]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Disable phsyical memory handling in userspace emulation.
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 static TranslationBlock *tbs;
66 int code_gen_max_blocks;
67 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
68 static int nb_tbs;
69 /* any access to the tbs or the page table must use this lock */
70 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
71
72 #if defined(__arm__) || defined(__sparc_v9__)
73 /* The prologue must be reachable with a direct jump. ARM and Sparc64
74 have limited branch ranges (possibly also PPC) so place it in a
75 section close to code segment. */
76 #define code_gen_section \
77 __attribute__((__section__(".gen_code"))) \
78 __attribute__((aligned (32)))
79 #elif defined(_WIN32)
80 /* Maximum alignment for Win32 is 16. */
81 #define code_gen_section \
82 __attribute__((aligned (16)))
83 #else
84 #define code_gen_section \
85 __attribute__((aligned (32)))
86 #endif
87
88 uint8_t code_gen_prologue[1024] code_gen_section;
89 static uint8_t *code_gen_buffer;
90 static unsigned long code_gen_buffer_size;
91 /* threshold to flush the translated code buffer */
92 static unsigned long code_gen_buffer_max_size;
93 uint8_t *code_gen_ptr;
94
95 #if !defined(CONFIG_USER_ONLY)
96 int phys_ram_fd;
97 uint8_t *phys_ram_dirty;
98 static int in_migration;
99
100 typedef struct RAMBlock {
101 uint8_t *host;
102 ram_addr_t offset;
103 ram_addr_t length;
104 struct RAMBlock *next;
105 } RAMBlock;
106
107 static RAMBlock *ram_blocks;
108 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
109 then we can no longer assume contiguous ram offsets, and external uses
110 of this variable will break. */
111 ram_addr_t last_ram_offset;
112 #endif
113
114 CPUState *first_cpu;
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 CPUState *cpu_single_env;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount = 0;
122 /* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124 int64_t qemu_icount;
125
126 typedef struct PageDesc {
127 /* list of TBs intersecting this ram page */
128 TranslationBlock *first_tb;
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133 #if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135 #endif
136 } PageDesc;
137
138 /* In system mode we want L1_MAP to be based on ram offsets,
139 while in user mode we want it to be based on virtual addresses. */
140 #if !defined(CONFIG_USER_ONLY)
141 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
143 #else
144 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 #endif
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 #endif
149
150 /* Size of the L2 (and L3, etc) page tables. */
151 #define L2_BITS 10
152 #define L2_SIZE (1 << L2_BITS)
153
154 /* The bits remaining after N lower levels of page tables. */
155 #define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157 #define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159
160 /* Size of the L1 page table. Avoid silly small sizes. */
161 #if P_L1_BITS_REM < 4
162 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
163 #else
164 #define P_L1_BITS P_L1_BITS_REM
165 #endif
166
167 #if V_L1_BITS_REM < 4
168 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
169 #else
170 #define V_L1_BITS V_L1_BITS_REM
171 #endif
172
173 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
175
176 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 unsigned long qemu_real_host_page_size;
180 unsigned long qemu_host_page_bits;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193 } PhysPageDesc;
194
195 /* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197 static void *l1_phys_map[P_L1_SIZE];
198
199 static void io_mem_init(void);
200
201 /* io memory support */
202 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
203 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
204 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
205 static char io_mem_used[IO_MEM_NB_ENTRIES];
206 static int io_mem_watch;
207 #endif
208
209 /* log support */
210 #ifdef WIN32
211 static const char *logfilename = "qemu.log";
212 #else
213 static const char *logfilename = "/tmp/qemu.log";
214 #endif
215 FILE *logfile;
216 int loglevel;
217 static int log_append = 0;
218
219 /* statistics */
220 #if !defined(CONFIG_USER_ONLY)
221 static int tlb_flush_count;
222 #endif
223 static int tb_flush_count;
224 static int tb_phys_invalidate_count;
225
226 #ifdef _WIN32
227 static void map_exec(void *addr, long size)
228 {
229 DWORD old_protect;
230 VirtualProtect(addr, size,
231 PAGE_EXECUTE_READWRITE, &old_protect);
232
233 }
234 #else
235 static void map_exec(void *addr, long size)
236 {
237 unsigned long start, end, page_size;
238
239 page_size = getpagesize();
240 start = (unsigned long)addr;
241 start &= ~(page_size - 1);
242
243 end = (unsigned long)addr + size;
244 end += page_size - 1;
245 end &= ~(page_size - 1);
246
247 mprotect((void *)start, end - start,
248 PROT_READ | PROT_WRITE | PROT_EXEC);
249 }
250 #endif
251
252 static void page_init(void)
253 {
254 /* NOTE: we can always suppose that qemu_host_page_size >=
255 TARGET_PAGE_SIZE */
256 #ifdef _WIN32
257 {
258 SYSTEM_INFO system_info;
259
260 GetSystemInfo(&system_info);
261 qemu_real_host_page_size = system_info.dwPageSize;
262 }
263 #else
264 qemu_real_host_page_size = getpagesize();
265 #endif
266 if (qemu_host_page_size == 0)
267 qemu_host_page_size = qemu_real_host_page_size;
268 if (qemu_host_page_size < TARGET_PAGE_SIZE)
269 qemu_host_page_size = TARGET_PAGE_SIZE;
270 qemu_host_page_bits = 0;
271 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
272 qemu_host_page_bits++;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
274
275 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
276 {
277 FILE *f;
278
279 last_brk = (unsigned long)sbrk(0);
280
281 f = fopen("/proc/self/maps", "r");
282 if (f) {
283 mmap_lock();
284
285 do {
286 unsigned long startaddr, endaddr;
287 int n;
288
289 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
290
291 if (n == 2 && h2g_valid(startaddr)) {
292 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
293
294 if (h2g_valid(endaddr)) {
295 endaddr = h2g(endaddr);
296 } else {
297 endaddr = ~0ul;
298 }
299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
300 }
301 } while (!feof(f));
302
303 fclose(f);
304 mmap_unlock();
305 }
306 }
307 #endif
308 }
309
310 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
311 {
312 PageDesc *pd;
313 void **lp;
314 int i;
315
316 #if defined(CONFIG_USER_ONLY)
317 /* We can't use qemu_malloc because it may recurse into a locked mutex.
318 Neither can we record the new pages we reserve while allocating a
319 given page because that may recurse into an unallocated page table
320 entry. Stuff the allocations we do make into a queue and process
321 them after having completed one entire page table allocation. */
322
323 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
324 int reserve_idx = 0;
325
326 # define ALLOC(P, SIZE) \
327 do { \
328 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
329 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
330 if (h2g_valid(P)) { \
331 reserve[reserve_idx] = h2g(P); \
332 reserve[reserve_idx + 1] = SIZE; \
333 reserve_idx += 2; \
334 } \
335 } while (0)
336 #else
337 # define ALLOC(P, SIZE) \
338 do { P = qemu_mallocz(SIZE); } while (0)
339 #endif
340
341 /* Level 1. Always allocated. */
342 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
343
344 /* Level 2..N-1. */
345 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
346 void **p = *lp;
347
348 if (p == NULL) {
349 if (!alloc) {
350 return NULL;
351 }
352 ALLOC(p, sizeof(void *) * L2_SIZE);
353 *lp = p;
354 }
355
356 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
357 }
358
359 pd = *lp;
360 if (pd == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
365 *lp = pd;
366 }
367
368 #undef ALLOC
369 #if defined(CONFIG_USER_ONLY)
370 for (i = 0; i < reserve_idx; i += 2) {
371 unsigned long addr = reserve[i];
372 unsigned long len = reserve[i + 1];
373
374 page_set_flags(addr & TARGET_PAGE_MASK,
375 TARGET_PAGE_ALIGN(addr + len),
376 PAGE_RESERVED);
377 }
378 #endif
379
380 return pd + (index & (L2_SIZE - 1));
381 }
382
383 static inline PageDesc *page_find(tb_page_addr_t index)
384 {
385 return page_find_alloc(index, 0);
386 }
387
388 #if !defined(CONFIG_USER_ONLY)
389 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
390 {
391 PhysPageDesc *pd;
392 void **lp;
393 int i;
394
395 /* Level 1. Always allocated. */
396 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
397
398 /* Level 2..N-1. */
399 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
400 void **p = *lp;
401 if (p == NULL) {
402 if (!alloc) {
403 return NULL;
404 }
405 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
406 }
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 int i;
413
414 if (!alloc) {
415 return NULL;
416 }
417
418 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
419
420 for (i = 0; i < L2_SIZE; i++) {
421 pd[i].phys_offset = IO_MEM_UNASSIGNED;
422 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
423 }
424 }
425
426 return pd + (index & (L2_SIZE - 1));
427 }
428
429 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
430 {
431 return phys_page_find_alloc(index, 0);
432 }
433
434 static void tlb_protect_code(ram_addr_t ram_addr);
435 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
436 target_ulong vaddr);
437 #define mmap_lock() do { } while(0)
438 #define mmap_unlock() do { } while(0)
439 #endif
440
441 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
442
443 #if defined(CONFIG_USER_ONLY)
444 /* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used */
446 #define USE_STATIC_CODE_GEN_BUFFER
447 #endif
448
449 #ifdef USE_STATIC_CODE_GEN_BUFFER
450 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
451 #endif
452
453 static void code_gen_alloc(unsigned long tb_size)
454 {
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 code_gen_buffer = static_code_gen_buffer;
457 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
458 map_exec(code_gen_buffer, code_gen_buffer_size);
459 #else
460 code_gen_buffer_size = tb_size;
461 if (code_gen_buffer_size == 0) {
462 #if defined(CONFIG_USER_ONLY)
463 /* in user mode, phys_ram_size is not meaningful */
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 #else
466 /* XXX: needs adjustments */
467 code_gen_buffer_size = (unsigned long)(ram_size / 4);
468 #endif
469 }
470 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
471 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
472 /* The code gen buffer location may have constraints depending on
473 the host cpu and OS */
474 #if defined(__linux__)
475 {
476 int flags;
477 void *start = NULL;
478
479 flags = MAP_PRIVATE | MAP_ANONYMOUS;
480 #if defined(__x86_64__)
481 flags |= MAP_32BIT;
482 /* Cannot map more than that */
483 if (code_gen_buffer_size > (800 * 1024 * 1024))
484 code_gen_buffer_size = (800 * 1024 * 1024);
485 #elif defined(__sparc_v9__)
486 // Map the buffer below 2G, so we can use direct calls and branches
487 flags |= MAP_FIXED;
488 start = (void *) 0x60000000UL;
489 if (code_gen_buffer_size > (512 * 1024 * 1024))
490 code_gen_buffer_size = (512 * 1024 * 1024);
491 #elif defined(__arm__)
492 /* Map the buffer below 32M, so we can use direct calls and branches */
493 flags |= MAP_FIXED;
494 start = (void *) 0x01000000UL;
495 if (code_gen_buffer_size > 16 * 1024 * 1024)
496 code_gen_buffer_size = 16 * 1024 * 1024;
497 #endif
498 code_gen_buffer = mmap(start, code_gen_buffer_size,
499 PROT_WRITE | PROT_READ | PROT_EXEC,
500 flags, -1, 0);
501 if (code_gen_buffer == MAP_FAILED) {
502 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
503 exit(1);
504 }
505 }
506 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
507 {
508 int flags;
509 void *addr = NULL;
510 flags = MAP_PRIVATE | MAP_ANONYMOUS;
511 #if defined(__x86_64__)
512 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
513 * 0x40000000 is free */
514 flags |= MAP_FIXED;
515 addr = (void *)0x40000000;
516 /* Cannot map more than that */
517 if (code_gen_buffer_size > (800 * 1024 * 1024))
518 code_gen_buffer_size = (800 * 1024 * 1024);
519 #endif
520 code_gen_buffer = mmap(addr, code_gen_buffer_size,
521 PROT_WRITE | PROT_READ | PROT_EXEC,
522 flags, -1, 0);
523 if (code_gen_buffer == MAP_FAILED) {
524 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
525 exit(1);
526 }
527 }
528 #else
529 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
530 map_exec(code_gen_buffer, code_gen_buffer_size);
531 #endif
532 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
533 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
534 code_gen_buffer_max_size = code_gen_buffer_size -
535 code_gen_max_block_size();
536 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
537 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
538 }
539
540 /* Must be called before using the QEMU cpus. 'tb_size' is the size
541 (in bytes) allocated to the translation buffer. Zero means default
542 size. */
543 void cpu_exec_init_all(unsigned long tb_size)
544 {
545 cpu_gen_init();
546 code_gen_alloc(tb_size);
547 code_gen_ptr = code_gen_buffer;
548 page_init();
549 #if !defined(CONFIG_USER_ONLY)
550 io_mem_init();
551 #endif
552 }
553
554 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
555
556 static int cpu_common_post_load(void *opaque, int version_id)
557 {
558 CPUState *env = opaque;
559
560 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
561 version_id is increased. */
562 env->interrupt_request &= ~0x01;
563 tlb_flush(env, 1);
564
565 return 0;
566 }
567
568 static const VMStateDescription vmstate_cpu_common = {
569 .name = "cpu_common",
570 .version_id = 1,
571 .minimum_version_id = 1,
572 .minimum_version_id_old = 1,
573 .post_load = cpu_common_post_load,
574 .fields = (VMStateField []) {
575 VMSTATE_UINT32(halted, CPUState),
576 VMSTATE_UINT32(interrupt_request, CPUState),
577 VMSTATE_END_OF_LIST()
578 }
579 };
580 #endif
581
582 CPUState *qemu_get_cpu(int cpu)
583 {
584 CPUState *env = first_cpu;
585
586 while (env) {
587 if (env->cpu_index == cpu)
588 break;
589 env = env->next_cpu;
590 }
591
592 return env;
593 }
594
595 void cpu_exec_init(CPUState *env)
596 {
597 CPUState **penv;
598 int cpu_index;
599
600 #if defined(CONFIG_USER_ONLY)
601 cpu_list_lock();
602 #endif
603 env->next_cpu = NULL;
604 penv = &first_cpu;
605 cpu_index = 0;
606 while (*penv != NULL) {
607 penv = &(*penv)->next_cpu;
608 cpu_index++;
609 }
610 env->cpu_index = cpu_index;
611 env->numa_node = 0;
612 QTAILQ_INIT(&env->breakpoints);
613 QTAILQ_INIT(&env->watchpoints);
614 *penv = env;
615 #if defined(CONFIG_USER_ONLY)
616 cpu_list_unlock();
617 #endif
618 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
619 vmstate_register(cpu_index, &vmstate_cpu_common, env);
620 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
621 cpu_save, cpu_load, env);
622 #endif
623 }
624
625 static inline void invalidate_page_bitmap(PageDesc *p)
626 {
627 if (p->code_bitmap) {
628 qemu_free(p->code_bitmap);
629 p->code_bitmap = NULL;
630 }
631 p->code_write_count = 0;
632 }
633
634 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
635
636 static void page_flush_tb_1 (int level, void **lp)
637 {
638 int i;
639
640 if (*lp == NULL) {
641 return;
642 }
643 if (level == 0) {
644 PageDesc *pd = *lp;
645 for (i = 0; i < L2_BITS; ++i) {
646 pd[i].first_tb = NULL;
647 invalidate_page_bitmap(pd + i);
648 }
649 } else {
650 void **pp = *lp;
651 for (i = 0; i < L2_BITS; ++i) {
652 page_flush_tb_1 (level - 1, pp + i);
653 }
654 }
655 }
656
657 static void page_flush_tb(void)
658 {
659 int i;
660 for (i = 0; i < V_L1_SIZE; i++) {
661 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
662 }
663 }
664
665 /* flush all the translation blocks */
666 /* XXX: tb_flush is currently not thread safe */
667 void tb_flush(CPUState *env1)
668 {
669 CPUState *env;
670 #if defined(DEBUG_FLUSH)
671 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
672 (unsigned long)(code_gen_ptr - code_gen_buffer),
673 nb_tbs, nb_tbs > 0 ?
674 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
675 #endif
676 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
677 cpu_abort(env1, "Internal error: code buffer overflow\n");
678
679 nb_tbs = 0;
680
681 for(env = first_cpu; env != NULL; env = env->next_cpu) {
682 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
683 }
684
685 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
686 page_flush_tb();
687
688 code_gen_ptr = code_gen_buffer;
689 /* XXX: flush processor icache at this point if cache flush is
690 expensive */
691 tb_flush_count++;
692 }
693
694 #ifdef DEBUG_TB_CHECK
695
696 static void tb_invalidate_check(target_ulong address)
697 {
698 TranslationBlock *tb;
699 int i;
700 address &= TARGET_PAGE_MASK;
701 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
702 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
703 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
704 address >= tb->pc + tb->size)) {
705 printf("ERROR invalidate: address=" TARGET_FMT_lx
706 " PC=%08lx size=%04x\n",
707 address, (long)tb->pc, tb->size);
708 }
709 }
710 }
711 }
712
713 /* verify that all the pages have correct rights for code */
714 static void tb_page_check(void)
715 {
716 TranslationBlock *tb;
717 int i, flags1, flags2;
718
719 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
720 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
721 flags1 = page_get_flags(tb->pc);
722 flags2 = page_get_flags(tb->pc + tb->size - 1);
723 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
724 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
725 (long)tb->pc, tb->size, flags1, flags2);
726 }
727 }
728 }
729 }
730
731 #endif
732
733 /* invalidate one TB */
734 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
735 int next_offset)
736 {
737 TranslationBlock *tb1;
738 for(;;) {
739 tb1 = *ptb;
740 if (tb1 == tb) {
741 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
742 break;
743 }
744 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
745 }
746 }
747
748 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
749 {
750 TranslationBlock *tb1;
751 unsigned int n1;
752
753 for(;;) {
754 tb1 = *ptb;
755 n1 = (long)tb1 & 3;
756 tb1 = (TranslationBlock *)((long)tb1 & ~3);
757 if (tb1 == tb) {
758 *ptb = tb1->page_next[n1];
759 break;
760 }
761 ptb = &tb1->page_next[n1];
762 }
763 }
764
765 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
766 {
767 TranslationBlock *tb1, **ptb;
768 unsigned int n1;
769
770 ptb = &tb->jmp_next[n];
771 tb1 = *ptb;
772 if (tb1) {
773 /* find tb(n) in circular list */
774 for(;;) {
775 tb1 = *ptb;
776 n1 = (long)tb1 & 3;
777 tb1 = (TranslationBlock *)((long)tb1 & ~3);
778 if (n1 == n && tb1 == tb)
779 break;
780 if (n1 == 2) {
781 ptb = &tb1->jmp_first;
782 } else {
783 ptb = &tb1->jmp_next[n1];
784 }
785 }
786 /* now we can suppress tb(n) from the list */
787 *ptb = tb->jmp_next[n];
788
789 tb->jmp_next[n] = NULL;
790 }
791 }
792
793 /* reset the jump entry 'n' of a TB so that it is not chained to
794 another TB */
795 static inline void tb_reset_jump(TranslationBlock *tb, int n)
796 {
797 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
798 }
799
800 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
801 {
802 CPUState *env;
803 PageDesc *p;
804 unsigned int h, n1;
805 tb_page_addr_t phys_pc;
806 TranslationBlock *tb1, *tb2;
807
808 /* remove the TB from the hash list */
809 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
810 h = tb_phys_hash_func(phys_pc);
811 tb_remove(&tb_phys_hash[h], tb,
812 offsetof(TranslationBlock, phys_hash_next));
813
814 /* remove the TB from the page list */
815 if (tb->page_addr[0] != page_addr) {
816 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
817 tb_page_remove(&p->first_tb, tb);
818 invalidate_page_bitmap(p);
819 }
820 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
821 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
822 tb_page_remove(&p->first_tb, tb);
823 invalidate_page_bitmap(p);
824 }
825
826 tb_invalidated_flag = 1;
827
828 /* remove the TB from the hash list */
829 h = tb_jmp_cache_hash_func(tb->pc);
830 for(env = first_cpu; env != NULL; env = env->next_cpu) {
831 if (env->tb_jmp_cache[h] == tb)
832 env->tb_jmp_cache[h] = NULL;
833 }
834
835 /* suppress this TB from the two jump lists */
836 tb_jmp_remove(tb, 0);
837 tb_jmp_remove(tb, 1);
838
839 /* suppress any remaining jumps to this TB */
840 tb1 = tb->jmp_first;
841 for(;;) {
842 n1 = (long)tb1 & 3;
843 if (n1 == 2)
844 break;
845 tb1 = (TranslationBlock *)((long)tb1 & ~3);
846 tb2 = tb1->jmp_next[n1];
847 tb_reset_jump(tb1, n1);
848 tb1->jmp_next[n1] = NULL;
849 tb1 = tb2;
850 }
851 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
852
853 tb_phys_invalidate_count++;
854 }
855
856 static inline void set_bits(uint8_t *tab, int start, int len)
857 {
858 int end, mask, end1;
859
860 end = start + len;
861 tab += start >> 3;
862 mask = 0xff << (start & 7);
863 if ((start & ~7) == (end & ~7)) {
864 if (start < end) {
865 mask &= ~(0xff << (end & 7));
866 *tab |= mask;
867 }
868 } else {
869 *tab++ |= mask;
870 start = (start + 8) & ~7;
871 end1 = end & ~7;
872 while (start < end1) {
873 *tab++ = 0xff;
874 start += 8;
875 }
876 if (start < end) {
877 mask = ~(0xff << (end & 7));
878 *tab |= mask;
879 }
880 }
881 }
882
883 static void build_page_bitmap(PageDesc *p)
884 {
885 int n, tb_start, tb_end;
886 TranslationBlock *tb;
887
888 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
889
890 tb = p->first_tb;
891 while (tb != NULL) {
892 n = (long)tb & 3;
893 tb = (TranslationBlock *)((long)tb & ~3);
894 /* NOTE: this is subtle as a TB may span two physical pages */
895 if (n == 0) {
896 /* NOTE: tb_end may be after the end of the page, but
897 it is not a problem */
898 tb_start = tb->pc & ~TARGET_PAGE_MASK;
899 tb_end = tb_start + tb->size;
900 if (tb_end > TARGET_PAGE_SIZE)
901 tb_end = TARGET_PAGE_SIZE;
902 } else {
903 tb_start = 0;
904 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
905 }
906 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
907 tb = tb->page_next[n];
908 }
909 }
910
911 TranslationBlock *tb_gen_code(CPUState *env,
912 target_ulong pc, target_ulong cs_base,
913 int flags, int cflags)
914 {
915 TranslationBlock *tb;
916 uint8_t *tc_ptr;
917 tb_page_addr_t phys_pc, phys_page2;
918 target_ulong virt_page2;
919 int code_gen_size;
920
921 phys_pc = get_page_addr_code(env, pc);
922 tb = tb_alloc(pc);
923 if (!tb) {
924 /* flush must be done */
925 tb_flush(env);
926 /* cannot fail at this point */
927 tb = tb_alloc(pc);
928 /* Don't forget to invalidate previous TB info. */
929 tb_invalidated_flag = 1;
930 }
931 tc_ptr = code_gen_ptr;
932 tb->tc_ptr = tc_ptr;
933 tb->cs_base = cs_base;
934 tb->flags = flags;
935 tb->cflags = cflags;
936 cpu_gen_code(env, tb, &code_gen_size);
937 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
938
939 /* check next page if needed */
940 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
941 phys_page2 = -1;
942 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
943 phys_page2 = get_page_addr_code(env, virt_page2);
944 }
945 tb_link_page(tb, phys_pc, phys_page2);
946 return tb;
947 }
948
949 /* invalidate all TBs which intersect with the target physical page
950 starting in range [start;end[. NOTE: start and end must refer to
951 the same physical page. 'is_cpu_write_access' should be true if called
952 from a real cpu write access: the virtual CPU will exit the current
953 TB if code is modified inside this TB. */
954 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
955 int is_cpu_write_access)
956 {
957 TranslationBlock *tb, *tb_next, *saved_tb;
958 CPUState *env = cpu_single_env;
959 tb_page_addr_t tb_start, tb_end;
960 PageDesc *p;
961 int n;
962 #ifdef TARGET_HAS_PRECISE_SMC
963 int current_tb_not_found = is_cpu_write_access;
964 TranslationBlock *current_tb = NULL;
965 int current_tb_modified = 0;
966 target_ulong current_pc = 0;
967 target_ulong current_cs_base = 0;
968 int current_flags = 0;
969 #endif /* TARGET_HAS_PRECISE_SMC */
970
971 p = page_find(start >> TARGET_PAGE_BITS);
972 if (!p)
973 return;
974 if (!p->code_bitmap &&
975 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
976 is_cpu_write_access) {
977 /* build code bitmap */
978 build_page_bitmap(p);
979 }
980
981 /* we remove all the TBs in the range [start, end[ */
982 /* XXX: see if in some cases it could be faster to invalidate all the code */
983 tb = p->first_tb;
984 while (tb != NULL) {
985 n = (long)tb & 3;
986 tb = (TranslationBlock *)((long)tb & ~3);
987 tb_next = tb->page_next[n];
988 /* NOTE: this is subtle as a TB may span two physical pages */
989 if (n == 0) {
990 /* NOTE: tb_end may be after the end of the page, but
991 it is not a problem */
992 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
993 tb_end = tb_start + tb->size;
994 } else {
995 tb_start = tb->page_addr[1];
996 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
997 }
998 if (!(tb_end <= start || tb_start >= end)) {
999 #ifdef TARGET_HAS_PRECISE_SMC
1000 if (current_tb_not_found) {
1001 current_tb_not_found = 0;
1002 current_tb = NULL;
1003 if (env->mem_io_pc) {
1004 /* now we have a real cpu fault */
1005 current_tb = tb_find_pc(env->mem_io_pc);
1006 }
1007 }
1008 if (current_tb == tb &&
1009 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1010 /* If we are modifying the current TB, we must stop
1011 its execution. We could be more precise by checking
1012 that the modification is after the current PC, but it
1013 would require a specialized function to partially
1014 restore the CPU state */
1015
1016 current_tb_modified = 1;
1017 cpu_restore_state(current_tb, env,
1018 env->mem_io_pc, NULL);
1019 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1020 &current_flags);
1021 }
1022 #endif /* TARGET_HAS_PRECISE_SMC */
1023 /* we need to do that to handle the case where a signal
1024 occurs while doing tb_phys_invalidate() */
1025 saved_tb = NULL;
1026 if (env) {
1027 saved_tb = env->current_tb;
1028 env->current_tb = NULL;
1029 }
1030 tb_phys_invalidate(tb, -1);
1031 if (env) {
1032 env->current_tb = saved_tb;
1033 if (env->interrupt_request && env->current_tb)
1034 cpu_interrupt(env, env->interrupt_request);
1035 }
1036 }
1037 tb = tb_next;
1038 }
1039 #if !defined(CONFIG_USER_ONLY)
1040 /* if no code remaining, no need to continue to use slow writes */
1041 if (!p->first_tb) {
1042 invalidate_page_bitmap(p);
1043 if (is_cpu_write_access) {
1044 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1045 }
1046 }
1047 #endif
1048 #ifdef TARGET_HAS_PRECISE_SMC
1049 if (current_tb_modified) {
1050 /* we generate a block containing just the instruction
1051 modifying the memory. It will ensure that it cannot modify
1052 itself */
1053 env->current_tb = NULL;
1054 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1055 cpu_resume_from_signal(env, NULL);
1056 }
1057 #endif
1058 }
1059
1060 /* len must be <= 8 and start must be a multiple of len */
1061 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1062 {
1063 PageDesc *p;
1064 int offset, b;
1065 #if 0
1066 if (1) {
1067 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1068 cpu_single_env->mem_io_vaddr, len,
1069 cpu_single_env->eip,
1070 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1071 }
1072 #endif
1073 p = page_find(start >> TARGET_PAGE_BITS);
1074 if (!p)
1075 return;
1076 if (p->code_bitmap) {
1077 offset = start & ~TARGET_PAGE_MASK;
1078 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1079 if (b & ((1 << len) - 1))
1080 goto do_invalidate;
1081 } else {
1082 do_invalidate:
1083 tb_invalidate_phys_page_range(start, start + len, 1);
1084 }
1085 }
1086
1087 #if !defined(CONFIG_SOFTMMU)
1088 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1089 unsigned long pc, void *puc)
1090 {
1091 TranslationBlock *tb;
1092 PageDesc *p;
1093 int n;
1094 #ifdef TARGET_HAS_PRECISE_SMC
1095 TranslationBlock *current_tb = NULL;
1096 CPUState *env = cpu_single_env;
1097 int current_tb_modified = 0;
1098 target_ulong current_pc = 0;
1099 target_ulong current_cs_base = 0;
1100 int current_flags = 0;
1101 #endif
1102
1103 addr &= TARGET_PAGE_MASK;
1104 p = page_find(addr >> TARGET_PAGE_BITS);
1105 if (!p)
1106 return;
1107 tb = p->first_tb;
1108 #ifdef TARGET_HAS_PRECISE_SMC
1109 if (tb && pc != 0) {
1110 current_tb = tb_find_pc(pc);
1111 }
1112 #endif
1113 while (tb != NULL) {
1114 n = (long)tb & 3;
1115 tb = (TranslationBlock *)((long)tb & ~3);
1116 #ifdef TARGET_HAS_PRECISE_SMC
1117 if (current_tb == tb &&
1118 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1119 /* If we are modifying the current TB, we must stop
1120 its execution. We could be more precise by checking
1121 that the modification is after the current PC, but it
1122 would require a specialized function to partially
1123 restore the CPU state */
1124
1125 current_tb_modified = 1;
1126 cpu_restore_state(current_tb, env, pc, puc);
1127 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1128 &current_flags);
1129 }
1130 #endif /* TARGET_HAS_PRECISE_SMC */
1131 tb_phys_invalidate(tb, addr);
1132 tb = tb->page_next[n];
1133 }
1134 p->first_tb = NULL;
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_modified) {
1137 /* we generate a block containing just the instruction
1138 modifying the memory. It will ensure that it cannot modify
1139 itself */
1140 env->current_tb = NULL;
1141 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1142 cpu_resume_from_signal(env, puc);
1143 }
1144 #endif
1145 }
1146 #endif
1147
1148 /* add the tb in the target page and protect it if necessary */
1149 static inline void tb_alloc_page(TranslationBlock *tb,
1150 unsigned int n, tb_page_addr_t page_addr)
1151 {
1152 PageDesc *p;
1153 TranslationBlock *last_first_tb;
1154
1155 tb->page_addr[n] = page_addr;
1156 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1157 tb->page_next[n] = p->first_tb;
1158 last_first_tb = p->first_tb;
1159 p->first_tb = (TranslationBlock *)((long)tb | n);
1160 invalidate_page_bitmap(p);
1161
1162 #if defined(TARGET_HAS_SMC) || 1
1163
1164 #if defined(CONFIG_USER_ONLY)
1165 if (p->flags & PAGE_WRITE) {
1166 target_ulong addr;
1167 PageDesc *p2;
1168 int prot;
1169
1170 /* force the host page as non writable (writes will have a
1171 page fault + mprotect overhead) */
1172 page_addr &= qemu_host_page_mask;
1173 prot = 0;
1174 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1175 addr += TARGET_PAGE_SIZE) {
1176
1177 p2 = page_find (addr >> TARGET_PAGE_BITS);
1178 if (!p2)
1179 continue;
1180 prot |= p2->flags;
1181 p2->flags &= ~PAGE_WRITE;
1182 page_get_flags(addr);
1183 }
1184 mprotect(g2h(page_addr), qemu_host_page_size,
1185 (prot & PAGE_BITS) & ~PAGE_WRITE);
1186 #ifdef DEBUG_TB_INVALIDATE
1187 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1188 page_addr);
1189 #endif
1190 }
1191 #else
1192 /* if some code is already present, then the pages are already
1193 protected. So we handle the case where only the first TB is
1194 allocated in a physical page */
1195 if (!last_first_tb) {
1196 tlb_protect_code(page_addr);
1197 }
1198 #endif
1199
1200 #endif /* TARGET_HAS_SMC */
1201 }
1202
1203 /* Allocate a new translation block. Flush the translation buffer if
1204 too many translation blocks or too much generated code. */
1205 TranslationBlock *tb_alloc(target_ulong pc)
1206 {
1207 TranslationBlock *tb;
1208
1209 if (nb_tbs >= code_gen_max_blocks ||
1210 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1211 return NULL;
1212 tb = &tbs[nb_tbs++];
1213 tb->pc = pc;
1214 tb->cflags = 0;
1215 return tb;
1216 }
1217
1218 void tb_free(TranslationBlock *tb)
1219 {
1220 /* In practice this is mostly used for single use temporary TB
1221 Ignore the hard cases and just back up if this TB happens to
1222 be the last one generated. */
1223 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1224 code_gen_ptr = tb->tc_ptr;
1225 nb_tbs--;
1226 }
1227 }
1228
1229 /* add a new TB and link it to the physical page tables. phys_page2 is
1230 (-1) to indicate that only one page contains the TB. */
1231 void tb_link_page(TranslationBlock *tb,
1232 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1233 {
1234 unsigned int h;
1235 TranslationBlock **ptb;
1236
1237 /* Grab the mmap lock to stop another thread invalidating this TB
1238 before we are done. */
1239 mmap_lock();
1240 /* add in the physical hash table */
1241 h = tb_phys_hash_func(phys_pc);
1242 ptb = &tb_phys_hash[h];
1243 tb->phys_hash_next = *ptb;
1244 *ptb = tb;
1245
1246 /* add in the page list */
1247 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1248 if (phys_page2 != -1)
1249 tb_alloc_page(tb, 1, phys_page2);
1250 else
1251 tb->page_addr[1] = -1;
1252
1253 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1254 tb->jmp_next[0] = NULL;
1255 tb->jmp_next[1] = NULL;
1256
1257 /* init original jump addresses */
1258 if (tb->tb_next_offset[0] != 0xffff)
1259 tb_reset_jump(tb, 0);
1260 if (tb->tb_next_offset[1] != 0xffff)
1261 tb_reset_jump(tb, 1);
1262
1263 #ifdef DEBUG_TB_CHECK
1264 tb_page_check();
1265 #endif
1266 mmap_unlock();
1267 }
1268
1269 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1270 tb[1].tc_ptr. Return NULL if not found */
1271 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1272 {
1273 int m_min, m_max, m;
1274 unsigned long v;
1275 TranslationBlock *tb;
1276
1277 if (nb_tbs <= 0)
1278 return NULL;
1279 if (tc_ptr < (unsigned long)code_gen_buffer ||
1280 tc_ptr >= (unsigned long)code_gen_ptr)
1281 return NULL;
1282 /* binary search (cf Knuth) */
1283 m_min = 0;
1284 m_max = nb_tbs - 1;
1285 while (m_min <= m_max) {
1286 m = (m_min + m_max) >> 1;
1287 tb = &tbs[m];
1288 v = (unsigned long)tb->tc_ptr;
1289 if (v == tc_ptr)
1290 return tb;
1291 else if (tc_ptr < v) {
1292 m_max = m - 1;
1293 } else {
1294 m_min = m + 1;
1295 }
1296 }
1297 return &tbs[m_max];
1298 }
1299
1300 static void tb_reset_jump_recursive(TranslationBlock *tb);
1301
1302 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1303 {
1304 TranslationBlock *tb1, *tb_next, **ptb;
1305 unsigned int n1;
1306
1307 tb1 = tb->jmp_next[n];
1308 if (tb1 != NULL) {
1309 /* find head of list */
1310 for(;;) {
1311 n1 = (long)tb1 & 3;
1312 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1313 if (n1 == 2)
1314 break;
1315 tb1 = tb1->jmp_next[n1];
1316 }
1317 /* we are now sure now that tb jumps to tb1 */
1318 tb_next = tb1;
1319
1320 /* remove tb from the jmp_first list */
1321 ptb = &tb_next->jmp_first;
1322 for(;;) {
1323 tb1 = *ptb;
1324 n1 = (long)tb1 & 3;
1325 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1326 if (n1 == n && tb1 == tb)
1327 break;
1328 ptb = &tb1->jmp_next[n1];
1329 }
1330 *ptb = tb->jmp_next[n];
1331 tb->jmp_next[n] = NULL;
1332
1333 /* suppress the jump to next tb in generated code */
1334 tb_reset_jump(tb, n);
1335
1336 /* suppress jumps in the tb on which we could have jumped */
1337 tb_reset_jump_recursive(tb_next);
1338 }
1339 }
1340
1341 static void tb_reset_jump_recursive(TranslationBlock *tb)
1342 {
1343 tb_reset_jump_recursive2(tb, 0);
1344 tb_reset_jump_recursive2(tb, 1);
1345 }
1346
1347 #if defined(TARGET_HAS_ICE)
1348 #if defined(CONFIG_USER_ONLY)
1349 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1350 {
1351 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1352 }
1353 #else
1354 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1355 {
1356 target_phys_addr_t addr;
1357 target_ulong pd;
1358 ram_addr_t ram_addr;
1359 PhysPageDesc *p;
1360
1361 addr = cpu_get_phys_page_debug(env, pc);
1362 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1363 if (!p) {
1364 pd = IO_MEM_UNASSIGNED;
1365 } else {
1366 pd = p->phys_offset;
1367 }
1368 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1369 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1370 }
1371 #endif
1372 #endif /* TARGET_HAS_ICE */
1373
1374 #if defined(CONFIG_USER_ONLY)
1375 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1376
1377 {
1378 }
1379
1380 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags, CPUWatchpoint **watchpoint)
1382 {
1383 return -ENOSYS;
1384 }
1385 #else
1386 /* Add a watchpoint. */
1387 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1388 int flags, CPUWatchpoint **watchpoint)
1389 {
1390 target_ulong len_mask = ~(len - 1);
1391 CPUWatchpoint *wp;
1392
1393 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1394 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1395 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1396 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1397 return -EINVAL;
1398 }
1399 wp = qemu_malloc(sizeof(*wp));
1400
1401 wp->vaddr = addr;
1402 wp->len_mask = len_mask;
1403 wp->flags = flags;
1404
1405 /* keep all GDB-injected watchpoints in front */
1406 if (flags & BP_GDB)
1407 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1408 else
1409 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1410
1411 tlb_flush_page(env, addr);
1412
1413 if (watchpoint)
1414 *watchpoint = wp;
1415 return 0;
1416 }
1417
1418 /* Remove a specific watchpoint. */
1419 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1420 int flags)
1421 {
1422 target_ulong len_mask = ~(len - 1);
1423 CPUWatchpoint *wp;
1424
1425 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1426 if (addr == wp->vaddr && len_mask == wp->len_mask
1427 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1428 cpu_watchpoint_remove_by_ref(env, wp);
1429 return 0;
1430 }
1431 }
1432 return -ENOENT;
1433 }
1434
1435 /* Remove a specific watchpoint by reference. */
1436 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1437 {
1438 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1439
1440 tlb_flush_page(env, watchpoint->vaddr);
1441
1442 qemu_free(watchpoint);
1443 }
1444
1445 /* Remove all matching watchpoints. */
1446 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1447 {
1448 CPUWatchpoint *wp, *next;
1449
1450 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1451 if (wp->flags & mask)
1452 cpu_watchpoint_remove_by_ref(env, wp);
1453 }
1454 }
1455 #endif
1456
1457 /* Add a breakpoint. */
1458 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1459 CPUBreakpoint **breakpoint)
1460 {
1461 #if defined(TARGET_HAS_ICE)
1462 CPUBreakpoint *bp;
1463
1464 bp = qemu_malloc(sizeof(*bp));
1465
1466 bp->pc = pc;
1467 bp->flags = flags;
1468
1469 /* keep all GDB-injected breakpoints in front */
1470 if (flags & BP_GDB)
1471 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1472 else
1473 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1474
1475 breakpoint_invalidate(env, pc);
1476
1477 if (breakpoint)
1478 *breakpoint = bp;
1479 return 0;
1480 #else
1481 return -ENOSYS;
1482 #endif
1483 }
1484
1485 /* Remove a specific breakpoint. */
1486 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1487 {
1488 #if defined(TARGET_HAS_ICE)
1489 CPUBreakpoint *bp;
1490
1491 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1492 if (bp->pc == pc && bp->flags == flags) {
1493 cpu_breakpoint_remove_by_ref(env, bp);
1494 return 0;
1495 }
1496 }
1497 return -ENOENT;
1498 #else
1499 return -ENOSYS;
1500 #endif
1501 }
1502
1503 /* Remove a specific breakpoint by reference. */
1504 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1505 {
1506 #if defined(TARGET_HAS_ICE)
1507 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1508
1509 breakpoint_invalidate(env, breakpoint->pc);
1510
1511 qemu_free(breakpoint);
1512 #endif
1513 }
1514
1515 /* Remove all matching breakpoints. */
1516 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1517 {
1518 #if defined(TARGET_HAS_ICE)
1519 CPUBreakpoint *bp, *next;
1520
1521 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1522 if (bp->flags & mask)
1523 cpu_breakpoint_remove_by_ref(env, bp);
1524 }
1525 #endif
1526 }
1527
1528 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1529 CPU loop after each instruction */
1530 void cpu_single_step(CPUState *env, int enabled)
1531 {
1532 #if defined(TARGET_HAS_ICE)
1533 if (env->singlestep_enabled != enabled) {
1534 env->singlestep_enabled = enabled;
1535 if (kvm_enabled())
1536 kvm_update_guest_debug(env, 0);
1537 else {
1538 /* must flush all the translated code to avoid inconsistencies */
1539 /* XXX: only flush what is necessary */
1540 tb_flush(env);
1541 }
1542 }
1543 #endif
1544 }
1545
1546 /* enable or disable low levels log */
1547 void cpu_set_log(int log_flags)
1548 {
1549 loglevel = log_flags;
1550 if (loglevel && !logfile) {
1551 logfile = fopen(logfilename, log_append ? "a" : "w");
1552 if (!logfile) {
1553 perror(logfilename);
1554 _exit(1);
1555 }
1556 #if !defined(CONFIG_SOFTMMU)
1557 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1558 {
1559 static char logfile_buf[4096];
1560 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1561 }
1562 #elif !defined(_WIN32)
1563 /* Win32 doesn't support line-buffering and requires size >= 2 */
1564 setvbuf(logfile, NULL, _IOLBF, 0);
1565 #endif
1566 log_append = 1;
1567 }
1568 if (!loglevel && logfile) {
1569 fclose(logfile);
1570 logfile = NULL;
1571 }
1572 }
1573
1574 void cpu_set_log_filename(const char *filename)
1575 {
1576 logfilename = strdup(filename);
1577 if (logfile) {
1578 fclose(logfile);
1579 logfile = NULL;
1580 }
1581 cpu_set_log(loglevel);
1582 }
1583
1584 static void cpu_unlink_tb(CPUState *env)
1585 {
1586 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1587 problem and hope the cpu will stop of its own accord. For userspace
1588 emulation this often isn't actually as bad as it sounds. Often
1589 signals are used primarily to interrupt blocking syscalls. */
1590 TranslationBlock *tb;
1591 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1592
1593 spin_lock(&interrupt_lock);
1594 tb = env->current_tb;
1595 /* if the cpu is currently executing code, we must unlink it and
1596 all the potentially executing TB */
1597 if (tb) {
1598 env->current_tb = NULL;
1599 tb_reset_jump_recursive(tb);
1600 }
1601 spin_unlock(&interrupt_lock);
1602 }
1603
1604 /* mask must never be zero, except for A20 change call */
1605 void cpu_interrupt(CPUState *env, int mask)
1606 {
1607 int old_mask;
1608
1609 old_mask = env->interrupt_request;
1610 env->interrupt_request |= mask;
1611
1612 #ifndef CONFIG_USER_ONLY
1613 /*
1614 * If called from iothread context, wake the target cpu in
1615 * case its halted.
1616 */
1617 if (!qemu_cpu_self(env)) {
1618 qemu_cpu_kick(env);
1619 return;
1620 }
1621 #endif
1622
1623 if (use_icount) {
1624 env->icount_decr.u16.high = 0xffff;
1625 #ifndef CONFIG_USER_ONLY
1626 if (!can_do_io(env)
1627 && (mask & ~old_mask) != 0) {
1628 cpu_abort(env, "Raised interrupt while not in I/O function");
1629 }
1630 #endif
1631 } else {
1632 cpu_unlink_tb(env);
1633 }
1634 }
1635
1636 void cpu_reset_interrupt(CPUState *env, int mask)
1637 {
1638 env->interrupt_request &= ~mask;
1639 }
1640
1641 void cpu_exit(CPUState *env)
1642 {
1643 env->exit_request = 1;
1644 cpu_unlink_tb(env);
1645 }
1646
1647 const CPULogItem cpu_log_items[] = {
1648 { CPU_LOG_TB_OUT_ASM, "out_asm",
1649 "show generated host assembly code for each compiled TB" },
1650 { CPU_LOG_TB_IN_ASM, "in_asm",
1651 "show target assembly code for each compiled TB" },
1652 { CPU_LOG_TB_OP, "op",
1653 "show micro ops for each compiled TB" },
1654 { CPU_LOG_TB_OP_OPT, "op_opt",
1655 "show micro ops "
1656 #ifdef TARGET_I386
1657 "before eflags optimization and "
1658 #endif
1659 "after liveness analysis" },
1660 { CPU_LOG_INT, "int",
1661 "show interrupts/exceptions in short format" },
1662 { CPU_LOG_EXEC, "exec",
1663 "show trace before each executed TB (lots of logs)" },
1664 { CPU_LOG_TB_CPU, "cpu",
1665 "show CPU state before block translation" },
1666 #ifdef TARGET_I386
1667 { CPU_LOG_PCALL, "pcall",
1668 "show protected mode far calls/returns/exceptions" },
1669 { CPU_LOG_RESET, "cpu_reset",
1670 "show CPU state before CPU resets" },
1671 #endif
1672 #ifdef DEBUG_IOPORT
1673 { CPU_LOG_IOPORT, "ioport",
1674 "show all i/o ports accesses" },
1675 #endif
1676 { 0, NULL, NULL },
1677 };
1678
1679 #ifndef CONFIG_USER_ONLY
1680 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1681 = QLIST_HEAD_INITIALIZER(memory_client_list);
1682
1683 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1684 ram_addr_t size,
1685 ram_addr_t phys_offset)
1686 {
1687 CPUPhysMemoryClient *client;
1688 QLIST_FOREACH(client, &memory_client_list, list) {
1689 client->set_memory(client, start_addr, size, phys_offset);
1690 }
1691 }
1692
1693 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1694 target_phys_addr_t end)
1695 {
1696 CPUPhysMemoryClient *client;
1697 QLIST_FOREACH(client, &memory_client_list, list) {
1698 int r = client->sync_dirty_bitmap(client, start, end);
1699 if (r < 0)
1700 return r;
1701 }
1702 return 0;
1703 }
1704
1705 static int cpu_notify_migration_log(int enable)
1706 {
1707 CPUPhysMemoryClient *client;
1708 QLIST_FOREACH(client, &memory_client_list, list) {
1709 int r = client->migration_log(client, enable);
1710 if (r < 0)
1711 return r;
1712 }
1713 return 0;
1714 }
1715
1716 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1717 int level, void **lp)
1718 {
1719 int i;
1720
1721 if (*lp == NULL) {
1722 return;
1723 }
1724 if (level == 0) {
1725 PhysPageDesc *pd = *lp;
1726 for (i = 0; i < L2_BITS; ++i) {
1727 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1728 client->set_memory(client, pd[i].region_offset,
1729 TARGET_PAGE_SIZE, pd[i].phys_offset);
1730 }
1731 }
1732 } else {
1733 void **pp = *lp;
1734 for (i = 0; i < L2_BITS; ++i) {
1735 phys_page_for_each_1(client, level - 1, pp + i);
1736 }
1737 }
1738 }
1739
1740 static void phys_page_for_each(CPUPhysMemoryClient *client)
1741 {
1742 int i;
1743 for (i = 0; i < P_L1_SIZE; ++i) {
1744 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1745 l1_phys_map + 1);
1746 }
1747 }
1748
1749 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1750 {
1751 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1752 phys_page_for_each(client);
1753 }
1754
1755 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1756 {
1757 QLIST_REMOVE(client, list);
1758 }
1759 #endif
1760
1761 static int cmp1(const char *s1, int n, const char *s2)
1762 {
1763 if (strlen(s2) != n)
1764 return 0;
1765 return memcmp(s1, s2, n) == 0;
1766 }
1767
1768 /* takes a comma separated list of log masks. Return 0 if error. */
1769 int cpu_str_to_log_mask(const char *str)
1770 {
1771 const CPULogItem *item;
1772 int mask;
1773 const char *p, *p1;
1774
1775 p = str;
1776 mask = 0;
1777 for(;;) {
1778 p1 = strchr(p, ',');
1779 if (!p1)
1780 p1 = p + strlen(p);
1781 if(cmp1(p,p1-p,"all")) {
1782 for(item = cpu_log_items; item->mask != 0; item++) {
1783 mask |= item->mask;
1784 }
1785 } else {
1786 for(item = cpu_log_items; item->mask != 0; item++) {
1787 if (cmp1(p, p1 - p, item->name))
1788 goto found;
1789 }
1790 return 0;
1791 }
1792 found:
1793 mask |= item->mask;
1794 if (*p1 != ',')
1795 break;
1796 p = p1 + 1;
1797 }
1798 return mask;
1799 }
1800
1801 void cpu_abort(CPUState *env, const char *fmt, ...)
1802 {
1803 va_list ap;
1804 va_list ap2;
1805
1806 va_start(ap, fmt);
1807 va_copy(ap2, ap);
1808 fprintf(stderr, "qemu: fatal: ");
1809 vfprintf(stderr, fmt, ap);
1810 fprintf(stderr, "\n");
1811 #ifdef TARGET_I386
1812 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1813 #else
1814 cpu_dump_state(env, stderr, fprintf, 0);
1815 #endif
1816 if (qemu_log_enabled()) {
1817 qemu_log("qemu: fatal: ");
1818 qemu_log_vprintf(fmt, ap2);
1819 qemu_log("\n");
1820 #ifdef TARGET_I386
1821 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1822 #else
1823 log_cpu_state(env, 0);
1824 #endif
1825 qemu_log_flush();
1826 qemu_log_close();
1827 }
1828 va_end(ap2);
1829 va_end(ap);
1830 #if defined(CONFIG_USER_ONLY)
1831 {
1832 struct sigaction act;
1833 sigfillset(&act.sa_mask);
1834 act.sa_handler = SIG_DFL;
1835 sigaction(SIGABRT, &act, NULL);
1836 }
1837 #endif
1838 abort();
1839 }
1840
1841 CPUState *cpu_copy(CPUState *env)
1842 {
1843 CPUState *new_env = cpu_init(env->cpu_model_str);
1844 CPUState *next_cpu = new_env->next_cpu;
1845 int cpu_index = new_env->cpu_index;
1846 #if defined(TARGET_HAS_ICE)
1847 CPUBreakpoint *bp;
1848 CPUWatchpoint *wp;
1849 #endif
1850
1851 memcpy(new_env, env, sizeof(CPUState));
1852
1853 /* Preserve chaining and index. */
1854 new_env->next_cpu = next_cpu;
1855 new_env->cpu_index = cpu_index;
1856
1857 /* Clone all break/watchpoints.
1858 Note: Once we support ptrace with hw-debug register access, make sure
1859 BP_CPU break/watchpoints are handled correctly on clone. */
1860 QTAILQ_INIT(&env->breakpoints);
1861 QTAILQ_INIT(&env->watchpoints);
1862 #if defined(TARGET_HAS_ICE)
1863 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1864 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1865 }
1866 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1867 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1868 wp->flags, NULL);
1869 }
1870 #endif
1871
1872 return new_env;
1873 }
1874
1875 #if !defined(CONFIG_USER_ONLY)
1876
1877 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1878 {
1879 unsigned int i;
1880
1881 /* Discard jump cache entries for any tb which might potentially
1882 overlap the flushed page. */
1883 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1884 memset (&env->tb_jmp_cache[i], 0,
1885 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1886
1887 i = tb_jmp_cache_hash_page(addr);
1888 memset (&env->tb_jmp_cache[i], 0,
1889 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1890 }
1891
1892 static CPUTLBEntry s_cputlb_empty_entry = {
1893 .addr_read = -1,
1894 .addr_write = -1,
1895 .addr_code = -1,
1896 .addend = -1,
1897 };
1898
1899 /* NOTE: if flush_global is true, also flush global entries (not
1900 implemented yet) */
1901 void tlb_flush(CPUState *env, int flush_global)
1902 {
1903 int i;
1904
1905 #if defined(DEBUG_TLB)
1906 printf("tlb_flush:\n");
1907 #endif
1908 /* must reset current TB so that interrupts cannot modify the
1909 links while we are modifying them */
1910 env->current_tb = NULL;
1911
1912 for(i = 0; i < CPU_TLB_SIZE; i++) {
1913 int mmu_idx;
1914 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1915 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1916 }
1917 }
1918
1919 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1920
1921 tlb_flush_count++;
1922 }
1923
1924 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1925 {
1926 if (addr == (tlb_entry->addr_read &
1927 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1928 addr == (tlb_entry->addr_write &
1929 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1930 addr == (tlb_entry->addr_code &
1931 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1932 *tlb_entry = s_cputlb_empty_entry;
1933 }
1934 }
1935
1936 void tlb_flush_page(CPUState *env, target_ulong addr)
1937 {
1938 int i;
1939 int mmu_idx;
1940
1941 #if defined(DEBUG_TLB)
1942 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1943 #endif
1944 /* must reset current TB so that interrupts cannot modify the
1945 links while we are modifying them */
1946 env->current_tb = NULL;
1947
1948 addr &= TARGET_PAGE_MASK;
1949 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1950 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1951 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1952
1953 tlb_flush_jmp_cache(env, addr);
1954 }
1955
1956 /* update the TLBs so that writes to code in the virtual page 'addr'
1957 can be detected */
1958 static void tlb_protect_code(ram_addr_t ram_addr)
1959 {
1960 cpu_physical_memory_reset_dirty(ram_addr,
1961 ram_addr + TARGET_PAGE_SIZE,
1962 CODE_DIRTY_FLAG);
1963 }
1964
1965 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1966 tested for self modifying code */
1967 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1968 target_ulong vaddr)
1969 {
1970 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1971 }
1972
1973 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1974 unsigned long start, unsigned long length)
1975 {
1976 unsigned long addr;
1977 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1978 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1979 if ((addr - start) < length) {
1980 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1981 }
1982 }
1983 }
1984
1985 /* Note: start and end must be within the same ram block. */
1986 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1987 int dirty_flags)
1988 {
1989 CPUState *env;
1990 unsigned long length, start1;
1991 int i, mask, len;
1992 uint8_t *p;
1993
1994 start &= TARGET_PAGE_MASK;
1995 end = TARGET_PAGE_ALIGN(end);
1996
1997 length = end - start;
1998 if (length == 0)
1999 return;
2000 len = length >> TARGET_PAGE_BITS;
2001 mask = ~dirty_flags;
2002 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2003 for(i = 0; i < len; i++)
2004 p[i] &= mask;
2005
2006 /* we modify the TLB cache so that the dirty bit will be set again
2007 when accessing the range */
2008 start1 = (unsigned long)qemu_get_ram_ptr(start);
2009 /* Chek that we don't span multiple blocks - this breaks the
2010 address comparisons below. */
2011 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2012 != (end - 1) - start) {
2013 abort();
2014 }
2015
2016 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2017 int mmu_idx;
2018 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2019 for(i = 0; i < CPU_TLB_SIZE; i++)
2020 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2021 start1, length);
2022 }
2023 }
2024 }
2025
2026 int cpu_physical_memory_set_dirty_tracking(int enable)
2027 {
2028 int ret = 0;
2029 in_migration = enable;
2030 ret = cpu_notify_migration_log(!!enable);
2031 return ret;
2032 }
2033
2034 int cpu_physical_memory_get_dirty_tracking(void)
2035 {
2036 return in_migration;
2037 }
2038
2039 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2040 target_phys_addr_t end_addr)
2041 {
2042 int ret;
2043
2044 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2045 return ret;
2046 }
2047
2048 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2049 {
2050 ram_addr_t ram_addr;
2051 void *p;
2052
2053 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2054 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2055 + tlb_entry->addend);
2056 ram_addr = qemu_ram_addr_from_host(p);
2057 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2058 tlb_entry->addr_write |= TLB_NOTDIRTY;
2059 }
2060 }
2061 }
2062
2063 /* update the TLB according to the current state of the dirty bits */
2064 void cpu_tlb_update_dirty(CPUState *env)
2065 {
2066 int i;
2067 int mmu_idx;
2068 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2069 for(i = 0; i < CPU_TLB_SIZE; i++)
2070 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2071 }
2072 }
2073
2074 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2075 {
2076 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2077 tlb_entry->addr_write = vaddr;
2078 }
2079
2080 /* update the TLB corresponding to virtual page vaddr
2081 so that it is no longer dirty */
2082 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2083 {
2084 int i;
2085 int mmu_idx;
2086
2087 vaddr &= TARGET_PAGE_MASK;
2088 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2089 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2090 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2091 }
2092
2093 /* add a new TLB entry. At most one entry for a given virtual address
2094 is permitted. Return 0 if OK or 2 if the page could not be mapped
2095 (can only happen in non SOFTMMU mode for I/O pages or pages
2096 conflicting with the host address space). */
2097 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2098 target_phys_addr_t paddr, int prot,
2099 int mmu_idx, int is_softmmu)
2100 {
2101 PhysPageDesc *p;
2102 unsigned long pd;
2103 unsigned int index;
2104 target_ulong address;
2105 target_ulong code_address;
2106 target_phys_addr_t addend;
2107 int ret;
2108 CPUTLBEntry *te;
2109 CPUWatchpoint *wp;
2110 target_phys_addr_t iotlb;
2111
2112 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2113 if (!p) {
2114 pd = IO_MEM_UNASSIGNED;
2115 } else {
2116 pd = p->phys_offset;
2117 }
2118 #if defined(DEBUG_TLB)
2119 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2120 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2121 #endif
2122
2123 ret = 0;
2124 address = vaddr;
2125 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2126 /* IO memory case (romd handled later) */
2127 address |= TLB_MMIO;
2128 }
2129 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2130 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2131 /* Normal RAM. */
2132 iotlb = pd & TARGET_PAGE_MASK;
2133 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2134 iotlb |= IO_MEM_NOTDIRTY;
2135 else
2136 iotlb |= IO_MEM_ROM;
2137 } else {
2138 /* IO handlers are currently passed a physical address.
2139 It would be nice to pass an offset from the base address
2140 of that region. This would avoid having to special case RAM,
2141 and avoid full address decoding in every device.
2142 We can't use the high bits of pd for this because
2143 IO_MEM_ROMD uses these as a ram address. */
2144 iotlb = (pd & ~TARGET_PAGE_MASK);
2145 if (p) {
2146 iotlb += p->region_offset;
2147 } else {
2148 iotlb += paddr;
2149 }
2150 }
2151
2152 code_address = address;
2153 /* Make accesses to pages with watchpoints go via the
2154 watchpoint trap routines. */
2155 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2156 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2157 iotlb = io_mem_watch + paddr;
2158 /* TODO: The memory case can be optimized by not trapping
2159 reads of pages with a write breakpoint. */
2160 address |= TLB_MMIO;
2161 }
2162 }
2163
2164 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2165 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2166 te = &env->tlb_table[mmu_idx][index];
2167 te->addend = addend - vaddr;
2168 if (prot & PAGE_READ) {
2169 te->addr_read = address;
2170 } else {
2171 te->addr_read = -1;
2172 }
2173
2174 if (prot & PAGE_EXEC) {
2175 te->addr_code = code_address;
2176 } else {
2177 te->addr_code = -1;
2178 }
2179 if (prot & PAGE_WRITE) {
2180 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2181 (pd & IO_MEM_ROMD)) {
2182 /* Write access calls the I/O callback. */
2183 te->addr_write = address | TLB_MMIO;
2184 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2185 !cpu_physical_memory_is_dirty(pd)) {
2186 te->addr_write = address | TLB_NOTDIRTY;
2187 } else {
2188 te->addr_write = address;
2189 }
2190 } else {
2191 te->addr_write = -1;
2192 }
2193 return ret;
2194 }
2195
2196 #else
2197
2198 void tlb_flush(CPUState *env, int flush_global)
2199 {
2200 }
2201
2202 void tlb_flush_page(CPUState *env, target_ulong addr)
2203 {
2204 }
2205
2206 /*
2207 * Walks guest process memory "regions" one by one
2208 * and calls callback function 'fn' for each region.
2209 */
2210
2211 struct walk_memory_regions_data
2212 {
2213 walk_memory_regions_fn fn;
2214 void *priv;
2215 unsigned long start;
2216 int prot;
2217 };
2218
2219 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2220 unsigned long end, int new_prot)
2221 {
2222 if (data->start != -1ul) {
2223 int rc = data->fn(data->priv, data->start, end, data->prot);
2224 if (rc != 0) {
2225 return rc;
2226 }
2227 }
2228
2229 data->start = (new_prot ? end : -1ul);
2230 data->prot = new_prot;
2231
2232 return 0;
2233 }
2234
2235 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2236 unsigned long base, int level, void **lp)
2237 {
2238 unsigned long pa;
2239 int i, rc;
2240
2241 if (*lp == NULL) {
2242 return walk_memory_regions_end(data, base, 0);
2243 }
2244
2245 if (level == 0) {
2246 PageDesc *pd = *lp;
2247 for (i = 0; i < L2_BITS; ++i) {
2248 int prot = pd[i].flags;
2249
2250 pa = base | (i << TARGET_PAGE_BITS);
2251 if (prot != data->prot) {
2252 rc = walk_memory_regions_end(data, pa, prot);
2253 if (rc != 0) {
2254 return rc;
2255 }
2256 }
2257 }
2258 } else {
2259 void **pp = *lp;
2260 for (i = 0; i < L2_BITS; ++i) {
2261 pa = base | (i << (TARGET_PAGE_BITS + L2_BITS * level));
2262 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2263 if (rc != 0) {
2264 return rc;
2265 }
2266 }
2267 }
2268
2269 return 0;
2270 }
2271
2272 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2273 {
2274 struct walk_memory_regions_data data;
2275 unsigned long i;
2276
2277 data.fn = fn;
2278 data.priv = priv;
2279 data.start = -1ul;
2280 data.prot = 0;
2281
2282 for (i = 0; i < V_L1_SIZE; i++) {
2283 int rc = walk_memory_regions_1(&data, i << V_L1_SHIFT,
2284 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2285 if (rc != 0) {
2286 return rc;
2287 }
2288 }
2289
2290 return walk_memory_regions_end(&data, 0, 0);
2291 }
2292
2293 static int dump_region(void *priv, unsigned long start,
2294 unsigned long end, unsigned long prot)
2295 {
2296 FILE *f = (FILE *)priv;
2297
2298 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2299 start, end, end - start,
2300 ((prot & PAGE_READ) ? 'r' : '-'),
2301 ((prot & PAGE_WRITE) ? 'w' : '-'),
2302 ((prot & PAGE_EXEC) ? 'x' : '-'));
2303
2304 return (0);
2305 }
2306
2307 /* dump memory mappings */
2308 void page_dump(FILE *f)
2309 {
2310 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2311 "start", "end", "size", "prot");
2312 walk_memory_regions(f, dump_region);
2313 }
2314
2315 int page_get_flags(target_ulong address)
2316 {
2317 PageDesc *p;
2318
2319 p = page_find(address >> TARGET_PAGE_BITS);
2320 if (!p)
2321 return 0;
2322 return p->flags;
2323 }
2324
2325 /* Modify the flags of a page and invalidate the code if necessary.
2326 The flag PAGE_WRITE_ORG is positioned automatically depending
2327 on PAGE_WRITE. The mmap_lock should already be held. */
2328 void page_set_flags(target_ulong start, target_ulong end, int flags)
2329 {
2330 target_ulong addr, len;
2331
2332 /* This function should never be called with addresses outside the
2333 guest address space. If this assert fires, it probably indicates
2334 a missing call to h2g_valid. */
2335 #if HOST_LONG_BITS > L1_MAP_ADDR_SPACE_BITS
2336 assert(end < (1ul << L1_MAP_ADDR_SPACE_BITS));
2337 #endif
2338 assert(start < end);
2339
2340 start = start & TARGET_PAGE_MASK;
2341 end = TARGET_PAGE_ALIGN(end);
2342
2343 if (flags & PAGE_WRITE) {
2344 flags |= PAGE_WRITE_ORG;
2345 }
2346
2347 for (addr = start, len = end - start;
2348 len != 0;
2349 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2350 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2351
2352 /* If the write protection bit is set, then we invalidate
2353 the code inside. */
2354 if (!(p->flags & PAGE_WRITE) &&
2355 (flags & PAGE_WRITE) &&
2356 p->first_tb) {
2357 tb_invalidate_phys_page(addr, 0, NULL);
2358 }
2359 p->flags = flags;
2360 }
2361 }
2362
2363 int page_check_range(target_ulong start, target_ulong len, int flags)
2364 {
2365 PageDesc *p;
2366 target_ulong end;
2367 target_ulong addr;
2368
2369 /* This function should never be called with addresses outside the
2370 guest address space. If this assert fires, it probably indicates
2371 a missing call to h2g_valid. */
2372 #if HOST_LONG_BITS > L1_MAP_ADDR_SPACE_BITS
2373 assert(start < (1ul << L1_MAP_ADDR_SPACE_BITS));
2374 #endif
2375
2376 if (start + len - 1 < start) {
2377 /* We've wrapped around. */
2378 return -1;
2379 }
2380
2381 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2382 start = start & TARGET_PAGE_MASK;
2383
2384 for (addr = start, len = end - start;
2385 len != 0;
2386 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2387 p = page_find(addr >> TARGET_PAGE_BITS);
2388 if( !p )
2389 return -1;
2390 if( !(p->flags & PAGE_VALID) )
2391 return -1;
2392
2393 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2394 return -1;
2395 if (flags & PAGE_WRITE) {
2396 if (!(p->flags & PAGE_WRITE_ORG))
2397 return -1;
2398 /* unprotect the page if it was put read-only because it
2399 contains translated code */
2400 if (!(p->flags & PAGE_WRITE)) {
2401 if (!page_unprotect(addr, 0, NULL))
2402 return -1;
2403 }
2404 return 0;
2405 }
2406 }
2407 return 0;
2408 }
2409
2410 /* called from signal handler: invalidate the code and unprotect the
2411 page. Return TRUE if the fault was successfully handled. */
2412 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2413 {
2414 unsigned int page_index, prot, pindex;
2415 PageDesc *p, *p1;
2416 target_ulong host_start, host_end, addr;
2417
2418 /* Technically this isn't safe inside a signal handler. However we
2419 know this only ever happens in a synchronous SEGV handler, so in
2420 practice it seems to be ok. */
2421 mmap_lock();
2422
2423 host_start = address & qemu_host_page_mask;
2424 page_index = host_start >> TARGET_PAGE_BITS;
2425 p1 = page_find(page_index);
2426 if (!p1) {
2427 mmap_unlock();
2428 return 0;
2429 }
2430 host_end = host_start + qemu_host_page_size;
2431 p = p1;
2432 prot = 0;
2433 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2434 prot |= p->flags;
2435 p++;
2436 }
2437 /* if the page was really writable, then we change its
2438 protection back to writable */
2439 if (prot & PAGE_WRITE_ORG) {
2440 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2441 if (!(p1[pindex].flags & PAGE_WRITE)) {
2442 mprotect((void *)g2h(host_start), qemu_host_page_size,
2443 (prot & PAGE_BITS) | PAGE_WRITE);
2444 p1[pindex].flags |= PAGE_WRITE;
2445 /* and since the content will be modified, we must invalidate
2446 the corresponding translated code. */
2447 tb_invalidate_phys_page(address, pc, puc);
2448 #ifdef DEBUG_TB_CHECK
2449 tb_invalidate_check(address);
2450 #endif
2451 mmap_unlock();
2452 return 1;
2453 }
2454 }
2455 mmap_unlock();
2456 return 0;
2457 }
2458
2459 static inline void tlb_set_dirty(CPUState *env,
2460 unsigned long addr, target_ulong vaddr)
2461 {
2462 }
2463 #endif /* defined(CONFIG_USER_ONLY) */
2464
2465 #if !defined(CONFIG_USER_ONLY)
2466
2467 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2468 typedef struct subpage_t {
2469 target_phys_addr_t base;
2470 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2471 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2472 void *opaque[TARGET_PAGE_SIZE][2][4];
2473 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2474 } subpage_t;
2475
2476 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2477 ram_addr_t memory, ram_addr_t region_offset);
2478 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2479 ram_addr_t orig_memory, ram_addr_t region_offset);
2480 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2481 need_subpage) \
2482 do { \
2483 if (addr > start_addr) \
2484 start_addr2 = 0; \
2485 else { \
2486 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2487 if (start_addr2 > 0) \
2488 need_subpage = 1; \
2489 } \
2490 \
2491 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2492 end_addr2 = TARGET_PAGE_SIZE - 1; \
2493 else { \
2494 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2495 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2496 need_subpage = 1; \
2497 } \
2498 } while (0)
2499
2500 /* register physical memory.
2501 For RAM, 'size' must be a multiple of the target page size.
2502 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2503 io memory page. The address used when calling the IO function is
2504 the offset from the start of the region, plus region_offset. Both
2505 start_addr and region_offset are rounded down to a page boundary
2506 before calculating this offset. This should not be a problem unless
2507 the low bits of start_addr and region_offset differ. */
2508 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2509 ram_addr_t size,
2510 ram_addr_t phys_offset,
2511 ram_addr_t region_offset)
2512 {
2513 target_phys_addr_t addr, end_addr;
2514 PhysPageDesc *p;
2515 CPUState *env;
2516 ram_addr_t orig_size = size;
2517 void *subpage;
2518
2519 cpu_notify_set_memory(start_addr, size, phys_offset);
2520
2521 if (phys_offset == IO_MEM_UNASSIGNED) {
2522 region_offset = start_addr;
2523 }
2524 region_offset &= TARGET_PAGE_MASK;
2525 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2526 end_addr = start_addr + (target_phys_addr_t)size;
2527 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2528 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2529 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2530 ram_addr_t orig_memory = p->phys_offset;
2531 target_phys_addr_t start_addr2, end_addr2;
2532 int need_subpage = 0;
2533
2534 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2535 need_subpage);
2536 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2537 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2538 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2539 &p->phys_offset, orig_memory,
2540 p->region_offset);
2541 } else {
2542 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2543 >> IO_MEM_SHIFT];
2544 }
2545 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2546 region_offset);
2547 p->region_offset = 0;
2548 } else {
2549 p->phys_offset = phys_offset;
2550 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2551 (phys_offset & IO_MEM_ROMD))
2552 phys_offset += TARGET_PAGE_SIZE;
2553 }
2554 } else {
2555 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2556 p->phys_offset = phys_offset;
2557 p->region_offset = region_offset;
2558 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2559 (phys_offset & IO_MEM_ROMD)) {
2560 phys_offset += TARGET_PAGE_SIZE;
2561 } else {
2562 target_phys_addr_t start_addr2, end_addr2;
2563 int need_subpage = 0;
2564
2565 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2566 end_addr2, need_subpage);
2567
2568 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2569 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2570 &p->phys_offset, IO_MEM_UNASSIGNED,
2571 addr & TARGET_PAGE_MASK);
2572 subpage_register(subpage, start_addr2, end_addr2,
2573 phys_offset, region_offset);
2574 p->region_offset = 0;
2575 }
2576 }
2577 }
2578 region_offset += TARGET_PAGE_SIZE;
2579 }
2580
2581 /* since each CPU stores ram addresses in its TLB cache, we must
2582 reset the modified entries */
2583 /* XXX: slow ! */
2584 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2585 tlb_flush(env, 1);
2586 }
2587 }
2588
2589 /* XXX: temporary until new memory mapping API */
2590 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2591 {
2592 PhysPageDesc *p;
2593
2594 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2595 if (!p)
2596 return IO_MEM_UNASSIGNED;
2597 return p->phys_offset;
2598 }
2599
2600 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2601 {
2602 if (kvm_enabled())
2603 kvm_coalesce_mmio_region(addr, size);
2604 }
2605
2606 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2607 {
2608 if (kvm_enabled())
2609 kvm_uncoalesce_mmio_region(addr, size);
2610 }
2611
2612 void qemu_flush_coalesced_mmio_buffer(void)
2613 {
2614 if (kvm_enabled())
2615 kvm_flush_coalesced_mmio_buffer();
2616 }
2617
2618 #if defined(__linux__) && !defined(TARGET_S390X)
2619
2620 #include <sys/vfs.h>
2621
2622 #define HUGETLBFS_MAGIC 0x958458f6
2623
2624 static long gethugepagesize(const char *path)
2625 {
2626 struct statfs fs;
2627 int ret;
2628
2629 do {
2630 ret = statfs(path, &fs);
2631 } while (ret != 0 && errno == EINTR);
2632
2633 if (ret != 0) {
2634 perror("statfs");
2635 return 0;
2636 }
2637
2638 if (fs.f_type != HUGETLBFS_MAGIC)
2639 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2640
2641 return fs.f_bsize;
2642 }
2643
2644 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2645 {
2646 char *filename;
2647 void *area;
2648 int fd;
2649 #ifdef MAP_POPULATE
2650 int flags;
2651 #endif
2652 unsigned long hpagesize;
2653
2654 hpagesize = gethugepagesize(path);
2655 if (!hpagesize) {
2656 return NULL;
2657 }
2658
2659 if (memory < hpagesize) {
2660 return NULL;
2661 }
2662
2663 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2664 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2665 return NULL;
2666 }
2667
2668 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2669 return NULL;
2670 }
2671
2672 fd = mkstemp(filename);
2673 if (fd < 0) {
2674 perror("mkstemp");
2675 free(filename);
2676 return NULL;
2677 }
2678 unlink(filename);
2679 free(filename);
2680
2681 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2682
2683 /*
2684 * ftruncate is not supported by hugetlbfs in older
2685 * hosts, so don't bother bailing out on errors.
2686 * If anything goes wrong with it under other filesystems,
2687 * mmap will fail.
2688 */
2689 if (ftruncate(fd, memory))
2690 perror("ftruncate");
2691
2692 #ifdef MAP_POPULATE
2693 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2694 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2695 * to sidestep this quirk.
2696 */
2697 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2698 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2699 #else
2700 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2701 #endif
2702 if (area == MAP_FAILED) {
2703 perror("file_ram_alloc: can't mmap RAM pages");
2704 close(fd);
2705 return (NULL);
2706 }
2707 return area;
2708 }
2709 #endif
2710
2711 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2712 {
2713 RAMBlock *new_block;
2714
2715 size = TARGET_PAGE_ALIGN(size);
2716 new_block = qemu_malloc(sizeof(*new_block));
2717
2718 if (mem_path) {
2719 #if defined (__linux__) && !defined(TARGET_S390X)
2720 new_block->host = file_ram_alloc(size, mem_path);
2721 if (!new_block->host)
2722 exit(1);
2723 #else
2724 fprintf(stderr, "-mem-path option unsupported\n");
2725 exit(1);
2726 #endif
2727 } else {
2728 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2729 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2730 new_block->host = mmap((void*)0x1000000, size,
2731 PROT_EXEC|PROT_READ|PROT_WRITE,
2732 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2733 #else
2734 new_block->host = qemu_vmalloc(size);
2735 #endif
2736 #ifdef MADV_MERGEABLE
2737 madvise(new_block->host, size, MADV_MERGEABLE);
2738 #endif
2739 }
2740 new_block->offset = last_ram_offset;
2741 new_block->length = size;
2742
2743 new_block->next = ram_blocks;
2744 ram_blocks = new_block;
2745
2746 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2747 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2748 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2749 0xff, size >> TARGET_PAGE_BITS);
2750
2751 last_ram_offset += size;
2752
2753 if (kvm_enabled())
2754 kvm_setup_guest_memory(new_block->host, size);
2755
2756 return new_block->offset;
2757 }
2758
2759 void qemu_ram_free(ram_addr_t addr)
2760 {
2761 /* TODO: implement this. */
2762 }
2763
2764 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2765 With the exception of the softmmu code in this file, this should
2766 only be used for local memory (e.g. video ram) that the device owns,
2767 and knows it isn't going to access beyond the end of the block.
2768
2769 It should not be used for general purpose DMA.
2770 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2771 */
2772 void *qemu_get_ram_ptr(ram_addr_t addr)
2773 {
2774 RAMBlock *prev;
2775 RAMBlock **prevp;
2776 RAMBlock *block;
2777
2778 prev = NULL;
2779 prevp = &ram_blocks;
2780 block = ram_blocks;
2781 while (block && (block->offset > addr
2782 || block->offset + block->length <= addr)) {
2783 if (prev)
2784 prevp = &prev->next;
2785 prev = block;
2786 block = block->next;
2787 }
2788 if (!block) {
2789 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2790 abort();
2791 }
2792 /* Move this entry to to start of the list. */
2793 if (prev) {
2794 prev->next = block->next;
2795 block->next = *prevp;
2796 *prevp = block;
2797 }
2798 return block->host + (addr - block->offset);
2799 }
2800
2801 /* Some of the softmmu routines need to translate from a host pointer
2802 (typically a TLB entry) back to a ram offset. */
2803 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2804 {
2805 RAMBlock *prev;
2806 RAMBlock *block;
2807 uint8_t *host = ptr;
2808
2809 prev = NULL;
2810 block = ram_blocks;
2811 while (block && (block->host > host
2812 || block->host + block->length <= host)) {
2813 prev = block;
2814 block = block->next;
2815 }
2816 if (!block) {
2817 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2818 abort();
2819 }
2820 return block->offset + (host - block->host);
2821 }
2822
2823 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2824 {
2825 #ifdef DEBUG_UNASSIGNED
2826 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2827 #endif
2828 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2829 do_unassigned_access(addr, 0, 0, 0, 1);
2830 #endif
2831 return 0;
2832 }
2833
2834 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2835 {
2836 #ifdef DEBUG_UNASSIGNED
2837 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2838 #endif
2839 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2840 do_unassigned_access(addr, 0, 0, 0, 2);
2841 #endif
2842 return 0;
2843 }
2844
2845 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2846 {
2847 #ifdef DEBUG_UNASSIGNED
2848 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2849 #endif
2850 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2851 do_unassigned_access(addr, 0, 0, 0, 4);
2852 #endif
2853 return 0;
2854 }
2855
2856 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2857 {
2858 #ifdef DEBUG_UNASSIGNED
2859 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2860 #endif
2861 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2862 do_unassigned_access(addr, 1, 0, 0, 1);
2863 #endif
2864 }
2865
2866 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2867 {
2868 #ifdef DEBUG_UNASSIGNED
2869 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2870 #endif
2871 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2872 do_unassigned_access(addr, 1, 0, 0, 2);
2873 #endif
2874 }
2875
2876 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2877 {
2878 #ifdef DEBUG_UNASSIGNED
2879 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2880 #endif
2881 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2882 do_unassigned_access(addr, 1, 0, 0, 4);
2883 #endif
2884 }
2885
2886 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2887 unassigned_mem_readb,
2888 unassigned_mem_readw,
2889 unassigned_mem_readl,
2890 };
2891
2892 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2893 unassigned_mem_writeb,
2894 unassigned_mem_writew,
2895 unassigned_mem_writel,
2896 };
2897
2898 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2899 uint32_t val)
2900 {
2901 int dirty_flags;
2902 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2903 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2904 #if !defined(CONFIG_USER_ONLY)
2905 tb_invalidate_phys_page_fast(ram_addr, 1);
2906 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2907 #endif
2908 }
2909 stb_p(qemu_get_ram_ptr(ram_addr), val);
2910 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2911 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2912 /* we remove the notdirty callback only if the code has been
2913 flushed */
2914 if (dirty_flags == 0xff)
2915 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2916 }
2917
2918 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2919 uint32_t val)
2920 {
2921 int dirty_flags;
2922 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2923 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2924 #if !defined(CONFIG_USER_ONLY)
2925 tb_invalidate_phys_page_fast(ram_addr, 2);
2926 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2927 #endif
2928 }
2929 stw_p(qemu_get_ram_ptr(ram_addr), val);
2930 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2931 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2932 /* we remove the notdirty callback only if the code has been
2933 flushed */
2934 if (dirty_flags == 0xff)
2935 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2936 }
2937
2938 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2939 uint32_t val)
2940 {
2941 int dirty_flags;
2942 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2943 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2944 #if !defined(CONFIG_USER_ONLY)
2945 tb_invalidate_phys_page_fast(ram_addr, 4);
2946 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2947 #endif
2948 }
2949 stl_p(qemu_get_ram_ptr(ram_addr), val);
2950 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2951 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2952 /* we remove the notdirty callback only if the code has been
2953 flushed */
2954 if (dirty_flags == 0xff)
2955 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2956 }
2957
2958 static CPUReadMemoryFunc * const error_mem_read[3] = {
2959 NULL, /* never used */
2960 NULL, /* never used */
2961 NULL, /* never used */
2962 };
2963
2964 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2965 notdirty_mem_writeb,
2966 notdirty_mem_writew,
2967 notdirty_mem_writel,
2968 };
2969
2970 /* Generate a debug exception if a watchpoint has been hit. */
2971 static void check_watchpoint(int offset, int len_mask, int flags)
2972 {
2973 CPUState *env = cpu_single_env;
2974 target_ulong pc, cs_base;
2975 TranslationBlock *tb;
2976 target_ulong vaddr;
2977 CPUWatchpoint *wp;
2978 int cpu_flags;
2979
2980 if (env->watchpoint_hit) {
2981 /* We re-entered the check after replacing the TB. Now raise
2982 * the debug interrupt so that is will trigger after the
2983 * current instruction. */
2984 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2985 return;
2986 }
2987 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2988 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2989 if ((vaddr == (wp->vaddr & len_mask) ||
2990 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2991 wp->flags |= BP_WATCHPOINT_HIT;
2992 if (!env->watchpoint_hit) {
2993 env->watchpoint_hit = wp;
2994 tb = tb_find_pc(env->mem_io_pc);
2995 if (!tb) {
2996 cpu_abort(env, "check_watchpoint: could not find TB for "
2997 "pc=%p", (void *)env->mem_io_pc);
2998 }
2999 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3000 tb_phys_invalidate(tb, -1);
3001 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3002 env->exception_index = EXCP_DEBUG;
3003 } else {
3004 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3005 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3006 }
3007 cpu_resume_from_signal(env, NULL);
3008 }
3009 } else {
3010 wp->flags &= ~BP_WATCHPOINT_HIT;
3011 }
3012 }
3013 }
3014
3015 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3016 so these check for a hit then pass through to the normal out-of-line
3017 phys routines. */
3018 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3019 {
3020 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3021 return ldub_phys(addr);
3022 }
3023
3024 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3025 {
3026 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3027 return lduw_phys(addr);
3028 }
3029
3030 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3031 {
3032 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3033 return ldl_phys(addr);
3034 }
3035
3036 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3037 uint32_t val)
3038 {
3039 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3040 stb_phys(addr, val);
3041 }
3042
3043 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3044 uint32_t val)
3045 {
3046 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3047 stw_phys(addr, val);
3048 }
3049
3050 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3051 uint32_t val)
3052 {
3053 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3054 stl_phys(addr, val);
3055 }
3056
3057 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3058 watch_mem_readb,
3059 watch_mem_readw,
3060 watch_mem_readl,
3061 };
3062
3063 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3064 watch_mem_writeb,
3065 watch_mem_writew,
3066 watch_mem_writel,
3067 };
3068
3069 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
3070 unsigned int len)
3071 {
3072 uint32_t ret;
3073 unsigned int idx;
3074
3075 idx = SUBPAGE_IDX(addr);
3076 #if defined(DEBUG_SUBPAGE)
3077 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3078 mmio, len, addr, idx);
3079 #endif
3080 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3081 addr + mmio->region_offset[idx][0][len]);
3082
3083 return ret;
3084 }
3085
3086 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3087 uint32_t value, unsigned int len)
3088 {
3089 unsigned int idx;
3090
3091 idx = SUBPAGE_IDX(addr);
3092 #if defined(DEBUG_SUBPAGE)
3093 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3094 mmio, len, addr, idx, value);
3095 #endif
3096 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3097 addr + mmio->region_offset[idx][1][len],
3098 value);
3099 }
3100
3101 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3102 {
3103 #if defined(DEBUG_SUBPAGE)
3104 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3105 #endif
3106
3107 return subpage_readlen(opaque, addr, 0);
3108 }
3109
3110 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3111 uint32_t value)
3112 {
3113 #if defined(DEBUG_SUBPAGE)
3114 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3115 #endif
3116 subpage_writelen(opaque, addr, value, 0);
3117 }
3118
3119 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3120 {
3121 #if defined(DEBUG_SUBPAGE)
3122 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3123 #endif
3124
3125 return subpage_readlen(opaque, addr, 1);
3126 }
3127
3128 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3129 uint32_t value)
3130 {
3131 #if defined(DEBUG_SUBPAGE)
3132 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3133 #endif
3134 subpage_writelen(opaque, addr, value, 1);
3135 }
3136
3137 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3138 {
3139 #if defined(DEBUG_SUBPAGE)
3140 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3141 #endif
3142
3143 return subpage_readlen(opaque, addr, 2);
3144 }
3145
3146 static void subpage_writel (void *opaque,
3147 target_phys_addr_t addr, uint32_t value)
3148 {
3149 #if defined(DEBUG_SUBPAGE)
3150 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3151 #endif
3152 subpage_writelen(opaque, addr, value, 2);
3153 }
3154
3155 static CPUReadMemoryFunc * const subpage_read[] = {
3156 &subpage_readb,
3157 &subpage_readw,
3158 &subpage_readl,
3159 };
3160
3161 static CPUWriteMemoryFunc * const subpage_write[] = {
3162 &subpage_writeb,
3163 &subpage_writew,
3164 &subpage_writel,
3165 };
3166
3167 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3168 ram_addr_t memory, ram_addr_t region_offset)
3169 {
3170 int idx, eidx;
3171 unsigned int i;
3172
3173 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3174 return -1;
3175 idx = SUBPAGE_IDX(start);
3176 eidx = SUBPAGE_IDX(end);
3177 #if defined(DEBUG_SUBPAGE)
3178 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3179 mmio, start, end, idx, eidx, memory);
3180 #endif
3181 memory >>= IO_MEM_SHIFT;
3182 for (; idx <= eidx; idx++) {
3183 for (i = 0; i < 4; i++) {
3184 if (io_mem_read[memory][i]) {
3185 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3186 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3187 mmio->region_offset[idx][0][i] = region_offset;
3188 }
3189 if (io_mem_write[memory][i]) {
3190 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3191 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3192 mmio->region_offset[idx][1][i] = region_offset;
3193 }
3194 }
3195 }
3196
3197 return 0;
3198 }
3199
3200 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3201 ram_addr_t orig_memory, ram_addr_t region_offset)
3202 {
3203 subpage_t *mmio;
3204 int subpage_memory;
3205
3206 mmio = qemu_mallocz(sizeof(subpage_t));
3207
3208 mmio->base = base;
3209 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3210 #if defined(DEBUG_SUBPAGE)
3211 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3212 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3213 #endif
3214 *phys = subpage_memory | IO_MEM_SUBPAGE;
3215 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3216 region_offset);
3217
3218 return mmio;
3219 }
3220
3221 static int get_free_io_mem_idx(void)
3222 {
3223 int i;
3224
3225 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3226 if (!io_mem_used[i]) {
3227 io_mem_used[i] = 1;
3228 return i;
3229 }
3230 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3231 return -1;
3232 }
3233
3234 /* mem_read and mem_write are arrays of functions containing the
3235 function to access byte (index 0), word (index 1) and dword (index
3236 2). Functions can be omitted with a NULL function pointer.
3237 If io_index is non zero, the corresponding io zone is
3238 modified. If it is zero, a new io zone is allocated. The return
3239 value can be used with cpu_register_physical_memory(). (-1) is
3240 returned if error. */
3241 static int cpu_register_io_memory_fixed(int io_index,
3242 CPUReadMemoryFunc * const *mem_read,
3243 CPUWriteMemoryFunc * const *mem_write,
3244 void *opaque)
3245 {
3246 int i, subwidth = 0;
3247
3248 if (io_index <= 0) {
3249 io_index = get_free_io_mem_idx();
3250 if (io_index == -1)
3251 return io_index;
3252 } else {
3253 io_index >>= IO_MEM_SHIFT;
3254 if (io_index >= IO_MEM_NB_ENTRIES)
3255 return -1;
3256 }
3257
3258 for(i = 0;i < 3; i++) {
3259 if (!mem_read[i] || !mem_write[i])
3260 subwidth = IO_MEM_SUBWIDTH;
3261 io_mem_read[io_index][i] = mem_read[i];
3262 io_mem_write[io_index][i] = mem_write[i];
3263 }
3264 io_mem_opaque[io_index] = opaque;
3265 return (io_index << IO_MEM_SHIFT) | subwidth;
3266 }
3267
3268 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3269 CPUWriteMemoryFunc * const *mem_write,
3270 void *opaque)
3271 {
3272 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3273 }
3274
3275 void cpu_unregister_io_memory(int io_table_address)
3276 {
3277 int i;
3278 int io_index = io_table_address >> IO_MEM_SHIFT;
3279
3280 for (i=0;i < 3; i++) {
3281 io_mem_read[io_index][i] = unassigned_mem_read[i];
3282 io_mem_write[io_index][i] = unassigned_mem_write[i];
3283 }
3284 io_mem_opaque[io_index] = NULL;
3285 io_mem_used[io_index] = 0;
3286 }
3287
3288 static void io_mem_init(void)
3289 {
3290 int i;
3291
3292 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3293 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3294 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3295 for (i=0; i<5; i++)
3296 io_mem_used[i] = 1;
3297
3298 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3299 watch_mem_write, NULL);
3300 }
3301
3302 #endif /* !defined(CONFIG_USER_ONLY) */
3303
3304 /* physical memory access (slow version, mainly for debug) */
3305 #if defined(CONFIG_USER_ONLY)
3306 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3307 uint8_t *buf, int len, int is_write)
3308 {
3309 int l, flags;
3310 target_ulong page;
3311 void * p;
3312
3313 while (len > 0) {
3314 page = addr & TARGET_PAGE_MASK;
3315 l = (page + TARGET_PAGE_SIZE) - addr;
3316 if (l > len)
3317 l = len;
3318 flags = page_get_flags(page);
3319 if (!(flags & PAGE_VALID))
3320 return -1;
3321 if (is_write) {
3322 if (!(flags & PAGE_WRITE))
3323 return -1;
3324 /* XXX: this code should not depend on lock_user */
3325 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3326 return -1;
3327 memcpy(p, buf, l);
3328 unlock_user(p, addr, l);
3329 } else {
3330 if (!(flags & PAGE_READ))
3331 return -1;
3332 /* XXX: this code should not depend on lock_user */
3333 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3334 return -1;
3335 memcpy(buf, p, l);
3336 unlock_user(p, addr, 0);
3337 }
3338 len -= l;
3339 buf += l;
3340 addr += l;
3341 }
3342 return 0;
3343 }
3344
3345 #else
3346 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3347 int len, int is_write)
3348 {
3349 int l, io_index;
3350 uint8_t *ptr;
3351 uint32_t val;
3352 target_phys_addr_t page;
3353 unsigned long pd;
3354 PhysPageDesc *p;
3355
3356 while (len > 0) {
3357 page = addr & TARGET_PAGE_MASK;
3358 l = (page + TARGET_PAGE_SIZE) - addr;
3359 if (l > len)
3360 l = len;
3361 p = phys_page_find(page >> TARGET_PAGE_BITS);
3362 if (!p) {
3363 pd = IO_MEM_UNASSIGNED;
3364 } else {
3365 pd = p->phys_offset;
3366 }
3367
3368 if (is_write) {
3369 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3370 target_phys_addr_t addr1 = addr;
3371 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3372 if (p)
3373 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3374 /* XXX: could force cpu_single_env to NULL to avoid
3375 potential bugs */
3376 if (l >= 4 && ((addr1 & 3) == 0)) {
3377 /* 32 bit write access */
3378 val = ldl_p(buf);
3379 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3380 l = 4;
3381 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3382 /* 16 bit write access */
3383 val = lduw_p(buf);
3384 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3385 l = 2;
3386 } else {
3387 /* 8 bit write access */
3388 val = ldub_p(buf);
3389 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3390 l = 1;
3391 }
3392 } else {
3393 unsigned long addr1;
3394 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3395 /* RAM case */
3396 ptr = qemu_get_ram_ptr(addr1);
3397 memcpy(ptr, buf, l);
3398 if (!cpu_physical_memory_is_dirty(addr1)) {
3399 /* invalidate code */
3400 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3401 /* set dirty bit */
3402 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3403 (0xff & ~CODE_DIRTY_FLAG);
3404 }
3405 }
3406 } else {
3407 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3408 !(pd & IO_MEM_ROMD)) {
3409 target_phys_addr_t addr1 = addr;
3410 /* I/O case */
3411 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3412 if (p)
3413 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3414 if (l >= 4 && ((addr1 & 3) == 0)) {
3415 /* 32 bit read access */
3416 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3417 stl_p(buf, val);
3418 l = 4;
3419 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3420 /* 16 bit read access */
3421 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3422 stw_p(buf, val);
3423 l = 2;
3424 } else {
3425 /* 8 bit read access */
3426 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3427 stb_p(buf, val);
3428 l = 1;
3429 }
3430 } else {
3431 /* RAM case */
3432 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3433 (addr & ~TARGET_PAGE_MASK);
3434 memcpy(buf, ptr, l);
3435 }
3436 }
3437 len -= l;
3438 buf += l;
3439 addr += l;
3440 }
3441 }
3442
3443 /* used for ROM loading : can write in RAM and ROM */
3444 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3445 const uint8_t *buf, int len)
3446 {
3447 int l;
3448 uint8_t *ptr;
3449 target_phys_addr_t page;
3450 unsigned long pd;
3451 PhysPageDesc *p;
3452
3453 while (len > 0) {
3454 page = addr & TARGET_PAGE_MASK;
3455 l = (page + TARGET_PAGE_SIZE) - addr;
3456 if (l > len)
3457 l = len;
3458 p = phys_page_find(page >> TARGET_PAGE_BITS);
3459 if (!p) {
3460 pd = IO_MEM_UNASSIGNED;
3461 } else {
3462 pd = p->phys_offset;
3463 }
3464
3465 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3466 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3467 !(pd & IO_MEM_ROMD)) {
3468 /* do nothing */
3469 } else {
3470 unsigned long addr1;
3471 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3472 /* ROM/RAM case */
3473 ptr = qemu_get_ram_ptr(addr1);
3474 memcpy(ptr, buf, l);
3475 }
3476 len -= l;
3477 buf += l;
3478 addr += l;
3479 }
3480 }
3481
3482 typedef struct {
3483 void *buffer;
3484 target_phys_addr_t addr;
3485 target_phys_addr_t len;
3486 } BounceBuffer;
3487
3488 static BounceBuffer bounce;
3489
3490 typedef struct MapClient {
3491 void *opaque;
3492 void (*callback)(void *opaque);
3493 QLIST_ENTRY(MapClient) link;
3494 } MapClient;
3495
3496 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3497 = QLIST_HEAD_INITIALIZER(map_client_list);
3498
3499 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3500 {
3501 MapClient *client = qemu_malloc(sizeof(*client));
3502
3503 client->opaque = opaque;
3504 client->callback = callback;
3505 QLIST_INSERT_HEAD(&map_client_list, client, link);
3506 return client;
3507 }
3508
3509 void cpu_unregister_map_client(void *_client)
3510 {
3511 MapClient *client = (MapClient *)_client;
3512
3513 QLIST_REMOVE(client, link);
3514 qemu_free(client);
3515 }
3516
3517 static void cpu_notify_map_clients(void)
3518 {
3519 MapClient *client;
3520
3521 while (!QLIST_EMPTY(&map_client_list)) {
3522 client = QLIST_FIRST(&map_client_list);
3523 client->callback(client->opaque);
3524 cpu_unregister_map_client(client);
3525 }
3526 }
3527
3528 /* Map a physical memory region into a host virtual address.
3529 * May map a subset of the requested range, given by and returned in *plen.
3530 * May return NULL if resources needed to perform the mapping are exhausted.
3531 * Use only for reads OR writes - not for read-modify-write operations.
3532 * Use cpu_register_map_client() to know when retrying the map operation is
3533 * likely to succeed.
3534 */
3535 void *cpu_physical_memory_map(target_phys_addr_t addr,
3536 target_phys_addr_t *plen,
3537 int is_write)
3538 {
3539 target_phys_addr_t len = *plen;
3540 target_phys_addr_t done = 0;
3541 int l;
3542 uint8_t *ret = NULL;
3543 uint8_t *ptr;
3544 target_phys_addr_t page;
3545 unsigned long pd;
3546 PhysPageDesc *p;
3547 unsigned long addr1;
3548
3549 while (len > 0) {
3550 page = addr & TARGET_PAGE_MASK;
3551 l = (page + TARGET_PAGE_SIZE) - addr;
3552 if (l > len)
3553 l = len;
3554 p = phys_page_find(page >> TARGET_PAGE_BITS);
3555 if (!p) {
3556 pd = IO_MEM_UNASSIGNED;
3557 } else {
3558 pd = p->phys_offset;
3559 }
3560
3561 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3562 if (done || bounce.buffer) {
3563 break;
3564 }
3565 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3566 bounce.addr = addr;
3567 bounce.len = l;
3568 if (!is_write) {
3569 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3570 }
3571 ptr = bounce.buffer;
3572 } else {
3573 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3574 ptr = qemu_get_ram_ptr(addr1);
3575 }
3576 if (!done) {
3577 ret = ptr;
3578 } else if (ret + done != ptr) {
3579 break;
3580 }
3581
3582 len -= l;
3583 addr += l;
3584 done += l;
3585 }
3586 *plen = done;
3587 return ret;
3588 }
3589
3590 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3591 * Will also mark the memory as dirty if is_write == 1. access_len gives
3592 * the amount of memory that was actually read or written by the caller.
3593 */
3594 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3595 int is_write, target_phys_addr_t access_len)
3596 {
3597 if (buffer != bounce.buffer) {
3598 if (is_write) {
3599 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3600 while (access_len) {
3601 unsigned l;
3602 l = TARGET_PAGE_SIZE;
3603 if (l > access_len)
3604 l = access_len;
3605 if (!cpu_physical_memory_is_dirty(addr1)) {
3606 /* invalidate code */
3607 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3608 /* set dirty bit */
3609 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3610 (0xff & ~CODE_DIRTY_FLAG);
3611 }
3612 addr1 += l;
3613 access_len -= l;
3614 }
3615 }
3616 return;
3617 }
3618 if (is_write) {
3619 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3620 }
3621 qemu_vfree(bounce.buffer);
3622 bounce.buffer = NULL;
3623 cpu_notify_map_clients();
3624 }
3625
3626 /* warning: addr must be aligned */
3627 uint32_t ldl_phys(target_phys_addr_t addr)
3628 {
3629 int io_index;
3630 uint8_t *ptr;
3631 uint32_t val;
3632 unsigned long pd;
3633 PhysPageDesc *p;
3634
3635 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3636 if (!p) {
3637 pd = IO_MEM_UNASSIGNED;
3638 } else {
3639 pd = p->phys_offset;
3640 }
3641
3642 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3643 !(pd & IO_MEM_ROMD)) {
3644 /* I/O case */
3645 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3646 if (p)
3647 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3648 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3649 } else {
3650 /* RAM case */
3651 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3652 (addr & ~TARGET_PAGE_MASK);
3653 val = ldl_p(ptr);
3654 }
3655 return val;
3656 }
3657
3658 /* warning: addr must be aligned */
3659 uint64_t ldq_phys(target_phys_addr_t addr)
3660 {
3661 int io_index;
3662 uint8_t *ptr;
3663 uint64_t val;
3664 unsigned long pd;
3665 PhysPageDesc *p;
3666
3667 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3668 if (!p) {
3669 pd = IO_MEM_UNASSIGNED;
3670 } else {
3671 pd = p->phys_offset;
3672 }
3673
3674 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3675 !(pd & IO_MEM_ROMD)) {
3676 /* I/O case */
3677 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3678 if (p)
3679 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3680 #ifdef TARGET_WORDS_BIGENDIAN
3681 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3682 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3683 #else
3684 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3685 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3686 #endif
3687 } else {
3688 /* RAM case */
3689 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3690 (addr & ~TARGET_PAGE_MASK);
3691 val = ldq_p(ptr);
3692 }
3693 return val;
3694 }
3695
3696 /* XXX: optimize */
3697 uint32_t ldub_phys(target_phys_addr_t addr)
3698 {
3699 uint8_t val;
3700 cpu_physical_memory_read(addr, &val, 1);
3701 return val;
3702 }
3703
3704 /* XXX: optimize */
3705 uint32_t lduw_phys(target_phys_addr_t addr)
3706 {
3707 uint16_t val;
3708 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3709 return tswap16(val);
3710 }
3711
3712 /* warning: addr must be aligned. The ram page is not masked as dirty
3713 and the code inside is not invalidated. It is useful if the dirty
3714 bits are used to track modified PTEs */
3715 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3716 {
3717 int io_index;
3718 uint8_t *ptr;
3719 unsigned long pd;
3720 PhysPageDesc *p;
3721
3722 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3723 if (!p) {
3724 pd = IO_MEM_UNASSIGNED;
3725 } else {
3726 pd = p->phys_offset;
3727 }
3728
3729 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3730 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3731 if (p)
3732 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3733 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3734 } else {
3735 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3736 ptr = qemu_get_ram_ptr(addr1);
3737 stl_p(ptr, val);
3738
3739 if (unlikely(in_migration)) {
3740 if (!cpu_physical_memory_is_dirty(addr1)) {
3741 /* invalidate code */
3742 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3743 /* set dirty bit */
3744 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3745 (0xff & ~CODE_DIRTY_FLAG);
3746 }
3747 }
3748 }
3749 }
3750
3751 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3752 {
3753 int io_index;
3754 uint8_t *ptr;
3755 unsigned long pd;
3756 PhysPageDesc *p;
3757
3758 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3759 if (!p) {
3760 pd = IO_MEM_UNASSIGNED;
3761 } else {
3762 pd = p->phys_offset;
3763 }
3764
3765 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3766 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3767 if (p)
3768 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3769 #ifdef TARGET_WORDS_BIGENDIAN
3770 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3771 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3772 #else
3773 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3774 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3775 #endif
3776 } else {
3777 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3778 (addr & ~TARGET_PAGE_MASK);
3779 stq_p(ptr, val);
3780 }
3781 }
3782
3783 /* warning: addr must be aligned */
3784 void stl_phys(target_phys_addr_t addr, uint32_t val)
3785 {
3786 int io_index;
3787 uint8_t *ptr;
3788 unsigned long pd;
3789 PhysPageDesc *p;
3790
3791 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3792 if (!p) {
3793 pd = IO_MEM_UNASSIGNED;
3794 } else {
3795 pd = p->phys_offset;
3796 }
3797
3798 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3799 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3800 if (p)
3801 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3802 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3803 } else {
3804 unsigned long addr1;
3805 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3806 /* RAM case */
3807 ptr = qemu_get_ram_ptr(addr1);
3808 stl_p(ptr, val);
3809 if (!cpu_physical_memory_is_dirty(addr1)) {
3810 /* invalidate code */
3811 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3812 /* set dirty bit */
3813 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3814 (0xff & ~CODE_DIRTY_FLAG);
3815 }
3816 }
3817 }
3818
3819 /* XXX: optimize */
3820 void stb_phys(target_phys_addr_t addr, uint32_t val)
3821 {
3822 uint8_t v = val;
3823 cpu_physical_memory_write(addr, &v, 1);
3824 }
3825
3826 /* XXX: optimize */
3827 void stw_phys(target_phys_addr_t addr, uint32_t val)
3828 {
3829 uint16_t v = tswap16(val);
3830 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3831 }
3832
3833 /* XXX: optimize */
3834 void stq_phys(target_phys_addr_t addr, uint64_t val)
3835 {
3836 val = tswap64(val);
3837 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3838 }
3839
3840 /* virtual memory access for debug (includes writing to ROM) */
3841 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3842 uint8_t *buf, int len, int is_write)
3843 {
3844 int l;
3845 target_phys_addr_t phys_addr;
3846 target_ulong page;
3847
3848 while (len > 0) {
3849 page = addr & TARGET_PAGE_MASK;
3850 phys_addr = cpu_get_phys_page_debug(env, page);
3851 /* if no physical page mapped, return an error */
3852 if (phys_addr == -1)
3853 return -1;
3854 l = (page + TARGET_PAGE_SIZE) - addr;
3855 if (l > len)
3856 l = len;
3857 phys_addr += (addr & ~TARGET_PAGE_MASK);
3858 if (is_write)
3859 cpu_physical_memory_write_rom(phys_addr, buf, l);
3860 else
3861 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3862 len -= l;
3863 buf += l;
3864 addr += l;
3865 }
3866 return 0;
3867 }
3868 #endif
3869
3870 /* in deterministic execution mode, instructions doing device I/Os
3871 must be at the end of the TB */
3872 void cpu_io_recompile(CPUState *env, void *retaddr)
3873 {
3874 TranslationBlock *tb;
3875 uint32_t n, cflags;
3876 target_ulong pc, cs_base;
3877 uint64_t flags;
3878
3879 tb = tb_find_pc((unsigned long)retaddr);
3880 if (!tb) {
3881 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3882 retaddr);
3883 }
3884 n = env->icount_decr.u16.low + tb->icount;
3885 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3886 /* Calculate how many instructions had been executed before the fault
3887 occurred. */
3888 n = n - env->icount_decr.u16.low;
3889 /* Generate a new TB ending on the I/O insn. */
3890 n++;
3891 /* On MIPS and SH, delay slot instructions can only be restarted if
3892 they were already the first instruction in the TB. If this is not
3893 the first instruction in a TB then re-execute the preceding
3894 branch. */
3895 #if defined(TARGET_MIPS)
3896 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3897 env->active_tc.PC -= 4;
3898 env->icount_decr.u16.low++;
3899 env->hflags &= ~MIPS_HFLAG_BMASK;
3900 }
3901 #elif defined(TARGET_SH4)
3902 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3903 && n > 1) {
3904 env->pc -= 2;
3905 env->icount_decr.u16.low++;
3906 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3907 }
3908 #endif
3909 /* This should never happen. */
3910 if (n > CF_COUNT_MASK)
3911 cpu_abort(env, "TB too big during recompile");
3912
3913 cflags = n | CF_LAST_IO;
3914 pc = tb->pc;
3915 cs_base = tb->cs_base;
3916 flags = tb->flags;
3917 tb_phys_invalidate(tb, -1);
3918 /* FIXME: In theory this could raise an exception. In practice
3919 we have already translated the block once so it's probably ok. */
3920 tb_gen_code(env, pc, cs_base, flags, cflags);
3921 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3922 the first in the TB) then we end up generating a whole new TB and
3923 repeating the fault, which is horribly inefficient.
3924 Better would be to execute just this insn uncached, or generate a
3925 second new TB. */
3926 cpu_resume_from_signal(env, NULL);
3927 }
3928
3929 #if !defined(CONFIG_USER_ONLY)
3930
3931 void dump_exec_info(FILE *f,
3932 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3933 {
3934 int i, target_code_size, max_target_code_size;
3935 int direct_jmp_count, direct_jmp2_count, cross_page;
3936 TranslationBlock *tb;
3937
3938 target_code_size = 0;
3939 max_target_code_size = 0;
3940 cross_page = 0;
3941 direct_jmp_count = 0;
3942 direct_jmp2_count = 0;
3943 for(i = 0; i < nb_tbs; i++) {
3944 tb = &tbs[i];
3945 target_code_size += tb->size;
3946 if (tb->size > max_target_code_size)
3947 max_target_code_size = tb->size;
3948 if (tb->page_addr[1] != -1)
3949 cross_page++;
3950 if (tb->tb_next_offset[0] != 0xffff) {
3951 direct_jmp_count++;
3952 if (tb->tb_next_offset[1] != 0xffff) {
3953 direct_jmp2_count++;
3954 }
3955 }
3956 }
3957 /* XXX: avoid using doubles ? */
3958 cpu_fprintf(f, "Translation buffer state:\n");
3959 cpu_fprintf(f, "gen code size %ld/%ld\n",
3960 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3961 cpu_fprintf(f, "TB count %d/%d\n",
3962 nb_tbs, code_gen_max_blocks);
3963 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3964 nb_tbs ? target_code_size / nb_tbs : 0,
3965 max_target_code_size);
3966 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3967 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3968 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3969 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3970 cross_page,
3971 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3972 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3973 direct_jmp_count,
3974 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3975 direct_jmp2_count,
3976 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3977 cpu_fprintf(f, "\nStatistics:\n");
3978 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3979 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3980 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3981 tcg_dump_info(f, cpu_fprintf);
3982 }
3983
3984 #define MMUSUFFIX _cmmu
3985 #define GETPC() NULL
3986 #define env cpu_single_env
3987 #define SOFTMMU_CODE_ACCESS
3988
3989 #define SHIFT 0
3990 #include "softmmu_template.h"
3991
3992 #define SHIFT 1
3993 #include "softmmu_template.h"
3994
3995 #define SHIFT 2
3996 #include "softmmu_template.h"
3997
3998 #define SHIFT 3
3999 #include "softmmu_template.h"
4000
4001 #undef env
4002
4003 #endif