]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
memory: dispatch unassigned accesses based on .valid.accepts
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_UNASSIGNED
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 int phys_ram_fd;
58 static int in_migration;
59
60 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61
62 static MemoryRegion *system_memory;
63 static MemoryRegion *system_io;
64
65 AddressSpace address_space_io;
66 AddressSpace address_space_memory;
67 DMAContext dma_context_memory;
68
69 MemoryRegion io_mem_rom, io_mem_notdirty;
70 static MemoryRegion io_mem_unassigned, io_mem_subpage_ram;
71
72 #endif
73
74 CPUArchState *first_cpu;
75 /* current CPU in the current thread. It is only valid inside
76 cpu_exec() */
77 DEFINE_TLS(CPUArchState *,cpu_single_env);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
81 int use_icount;
82
83 #if !defined(CONFIG_USER_ONLY)
84
85 static MemoryRegionSection *phys_sections;
86 static unsigned phys_sections_nb, phys_sections_nb_alloc;
87 static uint16_t phys_section_unassigned;
88 static uint16_t phys_section_notdirty;
89 static uint16_t phys_section_rom;
90 static uint16_t phys_section_watch;
91
92 /* Simple allocator for PhysPageEntry nodes */
93 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
94 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
95
96 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
97
98 static void io_mem_init(void);
99 static void memory_map_init(void);
100 static void *qemu_safe_ram_ptr(ram_addr_t addr);
101
102 static MemoryRegion io_mem_watch;
103 #endif
104
105 #if !defined(CONFIG_USER_ONLY)
106
107 static void phys_map_node_reserve(unsigned nodes)
108 {
109 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
110 typedef PhysPageEntry Node[L2_SIZE];
111 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
112 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
113 phys_map_nodes_nb + nodes);
114 phys_map_nodes = g_renew(Node, phys_map_nodes,
115 phys_map_nodes_nb_alloc);
116 }
117 }
118
119 static uint16_t phys_map_node_alloc(void)
120 {
121 unsigned i;
122 uint16_t ret;
123
124 ret = phys_map_nodes_nb++;
125 assert(ret != PHYS_MAP_NODE_NIL);
126 assert(ret != phys_map_nodes_nb_alloc);
127 for (i = 0; i < L2_SIZE; ++i) {
128 phys_map_nodes[ret][i].is_leaf = 0;
129 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
130 }
131 return ret;
132 }
133
134 static void phys_map_nodes_reset(void)
135 {
136 phys_map_nodes_nb = 0;
137 }
138
139
140 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
141 hwaddr *nb, uint16_t leaf,
142 int level)
143 {
144 PhysPageEntry *p;
145 int i;
146 hwaddr step = (hwaddr)1 << (level * L2_BITS);
147
148 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
149 lp->ptr = phys_map_node_alloc();
150 p = phys_map_nodes[lp->ptr];
151 if (level == 0) {
152 for (i = 0; i < L2_SIZE; i++) {
153 p[i].is_leaf = 1;
154 p[i].ptr = phys_section_unassigned;
155 }
156 }
157 } else {
158 p = phys_map_nodes[lp->ptr];
159 }
160 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
161
162 while (*nb && lp < &p[L2_SIZE]) {
163 if ((*index & (step - 1)) == 0 && *nb >= step) {
164 lp->is_leaf = true;
165 lp->ptr = leaf;
166 *index += step;
167 *nb -= step;
168 } else {
169 phys_page_set_level(lp, index, nb, leaf, level - 1);
170 }
171 ++lp;
172 }
173 }
174
175 static void phys_page_set(AddressSpaceDispatch *d,
176 hwaddr index, hwaddr nb,
177 uint16_t leaf)
178 {
179 /* Wildly overreserve - it doesn't matter much. */
180 phys_map_node_reserve(3 * P_L2_LEVELS);
181
182 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
183 }
184
185 MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
186 {
187 PhysPageEntry lp = d->phys_map;
188 PhysPageEntry *p;
189 int i;
190
191 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
192 if (lp.ptr == PHYS_MAP_NODE_NIL) {
193 return &phys_sections[phys_section_unassigned];
194 }
195 p = phys_map_nodes[lp.ptr];
196 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
197 }
198 return &phys_sections[lp.ptr];
199 }
200
201 bool memory_region_is_unassigned(MemoryRegion *mr)
202 {
203 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
204 && mr != &io_mem_watch;
205 }
206 #endif
207
208 void cpu_exec_init_all(void)
209 {
210 #if !defined(CONFIG_USER_ONLY)
211 qemu_mutex_init(&ram_list.mutex);
212 memory_map_init();
213 io_mem_init();
214 #endif
215 }
216
217 #if !defined(CONFIG_USER_ONLY)
218
219 static int cpu_common_post_load(void *opaque, int version_id)
220 {
221 CPUState *cpu = opaque;
222
223 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
224 version_id is increased. */
225 cpu->interrupt_request &= ~0x01;
226 tlb_flush(cpu->env_ptr, 1);
227
228 return 0;
229 }
230
231 static const VMStateDescription vmstate_cpu_common = {
232 .name = "cpu_common",
233 .version_id = 1,
234 .minimum_version_id = 1,
235 .minimum_version_id_old = 1,
236 .post_load = cpu_common_post_load,
237 .fields = (VMStateField []) {
238 VMSTATE_UINT32(halted, CPUState),
239 VMSTATE_UINT32(interrupt_request, CPUState),
240 VMSTATE_END_OF_LIST()
241 }
242 };
243 #else
244 #define vmstate_cpu_common vmstate_dummy
245 #endif
246
247 CPUState *qemu_get_cpu(int index)
248 {
249 CPUArchState *env = first_cpu;
250 CPUState *cpu = NULL;
251
252 while (env) {
253 cpu = ENV_GET_CPU(env);
254 if (cpu->cpu_index == index) {
255 break;
256 }
257 env = env->next_cpu;
258 }
259
260 return env ? cpu : NULL;
261 }
262
263 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
264 {
265 CPUArchState *env = first_cpu;
266
267 while (env) {
268 func(ENV_GET_CPU(env), data);
269 env = env->next_cpu;
270 }
271 }
272
273 void cpu_exec_init(CPUArchState *env)
274 {
275 CPUState *cpu = ENV_GET_CPU(env);
276 CPUClass *cc = CPU_GET_CLASS(cpu);
277 CPUArchState **penv;
278 int cpu_index;
279
280 #if defined(CONFIG_USER_ONLY)
281 cpu_list_lock();
282 #endif
283 env->next_cpu = NULL;
284 penv = &first_cpu;
285 cpu_index = 0;
286 while (*penv != NULL) {
287 penv = &(*penv)->next_cpu;
288 cpu_index++;
289 }
290 cpu->cpu_index = cpu_index;
291 cpu->numa_node = 0;
292 QTAILQ_INIT(&env->breakpoints);
293 QTAILQ_INIT(&env->watchpoints);
294 #ifndef CONFIG_USER_ONLY
295 cpu->thread_id = qemu_get_thread_id();
296 #endif
297 *penv = env;
298 #if defined(CONFIG_USER_ONLY)
299 cpu_list_unlock();
300 #endif
301 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
302 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
303 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
304 cpu_save, cpu_load, env);
305 assert(cc->vmsd == NULL);
306 #endif
307 if (cc->vmsd != NULL) {
308 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
309 }
310 }
311
312 #if defined(TARGET_HAS_ICE)
313 #if defined(CONFIG_USER_ONLY)
314 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
315 {
316 tb_invalidate_phys_page_range(pc, pc + 1, 0);
317 }
318 #else
319 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
320 {
321 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
322 (pc & ~TARGET_PAGE_MASK));
323 }
324 #endif
325 #endif /* TARGET_HAS_ICE */
326
327 #if defined(CONFIG_USER_ONLY)
328 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
329
330 {
331 }
332
333 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
334 int flags, CPUWatchpoint **watchpoint)
335 {
336 return -ENOSYS;
337 }
338 #else
339 /* Add a watchpoint. */
340 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
341 int flags, CPUWatchpoint **watchpoint)
342 {
343 target_ulong len_mask = ~(len - 1);
344 CPUWatchpoint *wp;
345
346 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
347 if ((len & (len - 1)) || (addr & ~len_mask) ||
348 len == 0 || len > TARGET_PAGE_SIZE) {
349 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
350 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
351 return -EINVAL;
352 }
353 wp = g_malloc(sizeof(*wp));
354
355 wp->vaddr = addr;
356 wp->len_mask = len_mask;
357 wp->flags = flags;
358
359 /* keep all GDB-injected watchpoints in front */
360 if (flags & BP_GDB)
361 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
362 else
363 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
364
365 tlb_flush_page(env, addr);
366
367 if (watchpoint)
368 *watchpoint = wp;
369 return 0;
370 }
371
372 /* Remove a specific watchpoint. */
373 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
374 int flags)
375 {
376 target_ulong len_mask = ~(len - 1);
377 CPUWatchpoint *wp;
378
379 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
380 if (addr == wp->vaddr && len_mask == wp->len_mask
381 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
382 cpu_watchpoint_remove_by_ref(env, wp);
383 return 0;
384 }
385 }
386 return -ENOENT;
387 }
388
389 /* Remove a specific watchpoint by reference. */
390 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
391 {
392 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
393
394 tlb_flush_page(env, watchpoint->vaddr);
395
396 g_free(watchpoint);
397 }
398
399 /* Remove all matching watchpoints. */
400 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
401 {
402 CPUWatchpoint *wp, *next;
403
404 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
405 if (wp->flags & mask)
406 cpu_watchpoint_remove_by_ref(env, wp);
407 }
408 }
409 #endif
410
411 /* Add a breakpoint. */
412 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
413 CPUBreakpoint **breakpoint)
414 {
415 #if defined(TARGET_HAS_ICE)
416 CPUBreakpoint *bp;
417
418 bp = g_malloc(sizeof(*bp));
419
420 bp->pc = pc;
421 bp->flags = flags;
422
423 /* keep all GDB-injected breakpoints in front */
424 if (flags & BP_GDB)
425 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
426 else
427 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
428
429 breakpoint_invalidate(env, pc);
430
431 if (breakpoint)
432 *breakpoint = bp;
433 return 0;
434 #else
435 return -ENOSYS;
436 #endif
437 }
438
439 /* Remove a specific breakpoint. */
440 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
441 {
442 #if defined(TARGET_HAS_ICE)
443 CPUBreakpoint *bp;
444
445 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
446 if (bp->pc == pc && bp->flags == flags) {
447 cpu_breakpoint_remove_by_ref(env, bp);
448 return 0;
449 }
450 }
451 return -ENOENT;
452 #else
453 return -ENOSYS;
454 #endif
455 }
456
457 /* Remove a specific breakpoint by reference. */
458 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
459 {
460 #if defined(TARGET_HAS_ICE)
461 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
462
463 breakpoint_invalidate(env, breakpoint->pc);
464
465 g_free(breakpoint);
466 #endif
467 }
468
469 /* Remove all matching breakpoints. */
470 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
471 {
472 #if defined(TARGET_HAS_ICE)
473 CPUBreakpoint *bp, *next;
474
475 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
476 if (bp->flags & mask)
477 cpu_breakpoint_remove_by_ref(env, bp);
478 }
479 #endif
480 }
481
482 /* enable or disable single step mode. EXCP_DEBUG is returned by the
483 CPU loop after each instruction */
484 void cpu_single_step(CPUArchState *env, int enabled)
485 {
486 #if defined(TARGET_HAS_ICE)
487 if (env->singlestep_enabled != enabled) {
488 env->singlestep_enabled = enabled;
489 if (kvm_enabled())
490 kvm_update_guest_debug(env, 0);
491 else {
492 /* must flush all the translated code to avoid inconsistencies */
493 /* XXX: only flush what is necessary */
494 tb_flush(env);
495 }
496 }
497 #endif
498 }
499
500 void cpu_exit(CPUArchState *env)
501 {
502 CPUState *cpu = ENV_GET_CPU(env);
503
504 cpu->exit_request = 1;
505 cpu->tcg_exit_req = 1;
506 }
507
508 void cpu_abort(CPUArchState *env, const char *fmt, ...)
509 {
510 va_list ap;
511 va_list ap2;
512
513 va_start(ap, fmt);
514 va_copy(ap2, ap);
515 fprintf(stderr, "qemu: fatal: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
519 if (qemu_log_enabled()) {
520 qemu_log("qemu: fatal: ");
521 qemu_log_vprintf(fmt, ap2);
522 qemu_log("\n");
523 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
524 qemu_log_flush();
525 qemu_log_close();
526 }
527 va_end(ap2);
528 va_end(ap);
529 #if defined(CONFIG_USER_ONLY)
530 {
531 struct sigaction act;
532 sigfillset(&act.sa_mask);
533 act.sa_handler = SIG_DFL;
534 sigaction(SIGABRT, &act, NULL);
535 }
536 #endif
537 abort();
538 }
539
540 CPUArchState *cpu_copy(CPUArchState *env)
541 {
542 CPUArchState *new_env = cpu_init(env->cpu_model_str);
543 CPUArchState *next_cpu = new_env->next_cpu;
544 #if defined(TARGET_HAS_ICE)
545 CPUBreakpoint *bp;
546 CPUWatchpoint *wp;
547 #endif
548
549 memcpy(new_env, env, sizeof(CPUArchState));
550
551 /* Preserve chaining. */
552 new_env->next_cpu = next_cpu;
553
554 /* Clone all break/watchpoints.
555 Note: Once we support ptrace with hw-debug register access, make sure
556 BP_CPU break/watchpoints are handled correctly on clone. */
557 QTAILQ_INIT(&env->breakpoints);
558 QTAILQ_INIT(&env->watchpoints);
559 #if defined(TARGET_HAS_ICE)
560 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
561 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
562 }
563 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
564 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
565 wp->flags, NULL);
566 }
567 #endif
568
569 return new_env;
570 }
571
572 #if !defined(CONFIG_USER_ONLY)
573 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
574 uintptr_t length)
575 {
576 uintptr_t start1;
577
578 /* we modify the TLB cache so that the dirty bit will be set again
579 when accessing the range */
580 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
581 /* Check that we don't span multiple blocks - this breaks the
582 address comparisons below. */
583 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
584 != (end - 1) - start) {
585 abort();
586 }
587 cpu_tlb_reset_dirty_all(start1, length);
588
589 }
590
591 /* Note: start and end must be within the same ram block. */
592 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
593 int dirty_flags)
594 {
595 uintptr_t length;
596
597 start &= TARGET_PAGE_MASK;
598 end = TARGET_PAGE_ALIGN(end);
599
600 length = end - start;
601 if (length == 0)
602 return;
603 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
604
605 if (tcg_enabled()) {
606 tlb_reset_dirty_range_all(start, end, length);
607 }
608 }
609
610 static int cpu_physical_memory_set_dirty_tracking(int enable)
611 {
612 int ret = 0;
613 in_migration = enable;
614 return ret;
615 }
616
617 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
618 MemoryRegionSection *section,
619 target_ulong vaddr,
620 hwaddr paddr,
621 int prot,
622 target_ulong *address)
623 {
624 hwaddr iotlb;
625 CPUWatchpoint *wp;
626
627 if (memory_region_is_ram(section->mr)) {
628 /* Normal RAM. */
629 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
630 + memory_region_section_addr(section, paddr);
631 if (!section->readonly) {
632 iotlb |= phys_section_notdirty;
633 } else {
634 iotlb |= phys_section_rom;
635 }
636 } else {
637 iotlb = section - phys_sections;
638 iotlb += memory_region_section_addr(section, paddr);
639 }
640
641 /* Make accesses to pages with watchpoints go via the
642 watchpoint trap routines. */
643 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
644 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
645 /* Avoid trapping reads of pages with a write breakpoint. */
646 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
647 iotlb = phys_section_watch + paddr;
648 *address |= TLB_MMIO;
649 break;
650 }
651 }
652 }
653
654 return iotlb;
655 }
656 #endif /* defined(CONFIG_USER_ONLY) */
657
658 #if !defined(CONFIG_USER_ONLY)
659
660 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
661 typedef struct subpage_t {
662 MemoryRegion iomem;
663 hwaddr base;
664 uint16_t sub_section[TARGET_PAGE_SIZE];
665 } subpage_t;
666
667 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
668 uint16_t section);
669 static subpage_t *subpage_init(hwaddr base);
670 static void destroy_page_desc(uint16_t section_index)
671 {
672 MemoryRegionSection *section = &phys_sections[section_index];
673 MemoryRegion *mr = section->mr;
674
675 if (mr->subpage) {
676 subpage_t *subpage = container_of(mr, subpage_t, iomem);
677 memory_region_destroy(&subpage->iomem);
678 g_free(subpage);
679 }
680 }
681
682 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
683 {
684 unsigned i;
685 PhysPageEntry *p;
686
687 if (lp->ptr == PHYS_MAP_NODE_NIL) {
688 return;
689 }
690
691 p = phys_map_nodes[lp->ptr];
692 for (i = 0; i < L2_SIZE; ++i) {
693 if (!p[i].is_leaf) {
694 destroy_l2_mapping(&p[i], level - 1);
695 } else {
696 destroy_page_desc(p[i].ptr);
697 }
698 }
699 lp->is_leaf = 0;
700 lp->ptr = PHYS_MAP_NODE_NIL;
701 }
702
703 static void destroy_all_mappings(AddressSpaceDispatch *d)
704 {
705 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
706 phys_map_nodes_reset();
707 }
708
709 static uint16_t phys_section_add(MemoryRegionSection *section)
710 {
711 /* The physical section number is ORed with a page-aligned
712 * pointer to produce the iotlb entries. Thus it should
713 * never overflow into the page-aligned value.
714 */
715 assert(phys_sections_nb < TARGET_PAGE_SIZE);
716
717 if (phys_sections_nb == phys_sections_nb_alloc) {
718 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
719 phys_sections = g_renew(MemoryRegionSection, phys_sections,
720 phys_sections_nb_alloc);
721 }
722 phys_sections[phys_sections_nb] = *section;
723 return phys_sections_nb++;
724 }
725
726 static void phys_sections_clear(void)
727 {
728 phys_sections_nb = 0;
729 }
730
731 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
732 {
733 subpage_t *subpage;
734 hwaddr base = section->offset_within_address_space
735 & TARGET_PAGE_MASK;
736 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
737 MemoryRegionSection subsection = {
738 .offset_within_address_space = base,
739 .size = TARGET_PAGE_SIZE,
740 };
741 hwaddr start, end;
742
743 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
744
745 if (!(existing->mr->subpage)) {
746 subpage = subpage_init(base);
747 subsection.mr = &subpage->iomem;
748 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
749 phys_section_add(&subsection));
750 } else {
751 subpage = container_of(existing->mr, subpage_t, iomem);
752 }
753 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
754 end = start + section->size - 1;
755 subpage_register(subpage, start, end, phys_section_add(section));
756 }
757
758
759 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
760 {
761 hwaddr start_addr = section->offset_within_address_space;
762 ram_addr_t size = section->size;
763 hwaddr addr;
764 uint16_t section_index = phys_section_add(section);
765
766 assert(size);
767
768 addr = start_addr;
769 phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
770 section_index);
771 }
772
773 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > MAX_PHYS_ADDR_SPACE_BITS)
774
775 static MemoryRegionSection limit(MemoryRegionSection section)
776 {
777 section.size = MIN(section.offset_within_address_space + section.size,
778 MAX_PHYS_ADDR + 1)
779 - section.offset_within_address_space;
780
781 return section;
782 }
783
784 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
785 {
786 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
787 MemoryRegionSection now = limit(*section), remain = limit(*section);
788
789 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
790 || (now.size < TARGET_PAGE_SIZE)) {
791 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
792 - now.offset_within_address_space,
793 now.size);
794 register_subpage(d, &now);
795 remain.size -= now.size;
796 remain.offset_within_address_space += now.size;
797 remain.offset_within_region += now.size;
798 }
799 while (remain.size >= TARGET_PAGE_SIZE) {
800 now = remain;
801 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
802 now.size = TARGET_PAGE_SIZE;
803 register_subpage(d, &now);
804 } else {
805 now.size &= TARGET_PAGE_MASK;
806 register_multipage(d, &now);
807 }
808 remain.size -= now.size;
809 remain.offset_within_address_space += now.size;
810 remain.offset_within_region += now.size;
811 }
812 now = remain;
813 if (now.size) {
814 register_subpage(d, &now);
815 }
816 }
817
818 void qemu_flush_coalesced_mmio_buffer(void)
819 {
820 if (kvm_enabled())
821 kvm_flush_coalesced_mmio_buffer();
822 }
823
824 void qemu_mutex_lock_ramlist(void)
825 {
826 qemu_mutex_lock(&ram_list.mutex);
827 }
828
829 void qemu_mutex_unlock_ramlist(void)
830 {
831 qemu_mutex_unlock(&ram_list.mutex);
832 }
833
834 #if defined(__linux__) && !defined(TARGET_S390X)
835
836 #include <sys/vfs.h>
837
838 #define HUGETLBFS_MAGIC 0x958458f6
839
840 static long gethugepagesize(const char *path)
841 {
842 struct statfs fs;
843 int ret;
844
845 do {
846 ret = statfs(path, &fs);
847 } while (ret != 0 && errno == EINTR);
848
849 if (ret != 0) {
850 perror(path);
851 return 0;
852 }
853
854 if (fs.f_type != HUGETLBFS_MAGIC)
855 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
856
857 return fs.f_bsize;
858 }
859
860 static void *file_ram_alloc(RAMBlock *block,
861 ram_addr_t memory,
862 const char *path)
863 {
864 char *filename;
865 char *sanitized_name;
866 char *c;
867 void *area;
868 int fd;
869 #ifdef MAP_POPULATE
870 int flags;
871 #endif
872 unsigned long hpagesize;
873
874 hpagesize = gethugepagesize(path);
875 if (!hpagesize) {
876 return NULL;
877 }
878
879 if (memory < hpagesize) {
880 return NULL;
881 }
882
883 if (kvm_enabled() && !kvm_has_sync_mmu()) {
884 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
885 return NULL;
886 }
887
888 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
889 sanitized_name = g_strdup(block->mr->name);
890 for (c = sanitized_name; *c != '\0'; c++) {
891 if (*c == '/')
892 *c = '_';
893 }
894
895 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
896 sanitized_name);
897 g_free(sanitized_name);
898
899 fd = mkstemp(filename);
900 if (fd < 0) {
901 perror("unable to create backing store for hugepages");
902 g_free(filename);
903 return NULL;
904 }
905 unlink(filename);
906 g_free(filename);
907
908 memory = (memory+hpagesize-1) & ~(hpagesize-1);
909
910 /*
911 * ftruncate is not supported by hugetlbfs in older
912 * hosts, so don't bother bailing out on errors.
913 * If anything goes wrong with it under other filesystems,
914 * mmap will fail.
915 */
916 if (ftruncate(fd, memory))
917 perror("ftruncate");
918
919 #ifdef MAP_POPULATE
920 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
921 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
922 * to sidestep this quirk.
923 */
924 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
925 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
926 #else
927 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
928 #endif
929 if (area == MAP_FAILED) {
930 perror("file_ram_alloc: can't mmap RAM pages");
931 close(fd);
932 return (NULL);
933 }
934 block->fd = fd;
935 return area;
936 }
937 #endif
938
939 static ram_addr_t find_ram_offset(ram_addr_t size)
940 {
941 RAMBlock *block, *next_block;
942 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
943
944 assert(size != 0); /* it would hand out same offset multiple times */
945
946 if (QTAILQ_EMPTY(&ram_list.blocks))
947 return 0;
948
949 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
950 ram_addr_t end, next = RAM_ADDR_MAX;
951
952 end = block->offset + block->length;
953
954 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
955 if (next_block->offset >= end) {
956 next = MIN(next, next_block->offset);
957 }
958 }
959 if (next - end >= size && next - end < mingap) {
960 offset = end;
961 mingap = next - end;
962 }
963 }
964
965 if (offset == RAM_ADDR_MAX) {
966 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
967 (uint64_t)size);
968 abort();
969 }
970
971 return offset;
972 }
973
974 ram_addr_t last_ram_offset(void)
975 {
976 RAMBlock *block;
977 ram_addr_t last = 0;
978
979 QTAILQ_FOREACH(block, &ram_list.blocks, next)
980 last = MAX(last, block->offset + block->length);
981
982 return last;
983 }
984
985 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
986 {
987 int ret;
988 QemuOpts *machine_opts;
989
990 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
991 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
992 if (machine_opts &&
993 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
994 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
995 if (ret) {
996 perror("qemu_madvise");
997 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
998 "but dump_guest_core=off specified\n");
999 }
1000 }
1001 }
1002
1003 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1004 {
1005 RAMBlock *new_block, *block;
1006
1007 new_block = NULL;
1008 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1009 if (block->offset == addr) {
1010 new_block = block;
1011 break;
1012 }
1013 }
1014 assert(new_block);
1015 assert(!new_block->idstr[0]);
1016
1017 if (dev) {
1018 char *id = qdev_get_dev_path(dev);
1019 if (id) {
1020 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1021 g_free(id);
1022 }
1023 }
1024 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1025
1026 /* This assumes the iothread lock is taken here too. */
1027 qemu_mutex_lock_ramlist();
1028 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1029 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1030 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1031 new_block->idstr);
1032 abort();
1033 }
1034 }
1035 qemu_mutex_unlock_ramlist();
1036 }
1037
1038 static int memory_try_enable_merging(void *addr, size_t len)
1039 {
1040 QemuOpts *opts;
1041
1042 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1043 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1044 /* disabled by the user */
1045 return 0;
1046 }
1047
1048 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1049 }
1050
1051 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1052 MemoryRegion *mr)
1053 {
1054 RAMBlock *block, *new_block;
1055
1056 size = TARGET_PAGE_ALIGN(size);
1057 new_block = g_malloc0(sizeof(*new_block));
1058
1059 /* This assumes the iothread lock is taken here too. */
1060 qemu_mutex_lock_ramlist();
1061 new_block->mr = mr;
1062 new_block->offset = find_ram_offset(size);
1063 if (host) {
1064 new_block->host = host;
1065 new_block->flags |= RAM_PREALLOC_MASK;
1066 } else {
1067 if (mem_path) {
1068 #if defined (__linux__) && !defined(TARGET_S390X)
1069 new_block->host = file_ram_alloc(new_block, size, mem_path);
1070 if (!new_block->host) {
1071 new_block->host = qemu_anon_ram_alloc(size);
1072 memory_try_enable_merging(new_block->host, size);
1073 }
1074 #else
1075 fprintf(stderr, "-mem-path option unsupported\n");
1076 exit(1);
1077 #endif
1078 } else {
1079 if (xen_enabled()) {
1080 xen_ram_alloc(new_block->offset, size, mr);
1081 } else if (kvm_enabled()) {
1082 /* some s390/kvm configurations have special constraints */
1083 new_block->host = kvm_ram_alloc(size);
1084 } else {
1085 new_block->host = qemu_anon_ram_alloc(size);
1086 }
1087 memory_try_enable_merging(new_block->host, size);
1088 }
1089 }
1090 new_block->length = size;
1091
1092 /* Keep the list sorted from biggest to smallest block. */
1093 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1094 if (block->length < new_block->length) {
1095 break;
1096 }
1097 }
1098 if (block) {
1099 QTAILQ_INSERT_BEFORE(block, new_block, next);
1100 } else {
1101 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1102 }
1103 ram_list.mru_block = NULL;
1104
1105 ram_list.version++;
1106 qemu_mutex_unlock_ramlist();
1107
1108 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1109 last_ram_offset() >> TARGET_PAGE_BITS);
1110 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1111 0, size >> TARGET_PAGE_BITS);
1112 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1113
1114 qemu_ram_setup_dump(new_block->host, size);
1115 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1116
1117 if (kvm_enabled())
1118 kvm_setup_guest_memory(new_block->host, size);
1119
1120 return new_block->offset;
1121 }
1122
1123 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1124 {
1125 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1126 }
1127
1128 void qemu_ram_free_from_ptr(ram_addr_t addr)
1129 {
1130 RAMBlock *block;
1131
1132 /* This assumes the iothread lock is taken here too. */
1133 qemu_mutex_lock_ramlist();
1134 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1135 if (addr == block->offset) {
1136 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1137 ram_list.mru_block = NULL;
1138 ram_list.version++;
1139 g_free(block);
1140 break;
1141 }
1142 }
1143 qemu_mutex_unlock_ramlist();
1144 }
1145
1146 void qemu_ram_free(ram_addr_t addr)
1147 {
1148 RAMBlock *block;
1149
1150 /* This assumes the iothread lock is taken here too. */
1151 qemu_mutex_lock_ramlist();
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (addr == block->offset) {
1154 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1155 ram_list.mru_block = NULL;
1156 ram_list.version++;
1157 if (block->flags & RAM_PREALLOC_MASK) {
1158 ;
1159 } else if (mem_path) {
1160 #if defined (__linux__) && !defined(TARGET_S390X)
1161 if (block->fd) {
1162 munmap(block->host, block->length);
1163 close(block->fd);
1164 } else {
1165 qemu_anon_ram_free(block->host, block->length);
1166 }
1167 #else
1168 abort();
1169 #endif
1170 } else {
1171 if (xen_enabled()) {
1172 xen_invalidate_map_cache_entry(block->host);
1173 } else {
1174 qemu_anon_ram_free(block->host, block->length);
1175 }
1176 }
1177 g_free(block);
1178 break;
1179 }
1180 }
1181 qemu_mutex_unlock_ramlist();
1182
1183 }
1184
1185 #ifndef _WIN32
1186 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1187 {
1188 RAMBlock *block;
1189 ram_addr_t offset;
1190 int flags;
1191 void *area, *vaddr;
1192
1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1194 offset = addr - block->offset;
1195 if (offset < block->length) {
1196 vaddr = block->host + offset;
1197 if (block->flags & RAM_PREALLOC_MASK) {
1198 ;
1199 } else {
1200 flags = MAP_FIXED;
1201 munmap(vaddr, length);
1202 if (mem_path) {
1203 #if defined(__linux__) && !defined(TARGET_S390X)
1204 if (block->fd) {
1205 #ifdef MAP_POPULATE
1206 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1207 MAP_PRIVATE;
1208 #else
1209 flags |= MAP_PRIVATE;
1210 #endif
1211 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1212 flags, block->fd, offset);
1213 } else {
1214 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1215 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1216 flags, -1, 0);
1217 }
1218 #else
1219 abort();
1220 #endif
1221 } else {
1222 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1223 flags |= MAP_SHARED | MAP_ANONYMOUS;
1224 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1225 flags, -1, 0);
1226 #else
1227 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1228 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1229 flags, -1, 0);
1230 #endif
1231 }
1232 if (area != vaddr) {
1233 fprintf(stderr, "Could not remap addr: "
1234 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1235 length, addr);
1236 exit(1);
1237 }
1238 memory_try_enable_merging(vaddr, length);
1239 qemu_ram_setup_dump(vaddr, length);
1240 }
1241 return;
1242 }
1243 }
1244 }
1245 #endif /* !_WIN32 */
1246
1247 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1248 With the exception of the softmmu code in this file, this should
1249 only be used for local memory (e.g. video ram) that the device owns,
1250 and knows it isn't going to access beyond the end of the block.
1251
1252 It should not be used for general purpose DMA.
1253 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1254 */
1255 void *qemu_get_ram_ptr(ram_addr_t addr)
1256 {
1257 RAMBlock *block;
1258
1259 /* The list is protected by the iothread lock here. */
1260 block = ram_list.mru_block;
1261 if (block && addr - block->offset < block->length) {
1262 goto found;
1263 }
1264 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1265 if (addr - block->offset < block->length) {
1266 goto found;
1267 }
1268 }
1269
1270 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1271 abort();
1272
1273 found:
1274 ram_list.mru_block = block;
1275 if (xen_enabled()) {
1276 /* We need to check if the requested address is in the RAM
1277 * because we don't want to map the entire memory in QEMU.
1278 * In that case just map until the end of the page.
1279 */
1280 if (block->offset == 0) {
1281 return xen_map_cache(addr, 0, 0);
1282 } else if (block->host == NULL) {
1283 block->host =
1284 xen_map_cache(block->offset, block->length, 1);
1285 }
1286 }
1287 return block->host + (addr - block->offset);
1288 }
1289
1290 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1291 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1292 *
1293 * ??? Is this still necessary?
1294 */
1295 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1296 {
1297 RAMBlock *block;
1298
1299 /* The list is protected by the iothread lock here. */
1300 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1301 if (addr - block->offset < block->length) {
1302 if (xen_enabled()) {
1303 /* We need to check if the requested address is in the RAM
1304 * because we don't want to map the entire memory in QEMU.
1305 * In that case just map until the end of the page.
1306 */
1307 if (block->offset == 0) {
1308 return xen_map_cache(addr, 0, 0);
1309 } else if (block->host == NULL) {
1310 block->host =
1311 xen_map_cache(block->offset, block->length, 1);
1312 }
1313 }
1314 return block->host + (addr - block->offset);
1315 }
1316 }
1317
1318 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1319 abort();
1320
1321 return NULL;
1322 }
1323
1324 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1325 * but takes a size argument */
1326 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1327 {
1328 if (*size == 0) {
1329 return NULL;
1330 }
1331 if (xen_enabled()) {
1332 return xen_map_cache(addr, *size, 1);
1333 } else {
1334 RAMBlock *block;
1335
1336 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1337 if (addr - block->offset < block->length) {
1338 if (addr - block->offset + *size > block->length)
1339 *size = block->length - addr + block->offset;
1340 return block->host + (addr - block->offset);
1341 }
1342 }
1343
1344 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1345 abort();
1346 }
1347 }
1348
1349 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1350 {
1351 RAMBlock *block;
1352 uint8_t *host = ptr;
1353
1354 if (xen_enabled()) {
1355 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1356 return 0;
1357 }
1358
1359 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1360 /* This case append when the block is not mapped. */
1361 if (block->host == NULL) {
1362 continue;
1363 }
1364 if (host - block->host < block->length) {
1365 *ram_addr = block->offset + (host - block->host);
1366 return 0;
1367 }
1368 }
1369
1370 return -1;
1371 }
1372
1373 /* Some of the softmmu routines need to translate from a host pointer
1374 (typically a TLB entry) back to a ram offset. */
1375 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1376 {
1377 ram_addr_t ram_addr;
1378
1379 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1380 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1381 abort();
1382 }
1383 return ram_addr;
1384 }
1385
1386 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1387 unsigned size, bool is_write)
1388 {
1389 return false;
1390 }
1391
1392 const MemoryRegionOps unassigned_mem_ops = {
1393 .valid.accepts = unassigned_mem_accepts,
1394 .endianness = DEVICE_NATIVE_ENDIAN,
1395 };
1396
1397 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1398 uint64_t val, unsigned size)
1399 {
1400 int dirty_flags;
1401 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1402 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1403 tb_invalidate_phys_page_fast(ram_addr, size);
1404 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1405 }
1406 switch (size) {
1407 case 1:
1408 stb_p(qemu_get_ram_ptr(ram_addr), val);
1409 break;
1410 case 2:
1411 stw_p(qemu_get_ram_ptr(ram_addr), val);
1412 break;
1413 case 4:
1414 stl_p(qemu_get_ram_ptr(ram_addr), val);
1415 break;
1416 default:
1417 abort();
1418 }
1419 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1420 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1421 /* we remove the notdirty callback only if the code has been
1422 flushed */
1423 if (dirty_flags == 0xff)
1424 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1425 }
1426
1427 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1428 unsigned size, bool is_write)
1429 {
1430 return is_write;
1431 }
1432
1433 static const MemoryRegionOps notdirty_mem_ops = {
1434 .write = notdirty_mem_write,
1435 .valid.accepts = notdirty_mem_accepts,
1436 .endianness = DEVICE_NATIVE_ENDIAN,
1437 };
1438
1439 /* Generate a debug exception if a watchpoint has been hit. */
1440 static void check_watchpoint(int offset, int len_mask, int flags)
1441 {
1442 CPUArchState *env = cpu_single_env;
1443 target_ulong pc, cs_base;
1444 target_ulong vaddr;
1445 CPUWatchpoint *wp;
1446 int cpu_flags;
1447
1448 if (env->watchpoint_hit) {
1449 /* We re-entered the check after replacing the TB. Now raise
1450 * the debug interrupt so that is will trigger after the
1451 * current instruction. */
1452 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1453 return;
1454 }
1455 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1456 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1457 if ((vaddr == (wp->vaddr & len_mask) ||
1458 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1459 wp->flags |= BP_WATCHPOINT_HIT;
1460 if (!env->watchpoint_hit) {
1461 env->watchpoint_hit = wp;
1462 tb_check_watchpoint(env);
1463 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1464 env->exception_index = EXCP_DEBUG;
1465 cpu_loop_exit(env);
1466 } else {
1467 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1468 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1469 cpu_resume_from_signal(env, NULL);
1470 }
1471 }
1472 } else {
1473 wp->flags &= ~BP_WATCHPOINT_HIT;
1474 }
1475 }
1476 }
1477
1478 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1479 so these check for a hit then pass through to the normal out-of-line
1480 phys routines. */
1481 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1482 unsigned size)
1483 {
1484 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1485 switch (size) {
1486 case 1: return ldub_phys(addr);
1487 case 2: return lduw_phys(addr);
1488 case 4: return ldl_phys(addr);
1489 default: abort();
1490 }
1491 }
1492
1493 static void watch_mem_write(void *opaque, hwaddr addr,
1494 uint64_t val, unsigned size)
1495 {
1496 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1497 switch (size) {
1498 case 1:
1499 stb_phys(addr, val);
1500 break;
1501 case 2:
1502 stw_phys(addr, val);
1503 break;
1504 case 4:
1505 stl_phys(addr, val);
1506 break;
1507 default: abort();
1508 }
1509 }
1510
1511 static const MemoryRegionOps watch_mem_ops = {
1512 .read = watch_mem_read,
1513 .write = watch_mem_write,
1514 .endianness = DEVICE_NATIVE_ENDIAN,
1515 };
1516
1517 static uint64_t subpage_read(void *opaque, hwaddr addr,
1518 unsigned len)
1519 {
1520 subpage_t *mmio = opaque;
1521 unsigned int idx = SUBPAGE_IDX(addr);
1522 MemoryRegionSection *section;
1523 #if defined(DEBUG_SUBPAGE)
1524 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
1525 mmio, len, addr, idx);
1526 #endif
1527
1528 section = &phys_sections[mmio->sub_section[idx]];
1529 addr += mmio->base;
1530 addr -= section->offset_within_address_space;
1531 addr += section->offset_within_region;
1532 return io_mem_read(section->mr, addr, len);
1533 }
1534
1535 static void subpage_write(void *opaque, hwaddr addr,
1536 uint64_t value, unsigned len)
1537 {
1538 subpage_t *mmio = opaque;
1539 unsigned int idx = SUBPAGE_IDX(addr);
1540 MemoryRegionSection *section;
1541 #if defined(DEBUG_SUBPAGE)
1542 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1543 " idx %d value %"PRIx64"\n",
1544 __func__, mmio, len, addr, idx, value);
1545 #endif
1546
1547 section = &phys_sections[mmio->sub_section[idx]];
1548 addr += mmio->base;
1549 addr -= section->offset_within_address_space;
1550 addr += section->offset_within_region;
1551 io_mem_write(section->mr, addr, value, len);
1552 }
1553
1554 static const MemoryRegionOps subpage_ops = {
1555 .read = subpage_read,
1556 .write = subpage_write,
1557 .endianness = DEVICE_NATIVE_ENDIAN,
1558 };
1559
1560 static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
1561 unsigned size)
1562 {
1563 ram_addr_t raddr = addr;
1564 void *ptr = qemu_get_ram_ptr(raddr);
1565 switch (size) {
1566 case 1: return ldub_p(ptr);
1567 case 2: return lduw_p(ptr);
1568 case 4: return ldl_p(ptr);
1569 default: abort();
1570 }
1571 }
1572
1573 static void subpage_ram_write(void *opaque, hwaddr addr,
1574 uint64_t value, unsigned size)
1575 {
1576 ram_addr_t raddr = addr;
1577 void *ptr = qemu_get_ram_ptr(raddr);
1578 switch (size) {
1579 case 1: return stb_p(ptr, value);
1580 case 2: return stw_p(ptr, value);
1581 case 4: return stl_p(ptr, value);
1582 default: abort();
1583 }
1584 }
1585
1586 static const MemoryRegionOps subpage_ram_ops = {
1587 .read = subpage_ram_read,
1588 .write = subpage_ram_write,
1589 .endianness = DEVICE_NATIVE_ENDIAN,
1590 };
1591
1592 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1593 uint16_t section)
1594 {
1595 int idx, eidx;
1596
1597 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1598 return -1;
1599 idx = SUBPAGE_IDX(start);
1600 eidx = SUBPAGE_IDX(end);
1601 #if defined(DEBUG_SUBPAGE)
1602 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1603 mmio, start, end, idx, eidx, memory);
1604 #endif
1605 if (memory_region_is_ram(phys_sections[section].mr)) {
1606 MemoryRegionSection new_section = phys_sections[section];
1607 new_section.mr = &io_mem_subpage_ram;
1608 section = phys_section_add(&new_section);
1609 }
1610 for (; idx <= eidx; idx++) {
1611 mmio->sub_section[idx] = section;
1612 }
1613
1614 return 0;
1615 }
1616
1617 static subpage_t *subpage_init(hwaddr base)
1618 {
1619 subpage_t *mmio;
1620
1621 mmio = g_malloc0(sizeof(subpage_t));
1622
1623 mmio->base = base;
1624 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1625 "subpage", TARGET_PAGE_SIZE);
1626 mmio->iomem.subpage = true;
1627 #if defined(DEBUG_SUBPAGE)
1628 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1629 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1630 #endif
1631 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1632
1633 return mmio;
1634 }
1635
1636 static uint16_t dummy_section(MemoryRegion *mr)
1637 {
1638 MemoryRegionSection section = {
1639 .mr = mr,
1640 .offset_within_address_space = 0,
1641 .offset_within_region = 0,
1642 .size = UINT64_MAX,
1643 };
1644
1645 return phys_section_add(&section);
1646 }
1647
1648 MemoryRegion *iotlb_to_region(hwaddr index)
1649 {
1650 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1651 }
1652
1653 static void io_mem_init(void)
1654 {
1655 memory_region_init_io(&io_mem_rom, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1656 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1657 "unassigned", UINT64_MAX);
1658 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
1659 "notdirty", UINT64_MAX);
1660 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
1661 "subpage-ram", UINT64_MAX);
1662 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1663 "watch", UINT64_MAX);
1664 }
1665
1666 static void mem_begin(MemoryListener *listener)
1667 {
1668 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1669
1670 destroy_all_mappings(d);
1671 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1672 }
1673
1674 static void core_begin(MemoryListener *listener)
1675 {
1676 phys_sections_clear();
1677 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1678 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1679 phys_section_rom = dummy_section(&io_mem_rom);
1680 phys_section_watch = dummy_section(&io_mem_watch);
1681 }
1682
1683 static void tcg_commit(MemoryListener *listener)
1684 {
1685 CPUArchState *env;
1686
1687 /* since each CPU stores ram addresses in its TLB cache, we must
1688 reset the modified entries */
1689 /* XXX: slow ! */
1690 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1691 tlb_flush(env, 1);
1692 }
1693 }
1694
1695 static void core_log_global_start(MemoryListener *listener)
1696 {
1697 cpu_physical_memory_set_dirty_tracking(1);
1698 }
1699
1700 static void core_log_global_stop(MemoryListener *listener)
1701 {
1702 cpu_physical_memory_set_dirty_tracking(0);
1703 }
1704
1705 static void io_region_add(MemoryListener *listener,
1706 MemoryRegionSection *section)
1707 {
1708 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1709
1710 mrio->mr = section->mr;
1711 mrio->offset = section->offset_within_region;
1712 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1713 section->offset_within_address_space, section->size);
1714 ioport_register(&mrio->iorange);
1715 }
1716
1717 static void io_region_del(MemoryListener *listener,
1718 MemoryRegionSection *section)
1719 {
1720 isa_unassign_ioport(section->offset_within_address_space, section->size);
1721 }
1722
1723 static MemoryListener core_memory_listener = {
1724 .begin = core_begin,
1725 .log_global_start = core_log_global_start,
1726 .log_global_stop = core_log_global_stop,
1727 .priority = 1,
1728 };
1729
1730 static MemoryListener io_memory_listener = {
1731 .region_add = io_region_add,
1732 .region_del = io_region_del,
1733 .priority = 0,
1734 };
1735
1736 static MemoryListener tcg_memory_listener = {
1737 .commit = tcg_commit,
1738 };
1739
1740 void address_space_init_dispatch(AddressSpace *as)
1741 {
1742 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1743
1744 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1745 d->listener = (MemoryListener) {
1746 .begin = mem_begin,
1747 .region_add = mem_add,
1748 .region_nop = mem_add,
1749 .priority = 0,
1750 };
1751 as->dispatch = d;
1752 memory_listener_register(&d->listener, as);
1753 }
1754
1755 void address_space_destroy_dispatch(AddressSpace *as)
1756 {
1757 AddressSpaceDispatch *d = as->dispatch;
1758
1759 memory_listener_unregister(&d->listener);
1760 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1761 g_free(d);
1762 as->dispatch = NULL;
1763 }
1764
1765 static void memory_map_init(void)
1766 {
1767 system_memory = g_malloc(sizeof(*system_memory));
1768 memory_region_init(system_memory, "system", INT64_MAX);
1769 address_space_init(&address_space_memory, system_memory);
1770 address_space_memory.name = "memory";
1771
1772 system_io = g_malloc(sizeof(*system_io));
1773 memory_region_init(system_io, "io", 65536);
1774 address_space_init(&address_space_io, system_io);
1775 address_space_io.name = "I/O";
1776
1777 memory_listener_register(&core_memory_listener, &address_space_memory);
1778 memory_listener_register(&io_memory_listener, &address_space_io);
1779 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1780
1781 dma_context_init(&dma_context_memory, &address_space_memory,
1782 NULL, NULL, NULL);
1783 }
1784
1785 MemoryRegion *get_system_memory(void)
1786 {
1787 return system_memory;
1788 }
1789
1790 MemoryRegion *get_system_io(void)
1791 {
1792 return system_io;
1793 }
1794
1795 #endif /* !defined(CONFIG_USER_ONLY) */
1796
1797 /* physical memory access (slow version, mainly for debug) */
1798 #if defined(CONFIG_USER_ONLY)
1799 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1800 uint8_t *buf, int len, int is_write)
1801 {
1802 int l, flags;
1803 target_ulong page;
1804 void * p;
1805
1806 while (len > 0) {
1807 page = addr & TARGET_PAGE_MASK;
1808 l = (page + TARGET_PAGE_SIZE) - addr;
1809 if (l > len)
1810 l = len;
1811 flags = page_get_flags(page);
1812 if (!(flags & PAGE_VALID))
1813 return -1;
1814 if (is_write) {
1815 if (!(flags & PAGE_WRITE))
1816 return -1;
1817 /* XXX: this code should not depend on lock_user */
1818 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1819 return -1;
1820 memcpy(p, buf, l);
1821 unlock_user(p, addr, l);
1822 } else {
1823 if (!(flags & PAGE_READ))
1824 return -1;
1825 /* XXX: this code should not depend on lock_user */
1826 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1827 return -1;
1828 memcpy(buf, p, l);
1829 unlock_user(p, addr, 0);
1830 }
1831 len -= l;
1832 buf += l;
1833 addr += l;
1834 }
1835 return 0;
1836 }
1837
1838 #else
1839
1840 static void invalidate_and_set_dirty(hwaddr addr,
1841 hwaddr length)
1842 {
1843 if (!cpu_physical_memory_is_dirty(addr)) {
1844 /* invalidate code */
1845 tb_invalidate_phys_page_range(addr, addr + length, 0);
1846 /* set dirty bit */
1847 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1848 }
1849 xen_modified_memory(addr, length);
1850 }
1851
1852 void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1853 int len, bool is_write)
1854 {
1855 AddressSpaceDispatch *d = as->dispatch;
1856 int l;
1857 uint8_t *ptr;
1858 uint32_t val;
1859 hwaddr page;
1860 MemoryRegionSection *section;
1861
1862 while (len > 0) {
1863 page = addr & TARGET_PAGE_MASK;
1864 l = (page + TARGET_PAGE_SIZE) - addr;
1865 if (l > len)
1866 l = len;
1867 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
1868
1869 if (is_write) {
1870 if (!memory_region_is_ram(section->mr)) {
1871 hwaddr addr1;
1872 addr1 = memory_region_section_addr(section, addr);
1873 /* XXX: could force cpu_single_env to NULL to avoid
1874 potential bugs */
1875 if (l >= 4 && ((addr1 & 3) == 0)) {
1876 /* 32 bit write access */
1877 val = ldl_p(buf);
1878 io_mem_write(section->mr, addr1, val, 4);
1879 l = 4;
1880 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1881 /* 16 bit write access */
1882 val = lduw_p(buf);
1883 io_mem_write(section->mr, addr1, val, 2);
1884 l = 2;
1885 } else {
1886 /* 8 bit write access */
1887 val = ldub_p(buf);
1888 io_mem_write(section->mr, addr1, val, 1);
1889 l = 1;
1890 }
1891 } else if (!section->readonly) {
1892 ram_addr_t addr1;
1893 addr1 = memory_region_get_ram_addr(section->mr)
1894 + memory_region_section_addr(section, addr);
1895 /* RAM case */
1896 ptr = qemu_get_ram_ptr(addr1);
1897 memcpy(ptr, buf, l);
1898 invalidate_and_set_dirty(addr1, l);
1899 }
1900 } else {
1901 if (!(memory_region_is_ram(section->mr) ||
1902 memory_region_is_romd(section->mr))) {
1903 hwaddr addr1;
1904 /* I/O case */
1905 addr1 = memory_region_section_addr(section, addr);
1906 if (l >= 4 && ((addr1 & 3) == 0)) {
1907 /* 32 bit read access */
1908 val = io_mem_read(section->mr, addr1, 4);
1909 stl_p(buf, val);
1910 l = 4;
1911 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1912 /* 16 bit read access */
1913 val = io_mem_read(section->mr, addr1, 2);
1914 stw_p(buf, val);
1915 l = 2;
1916 } else {
1917 /* 8 bit read access */
1918 val = io_mem_read(section->mr, addr1, 1);
1919 stb_p(buf, val);
1920 l = 1;
1921 }
1922 } else {
1923 /* RAM case */
1924 ptr = qemu_get_ram_ptr(section->mr->ram_addr
1925 + memory_region_section_addr(section,
1926 addr));
1927 memcpy(buf, ptr, l);
1928 }
1929 }
1930 len -= l;
1931 buf += l;
1932 addr += l;
1933 }
1934 }
1935
1936 void address_space_write(AddressSpace *as, hwaddr addr,
1937 const uint8_t *buf, int len)
1938 {
1939 address_space_rw(as, addr, (uint8_t *)buf, len, true);
1940 }
1941
1942 /**
1943 * address_space_read: read from an address space.
1944 *
1945 * @as: #AddressSpace to be accessed
1946 * @addr: address within that address space
1947 * @buf: buffer with the data transferred
1948 */
1949 void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1950 {
1951 address_space_rw(as, addr, buf, len, false);
1952 }
1953
1954
1955 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1956 int len, int is_write)
1957 {
1958 return address_space_rw(&address_space_memory, addr, buf, len, is_write);
1959 }
1960
1961 /* used for ROM loading : can write in RAM and ROM */
1962 void cpu_physical_memory_write_rom(hwaddr addr,
1963 const uint8_t *buf, int len)
1964 {
1965 AddressSpaceDispatch *d = address_space_memory.dispatch;
1966 int l;
1967 uint8_t *ptr;
1968 hwaddr page;
1969 MemoryRegionSection *section;
1970
1971 while (len > 0) {
1972 page = addr & TARGET_PAGE_MASK;
1973 l = (page + TARGET_PAGE_SIZE) - addr;
1974 if (l > len)
1975 l = len;
1976 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
1977
1978 if (!(memory_region_is_ram(section->mr) ||
1979 memory_region_is_romd(section->mr))) {
1980 /* do nothing */
1981 } else {
1982 unsigned long addr1;
1983 addr1 = memory_region_get_ram_addr(section->mr)
1984 + memory_region_section_addr(section, addr);
1985 /* ROM/RAM case */
1986 ptr = qemu_get_ram_ptr(addr1);
1987 memcpy(ptr, buf, l);
1988 invalidate_and_set_dirty(addr1, l);
1989 }
1990 len -= l;
1991 buf += l;
1992 addr += l;
1993 }
1994 }
1995
1996 typedef struct {
1997 void *buffer;
1998 hwaddr addr;
1999 hwaddr len;
2000 } BounceBuffer;
2001
2002 static BounceBuffer bounce;
2003
2004 typedef struct MapClient {
2005 void *opaque;
2006 void (*callback)(void *opaque);
2007 QLIST_ENTRY(MapClient) link;
2008 } MapClient;
2009
2010 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2011 = QLIST_HEAD_INITIALIZER(map_client_list);
2012
2013 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2014 {
2015 MapClient *client = g_malloc(sizeof(*client));
2016
2017 client->opaque = opaque;
2018 client->callback = callback;
2019 QLIST_INSERT_HEAD(&map_client_list, client, link);
2020 return client;
2021 }
2022
2023 static void cpu_unregister_map_client(void *_client)
2024 {
2025 MapClient *client = (MapClient *)_client;
2026
2027 QLIST_REMOVE(client, link);
2028 g_free(client);
2029 }
2030
2031 static void cpu_notify_map_clients(void)
2032 {
2033 MapClient *client;
2034
2035 while (!QLIST_EMPTY(&map_client_list)) {
2036 client = QLIST_FIRST(&map_client_list);
2037 client->callback(client->opaque);
2038 cpu_unregister_map_client(client);
2039 }
2040 }
2041
2042 /* Map a physical memory region into a host virtual address.
2043 * May map a subset of the requested range, given by and returned in *plen.
2044 * May return NULL if resources needed to perform the mapping are exhausted.
2045 * Use only for reads OR writes - not for read-modify-write operations.
2046 * Use cpu_register_map_client() to know when retrying the map operation is
2047 * likely to succeed.
2048 */
2049 void *address_space_map(AddressSpace *as,
2050 hwaddr addr,
2051 hwaddr *plen,
2052 bool is_write)
2053 {
2054 AddressSpaceDispatch *d = as->dispatch;
2055 hwaddr len = *plen;
2056 hwaddr todo = 0;
2057 int l;
2058 hwaddr page;
2059 MemoryRegionSection *section;
2060 ram_addr_t raddr = RAM_ADDR_MAX;
2061 ram_addr_t rlen;
2062 void *ret;
2063
2064 while (len > 0) {
2065 page = addr & TARGET_PAGE_MASK;
2066 l = (page + TARGET_PAGE_SIZE) - addr;
2067 if (l > len)
2068 l = len;
2069 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
2070
2071 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
2072 if (todo || bounce.buffer) {
2073 break;
2074 }
2075 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2076 bounce.addr = addr;
2077 bounce.len = l;
2078 if (!is_write) {
2079 address_space_read(as, addr, bounce.buffer, l);
2080 }
2081
2082 *plen = l;
2083 return bounce.buffer;
2084 }
2085 if (!todo) {
2086 raddr = memory_region_get_ram_addr(section->mr)
2087 + memory_region_section_addr(section, addr);
2088 }
2089
2090 len -= l;
2091 addr += l;
2092 todo += l;
2093 }
2094 rlen = todo;
2095 ret = qemu_ram_ptr_length(raddr, &rlen);
2096 *plen = rlen;
2097 return ret;
2098 }
2099
2100 /* Unmaps a memory region previously mapped by address_space_map().
2101 * Will also mark the memory as dirty if is_write == 1. access_len gives
2102 * the amount of memory that was actually read or written by the caller.
2103 */
2104 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2105 int is_write, hwaddr access_len)
2106 {
2107 if (buffer != bounce.buffer) {
2108 if (is_write) {
2109 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2110 while (access_len) {
2111 unsigned l;
2112 l = TARGET_PAGE_SIZE;
2113 if (l > access_len)
2114 l = access_len;
2115 invalidate_and_set_dirty(addr1, l);
2116 addr1 += l;
2117 access_len -= l;
2118 }
2119 }
2120 if (xen_enabled()) {
2121 xen_invalidate_map_cache_entry(buffer);
2122 }
2123 return;
2124 }
2125 if (is_write) {
2126 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2127 }
2128 qemu_vfree(bounce.buffer);
2129 bounce.buffer = NULL;
2130 cpu_notify_map_clients();
2131 }
2132
2133 void *cpu_physical_memory_map(hwaddr addr,
2134 hwaddr *plen,
2135 int is_write)
2136 {
2137 return address_space_map(&address_space_memory, addr, plen, is_write);
2138 }
2139
2140 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2141 int is_write, hwaddr access_len)
2142 {
2143 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2144 }
2145
2146 /* warning: addr must be aligned */
2147 static inline uint32_t ldl_phys_internal(hwaddr addr,
2148 enum device_endian endian)
2149 {
2150 uint8_t *ptr;
2151 uint32_t val;
2152 MemoryRegionSection *section;
2153
2154 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2155
2156 if (!(memory_region_is_ram(section->mr) ||
2157 memory_region_is_romd(section->mr))) {
2158 /* I/O case */
2159 addr = memory_region_section_addr(section, addr);
2160 val = io_mem_read(section->mr, addr, 4);
2161 #if defined(TARGET_WORDS_BIGENDIAN)
2162 if (endian == DEVICE_LITTLE_ENDIAN) {
2163 val = bswap32(val);
2164 }
2165 #else
2166 if (endian == DEVICE_BIG_ENDIAN) {
2167 val = bswap32(val);
2168 }
2169 #endif
2170 } else {
2171 /* RAM case */
2172 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2173 & TARGET_PAGE_MASK)
2174 + memory_region_section_addr(section, addr));
2175 switch (endian) {
2176 case DEVICE_LITTLE_ENDIAN:
2177 val = ldl_le_p(ptr);
2178 break;
2179 case DEVICE_BIG_ENDIAN:
2180 val = ldl_be_p(ptr);
2181 break;
2182 default:
2183 val = ldl_p(ptr);
2184 break;
2185 }
2186 }
2187 return val;
2188 }
2189
2190 uint32_t ldl_phys(hwaddr addr)
2191 {
2192 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2193 }
2194
2195 uint32_t ldl_le_phys(hwaddr addr)
2196 {
2197 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2198 }
2199
2200 uint32_t ldl_be_phys(hwaddr addr)
2201 {
2202 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2203 }
2204
2205 /* warning: addr must be aligned */
2206 static inline uint64_t ldq_phys_internal(hwaddr addr,
2207 enum device_endian endian)
2208 {
2209 uint8_t *ptr;
2210 uint64_t val;
2211 MemoryRegionSection *section;
2212
2213 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2214
2215 if (!(memory_region_is_ram(section->mr) ||
2216 memory_region_is_romd(section->mr))) {
2217 /* I/O case */
2218 addr = memory_region_section_addr(section, addr);
2219
2220 /* XXX This is broken when device endian != cpu endian.
2221 Fix and add "endian" variable check */
2222 #ifdef TARGET_WORDS_BIGENDIAN
2223 val = io_mem_read(section->mr, addr, 4) << 32;
2224 val |= io_mem_read(section->mr, addr + 4, 4);
2225 #else
2226 val = io_mem_read(section->mr, addr, 4);
2227 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
2228 #endif
2229 } else {
2230 /* RAM case */
2231 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2232 & TARGET_PAGE_MASK)
2233 + memory_region_section_addr(section, addr));
2234 switch (endian) {
2235 case DEVICE_LITTLE_ENDIAN:
2236 val = ldq_le_p(ptr);
2237 break;
2238 case DEVICE_BIG_ENDIAN:
2239 val = ldq_be_p(ptr);
2240 break;
2241 default:
2242 val = ldq_p(ptr);
2243 break;
2244 }
2245 }
2246 return val;
2247 }
2248
2249 uint64_t ldq_phys(hwaddr addr)
2250 {
2251 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2252 }
2253
2254 uint64_t ldq_le_phys(hwaddr addr)
2255 {
2256 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2257 }
2258
2259 uint64_t ldq_be_phys(hwaddr addr)
2260 {
2261 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2262 }
2263
2264 /* XXX: optimize */
2265 uint32_t ldub_phys(hwaddr addr)
2266 {
2267 uint8_t val;
2268 cpu_physical_memory_read(addr, &val, 1);
2269 return val;
2270 }
2271
2272 /* warning: addr must be aligned */
2273 static inline uint32_t lduw_phys_internal(hwaddr addr,
2274 enum device_endian endian)
2275 {
2276 uint8_t *ptr;
2277 uint64_t val;
2278 MemoryRegionSection *section;
2279
2280 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2281
2282 if (!(memory_region_is_ram(section->mr) ||
2283 memory_region_is_romd(section->mr))) {
2284 /* I/O case */
2285 addr = memory_region_section_addr(section, addr);
2286 val = io_mem_read(section->mr, addr, 2);
2287 #if defined(TARGET_WORDS_BIGENDIAN)
2288 if (endian == DEVICE_LITTLE_ENDIAN) {
2289 val = bswap16(val);
2290 }
2291 #else
2292 if (endian == DEVICE_BIG_ENDIAN) {
2293 val = bswap16(val);
2294 }
2295 #endif
2296 } else {
2297 /* RAM case */
2298 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2299 & TARGET_PAGE_MASK)
2300 + memory_region_section_addr(section, addr));
2301 switch (endian) {
2302 case DEVICE_LITTLE_ENDIAN:
2303 val = lduw_le_p(ptr);
2304 break;
2305 case DEVICE_BIG_ENDIAN:
2306 val = lduw_be_p(ptr);
2307 break;
2308 default:
2309 val = lduw_p(ptr);
2310 break;
2311 }
2312 }
2313 return val;
2314 }
2315
2316 uint32_t lduw_phys(hwaddr addr)
2317 {
2318 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2319 }
2320
2321 uint32_t lduw_le_phys(hwaddr addr)
2322 {
2323 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2324 }
2325
2326 uint32_t lduw_be_phys(hwaddr addr)
2327 {
2328 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2329 }
2330
2331 /* warning: addr must be aligned. The ram page is not masked as dirty
2332 and the code inside is not invalidated. It is useful if the dirty
2333 bits are used to track modified PTEs */
2334 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2335 {
2336 uint8_t *ptr;
2337 MemoryRegionSection *section;
2338
2339 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2340
2341 if (!memory_region_is_ram(section->mr) || section->readonly) {
2342 addr = memory_region_section_addr(section, addr);
2343 if (memory_region_is_ram(section->mr)) {
2344 section = &phys_sections[phys_section_rom];
2345 }
2346 io_mem_write(section->mr, addr, val, 4);
2347 } else {
2348 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
2349 & TARGET_PAGE_MASK)
2350 + memory_region_section_addr(section, addr);
2351 ptr = qemu_get_ram_ptr(addr1);
2352 stl_p(ptr, val);
2353
2354 if (unlikely(in_migration)) {
2355 if (!cpu_physical_memory_is_dirty(addr1)) {
2356 /* invalidate code */
2357 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2358 /* set dirty bit */
2359 cpu_physical_memory_set_dirty_flags(
2360 addr1, (0xff & ~CODE_DIRTY_FLAG));
2361 }
2362 }
2363 }
2364 }
2365
2366 /* warning: addr must be aligned */
2367 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2368 enum device_endian endian)
2369 {
2370 uint8_t *ptr;
2371 MemoryRegionSection *section;
2372
2373 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2374
2375 if (!memory_region_is_ram(section->mr) || section->readonly) {
2376 addr = memory_region_section_addr(section, addr);
2377 if (memory_region_is_ram(section->mr)) {
2378 section = &phys_sections[phys_section_rom];
2379 }
2380 #if defined(TARGET_WORDS_BIGENDIAN)
2381 if (endian == DEVICE_LITTLE_ENDIAN) {
2382 val = bswap32(val);
2383 }
2384 #else
2385 if (endian == DEVICE_BIG_ENDIAN) {
2386 val = bswap32(val);
2387 }
2388 #endif
2389 io_mem_write(section->mr, addr, val, 4);
2390 } else {
2391 unsigned long addr1;
2392 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2393 + memory_region_section_addr(section, addr);
2394 /* RAM case */
2395 ptr = qemu_get_ram_ptr(addr1);
2396 switch (endian) {
2397 case DEVICE_LITTLE_ENDIAN:
2398 stl_le_p(ptr, val);
2399 break;
2400 case DEVICE_BIG_ENDIAN:
2401 stl_be_p(ptr, val);
2402 break;
2403 default:
2404 stl_p(ptr, val);
2405 break;
2406 }
2407 invalidate_and_set_dirty(addr1, 4);
2408 }
2409 }
2410
2411 void stl_phys(hwaddr addr, uint32_t val)
2412 {
2413 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2414 }
2415
2416 void stl_le_phys(hwaddr addr, uint32_t val)
2417 {
2418 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2419 }
2420
2421 void stl_be_phys(hwaddr addr, uint32_t val)
2422 {
2423 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2424 }
2425
2426 /* XXX: optimize */
2427 void stb_phys(hwaddr addr, uint32_t val)
2428 {
2429 uint8_t v = val;
2430 cpu_physical_memory_write(addr, &v, 1);
2431 }
2432
2433 /* warning: addr must be aligned */
2434 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2435 enum device_endian endian)
2436 {
2437 uint8_t *ptr;
2438 MemoryRegionSection *section;
2439
2440 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2441
2442 if (!memory_region_is_ram(section->mr) || section->readonly) {
2443 addr = memory_region_section_addr(section, addr);
2444 if (memory_region_is_ram(section->mr)) {
2445 section = &phys_sections[phys_section_rom];
2446 }
2447 #if defined(TARGET_WORDS_BIGENDIAN)
2448 if (endian == DEVICE_LITTLE_ENDIAN) {
2449 val = bswap16(val);
2450 }
2451 #else
2452 if (endian == DEVICE_BIG_ENDIAN) {
2453 val = bswap16(val);
2454 }
2455 #endif
2456 io_mem_write(section->mr, addr, val, 2);
2457 } else {
2458 unsigned long addr1;
2459 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2460 + memory_region_section_addr(section, addr);
2461 /* RAM case */
2462 ptr = qemu_get_ram_ptr(addr1);
2463 switch (endian) {
2464 case DEVICE_LITTLE_ENDIAN:
2465 stw_le_p(ptr, val);
2466 break;
2467 case DEVICE_BIG_ENDIAN:
2468 stw_be_p(ptr, val);
2469 break;
2470 default:
2471 stw_p(ptr, val);
2472 break;
2473 }
2474 invalidate_and_set_dirty(addr1, 2);
2475 }
2476 }
2477
2478 void stw_phys(hwaddr addr, uint32_t val)
2479 {
2480 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2481 }
2482
2483 void stw_le_phys(hwaddr addr, uint32_t val)
2484 {
2485 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2486 }
2487
2488 void stw_be_phys(hwaddr addr, uint32_t val)
2489 {
2490 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2491 }
2492
2493 /* XXX: optimize */
2494 void stq_phys(hwaddr addr, uint64_t val)
2495 {
2496 val = tswap64(val);
2497 cpu_physical_memory_write(addr, &val, 8);
2498 }
2499
2500 void stq_le_phys(hwaddr addr, uint64_t val)
2501 {
2502 val = cpu_to_le64(val);
2503 cpu_physical_memory_write(addr, &val, 8);
2504 }
2505
2506 void stq_be_phys(hwaddr addr, uint64_t val)
2507 {
2508 val = cpu_to_be64(val);
2509 cpu_physical_memory_write(addr, &val, 8);
2510 }
2511
2512 /* virtual memory access for debug (includes writing to ROM) */
2513 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2514 uint8_t *buf, int len, int is_write)
2515 {
2516 int l;
2517 hwaddr phys_addr;
2518 target_ulong page;
2519
2520 while (len > 0) {
2521 page = addr & TARGET_PAGE_MASK;
2522 phys_addr = cpu_get_phys_page_debug(env, page);
2523 /* if no physical page mapped, return an error */
2524 if (phys_addr == -1)
2525 return -1;
2526 l = (page + TARGET_PAGE_SIZE) - addr;
2527 if (l > len)
2528 l = len;
2529 phys_addr += (addr & ~TARGET_PAGE_MASK);
2530 if (is_write)
2531 cpu_physical_memory_write_rom(phys_addr, buf, l);
2532 else
2533 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2534 len -= l;
2535 buf += l;
2536 addr += l;
2537 }
2538 return 0;
2539 }
2540 #endif
2541
2542 #if !defined(CONFIG_USER_ONLY)
2543
2544 /*
2545 * A helper function for the _utterly broken_ virtio device model to find out if
2546 * it's running on a big endian machine. Don't do this at home kids!
2547 */
2548 bool virtio_is_big_endian(void);
2549 bool virtio_is_big_endian(void)
2550 {
2551 #if defined(TARGET_WORDS_BIGENDIAN)
2552 return true;
2553 #else
2554 return false;
2555 #endif
2556 }
2557
2558 #endif
2559
2560 #ifndef CONFIG_USER_ONLY
2561 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2562 {
2563 MemoryRegionSection *section;
2564
2565 section = phys_page_find(address_space_memory.dispatch,
2566 phys_addr >> TARGET_PAGE_BITS);
2567
2568 return !(memory_region_is_ram(section->mr) ||
2569 memory_region_is_romd(section->mr));
2570 }
2571 #endif