requested range, given by and returned in *plen.
3566 * May return NULL if resources needed to perform the mapping are exhausted.
3567 * Use only for reads OR writes - not for read-modify-write operations.
3568 * Use cpu_register_map_client() to know when retrying the map operation is
3569 * likely to succeed.
3570 */
3571 void *cpu_physical_memory_map(target_phys_addr_t addr,
3572 target_phys_addr_t *plen,
3573 int is_write)
3574 {
3575 target_phys_addr_t len = *plen;
3576 target_phys_addr_t done = 0;
3577 int l;
3578 uint8_t *ret = NULL;
3579 uint8_t *ptr;
3580 target_phys_addr_t page;
3581 unsigned long pd;
3582 PhysPageDesc *p;
3583 unsigned long addr1;
3584
3585 while (len > 0) {
3586 page = addr & TARGET_PAGE_MASK;
3587 l = (page + TARGET_PAGE_SIZE) - addr;
3588 if (l > len)
3589 l = len;
3590 p = phys_page_find(page >> TARGET_PAGE_BITS);
3591 if (!p) {
3592 pd = IO_MEM_UNASSIGNED;
3593 } else {
3594 pd = p->phys_offset;
3595 }
3596
3597 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3598 if (done || bounce.buffer) {
3599 break;
3600 }
3601 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3602 bounce.addr = addr;
3603 bounce.len = l;
3604 if (!is_write) {
3605 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3606 }
3607 ptr = bounce.buffer;
3608 } else {
3609 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3610 ptr = qemu_get_ram_ptr(addr1);
3611 }
3612 if (!done) {
3613 ret = ptr;
3614 } else if (ret + done != ptr) {
3615 break;
3616 }
3617
3618 len -= l;
3619 addr += l;
3620 done += l;
3621 }
3622 *plen = done;
3623 return ret;
3624 }
3625
3626 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3627 * Will also mark the memory as dirty if is_write == 1. access_len gives
3628 * the amount of memory that was actually read or written by the caller.
3629 */
3630 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3631 int is_write, target_phys_addr_t access_len)
3632 {
3633 if (buffer != bounce.buffer) {
3634 if (is_write) {
3635 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3636 while (access_len) {
3637 unsigned l;
3638 l = TARGET_PAGE_SIZE;
3639 if (l > access_len)
3640 l = access_len;
3641 if (!cpu_physical_memory_is_dirty(addr1)) {
3642 /* invalidate code */
3643 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3644 /* set dirty bit */
3645 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3646 (0xff & ~CODE_DIRTY_FLAG);
3647 }
3648 addr1 += l;
3649 access_len -= l;
3650 }
3651 }
3652 return;
3653 }
3654 if (is_write) {
3655 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3656 }
3657 qemu_vfree(bounce.buffer);
3658 bounce.buffer = NULL;
3659 cpu_notify_map_clients();
3660 }
3661
3662 /* warning: addr must be aligned */
3663 uint32_t ldl_phys(target_phys_addr_t addr)
3664 {
3665 int io_index;
3666 uint8_t *ptr;
3667 uint32_t val;
3668 unsigned long pd;
3669 PhysPageDesc *p;
3670
3671 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3672 if (!p) {
3673 pd = IO_MEM_UNASSIGNED;
3674 } else {
3675 pd = p->phys_offset;
3676 }
3677
3678 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3679 !(pd & IO_MEM_ROMD)) {
3680 /* I/O case */
3681 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3682 if (p)
3683 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3684 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3685 } else {
3686 /* RAM case */
3687 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3688 (addr & ~TARGET_PAGE_MASK);
3689 val = ldl_p(ptr);
3690 }
3691 return val;
3692 }
3693
3694 /* warning: addr must be aligned */
3695 uint64_t ldq_phys(target_phys_addr_t addr)
3696 {
3697 int io_index;
3698 uint8_t *ptr;
3699 uint64_t val;
3700 unsigned long pd;
3701 PhysPageDesc *p;
3702
3703 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3704 if (!p) {
3705 pd = IO_MEM_UNASSIGNED;
3706 } else {
3707 pd = p->phys_offset;
3708 }
3709
3710 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3711 !(pd & IO_MEM_ROMD)) {
3712 /* I/O case */
3713 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3714 if (p)
3715 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3716 #ifdef TARGET_WORDS_BIGENDIAN
3717 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3718 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3719 #else
3720 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3721 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3722 #endif
3723 } else {
3724 /* RAM case */
3725 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3726 (addr & ~TARGET_PAGE_MASK);
3727 val = ldq_p(ptr);
3728 }
3729 return val;
3730 }
3731
3732 /* XXX: optimize */
3733 uint32_t ldub_phys(target_phys_addr_t addr)
3734 {
3735 uint8_t val;
3736 cpu_physical_memory_read(addr, &val, 1);
3737 return val;
3738 }
3739
3740 /* XXX: optimize */
3741 uint32_t lduw_phys(target_phys_addr_t addr)
3742 {
3743 uint16_t val;
3744 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3745 return tswap16(val);
3746 }
3747
3748 /* warning: addr must be aligned. The ram page is not masked as dirty
3749 and the code inside is not invalidated. It is useful if the dirty
3750 bits are used to track modified PTEs */
3751 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3752 {
3753 int io_index;
3754 uint8_t *ptr;
3755 unsigned long pd;
3756 PhysPageDesc *p;
3757
3758 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3759 if (!p) {
3760 pd = IO_MEM_UNASSIGNED;
3761 } else {
3762 pd = p->phys_offset;
3763 }
3764
3765 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3766 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3767 if (p)
3768 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3769 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3770 } else {
3771 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3772 ptr = qemu_get_ram_ptr(addr1);
3773 stl_p(ptr, val);
3774
3775 if (unlikely(in_migration)) {
3776 if (!cpu_physical_memory_is_dirty(addr1)) {
3777 /* invalidate code */
3778 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3779 /* set dirty bit */
3780 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3781 (0xff & ~CODE_DIRTY_FLAG);
3782 }
3783 }
3784 }
3785 }
3786
3787 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3788 {
3789 int io_index;
3790 uint8_t *ptr;
3791 unsigned long pd;
3792 PhysPageDesc *p;
3793
3794 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3795 if (!p) {
3796 pd = IO_MEM_UNASSIGNED;
3797 } else {
3798 pd = p->phys_offset;
3799 }
3800
3801 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3802 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3803 if (p)
3804 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3805 #ifdef TARGET_WORDS_BIGENDIAN
3806 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3807 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3808 #else
3809 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3810 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3811 #endif
3812 } else {
3813 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3814 (addr & ~TARGET_PAGE_MASK);
3815 stq_p(ptr, val);
3816 }
3817 }
3818
3819 /* warning: addr must be aligned */
3820 void stl_phys(target_phys_addr_t addr, uint32_t val)
3821 {
3822 int io_index;
3823 uint8_t *ptr;
3824 unsigned long pd;
3825 PhysPageDesc *p;
3826
3827 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3828 if (!p) {
3829 pd = IO_MEM_UNASSIGNED;
3830 } else {
3831 pd = p->phys_offset;
3832 }
3833
3834 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3835 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3836 if (p)
3837 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3838 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3839 } else {
3840 unsigned long addr1;
3841 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3842 /* RAM case */
3843 ptr = qemu_get_ram_ptr(addr1);
3844 stl_p(ptr, val);
3845 if (!cpu_physical_memory_is_dirty(addr1)) {
3846 /* invalidate code */
3847 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3848 /* set dirty bit */
3849 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3850 (0xff & ~CODE_DIRTY_FLAG);
3851 }
3852 }
3853 }
3854
3855 /* XXX: optimize */
3856 void stb_phys(target_phys_addr_t addr, uint32_t val)
3857 {
3858 uint8_t v = val;
3859 cpu_physical_memory_write(addr, &v, 1);
3860 }
3861
3862 /* XXX: optimize */
3863 void stw_phys(target_phys_addr_t addr, uint32_t val)
3864 {
3865 uint16_t v = tswap16(val);
3866 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3867 }
3868
3869 /* XXX: optimize */
3870 void stq_phys(target_phys_addr_t addr, uint64_t val)
3871 {
3872 val = tswap64(val);
3873 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3874 }
3875
3876 /* virtual memory access for debug (includes writing to ROM) */
3877 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3878 uint8_t *buf, int len, int is_write)
3879 {
3880 int l;
3881 target_phys_addr_t phys_addr;
3882 target_ulong page;
3883
3884 while (len > 0) {
3885 page = addr & TARGET_PAGE_MASK;
3886 phys_addr = cpu_get_phys_page_debug(env, page);
3887 /* if no physical page mapped, return an error */
3888 if (phys_addr == -1)
3889 return -1;
3890 l = (page + TARGET_PAGE_SIZE) - addr;
3891 if (l > len)
3892 l = len;
3893 phys_addr += (addr & ~TARGET_PAGE_MASK);
3894 if (is_write)
3895 cpu_physical_memory_write_rom(phys_addr, buf, l);
3896 else
3897 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3898 len -= l;
3899 buf += l;
3900 addr += l;
3901 }
3902 return 0;
3903 }
3904 #endif
3905
3906 /* in deterministic execution mode, instructions doing device I/Os
3907 must be at the end of the TB */
3908 void cpu_io_recompile(CPUState *env, void *retaddr)
3909 {
3910 TranslationBlock *tb;
3911 uint32_t n, cflags;
3912 target_ulong pc, cs_base;
3913 uint64_t flags;
3914
3915 tb = tb_find_pc((unsigned long)retaddr);
3916 if (!tb) {
3917 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3918 retaddr);
3919 }
3920 n = env->icount_decr.u16.low + tb->icount;
3921 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3922 /* Calculate how many instructions had been executed before the fault
3923 occurred. */
3924 n = n - env->icount_decr.u16.low;
3925 /* Generate a new TB ending on the I/O insn. */
3926 n++;
3927 /* On MIPS and SH, delay slot instructions can only be restarted if
3928 they were already the first instruction in the TB. If this is not
3929 the first instruction in a TB then re-execute the preceding
3930 branch. */
3931 #if defined(TARGET_MIPS)
3932 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3933 env->active_tc.PC -= 4;
3934 env->icount_decr.u16.low++;
3935 env->hflags &= ~MIPS_HFLAG_BMASK;
3936 }
3937 #elif defined(TARGET_SH4)
3938 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3939 && n > 1) {
3940 env->pc -= 2;
3941 env->icount_decr.u16.low++;
3942 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3943 }
3944 #endif
3945 /* This should never happen. */
3946 if (n > CF_COUNT_MASK)
3947 cpu_abort(env, "TB too big during recompile");
3948
3949 cflags = n | CF_LAST_IO;
3950 pc = tb->pc;
3951 cs_base = tb->cs_base;
3952 flags = tb->flags;
3953 tb_phys_invalidate(tb, -1);
3954 /* FIXME: In theory this could raise an exception. In practice
3955 we have already translated the block once so it's probably ok. */
3956 tb_gen_code(env, pc, cs_base, flags, cflags);
3957 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3958 the first in the TB) then we end up generating a whole new TB and
3959 repeating the fault, which is horribly inefficient.
3960 Better would be to execute just this insn uncached, or generate a
3961 second new TB. */
3962 cpu_resume_from_signal(env, NULL);
3963 }
3964
3965 #if !defined(CONFIG_USER_ONLY)
3966
3967 void dump_exec_info(FILE *f,
3968 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3969 {
3970 int i, target_code_size, max_target_code_size;
3971 int direct_jmp_count, direct_jmp2_count, cross_page;
3972 TranslationBlock *tb;
3973
3974 target_code_size = 0;
3975 max_target_code_size = 0;
3976 cross_page = 0;
3977 direct_jmp_count = 0;
3978 direct_jmp2_count = 0;
3979 for(i = 0; i < nb_tbs; i++) {
3980 tb = &tbs[i];
3981 target_code_size += tb->size;
3982 if (tb->size > max_target_code_size)
3983 max_target_code_size = tb->size;
3984 if (tb->page_addr[1] != -1)
3985 cross_page++;
3986 if (tb->tb_next_offset[0] != 0xffff) {
3987 direct_jmp_count++;
3988 if (tb->tb_next_offset[1] != 0xffff) {
3989 direct_jmp2_count++;
3990 }
3991 }
3992 }
3993 /* XXX: avoid using doubles ? */
3994 cpu_fprintf(f, "Translation buffer state:\n");
3995 cpu_fprintf(f, "gen code size %ld/%ld\n",
3996 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3997 cpu_fprintf(f, "TB count %d/%d\n",
3998 nb_tbs, code_gen_max_blocks);
3999 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4000 nb_tbs ? target_code_size / nb_tbs : 0,
4001 max_target_code_size);
4002 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4003 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4004 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4005 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4006 cross_page,
4007 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4008 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4009 direct_jmp_count,
4010 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4011 direct_jmp2_count,
4012 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4013 cpu_fprintf(f, "\nStatistics:\n");
4014 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4015 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4016 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4017 tcg_dump_info(f, cpu_fprintf);
4018 }
4019
4020 #define MMUSUFFIX _cmmu
4021 #define GETPC() NULL
4022 #define env cpu_single_env
4023 #define SOFTMMU_CODE_ACCESS
4024
4025 #define SHIFT 0
4026 #include "softmmu_template.h"
4027
4028 #define SHIFT 1
4029 #include "softmmu_template.h"
4030
4031 #define SHIFT 2
4032 #include "softmmu_template.h"
4033
4034 #define SHIFT 3
4035 #include "softmmu_template.h"
4036
4037 #undef env
4038
4039 #endif