]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
ramblock: add new hmp command "info ramblock"
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
50
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <fcntl.h>
53 #include <linux/falloc.h>
54 #endif
55
56 #endif
57 #include "exec/cpu-all.h"
58 #include "qemu/rcu_queue.h"
59 #include "qemu/main-loop.h"
60 #include "translate-all.h"
61 #include "sysemu/replay.h"
62
63 #include "exec/memory-internal.h"
64 #include "exec/ram_addr.h"
65 #include "exec/log.h"
66
67 #include "migration/vmstate.h"
68
69 #include "qemu/range.h"
70 #ifndef _WIN32
71 #include "qemu/mmap-alloc.h"
72 #endif
73
74 #include "monitor/monitor.h"
75
76 //#define DEBUG_SUBPAGE
77
78 #if !defined(CONFIG_USER_ONLY)
79 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
80 * are protected by the ramlist lock.
81 */
82 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
83
84 static MemoryRegion *system_memory;
85 static MemoryRegion *system_io;
86
87 AddressSpace address_space_io;
88 AddressSpace address_space_memory;
89
90 MemoryRegion io_mem_rom, io_mem_notdirty;
91 static MemoryRegion io_mem_unassigned;
92
93 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
94 #define RAM_PREALLOC (1 << 0)
95
96 /* RAM is mmap-ed with MAP_SHARED */
97 #define RAM_SHARED (1 << 1)
98
99 /* Only a portion of RAM (used_length) is actually used, and migrated.
100 * This used_length size can change across reboots.
101 */
102 #define RAM_RESIZEABLE (1 << 2)
103
104 #endif
105
106 #ifdef TARGET_PAGE_BITS_VARY
107 int target_page_bits;
108 bool target_page_bits_decided;
109 #endif
110
111 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
112 /* current CPU in the current thread. It is only valid inside
113 cpu_exec() */
114 __thread CPUState *current_cpu;
115 /* 0 = Do not count executed instructions.
116 1 = Precise instruction counting.
117 2 = Adaptive rate instruction counting. */
118 int use_icount;
119
120 bool set_preferred_target_page_bits(int bits)
121 {
122 /* The target page size is the lowest common denominator for all
123 * the CPUs in the system, so we can only make it smaller, never
124 * larger. And we can't make it smaller once we've committed to
125 * a particular size.
126 */
127 #ifdef TARGET_PAGE_BITS_VARY
128 assert(bits >= TARGET_PAGE_BITS_MIN);
129 if (target_page_bits == 0 || target_page_bits > bits) {
130 if (target_page_bits_decided) {
131 return false;
132 }
133 target_page_bits = bits;
134 }
135 #endif
136 return true;
137 }
138
139 #if !defined(CONFIG_USER_ONLY)
140
141 static void finalize_target_page_bits(void)
142 {
143 #ifdef TARGET_PAGE_BITS_VARY
144 if (target_page_bits == 0) {
145 target_page_bits = TARGET_PAGE_BITS_MIN;
146 }
147 target_page_bits_decided = true;
148 #endif
149 }
150
151 typedef struct PhysPageEntry PhysPageEntry;
152
153 struct PhysPageEntry {
154 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
155 uint32_t skip : 6;
156 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
157 uint32_t ptr : 26;
158 };
159
160 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
161
162 /* Size of the L2 (and L3, etc) page tables. */
163 #define ADDR_SPACE_BITS 64
164
165 #define P_L2_BITS 9
166 #define P_L2_SIZE (1 << P_L2_BITS)
167
168 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
169
170 typedef PhysPageEntry Node[P_L2_SIZE];
171
172 typedef struct PhysPageMap {
173 struct rcu_head rcu;
174
175 unsigned sections_nb;
176 unsigned sections_nb_alloc;
177 unsigned nodes_nb;
178 unsigned nodes_nb_alloc;
179 Node *nodes;
180 MemoryRegionSection *sections;
181 } PhysPageMap;
182
183 struct AddressSpaceDispatch {
184 struct rcu_head rcu;
185
186 MemoryRegionSection *mru_section;
187 /* This is a multi-level map on the physical address space.
188 * The bottom level has pointers to MemoryRegionSections.
189 */
190 PhysPageEntry phys_map;
191 PhysPageMap map;
192 AddressSpace *as;
193 };
194
195 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
196 typedef struct subpage_t {
197 MemoryRegion iomem;
198 AddressSpace *as;
199 hwaddr base;
200 uint16_t sub_section[];
201 } subpage_t;
202
203 #define PHYS_SECTION_UNASSIGNED 0
204 #define PHYS_SECTION_NOTDIRTY 1
205 #define PHYS_SECTION_ROM 2
206 #define PHYS_SECTION_WATCH 3
207
208 static void io_mem_init(void);
209 static void memory_map_init(void);
210 static void tcg_commit(MemoryListener *listener);
211
212 static MemoryRegion io_mem_watch;
213
214 /**
215 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
216 * @cpu: the CPU whose AddressSpace this is
217 * @as: the AddressSpace itself
218 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
219 * @tcg_as_listener: listener for tracking changes to the AddressSpace
220 */
221 struct CPUAddressSpace {
222 CPUState *cpu;
223 AddressSpace *as;
224 struct AddressSpaceDispatch *memory_dispatch;
225 MemoryListener tcg_as_listener;
226 };
227
228 struct DirtyBitmapSnapshot {
229 ram_addr_t start;
230 ram_addr_t end;
231 unsigned long dirty[];
232 };
233
234 #endif
235
236 #if !defined(CONFIG_USER_ONLY)
237
238 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
239 {
240 static unsigned alloc_hint = 16;
241 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
242 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
244 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
245 alloc_hint = map->nodes_nb_alloc;
246 }
247 }
248
249 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
250 {
251 unsigned i;
252 uint32_t ret;
253 PhysPageEntry e;
254 PhysPageEntry *p;
255
256 ret = map->nodes_nb++;
257 p = map->nodes[ret];
258 assert(ret != PHYS_MAP_NODE_NIL);
259 assert(ret != map->nodes_nb_alloc);
260
261 e.skip = leaf ? 0 : 1;
262 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
263 for (i = 0; i < P_L2_SIZE; ++i) {
264 memcpy(&p[i], &e, sizeof(e));
265 }
266 return ret;
267 }
268
269 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
270 hwaddr *index, hwaddr *nb, uint16_t leaf,
271 int level)
272 {
273 PhysPageEntry *p;
274 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
275
276 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
277 lp->ptr = phys_map_node_alloc(map, level == 0);
278 }
279 p = map->nodes[lp->ptr];
280 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
281
282 while (*nb && lp < &p[P_L2_SIZE]) {
283 if ((*index & (step - 1)) == 0 && *nb >= step) {
284 lp->skip = 0;
285 lp->ptr = leaf;
286 *index += step;
287 *nb -= step;
288 } else {
289 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
290 }
291 ++lp;
292 }
293 }
294
295 static void phys_page_set(AddressSpaceDispatch *d,
296 hwaddr index, hwaddr nb,
297 uint16_t leaf)
298 {
299 /* Wildly overreserve - it doesn't matter much. */
300 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
301
302 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
303 }
304
305 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
306 * and update our entry so we can skip it and go directly to the destination.
307 */
308 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
309 {
310 unsigned valid_ptr = P_L2_SIZE;
311 int valid = 0;
312 PhysPageEntry *p;
313 int i;
314
315 if (lp->ptr == PHYS_MAP_NODE_NIL) {
316 return;
317 }
318
319 p = nodes[lp->ptr];
320 for (i = 0; i < P_L2_SIZE; i++) {
321 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
322 continue;
323 }
324
325 valid_ptr = i;
326 valid++;
327 if (p[i].skip) {
328 phys_page_compact(&p[i], nodes);
329 }
330 }
331
332 /* We can only compress if there's only one child. */
333 if (valid != 1) {
334 return;
335 }
336
337 assert(valid_ptr < P_L2_SIZE);
338
339 /* Don't compress if it won't fit in the # of bits we have. */
340 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
341 return;
342 }
343
344 lp->ptr = p[valid_ptr].ptr;
345 if (!p[valid_ptr].skip) {
346 /* If our only child is a leaf, make this a leaf. */
347 /* By design, we should have made this node a leaf to begin with so we
348 * should never reach here.
349 * But since it's so simple to handle this, let's do it just in case we
350 * change this rule.
351 */
352 lp->skip = 0;
353 } else {
354 lp->skip += p[valid_ptr].skip;
355 }
356 }
357
358 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
359 {
360 if (d->phys_map.skip) {
361 phys_page_compact(&d->phys_map, d->map.nodes);
362 }
363 }
364
365 static inline bool section_covers_addr(const MemoryRegionSection *section,
366 hwaddr addr)
367 {
368 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
369 * the section must cover the entire address space.
370 */
371 return int128_gethi(section->size) ||
372 range_covers_byte(section->offset_within_address_space,
373 int128_getlo(section->size), addr);
374 }
375
376 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
377 Node *nodes, MemoryRegionSection *sections)
378 {
379 PhysPageEntry *p;
380 hwaddr index = addr >> TARGET_PAGE_BITS;
381 int i;
382
383 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
384 if (lp.ptr == PHYS_MAP_NODE_NIL) {
385 return &sections[PHYS_SECTION_UNASSIGNED];
386 }
387 p = nodes[lp.ptr];
388 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
389 }
390
391 if (section_covers_addr(&sections[lp.ptr], addr)) {
392 return &sections[lp.ptr];
393 } else {
394 return &sections[PHYS_SECTION_UNASSIGNED];
395 }
396 }
397
398 bool memory_region_is_unassigned(MemoryRegion *mr)
399 {
400 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
401 && mr != &io_mem_watch;
402 }
403
404 /* Called from RCU critical section */
405 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
406 hwaddr addr,
407 bool resolve_subpage)
408 {
409 MemoryRegionSection *section = atomic_read(&d->mru_section);
410 subpage_t *subpage;
411 bool update;
412
413 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
414 section_covers_addr(section, addr)) {
415 update = false;
416 } else {
417 section = phys_page_find(d->phys_map, addr, d->map.nodes,
418 d->map.sections);
419 update = true;
420 }
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
424 }
425 if (update) {
426 atomic_set(&d->mru_section, section);
427 }
428 return section;
429 }
430
431 /* Called from RCU critical section */
432 static MemoryRegionSection *
433 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
434 hwaddr *plen, bool resolve_subpage)
435 {
436 MemoryRegionSection *section;
437 MemoryRegion *mr;
438 Int128 diff;
439
440 section = address_space_lookup_region(d, addr, resolve_subpage);
441 /* Compute offset within MemoryRegionSection */
442 addr -= section->offset_within_address_space;
443
444 /* Compute offset within MemoryRegion */
445 *xlat = addr + section->offset_within_region;
446
447 mr = section->mr;
448
449 /* MMIO registers can be expected to perform full-width accesses based only
450 * on their address, without considering adjacent registers that could
451 * decode to completely different MemoryRegions. When such registers
452 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
453 * regions overlap wildly. For this reason we cannot clamp the accesses
454 * here.
455 *
456 * If the length is small (as is the case for address_space_ldl/stl),
457 * everything works fine. If the incoming length is large, however,
458 * the caller really has to do the clamping through memory_access_size.
459 */
460 if (memory_region_is_ram(mr)) {
461 diff = int128_sub(section->size, int128_make64(addr));
462 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
463 }
464 return section;
465 }
466
467 /* Called from RCU critical section */
468 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
469 bool is_write)
470 {
471 IOMMUTLBEntry iotlb = {0};
472 MemoryRegionSection *section;
473 MemoryRegion *mr;
474
475 for (;;) {
476 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
477 section = address_space_lookup_region(d, addr, false);
478 addr = addr - section->offset_within_address_space
479 + section->offset_within_region;
480 mr = section->mr;
481
482 if (!mr->iommu_ops) {
483 break;
484 }
485
486 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
487 if (!(iotlb.perm & (1 << is_write))) {
488 iotlb.target_as = NULL;
489 break;
490 }
491
492 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
493 | (addr & iotlb.addr_mask));
494 as = iotlb.target_as;
495 }
496
497 return iotlb;
498 }
499
500 /* Called from RCU critical section */
501 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
502 hwaddr *xlat, hwaddr *plen,
503 bool is_write)
504 {
505 IOMMUTLBEntry iotlb;
506 MemoryRegionSection *section;
507 MemoryRegion *mr;
508
509 for (;;) {
510 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
511 section = address_space_translate_internal(d, addr, &addr, plen, true);
512 mr = section->mr;
513
514 if (!mr->iommu_ops) {
515 break;
516 }
517
518 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
519 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
520 | (addr & iotlb.addr_mask));
521 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
522 if (!(iotlb.perm & (1 << is_write))) {
523 mr = &io_mem_unassigned;
524 break;
525 }
526
527 as = iotlb.target_as;
528 }
529
530 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
531 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
532 *plen = MIN(page, *plen);
533 }
534
535 *xlat = addr;
536 return mr;
537 }
538
539 /* Called from RCU critical section */
540 MemoryRegionSection *
541 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
542 hwaddr *xlat, hwaddr *plen)
543 {
544 MemoryRegionSection *section;
545 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
546
547 section = address_space_translate_internal(d, addr, xlat, plen, false);
548
549 assert(!section->mr->iommu_ops);
550 return section;
551 }
552 #endif
553
554 #if !defined(CONFIG_USER_ONLY)
555
556 static int cpu_common_post_load(void *opaque, int version_id)
557 {
558 CPUState *cpu = opaque;
559
560 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
561 version_id is increased. */
562 cpu->interrupt_request &= ~0x01;
563 tlb_flush(cpu);
564
565 return 0;
566 }
567
568 static int cpu_common_pre_load(void *opaque)
569 {
570 CPUState *cpu = opaque;
571
572 cpu->exception_index = -1;
573
574 return 0;
575 }
576
577 static bool cpu_common_exception_index_needed(void *opaque)
578 {
579 CPUState *cpu = opaque;
580
581 return tcg_enabled() && cpu->exception_index != -1;
582 }
583
584 static const VMStateDescription vmstate_cpu_common_exception_index = {
585 .name = "cpu_common/exception_index",
586 .version_id = 1,
587 .minimum_version_id = 1,
588 .needed = cpu_common_exception_index_needed,
589 .fields = (VMStateField[]) {
590 VMSTATE_INT32(exception_index, CPUState),
591 VMSTATE_END_OF_LIST()
592 }
593 };
594
595 static bool cpu_common_crash_occurred_needed(void *opaque)
596 {
597 CPUState *cpu = opaque;
598
599 return cpu->crash_occurred;
600 }
601
602 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
603 .name = "cpu_common/crash_occurred",
604 .version_id = 1,
605 .minimum_version_id = 1,
606 .needed = cpu_common_crash_occurred_needed,
607 .fields = (VMStateField[]) {
608 VMSTATE_BOOL(crash_occurred, CPUState),
609 VMSTATE_END_OF_LIST()
610 }
611 };
612
613 const VMStateDescription vmstate_cpu_common = {
614 .name = "cpu_common",
615 .version_id = 1,
616 .minimum_version_id = 1,
617 .pre_load = cpu_common_pre_load,
618 .post_load = cpu_common_post_load,
619 .fields = (VMStateField[]) {
620 VMSTATE_UINT32(halted, CPUState),
621 VMSTATE_UINT32(interrupt_request, CPUState),
622 VMSTATE_END_OF_LIST()
623 },
624 .subsections = (const VMStateDescription*[]) {
625 &vmstate_cpu_common_exception_index,
626 &vmstate_cpu_common_crash_occurred,
627 NULL
628 }
629 };
630
631 #endif
632
633 CPUState *qemu_get_cpu(int index)
634 {
635 CPUState *cpu;
636
637 CPU_FOREACH(cpu) {
638 if (cpu->cpu_index == index) {
639 return cpu;
640 }
641 }
642
643 return NULL;
644 }
645
646 #if !defined(CONFIG_USER_ONLY)
647 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
648 {
649 CPUAddressSpace *newas;
650
651 /* Target code should have set num_ases before calling us */
652 assert(asidx < cpu->num_ases);
653
654 if (asidx == 0) {
655 /* address space 0 gets the convenience alias */
656 cpu->as = as;
657 }
658
659 /* KVM cannot currently support multiple address spaces. */
660 assert(asidx == 0 || !kvm_enabled());
661
662 if (!cpu->cpu_ases) {
663 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
664 }
665
666 newas = &cpu->cpu_ases[asidx];
667 newas->cpu = cpu;
668 newas->as = as;
669 if (tcg_enabled()) {
670 newas->tcg_as_listener.commit = tcg_commit;
671 memory_listener_register(&newas->tcg_as_listener, as);
672 }
673 }
674
675 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
676 {
677 /* Return the AddressSpace corresponding to the specified index */
678 return cpu->cpu_ases[asidx].as;
679 }
680 #endif
681
682 void cpu_exec_unrealizefn(CPUState *cpu)
683 {
684 CPUClass *cc = CPU_GET_CLASS(cpu);
685
686 cpu_list_remove(cpu);
687
688 if (cc->vmsd != NULL) {
689 vmstate_unregister(NULL, cc->vmsd, cpu);
690 }
691 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
692 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
693 }
694 }
695
696 void cpu_exec_initfn(CPUState *cpu)
697 {
698 cpu->as = NULL;
699 cpu->num_ases = 0;
700
701 #ifndef CONFIG_USER_ONLY
702 cpu->thread_id = qemu_get_thread_id();
703
704 /* This is a softmmu CPU object, so create a property for it
705 * so users can wire up its memory. (This can't go in qom/cpu.c
706 * because that file is compiled only once for both user-mode
707 * and system builds.) The default if no link is set up is to use
708 * the system address space.
709 */
710 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
711 (Object **)&cpu->memory,
712 qdev_prop_allow_set_link_before_realize,
713 OBJ_PROP_LINK_UNREF_ON_RELEASE,
714 &error_abort);
715 cpu->memory = system_memory;
716 object_ref(OBJECT(cpu->memory));
717 #endif
718 }
719
720 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
721 {
722 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
723
724 cpu_list_add(cpu);
725
726 #ifndef CONFIG_USER_ONLY
727 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
728 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
729 }
730 if (cc->vmsd != NULL) {
731 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
732 }
733 #endif
734 }
735
736 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
737 {
738 /* Flush the whole TB as this will not have race conditions
739 * even if we don't have proper locking yet.
740 * Ideally we would just invalidate the TBs for the
741 * specified PC.
742 */
743 tb_flush(cpu);
744 }
745
746 #if defined(CONFIG_USER_ONLY)
747 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
748
749 {
750 }
751
752 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
753 int flags)
754 {
755 return -ENOSYS;
756 }
757
758 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
759 {
760 }
761
762 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
763 int flags, CPUWatchpoint **watchpoint)
764 {
765 return -ENOSYS;
766 }
767 #else
768 /* Add a watchpoint. */
769 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
770 int flags, CPUWatchpoint **watchpoint)
771 {
772 CPUWatchpoint *wp;
773
774 /* forbid ranges which are empty or run off the end of the address space */
775 if (len == 0 || (addr + len - 1) < addr) {
776 error_report("tried to set invalid watchpoint at %"
777 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
778 return -EINVAL;
779 }
780 wp = g_malloc(sizeof(*wp));
781
782 wp->vaddr = addr;
783 wp->len = len;
784 wp->flags = flags;
785
786 /* keep all GDB-injected watchpoints in front */
787 if (flags & BP_GDB) {
788 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
789 } else {
790 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
791 }
792
793 tlb_flush_page(cpu, addr);
794
795 if (watchpoint)
796 *watchpoint = wp;
797 return 0;
798 }
799
800 /* Remove a specific watchpoint. */
801 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
802 int flags)
803 {
804 CPUWatchpoint *wp;
805
806 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
807 if (addr == wp->vaddr && len == wp->len
808 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
809 cpu_watchpoint_remove_by_ref(cpu, wp);
810 return 0;
811 }
812 }
813 return -ENOENT;
814 }
815
816 /* Remove a specific watchpoint by reference. */
817 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
818 {
819 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
820
821 tlb_flush_page(cpu, watchpoint->vaddr);
822
823 g_free(watchpoint);
824 }
825
826 /* Remove all matching watchpoints. */
827 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
828 {
829 CPUWatchpoint *wp, *next;
830
831 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
832 if (wp->flags & mask) {
833 cpu_watchpoint_remove_by_ref(cpu, wp);
834 }
835 }
836 }
837
838 /* Return true if this watchpoint address matches the specified
839 * access (ie the address range covered by the watchpoint overlaps
840 * partially or completely with the address range covered by the
841 * access).
842 */
843 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
844 vaddr addr,
845 vaddr len)
846 {
847 /* We know the lengths are non-zero, but a little caution is
848 * required to avoid errors in the case where the range ends
849 * exactly at the top of the address space and so addr + len
850 * wraps round to zero.
851 */
852 vaddr wpend = wp->vaddr + wp->len - 1;
853 vaddr addrend = addr + len - 1;
854
855 return !(addr > wpend || wp->vaddr > addrend);
856 }
857
858 #endif
859
860 /* Add a breakpoint. */
861 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
862 CPUBreakpoint **breakpoint)
863 {
864 CPUBreakpoint *bp;
865
866 bp = g_malloc(sizeof(*bp));
867
868 bp->pc = pc;
869 bp->flags = flags;
870
871 /* keep all GDB-injected breakpoints in front */
872 if (flags & BP_GDB) {
873 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
874 } else {
875 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
876 }
877
878 breakpoint_invalidate(cpu, pc);
879
880 if (breakpoint) {
881 *breakpoint = bp;
882 }
883 return 0;
884 }
885
886 /* Remove a specific breakpoint. */
887 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
888 {
889 CPUBreakpoint *bp;
890
891 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
892 if (bp->pc == pc && bp->flags == flags) {
893 cpu_breakpoint_remove_by_ref(cpu, bp);
894 return 0;
895 }
896 }
897 return -ENOENT;
898 }
899
900 /* Remove a specific breakpoint by reference. */
901 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
902 {
903 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
904
905 breakpoint_invalidate(cpu, breakpoint->pc);
906
907 g_free(breakpoint);
908 }
909
910 /* Remove all matching breakpoints. */
911 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
912 {
913 CPUBreakpoint *bp, *next;
914
915 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
916 if (bp->flags & mask) {
917 cpu_breakpoint_remove_by_ref(cpu, bp);
918 }
919 }
920 }
921
922 /* enable or disable single step mode. EXCP_DEBUG is returned by the
923 CPU loop after each instruction */
924 void cpu_single_step(CPUState *cpu, int enabled)
925 {
926 if (cpu->singlestep_enabled != enabled) {
927 cpu->singlestep_enabled = enabled;
928 if (kvm_enabled()) {
929 kvm_update_guest_debug(cpu, 0);
930 } else {
931 /* must flush all the translated code to avoid inconsistencies */
932 /* XXX: only flush what is necessary */
933 tb_flush(cpu);
934 }
935 }
936 }
937
938 void cpu_abort(CPUState *cpu, const char *fmt, ...)
939 {
940 va_list ap;
941 va_list ap2;
942
943 va_start(ap, fmt);
944 va_copy(ap2, ap);
945 fprintf(stderr, "qemu: fatal: ");
946 vfprintf(stderr, fmt, ap);
947 fprintf(stderr, "\n");
948 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
949 if (qemu_log_separate()) {
950 qemu_log_lock();
951 qemu_log("qemu: fatal: ");
952 qemu_log_vprintf(fmt, ap2);
953 qemu_log("\n");
954 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
955 qemu_log_flush();
956 qemu_log_unlock();
957 qemu_log_close();
958 }
959 va_end(ap2);
960 va_end(ap);
961 replay_finish();
962 #if defined(CONFIG_USER_ONLY)
963 {
964 struct sigaction act;
965 sigfillset(&act.sa_mask);
966 act.sa_handler = SIG_DFL;
967 sigaction(SIGABRT, &act, NULL);
968 }
969 #endif
970 abort();
971 }
972
973 #if !defined(CONFIG_USER_ONLY)
974 /* Called from RCU critical section */
975 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
976 {
977 RAMBlock *block;
978
979 block = atomic_rcu_read(&ram_list.mru_block);
980 if (block && addr - block->offset < block->max_length) {
981 return block;
982 }
983 RAMBLOCK_FOREACH(block) {
984 if (addr - block->offset < block->max_length) {
985 goto found;
986 }
987 }
988
989 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
990 abort();
991
992 found:
993 /* It is safe to write mru_block outside the iothread lock. This
994 * is what happens:
995 *
996 * mru_block = xxx
997 * rcu_read_unlock()
998 * xxx removed from list
999 * rcu_read_lock()
1000 * read mru_block
1001 * mru_block = NULL;
1002 * call_rcu(reclaim_ramblock, xxx);
1003 * rcu_read_unlock()
1004 *
1005 * atomic_rcu_set is not needed here. The block was already published
1006 * when it was placed into the list. Here we're just making an extra
1007 * copy of the pointer.
1008 */
1009 ram_list.mru_block = block;
1010 return block;
1011 }
1012
1013 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1014 {
1015 CPUState *cpu;
1016 ram_addr_t start1;
1017 RAMBlock *block;
1018 ram_addr_t end;
1019
1020 end = TARGET_PAGE_ALIGN(start + length);
1021 start &= TARGET_PAGE_MASK;
1022
1023 rcu_read_lock();
1024 block = qemu_get_ram_block(start);
1025 assert(block == qemu_get_ram_block(end - 1));
1026 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1027 CPU_FOREACH(cpu) {
1028 tlb_reset_dirty(cpu, start1, length);
1029 }
1030 rcu_read_unlock();
1031 }
1032
1033 /* Note: start and end must be within the same ram block. */
1034 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1035 ram_addr_t length,
1036 unsigned client)
1037 {
1038 DirtyMemoryBlocks *blocks;
1039 unsigned long end, page;
1040 bool dirty = false;
1041
1042 if (length == 0) {
1043 return false;
1044 }
1045
1046 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1047 page = start >> TARGET_PAGE_BITS;
1048
1049 rcu_read_lock();
1050
1051 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1052
1053 while (page < end) {
1054 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1055 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1056 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1057
1058 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1059 offset, num);
1060 page += num;
1061 }
1062
1063 rcu_read_unlock();
1064
1065 if (dirty && tcg_enabled()) {
1066 tlb_reset_dirty_range_all(start, length);
1067 }
1068
1069 return dirty;
1070 }
1071
1072 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1073 (ram_addr_t start, ram_addr_t length, unsigned client)
1074 {
1075 DirtyMemoryBlocks *blocks;
1076 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1077 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1078 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1079 DirtyBitmapSnapshot *snap;
1080 unsigned long page, end, dest;
1081
1082 snap = g_malloc0(sizeof(*snap) +
1083 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1084 snap->start = first;
1085 snap->end = last;
1086
1087 page = first >> TARGET_PAGE_BITS;
1088 end = last >> TARGET_PAGE_BITS;
1089 dest = 0;
1090
1091 rcu_read_lock();
1092
1093 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1094
1095 while (page < end) {
1096 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1097 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1098 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1099
1100 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1101 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1102 offset >>= BITS_PER_LEVEL;
1103
1104 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1105 blocks->blocks[idx] + offset,
1106 num);
1107 page += num;
1108 dest += num >> BITS_PER_LEVEL;
1109 }
1110
1111 rcu_read_unlock();
1112
1113 if (tcg_enabled()) {
1114 tlb_reset_dirty_range_all(start, length);
1115 }
1116
1117 return snap;
1118 }
1119
1120 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1121 ram_addr_t start,
1122 ram_addr_t length)
1123 {
1124 unsigned long page, end;
1125
1126 assert(start >= snap->start);
1127 assert(start + length <= snap->end);
1128
1129 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1130 page = (start - snap->start) >> TARGET_PAGE_BITS;
1131
1132 while (page < end) {
1133 if (test_bit(page, snap->dirty)) {
1134 return true;
1135 }
1136 page++;
1137 }
1138 return false;
1139 }
1140
1141 /* Called from RCU critical section */
1142 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1143 MemoryRegionSection *section,
1144 target_ulong vaddr,
1145 hwaddr paddr, hwaddr xlat,
1146 int prot,
1147 target_ulong *address)
1148 {
1149 hwaddr iotlb;
1150 CPUWatchpoint *wp;
1151
1152 if (memory_region_is_ram(section->mr)) {
1153 /* Normal RAM. */
1154 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1155 if (!section->readonly) {
1156 iotlb |= PHYS_SECTION_NOTDIRTY;
1157 } else {
1158 iotlb |= PHYS_SECTION_ROM;
1159 }
1160 } else {
1161 AddressSpaceDispatch *d;
1162
1163 d = atomic_rcu_read(&section->address_space->dispatch);
1164 iotlb = section - d->map.sections;
1165 iotlb += xlat;
1166 }
1167
1168 /* Make accesses to pages with watchpoints go via the
1169 watchpoint trap routines. */
1170 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1171 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1172 /* Avoid trapping reads of pages with a write breakpoint. */
1173 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1174 iotlb = PHYS_SECTION_WATCH + paddr;
1175 *address |= TLB_MMIO;
1176 break;
1177 }
1178 }
1179 }
1180
1181 return iotlb;
1182 }
1183 #endif /* defined(CONFIG_USER_ONLY) */
1184
1185 #if !defined(CONFIG_USER_ONLY)
1186
1187 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1188 uint16_t section);
1189 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1190
1191 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1192 qemu_anon_ram_alloc;
1193
1194 /*
1195 * Set a custom physical guest memory alloator.
1196 * Accelerators with unusual needs may need this. Hopefully, we can
1197 * get rid of it eventually.
1198 */
1199 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1200 {
1201 phys_mem_alloc = alloc;
1202 }
1203
1204 static uint16_t phys_section_add(PhysPageMap *map,
1205 MemoryRegionSection *section)
1206 {
1207 /* The physical section number is ORed with a page-aligned
1208 * pointer to produce the iotlb entries. Thus it should
1209 * never overflow into the page-aligned value.
1210 */
1211 assert(map->sections_nb < TARGET_PAGE_SIZE);
1212
1213 if (map->sections_nb == map->sections_nb_alloc) {
1214 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1215 map->sections = g_renew(MemoryRegionSection, map->sections,
1216 map->sections_nb_alloc);
1217 }
1218 map->sections[map->sections_nb] = *section;
1219 memory_region_ref(section->mr);
1220 return map->sections_nb++;
1221 }
1222
1223 static void phys_section_destroy(MemoryRegion *mr)
1224 {
1225 bool have_sub_page = mr->subpage;
1226
1227 memory_region_unref(mr);
1228
1229 if (have_sub_page) {
1230 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1231 object_unref(OBJECT(&subpage->iomem));
1232 g_free(subpage);
1233 }
1234 }
1235
1236 static void phys_sections_free(PhysPageMap *map)
1237 {
1238 while (map->sections_nb > 0) {
1239 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1240 phys_section_destroy(section->mr);
1241 }
1242 g_free(map->sections);
1243 g_free(map->nodes);
1244 }
1245
1246 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1247 {
1248 subpage_t *subpage;
1249 hwaddr base = section->offset_within_address_space
1250 & TARGET_PAGE_MASK;
1251 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1252 d->map.nodes, d->map.sections);
1253 MemoryRegionSection subsection = {
1254 .offset_within_address_space = base,
1255 .size = int128_make64(TARGET_PAGE_SIZE),
1256 };
1257 hwaddr start, end;
1258
1259 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1260
1261 if (!(existing->mr->subpage)) {
1262 subpage = subpage_init(d->as, base);
1263 subsection.address_space = d->as;
1264 subsection.mr = &subpage->iomem;
1265 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1266 phys_section_add(&d->map, &subsection));
1267 } else {
1268 subpage = container_of(existing->mr, subpage_t, iomem);
1269 }
1270 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1271 end = start + int128_get64(section->size) - 1;
1272 subpage_register(subpage, start, end,
1273 phys_section_add(&d->map, section));
1274 }
1275
1276
1277 static void register_multipage(AddressSpaceDispatch *d,
1278 MemoryRegionSection *section)
1279 {
1280 hwaddr start_addr = section->offset_within_address_space;
1281 uint16_t section_index = phys_section_add(&d->map, section);
1282 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1283 TARGET_PAGE_BITS));
1284
1285 assert(num_pages);
1286 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1287 }
1288
1289 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1290 {
1291 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1292 AddressSpaceDispatch *d = as->next_dispatch;
1293 MemoryRegionSection now = *section, remain = *section;
1294 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1295
1296 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1297 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1298 - now.offset_within_address_space;
1299
1300 now.size = int128_min(int128_make64(left), now.size);
1301 register_subpage(d, &now);
1302 } else {
1303 now.size = int128_zero();
1304 }
1305 while (int128_ne(remain.size, now.size)) {
1306 remain.size = int128_sub(remain.size, now.size);
1307 remain.offset_within_address_space += int128_get64(now.size);
1308 remain.offset_within_region += int128_get64(now.size);
1309 now = remain;
1310 if (int128_lt(remain.size, page_size)) {
1311 register_subpage(d, &now);
1312 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1313 now.size = page_size;
1314 register_subpage(d, &now);
1315 } else {
1316 now.size = int128_and(now.size, int128_neg(page_size));
1317 register_multipage(d, &now);
1318 }
1319 }
1320 }
1321
1322 void qemu_flush_coalesced_mmio_buffer(void)
1323 {
1324 if (kvm_enabled())
1325 kvm_flush_coalesced_mmio_buffer();
1326 }
1327
1328 void qemu_mutex_lock_ramlist(void)
1329 {
1330 qemu_mutex_lock(&ram_list.mutex);
1331 }
1332
1333 void qemu_mutex_unlock_ramlist(void)
1334 {
1335 qemu_mutex_unlock(&ram_list.mutex);
1336 }
1337
1338 void ram_block_dump(Monitor *mon)
1339 {
1340 RAMBlock *block;
1341 char *psize;
1342
1343 rcu_read_lock();
1344 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1345 "Block Name", "PSize", "Offset", "Used", "Total");
1346 RAMBLOCK_FOREACH(block) {
1347 psize = size_to_str(block->page_size);
1348 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1349 " 0x%016" PRIx64 "\n", block->idstr, psize,
1350 (uint64_t)block->offset,
1351 (uint64_t)block->used_length,
1352 (uint64_t)block->max_length);
1353 g_free(psize);
1354 }
1355 rcu_read_unlock();
1356 }
1357
1358 #ifdef __linux__
1359 /*
1360 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1361 * may or may not name the same files / on the same filesystem now as
1362 * when we actually open and map them. Iterate over the file
1363 * descriptors instead, and use qemu_fd_getpagesize().
1364 */
1365 static int find_max_supported_pagesize(Object *obj, void *opaque)
1366 {
1367 char *mem_path;
1368 long *hpsize_min = opaque;
1369
1370 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1371 mem_path = object_property_get_str(obj, "mem-path", NULL);
1372 if (mem_path) {
1373 long hpsize = qemu_mempath_getpagesize(mem_path);
1374 if (hpsize < *hpsize_min) {
1375 *hpsize_min = hpsize;
1376 }
1377 } else {
1378 *hpsize_min = getpagesize();
1379 }
1380 }
1381
1382 return 0;
1383 }
1384
1385 long qemu_getrampagesize(void)
1386 {
1387 long hpsize = LONG_MAX;
1388 long mainrampagesize;
1389 Object *memdev_root;
1390
1391 if (mem_path) {
1392 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1393 } else {
1394 mainrampagesize = getpagesize();
1395 }
1396
1397 /* it's possible we have memory-backend objects with
1398 * hugepage-backed RAM. these may get mapped into system
1399 * address space via -numa parameters or memory hotplug
1400 * hooks. we want to take these into account, but we
1401 * also want to make sure these supported hugepage
1402 * sizes are applicable across the entire range of memory
1403 * we may boot from, so we take the min across all
1404 * backends, and assume normal pages in cases where a
1405 * backend isn't backed by hugepages.
1406 */
1407 memdev_root = object_resolve_path("/objects", NULL);
1408 if (memdev_root) {
1409 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1410 }
1411 if (hpsize == LONG_MAX) {
1412 /* No additional memory regions found ==> Report main RAM page size */
1413 return mainrampagesize;
1414 }
1415
1416 /* If NUMA is disabled or the NUMA nodes are not backed with a
1417 * memory-backend, then there is at least one node using "normal" RAM,
1418 * so if its page size is smaller we have got to report that size instead.
1419 */
1420 if (hpsize > mainrampagesize &&
1421 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1422 static bool warned;
1423 if (!warned) {
1424 error_report("Huge page support disabled (n/a for main memory).");
1425 warned = true;
1426 }
1427 return mainrampagesize;
1428 }
1429
1430 return hpsize;
1431 }
1432 #else
1433 long qemu_getrampagesize(void)
1434 {
1435 return getpagesize();
1436 }
1437 #endif
1438
1439 #ifdef __linux__
1440 static int64_t get_file_size(int fd)
1441 {
1442 int64_t size = lseek(fd, 0, SEEK_END);
1443 if (size < 0) {
1444 return -errno;
1445 }
1446 return size;
1447 }
1448
1449 static void *file_ram_alloc(RAMBlock *block,
1450 ram_addr_t memory,
1451 const char *path,
1452 Error **errp)
1453 {
1454 bool unlink_on_error = false;
1455 char *filename;
1456 char *sanitized_name;
1457 char *c;
1458 void *area = MAP_FAILED;
1459 int fd = -1;
1460 int64_t file_size;
1461
1462 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1463 error_setg(errp,
1464 "host lacks kvm mmu notifiers, -mem-path unsupported");
1465 return NULL;
1466 }
1467
1468 for (;;) {
1469 fd = open(path, O_RDWR);
1470 if (fd >= 0) {
1471 /* @path names an existing file, use it */
1472 break;
1473 }
1474 if (errno == ENOENT) {
1475 /* @path names a file that doesn't exist, create it */
1476 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1477 if (fd >= 0) {
1478 unlink_on_error = true;
1479 break;
1480 }
1481 } else if (errno == EISDIR) {
1482 /* @path names a directory, create a file there */
1483 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1484 sanitized_name = g_strdup(memory_region_name(block->mr));
1485 for (c = sanitized_name; *c != '\0'; c++) {
1486 if (*c == '/') {
1487 *c = '_';
1488 }
1489 }
1490
1491 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1492 sanitized_name);
1493 g_free(sanitized_name);
1494
1495 fd = mkstemp(filename);
1496 if (fd >= 0) {
1497 unlink(filename);
1498 g_free(filename);
1499 break;
1500 }
1501 g_free(filename);
1502 }
1503 if (errno != EEXIST && errno != EINTR) {
1504 error_setg_errno(errp, errno,
1505 "can't open backing store %s for guest RAM",
1506 path);
1507 goto error;
1508 }
1509 /*
1510 * Try again on EINTR and EEXIST. The latter happens when
1511 * something else creates the file between our two open().
1512 */
1513 }
1514
1515 block->page_size = qemu_fd_getpagesize(fd);
1516 block->mr->align = block->page_size;
1517 #if defined(__s390x__)
1518 if (kvm_enabled()) {
1519 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1520 }
1521 #endif
1522
1523 file_size = get_file_size(fd);
1524
1525 if (memory < block->page_size) {
1526 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1527 "or larger than page size 0x%zx",
1528 memory, block->page_size);
1529 goto error;
1530 }
1531
1532 if (file_size > 0 && file_size < memory) {
1533 error_setg(errp, "backing store %s size 0x%" PRIx64
1534 " does not match 'size' option 0x" RAM_ADDR_FMT,
1535 path, file_size, memory);
1536 goto error;
1537 }
1538
1539 memory = ROUND_UP(memory, block->page_size);
1540
1541 /*
1542 * ftruncate is not supported by hugetlbfs in older
1543 * hosts, so don't bother bailing out on errors.
1544 * If anything goes wrong with it under other filesystems,
1545 * mmap will fail.
1546 *
1547 * Do not truncate the non-empty backend file to avoid corrupting
1548 * the existing data in the file. Disabling shrinking is not
1549 * enough. For example, the current vNVDIMM implementation stores
1550 * the guest NVDIMM labels at the end of the backend file. If the
1551 * backend file is later extended, QEMU will not be able to find
1552 * those labels. Therefore, extending the non-empty backend file
1553 * is disabled as well.
1554 */
1555 if (!file_size && ftruncate(fd, memory)) {
1556 perror("ftruncate");
1557 }
1558
1559 area = qemu_ram_mmap(fd, memory, block->mr->align,
1560 block->flags & RAM_SHARED);
1561 if (area == MAP_FAILED) {
1562 error_setg_errno(errp, errno,
1563 "unable to map backing store for guest RAM");
1564 goto error;
1565 }
1566
1567 if (mem_prealloc) {
1568 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1569 if (errp && *errp) {
1570 goto error;
1571 }
1572 }
1573
1574 block->fd = fd;
1575 return area;
1576
1577 error:
1578 if (area != MAP_FAILED) {
1579 qemu_ram_munmap(area, memory);
1580 }
1581 if (unlink_on_error) {
1582 unlink(path);
1583 }
1584 if (fd != -1) {
1585 close(fd);
1586 }
1587 return NULL;
1588 }
1589 #endif
1590
1591 /* Called with the ramlist lock held. */
1592 static ram_addr_t find_ram_offset(ram_addr_t size)
1593 {
1594 RAMBlock *block, *next_block;
1595 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1596
1597 assert(size != 0); /* it would hand out same offset multiple times */
1598
1599 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1600 return 0;
1601 }
1602
1603 RAMBLOCK_FOREACH(block) {
1604 ram_addr_t end, next = RAM_ADDR_MAX;
1605
1606 end = block->offset + block->max_length;
1607
1608 RAMBLOCK_FOREACH(next_block) {
1609 if (next_block->offset >= end) {
1610 next = MIN(next, next_block->offset);
1611 }
1612 }
1613 if (next - end >= size && next - end < mingap) {
1614 offset = end;
1615 mingap = next - end;
1616 }
1617 }
1618
1619 if (offset == RAM_ADDR_MAX) {
1620 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1621 (uint64_t)size);
1622 abort();
1623 }
1624
1625 return offset;
1626 }
1627
1628 unsigned long last_ram_page(void)
1629 {
1630 RAMBlock *block;
1631 ram_addr_t last = 0;
1632
1633 rcu_read_lock();
1634 RAMBLOCK_FOREACH(block) {
1635 last = MAX(last, block->offset + block->max_length);
1636 }
1637 rcu_read_unlock();
1638 return last >> TARGET_PAGE_BITS;
1639 }
1640
1641 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1642 {
1643 int ret;
1644
1645 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1646 if (!machine_dump_guest_core(current_machine)) {
1647 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1648 if (ret) {
1649 perror("qemu_madvise");
1650 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1651 "but dump_guest_core=off specified\n");
1652 }
1653 }
1654 }
1655
1656 const char *qemu_ram_get_idstr(RAMBlock *rb)
1657 {
1658 return rb->idstr;
1659 }
1660
1661 bool qemu_ram_is_shared(RAMBlock *rb)
1662 {
1663 return rb->flags & RAM_SHARED;
1664 }
1665
1666 /* Called with iothread lock held. */
1667 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1668 {
1669 RAMBlock *block;
1670
1671 assert(new_block);
1672 assert(!new_block->idstr[0]);
1673
1674 if (dev) {
1675 char *id = qdev_get_dev_path(dev);
1676 if (id) {
1677 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1678 g_free(id);
1679 }
1680 }
1681 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1682
1683 rcu_read_lock();
1684 RAMBLOCK_FOREACH(block) {
1685 if (block != new_block &&
1686 !strcmp(block->idstr, new_block->idstr)) {
1687 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1688 new_block->idstr);
1689 abort();
1690 }
1691 }
1692 rcu_read_unlock();
1693 }
1694
1695 /* Called with iothread lock held. */
1696 void qemu_ram_unset_idstr(RAMBlock *block)
1697 {
1698 /* FIXME: arch_init.c assumes that this is not called throughout
1699 * migration. Ignore the problem since hot-unplug during migration
1700 * does not work anyway.
1701 */
1702 if (block) {
1703 memset(block->idstr, 0, sizeof(block->idstr));
1704 }
1705 }
1706
1707 size_t qemu_ram_pagesize(RAMBlock *rb)
1708 {
1709 return rb->page_size;
1710 }
1711
1712 /* Returns the largest size of page in use */
1713 size_t qemu_ram_pagesize_largest(void)
1714 {
1715 RAMBlock *block;
1716 size_t largest = 0;
1717
1718 RAMBLOCK_FOREACH(block) {
1719 largest = MAX(largest, qemu_ram_pagesize(block));
1720 }
1721
1722 return largest;
1723 }
1724
1725 static int memory_try_enable_merging(void *addr, size_t len)
1726 {
1727 if (!machine_mem_merge(current_machine)) {
1728 /* disabled by the user */
1729 return 0;
1730 }
1731
1732 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1733 }
1734
1735 /* Only legal before guest might have detected the memory size: e.g. on
1736 * incoming migration, or right after reset.
1737 *
1738 * As memory core doesn't know how is memory accessed, it is up to
1739 * resize callback to update device state and/or add assertions to detect
1740 * misuse, if necessary.
1741 */
1742 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1743 {
1744 assert(block);
1745
1746 newsize = HOST_PAGE_ALIGN(newsize);
1747
1748 if (block->used_length == newsize) {
1749 return 0;
1750 }
1751
1752 if (!(block->flags & RAM_RESIZEABLE)) {
1753 error_setg_errno(errp, EINVAL,
1754 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1755 " in != 0x" RAM_ADDR_FMT, block->idstr,
1756 newsize, block->used_length);
1757 return -EINVAL;
1758 }
1759
1760 if (block->max_length < newsize) {
1761 error_setg_errno(errp, EINVAL,
1762 "Length too large: %s: 0x" RAM_ADDR_FMT
1763 " > 0x" RAM_ADDR_FMT, block->idstr,
1764 newsize, block->max_length);
1765 return -EINVAL;
1766 }
1767
1768 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1769 block->used_length = newsize;
1770 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1771 DIRTY_CLIENTS_ALL);
1772 memory_region_set_size(block->mr, newsize);
1773 if (block->resized) {
1774 block->resized(block->idstr, newsize, block->host);
1775 }
1776 return 0;
1777 }
1778
1779 /* Called with ram_list.mutex held */
1780 static void dirty_memory_extend(ram_addr_t old_ram_size,
1781 ram_addr_t new_ram_size)
1782 {
1783 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1784 DIRTY_MEMORY_BLOCK_SIZE);
1785 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1786 DIRTY_MEMORY_BLOCK_SIZE);
1787 int i;
1788
1789 /* Only need to extend if block count increased */
1790 if (new_num_blocks <= old_num_blocks) {
1791 return;
1792 }
1793
1794 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1795 DirtyMemoryBlocks *old_blocks;
1796 DirtyMemoryBlocks *new_blocks;
1797 int j;
1798
1799 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1800 new_blocks = g_malloc(sizeof(*new_blocks) +
1801 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1802
1803 if (old_num_blocks) {
1804 memcpy(new_blocks->blocks, old_blocks->blocks,
1805 old_num_blocks * sizeof(old_blocks->blocks[0]));
1806 }
1807
1808 for (j = old_num_blocks; j < new_num_blocks; j++) {
1809 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1810 }
1811
1812 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1813
1814 if (old_blocks) {
1815 g_free_rcu(old_blocks, rcu);
1816 }
1817 }
1818 }
1819
1820 static void ram_block_add(RAMBlock *new_block, Error **errp)
1821 {
1822 RAMBlock *block;
1823 RAMBlock *last_block = NULL;
1824 ram_addr_t old_ram_size, new_ram_size;
1825 Error *err = NULL;
1826
1827 old_ram_size = last_ram_page();
1828
1829 qemu_mutex_lock_ramlist();
1830 new_block->offset = find_ram_offset(new_block->max_length);
1831
1832 if (!new_block->host) {
1833 if (xen_enabled()) {
1834 xen_ram_alloc(new_block->offset, new_block->max_length,
1835 new_block->mr, &err);
1836 if (err) {
1837 error_propagate(errp, err);
1838 qemu_mutex_unlock_ramlist();
1839 return;
1840 }
1841 } else {
1842 new_block->host = phys_mem_alloc(new_block->max_length,
1843 &new_block->mr->align);
1844 if (!new_block->host) {
1845 error_setg_errno(errp, errno,
1846 "cannot set up guest memory '%s'",
1847 memory_region_name(new_block->mr));
1848 qemu_mutex_unlock_ramlist();
1849 return;
1850 }
1851 memory_try_enable_merging(new_block->host, new_block->max_length);
1852 }
1853 }
1854
1855 new_ram_size = MAX(old_ram_size,
1856 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1857 if (new_ram_size > old_ram_size) {
1858 dirty_memory_extend(old_ram_size, new_ram_size);
1859 }
1860 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1861 * QLIST (which has an RCU-friendly variant) does not have insertion at
1862 * tail, so save the last element in last_block.
1863 */
1864 RAMBLOCK_FOREACH(block) {
1865 last_block = block;
1866 if (block->max_length < new_block->max_length) {
1867 break;
1868 }
1869 }
1870 if (block) {
1871 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1872 } else if (last_block) {
1873 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1874 } else { /* list is empty */
1875 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1876 }
1877 ram_list.mru_block = NULL;
1878
1879 /* Write list before version */
1880 smp_wmb();
1881 ram_list.version++;
1882 qemu_mutex_unlock_ramlist();
1883
1884 cpu_physical_memory_set_dirty_range(new_block->offset,
1885 new_block->used_length,
1886 DIRTY_CLIENTS_ALL);
1887
1888 if (new_block->host) {
1889 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1890 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1891 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1892 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1893 ram_block_notify_add(new_block->host, new_block->max_length);
1894 }
1895 }
1896
1897 #ifdef __linux__
1898 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1899 bool share, const char *mem_path,
1900 Error **errp)
1901 {
1902 RAMBlock *new_block;
1903 Error *local_err = NULL;
1904
1905 if (xen_enabled()) {
1906 error_setg(errp, "-mem-path not supported with Xen");
1907 return NULL;
1908 }
1909
1910 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1911 /*
1912 * file_ram_alloc() needs to allocate just like
1913 * phys_mem_alloc, but we haven't bothered to provide
1914 * a hook there.
1915 */
1916 error_setg(errp,
1917 "-mem-path not supported with this accelerator");
1918 return NULL;
1919 }
1920
1921 size = HOST_PAGE_ALIGN(size);
1922 new_block = g_malloc0(sizeof(*new_block));
1923 new_block->mr = mr;
1924 new_block->used_length = size;
1925 new_block->max_length = size;
1926 new_block->flags = share ? RAM_SHARED : 0;
1927 new_block->host = file_ram_alloc(new_block, size,
1928 mem_path, errp);
1929 if (!new_block->host) {
1930 g_free(new_block);
1931 return NULL;
1932 }
1933
1934 ram_block_add(new_block, &local_err);
1935 if (local_err) {
1936 g_free(new_block);
1937 error_propagate(errp, local_err);
1938 return NULL;
1939 }
1940 return new_block;
1941 }
1942 #endif
1943
1944 static
1945 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1946 void (*resized)(const char*,
1947 uint64_t length,
1948 void *host),
1949 void *host, bool resizeable,
1950 MemoryRegion *mr, Error **errp)
1951 {
1952 RAMBlock *new_block;
1953 Error *local_err = NULL;
1954
1955 size = HOST_PAGE_ALIGN(size);
1956 max_size = HOST_PAGE_ALIGN(max_size);
1957 new_block = g_malloc0(sizeof(*new_block));
1958 new_block->mr = mr;
1959 new_block->resized = resized;
1960 new_block->used_length = size;
1961 new_block->max_length = max_size;
1962 assert(max_size >= size);
1963 new_block->fd = -1;
1964 new_block->page_size = getpagesize();
1965 new_block->host = host;
1966 if (host) {
1967 new_block->flags |= RAM_PREALLOC;
1968 }
1969 if (resizeable) {
1970 new_block->flags |= RAM_RESIZEABLE;
1971 }
1972 ram_block_add(new_block, &local_err);
1973 if (local_err) {
1974 g_free(new_block);
1975 error_propagate(errp, local_err);
1976 return NULL;
1977 }
1978 return new_block;
1979 }
1980
1981 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1982 MemoryRegion *mr, Error **errp)
1983 {
1984 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1985 }
1986
1987 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1988 {
1989 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1990 }
1991
1992 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1993 void (*resized)(const char*,
1994 uint64_t length,
1995 void *host),
1996 MemoryRegion *mr, Error **errp)
1997 {
1998 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1999 }
2000
2001 static void reclaim_ramblock(RAMBlock *block)
2002 {
2003 if (block->flags & RAM_PREALLOC) {
2004 ;
2005 } else if (xen_enabled()) {
2006 xen_invalidate_map_cache_entry(block->host);
2007 #ifndef _WIN32
2008 } else if (block->fd >= 0) {
2009 qemu_ram_munmap(block->host, block->max_length);
2010 close(block->fd);
2011 #endif
2012 } else {
2013 qemu_anon_ram_free(block->host, block->max_length);
2014 }
2015 g_free(block);
2016 }
2017
2018 void qemu_ram_free(RAMBlock *block)
2019 {
2020 if (!block) {
2021 return;
2022 }
2023
2024 if (block->host) {
2025 ram_block_notify_remove(block->host, block->max_length);
2026 }
2027
2028 qemu_mutex_lock_ramlist();
2029 QLIST_REMOVE_RCU(block, next);
2030 ram_list.mru_block = NULL;
2031 /* Write list before version */
2032 smp_wmb();
2033 ram_list.version++;
2034 call_rcu(block, reclaim_ramblock, rcu);
2035 qemu_mutex_unlock_ramlist();
2036 }
2037
2038 #ifndef _WIN32
2039 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2040 {
2041 RAMBlock *block;
2042 ram_addr_t offset;
2043 int flags;
2044 void *area, *vaddr;
2045
2046 RAMBLOCK_FOREACH(block) {
2047 offset = addr - block->offset;
2048 if (offset < block->max_length) {
2049 vaddr = ramblock_ptr(block, offset);
2050 if (block->flags & RAM_PREALLOC) {
2051 ;
2052 } else if (xen_enabled()) {
2053 abort();
2054 } else {
2055 flags = MAP_FIXED;
2056 if (block->fd >= 0) {
2057 flags |= (block->flags & RAM_SHARED ?
2058 MAP_SHARED : MAP_PRIVATE);
2059 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2060 flags, block->fd, offset);
2061 } else {
2062 /*
2063 * Remap needs to match alloc. Accelerators that
2064 * set phys_mem_alloc never remap. If they did,
2065 * we'd need a remap hook here.
2066 */
2067 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2068
2069 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2070 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2071 flags, -1, 0);
2072 }
2073 if (area != vaddr) {
2074 fprintf(stderr, "Could not remap addr: "
2075 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2076 length, addr);
2077 exit(1);
2078 }
2079 memory_try_enable_merging(vaddr, length);
2080 qemu_ram_setup_dump(vaddr, length);
2081 }
2082 }
2083 }
2084 }
2085 #endif /* !_WIN32 */
2086
2087 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2088 * This should not be used for general purpose DMA. Use address_space_map
2089 * or address_space_rw instead. For local memory (e.g. video ram) that the
2090 * device owns, use memory_region_get_ram_ptr.
2091 *
2092 * Called within RCU critical section.
2093 */
2094 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2095 {
2096 RAMBlock *block = ram_block;
2097
2098 if (block == NULL) {
2099 block = qemu_get_ram_block(addr);
2100 addr -= block->offset;
2101 }
2102
2103 if (xen_enabled() && block->host == NULL) {
2104 /* We need to check if the requested address is in the RAM
2105 * because we don't want to map the entire memory in QEMU.
2106 * In that case just map until the end of the page.
2107 */
2108 if (block->offset == 0) {
2109 return xen_map_cache(addr, 0, 0);
2110 }
2111
2112 block->host = xen_map_cache(block->offset, block->max_length, 1);
2113 }
2114 return ramblock_ptr(block, addr);
2115 }
2116
2117 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2118 * but takes a size argument.
2119 *
2120 * Called within RCU critical section.
2121 */
2122 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2123 hwaddr *size)
2124 {
2125 RAMBlock *block = ram_block;
2126 if (*size == 0) {
2127 return NULL;
2128 }
2129
2130 if (block == NULL) {
2131 block = qemu_get_ram_block(addr);
2132 addr -= block->offset;
2133 }
2134 *size = MIN(*size, block->max_length - addr);
2135
2136 if (xen_enabled() && block->host == NULL) {
2137 /* We need to check if the requested address is in the RAM
2138 * because we don't want to map the entire memory in QEMU.
2139 * In that case just map the requested area.
2140 */
2141 if (block->offset == 0) {
2142 return xen_map_cache(addr, *size, 1);
2143 }
2144
2145 block->host = xen_map_cache(block->offset, block->max_length, 1);
2146 }
2147
2148 return ramblock_ptr(block, addr);
2149 }
2150
2151 /*
2152 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2153 * in that RAMBlock.
2154 *
2155 * ptr: Host pointer to look up
2156 * round_offset: If true round the result offset down to a page boundary
2157 * *ram_addr: set to result ram_addr
2158 * *offset: set to result offset within the RAMBlock
2159 *
2160 * Returns: RAMBlock (or NULL if not found)
2161 *
2162 * By the time this function returns, the returned pointer is not protected
2163 * by RCU anymore. If the caller is not within an RCU critical section and
2164 * does not hold the iothread lock, it must have other means of protecting the
2165 * pointer, such as a reference to the region that includes the incoming
2166 * ram_addr_t.
2167 */
2168 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2169 ram_addr_t *offset)
2170 {
2171 RAMBlock *block;
2172 uint8_t *host = ptr;
2173
2174 if (xen_enabled()) {
2175 ram_addr_t ram_addr;
2176 rcu_read_lock();
2177 ram_addr = xen_ram_addr_from_mapcache(ptr);
2178 block = qemu_get_ram_block(ram_addr);
2179 if (block) {
2180 *offset = ram_addr - block->offset;
2181 }
2182 rcu_read_unlock();
2183 return block;
2184 }
2185
2186 rcu_read_lock();
2187 block = atomic_rcu_read(&ram_list.mru_block);
2188 if (block && block->host && host - block->host < block->max_length) {
2189 goto found;
2190 }
2191
2192 RAMBLOCK_FOREACH(block) {
2193 /* This case append when the block is not mapped. */
2194 if (block->host == NULL) {
2195 continue;
2196 }
2197 if (host - block->host < block->max_length) {
2198 goto found;
2199 }
2200 }
2201
2202 rcu_read_unlock();
2203 return NULL;
2204
2205 found:
2206 *offset = (host - block->host);
2207 if (round_offset) {
2208 *offset &= TARGET_PAGE_MASK;
2209 }
2210 rcu_read_unlock();
2211 return block;
2212 }
2213
2214 /*
2215 * Finds the named RAMBlock
2216 *
2217 * name: The name of RAMBlock to find
2218 *
2219 * Returns: RAMBlock (or NULL if not found)
2220 */
2221 RAMBlock *qemu_ram_block_by_name(const char *name)
2222 {
2223 RAMBlock *block;
2224
2225 RAMBLOCK_FOREACH(block) {
2226 if (!strcmp(name, block->idstr)) {
2227 return block;
2228 }
2229 }
2230
2231 return NULL;
2232 }
2233
2234 /* Some of the softmmu routines need to translate from a host pointer
2235 (typically a TLB entry) back to a ram offset. */
2236 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2237 {
2238 RAMBlock *block;
2239 ram_addr_t offset;
2240
2241 block = qemu_ram_block_from_host(ptr, false, &offset);
2242 if (!block) {
2243 return RAM_ADDR_INVALID;
2244 }
2245
2246 return block->offset + offset;
2247 }
2248
2249 /* Called within RCU critical section. */
2250 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2251 uint64_t val, unsigned size)
2252 {
2253 bool locked = false;
2254
2255 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2256 locked = true;
2257 tb_lock();
2258 tb_invalidate_phys_page_fast(ram_addr, size);
2259 }
2260 switch (size) {
2261 case 1:
2262 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2263 break;
2264 case 2:
2265 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2266 break;
2267 case 4:
2268 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2269 break;
2270 default:
2271 abort();
2272 }
2273
2274 if (locked) {
2275 tb_unlock();
2276 }
2277
2278 /* Set both VGA and migration bits for simplicity and to remove
2279 * the notdirty callback faster.
2280 */
2281 cpu_physical_memory_set_dirty_range(ram_addr, size,
2282 DIRTY_CLIENTS_NOCODE);
2283 /* we remove the notdirty callback only if the code has been
2284 flushed */
2285 if (!cpu_physical_memory_is_clean(ram_addr)) {
2286 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2287 }
2288 }
2289
2290 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2291 unsigned size, bool is_write)
2292 {
2293 return is_write;
2294 }
2295
2296 static const MemoryRegionOps notdirty_mem_ops = {
2297 .write = notdirty_mem_write,
2298 .valid.accepts = notdirty_mem_accepts,
2299 .endianness = DEVICE_NATIVE_ENDIAN,
2300 };
2301
2302 /* Generate a debug exception if a watchpoint has been hit. */
2303 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2304 {
2305 CPUState *cpu = current_cpu;
2306 CPUClass *cc = CPU_GET_CLASS(cpu);
2307 CPUArchState *env = cpu->env_ptr;
2308 target_ulong pc, cs_base;
2309 target_ulong vaddr;
2310 CPUWatchpoint *wp;
2311 uint32_t cpu_flags;
2312
2313 if (cpu->watchpoint_hit) {
2314 /* We re-entered the check after replacing the TB. Now raise
2315 * the debug interrupt so that is will trigger after the
2316 * current instruction. */
2317 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2318 return;
2319 }
2320 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2321 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2322 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2323 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2324 && (wp->flags & flags)) {
2325 if (flags == BP_MEM_READ) {
2326 wp->flags |= BP_WATCHPOINT_HIT_READ;
2327 } else {
2328 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2329 }
2330 wp->hitaddr = vaddr;
2331 wp->hitattrs = attrs;
2332 if (!cpu->watchpoint_hit) {
2333 if (wp->flags & BP_CPU &&
2334 !cc->debug_check_watchpoint(cpu, wp)) {
2335 wp->flags &= ~BP_WATCHPOINT_HIT;
2336 continue;
2337 }
2338 cpu->watchpoint_hit = wp;
2339
2340 /* Both tb_lock and iothread_mutex will be reset when
2341 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2342 * back into the cpu_exec main loop.
2343 */
2344 tb_lock();
2345 tb_check_watchpoint(cpu);
2346 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2347 cpu->exception_index = EXCP_DEBUG;
2348 cpu_loop_exit(cpu);
2349 } else {
2350 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2351 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2352 cpu_loop_exit_noexc(cpu);
2353 }
2354 }
2355 } else {
2356 wp->flags &= ~BP_WATCHPOINT_HIT;
2357 }
2358 }
2359 }
2360
2361 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2362 so these check for a hit then pass through to the normal out-of-line
2363 phys routines. */
2364 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2365 unsigned size, MemTxAttrs attrs)
2366 {
2367 MemTxResult res;
2368 uint64_t data;
2369 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2370 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2371
2372 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2373 switch (size) {
2374 case 1:
2375 data = address_space_ldub(as, addr, attrs, &res);
2376 break;
2377 case 2:
2378 data = address_space_lduw(as, addr, attrs, &res);
2379 break;
2380 case 4:
2381 data = address_space_ldl(as, addr, attrs, &res);
2382 break;
2383 default: abort();
2384 }
2385 *pdata = data;
2386 return res;
2387 }
2388
2389 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2390 uint64_t val, unsigned size,
2391 MemTxAttrs attrs)
2392 {
2393 MemTxResult res;
2394 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2395 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2396
2397 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2398 switch (size) {
2399 case 1:
2400 address_space_stb(as, addr, val, attrs, &res);
2401 break;
2402 case 2:
2403 address_space_stw(as, addr, val, attrs, &res);
2404 break;
2405 case 4:
2406 address_space_stl(as, addr, val, attrs, &res);
2407 break;
2408 default: abort();
2409 }
2410 return res;
2411 }
2412
2413 static const MemoryRegionOps watch_mem_ops = {
2414 .read_with_attrs = watch_mem_read,
2415 .write_with_attrs = watch_mem_write,
2416 .endianness = DEVICE_NATIVE_ENDIAN,
2417 };
2418
2419 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2420 unsigned len, MemTxAttrs attrs)
2421 {
2422 subpage_t *subpage = opaque;
2423 uint8_t buf[8];
2424 MemTxResult res;
2425
2426 #if defined(DEBUG_SUBPAGE)
2427 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2428 subpage, len, addr);
2429 #endif
2430 res = address_space_read(subpage->as, addr + subpage->base,
2431 attrs, buf, len);
2432 if (res) {
2433 return res;
2434 }
2435 switch (len) {
2436 case 1:
2437 *data = ldub_p(buf);
2438 return MEMTX_OK;
2439 case 2:
2440 *data = lduw_p(buf);
2441 return MEMTX_OK;
2442 case 4:
2443 *data = ldl_p(buf);
2444 return MEMTX_OK;
2445 case 8:
2446 *data = ldq_p(buf);
2447 return MEMTX_OK;
2448 default:
2449 abort();
2450 }
2451 }
2452
2453 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2454 uint64_t value, unsigned len, MemTxAttrs attrs)
2455 {
2456 subpage_t *subpage = opaque;
2457 uint8_t buf[8];
2458
2459 #if defined(DEBUG_SUBPAGE)
2460 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2461 " value %"PRIx64"\n",
2462 __func__, subpage, len, addr, value);
2463 #endif
2464 switch (len) {
2465 case 1:
2466 stb_p(buf, value);
2467 break;
2468 case 2:
2469 stw_p(buf, value);
2470 break;
2471 case 4:
2472 stl_p(buf, value);
2473 break;
2474 case 8:
2475 stq_p(buf, value);
2476 break;
2477 default:
2478 abort();
2479 }
2480 return address_space_write(subpage->as, addr + subpage->base,
2481 attrs, buf, len);
2482 }
2483
2484 static bool subpage_accepts(void *opaque, hwaddr addr,
2485 unsigned len, bool is_write)
2486 {
2487 subpage_t *subpage = opaque;
2488 #if defined(DEBUG_SUBPAGE)
2489 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2490 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2491 #endif
2492
2493 return address_space_access_valid(subpage->as, addr + subpage->base,
2494 len, is_write);
2495 }
2496
2497 static const MemoryRegionOps subpage_ops = {
2498 .read_with_attrs = subpage_read,
2499 .write_with_attrs = subpage_write,
2500 .impl.min_access_size = 1,
2501 .impl.max_access_size = 8,
2502 .valid.min_access_size = 1,
2503 .valid.max_access_size = 8,
2504 .valid.accepts = subpage_accepts,
2505 .endianness = DEVICE_NATIVE_ENDIAN,
2506 };
2507
2508 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2509 uint16_t section)
2510 {
2511 int idx, eidx;
2512
2513 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2514 return -1;
2515 idx = SUBPAGE_IDX(start);
2516 eidx = SUBPAGE_IDX(end);
2517 #if defined(DEBUG_SUBPAGE)
2518 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2519 __func__, mmio, start, end, idx, eidx, section);
2520 #endif
2521 for (; idx <= eidx; idx++) {
2522 mmio->sub_section[idx] = section;
2523 }
2524
2525 return 0;
2526 }
2527
2528 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2529 {
2530 subpage_t *mmio;
2531
2532 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2533 mmio->as = as;
2534 mmio->base = base;
2535 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2536 NULL, TARGET_PAGE_SIZE);
2537 mmio->iomem.subpage = true;
2538 #if defined(DEBUG_SUBPAGE)
2539 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2540 mmio, base, TARGET_PAGE_SIZE);
2541 #endif
2542 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2543
2544 return mmio;
2545 }
2546
2547 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2548 MemoryRegion *mr)
2549 {
2550 assert(as);
2551 MemoryRegionSection section = {
2552 .address_space = as,
2553 .mr = mr,
2554 .offset_within_address_space = 0,
2555 .offset_within_region = 0,
2556 .size = int128_2_64(),
2557 };
2558
2559 return phys_section_add(map, &section);
2560 }
2561
2562 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2563 {
2564 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2565 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2566 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2567 MemoryRegionSection *sections = d->map.sections;
2568
2569 return sections[index & ~TARGET_PAGE_MASK].mr;
2570 }
2571
2572 static void io_mem_init(void)
2573 {
2574 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2575 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2576 NULL, UINT64_MAX);
2577
2578 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2579 * which can be called without the iothread mutex.
2580 */
2581 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2582 NULL, UINT64_MAX);
2583 memory_region_clear_global_locking(&io_mem_notdirty);
2584
2585 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2586 NULL, UINT64_MAX);
2587 }
2588
2589 static void mem_begin(MemoryListener *listener)
2590 {
2591 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2592 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2593 uint16_t n;
2594
2595 n = dummy_section(&d->map, as, &io_mem_unassigned);
2596 assert(n == PHYS_SECTION_UNASSIGNED);
2597 n = dummy_section(&d->map, as, &io_mem_notdirty);
2598 assert(n == PHYS_SECTION_NOTDIRTY);
2599 n = dummy_section(&d->map, as, &io_mem_rom);
2600 assert(n == PHYS_SECTION_ROM);
2601 n = dummy_section(&d->map, as, &io_mem_watch);
2602 assert(n == PHYS_SECTION_WATCH);
2603
2604 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2605 d->as = as;
2606 as->next_dispatch = d;
2607 }
2608
2609 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2610 {
2611 phys_sections_free(&d->map);
2612 g_free(d);
2613 }
2614
2615 static void mem_commit(MemoryListener *listener)
2616 {
2617 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2618 AddressSpaceDispatch *cur = as->dispatch;
2619 AddressSpaceDispatch *next = as->next_dispatch;
2620
2621 phys_page_compact_all(next, next->map.nodes_nb);
2622
2623 atomic_rcu_set(&as->dispatch, next);
2624 if (cur) {
2625 call_rcu(cur, address_space_dispatch_free, rcu);
2626 }
2627 }
2628
2629 static void tcg_commit(MemoryListener *listener)
2630 {
2631 CPUAddressSpace *cpuas;
2632 AddressSpaceDispatch *d;
2633
2634 /* since each CPU stores ram addresses in its TLB cache, we must
2635 reset the modified entries */
2636 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2637 cpu_reloading_memory_map();
2638 /* The CPU and TLB are protected by the iothread lock.
2639 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2640 * may have split the RCU critical section.
2641 */
2642 d = atomic_rcu_read(&cpuas->as->dispatch);
2643 atomic_rcu_set(&cpuas->memory_dispatch, d);
2644 tlb_flush(cpuas->cpu);
2645 }
2646
2647 void address_space_init_dispatch(AddressSpace *as)
2648 {
2649 as->dispatch = NULL;
2650 as->dispatch_listener = (MemoryListener) {
2651 .begin = mem_begin,
2652 .commit = mem_commit,
2653 .region_add = mem_add,
2654 .region_nop = mem_add,
2655 .priority = 0,
2656 };
2657 memory_listener_register(&as->dispatch_listener, as);
2658 }
2659
2660 void address_space_unregister(AddressSpace *as)
2661 {
2662 memory_listener_unregister(&as->dispatch_listener);
2663 }
2664
2665 void address_space_destroy_dispatch(AddressSpace *as)
2666 {
2667 AddressSpaceDispatch *d = as->dispatch;
2668
2669 atomic_rcu_set(&as->dispatch, NULL);
2670 if (d) {
2671 call_rcu(d, address_space_dispatch_free, rcu);
2672 }
2673 }
2674
2675 static void memory_map_init(void)
2676 {
2677 system_memory = g_malloc(sizeof(*system_memory));
2678
2679 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2680 address_space_init(&address_space_memory, system_memory, "memory");
2681
2682 system_io = g_malloc(sizeof(*system_io));
2683 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2684 65536);
2685 address_space_init(&address_space_io, system_io, "I/O");
2686 }
2687
2688 MemoryRegion *get_system_memory(void)
2689 {
2690 return system_memory;
2691 }
2692
2693 MemoryRegion *get_system_io(void)
2694 {
2695 return system_io;
2696 }
2697
2698 #endif /* !defined(CONFIG_USER_ONLY) */
2699
2700 /* physical memory access (slow version, mainly for debug) */
2701 #if defined(CONFIG_USER_ONLY)
2702 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2703 uint8_t *buf, int len, int is_write)
2704 {
2705 int l, flags;
2706 target_ulong page;
2707 void * p;
2708
2709 while (len > 0) {
2710 page = addr & TARGET_PAGE_MASK;
2711 l = (page + TARGET_PAGE_SIZE) - addr;
2712 if (l > len)
2713 l = len;
2714 flags = page_get_flags(page);
2715 if (!(flags & PAGE_VALID))
2716 return -1;
2717 if (is_write) {
2718 if (!(flags & PAGE_WRITE))
2719 return -1;
2720 /* XXX: this code should not depend on lock_user */
2721 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2722 return -1;
2723 memcpy(p, buf, l);
2724 unlock_user(p, addr, l);
2725 } else {
2726 if (!(flags & PAGE_READ))
2727 return -1;
2728 /* XXX: this code should not depend on lock_user */
2729 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2730 return -1;
2731 memcpy(buf, p, l);
2732 unlock_user(p, addr, 0);
2733 }
2734 len -= l;
2735 buf += l;
2736 addr += l;
2737 }
2738 return 0;
2739 }
2740
2741 #else
2742
2743 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2744 hwaddr length)
2745 {
2746 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2747 addr += memory_region_get_ram_addr(mr);
2748
2749 /* No early return if dirty_log_mask is or becomes 0, because
2750 * cpu_physical_memory_set_dirty_range will still call
2751 * xen_modified_memory.
2752 */
2753 if (dirty_log_mask) {
2754 dirty_log_mask =
2755 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2756 }
2757 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2758 tb_lock();
2759 tb_invalidate_phys_range(addr, addr + length);
2760 tb_unlock();
2761 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2762 }
2763 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2764 }
2765
2766 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2767 {
2768 unsigned access_size_max = mr->ops->valid.max_access_size;
2769
2770 /* Regions are assumed to support 1-4 byte accesses unless
2771 otherwise specified. */
2772 if (access_size_max == 0) {
2773 access_size_max = 4;
2774 }
2775
2776 /* Bound the maximum access by the alignment of the address. */
2777 if (!mr->ops->impl.unaligned) {
2778 unsigned align_size_max = addr & -addr;
2779 if (align_size_max != 0 && align_size_max < access_size_max) {
2780 access_size_max = align_size_max;
2781 }
2782 }
2783
2784 /* Don't attempt accesses larger than the maximum. */
2785 if (l > access_size_max) {
2786 l = access_size_max;
2787 }
2788 l = pow2floor(l);
2789
2790 return l;
2791 }
2792
2793 static bool prepare_mmio_access(MemoryRegion *mr)
2794 {
2795 bool unlocked = !qemu_mutex_iothread_locked();
2796 bool release_lock = false;
2797
2798 if (unlocked && mr->global_locking) {
2799 qemu_mutex_lock_iothread();
2800 unlocked = false;
2801 release_lock = true;
2802 }
2803 if (mr->flush_coalesced_mmio) {
2804 if (unlocked) {
2805 qemu_mutex_lock_iothread();
2806 }
2807 qemu_flush_coalesced_mmio_buffer();
2808 if (unlocked) {
2809 qemu_mutex_unlock_iothread();
2810 }
2811 }
2812
2813 return release_lock;
2814 }
2815
2816 /* Called within RCU critical section. */
2817 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2818 MemTxAttrs attrs,
2819 const uint8_t *buf,
2820 int len, hwaddr addr1,
2821 hwaddr l, MemoryRegion *mr)
2822 {
2823 uint8_t *ptr;
2824 uint64_t val;
2825 MemTxResult result = MEMTX_OK;
2826 bool release_lock = false;
2827
2828 for (;;) {
2829 if (!memory_access_is_direct(mr, true)) {
2830 release_lock |= prepare_mmio_access(mr);
2831 l = memory_access_size(mr, l, addr1);
2832 /* XXX: could force current_cpu to NULL to avoid
2833 potential bugs */
2834 switch (l) {
2835 case 8:
2836 /* 64 bit write access */
2837 val = ldq_p(buf);
2838 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2839 attrs);
2840 break;
2841 case 4:
2842 /* 32 bit write access */
2843 val = (uint32_t)ldl_p(buf);
2844 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2845 attrs);
2846 break;
2847 case 2:
2848 /* 16 bit write access */
2849 val = lduw_p(buf);
2850 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2851 attrs);
2852 break;
2853 case 1:
2854 /* 8 bit write access */
2855 val = ldub_p(buf);
2856 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2857 attrs);
2858 break;
2859 default:
2860 abort();
2861 }
2862 } else {
2863 /* RAM case */
2864 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2865 memcpy(ptr, buf, l);
2866 invalidate_and_set_dirty(mr, addr1, l);
2867 }
2868
2869 if (release_lock) {
2870 qemu_mutex_unlock_iothread();
2871 release_lock = false;
2872 }
2873
2874 len -= l;
2875 buf += l;
2876 addr += l;
2877
2878 if (!len) {
2879 break;
2880 }
2881
2882 l = len;
2883 mr = address_space_translate(as, addr, &addr1, &l, true);
2884 }
2885
2886 return result;
2887 }
2888
2889 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2890 const uint8_t *buf, int len)
2891 {
2892 hwaddr l;
2893 hwaddr addr1;
2894 MemoryRegion *mr;
2895 MemTxResult result = MEMTX_OK;
2896
2897 if (len > 0) {
2898 rcu_read_lock();
2899 l = len;
2900 mr = address_space_translate(as, addr, &addr1, &l, true);
2901 result = address_space_write_continue(as, addr, attrs, buf, len,
2902 addr1, l, mr);
2903 rcu_read_unlock();
2904 }
2905
2906 return result;
2907 }
2908
2909 /* Called within RCU critical section. */
2910 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2911 MemTxAttrs attrs, uint8_t *buf,
2912 int len, hwaddr addr1, hwaddr l,
2913 MemoryRegion *mr)
2914 {
2915 uint8_t *ptr;
2916 uint64_t val;
2917 MemTxResult result = MEMTX_OK;
2918 bool release_lock = false;
2919
2920 for (;;) {
2921 if (!memory_access_is_direct(mr, false)) {
2922 /* I/O case */
2923 release_lock |= prepare_mmio_access(mr);
2924 l = memory_access_size(mr, l, addr1);
2925 switch (l) {
2926 case 8:
2927 /* 64 bit read access */
2928 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2929 attrs);
2930 stq_p(buf, val);
2931 break;
2932 case 4:
2933 /* 32 bit read access */
2934 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2935 attrs);
2936 stl_p(buf, val);
2937 break;
2938 case 2:
2939 /* 16 bit read access */
2940 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2941 attrs);
2942 stw_p(buf, val);
2943 break;
2944 case 1:
2945 /* 8 bit read access */
2946 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2947 attrs);
2948 stb_p(buf, val);
2949 break;
2950 default:
2951 abort();
2952 }
2953 } else {
2954 /* RAM case */
2955 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2956 memcpy(buf, ptr, l);
2957 }
2958
2959 if (release_lock) {
2960 qemu_mutex_unlock_iothread();
2961 release_lock = false;
2962 }
2963
2964 len -= l;
2965 buf += l;
2966 addr += l;
2967
2968 if (!len) {
2969 break;
2970 }
2971
2972 l = len;
2973 mr = address_space_translate(as, addr, &addr1, &l, false);
2974 }
2975
2976 return result;
2977 }
2978
2979 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2980 MemTxAttrs attrs, uint8_t *buf, int len)
2981 {
2982 hwaddr l;
2983 hwaddr addr1;
2984 MemoryRegion *mr;
2985 MemTxResult result = MEMTX_OK;
2986
2987 if (len > 0) {
2988 rcu_read_lock();
2989 l = len;
2990 mr = address_space_translate(as, addr, &addr1, &l, false);
2991 result = address_space_read_continue(as, addr, attrs, buf, len,
2992 addr1, l, mr);
2993 rcu_read_unlock();
2994 }
2995
2996 return result;
2997 }
2998
2999 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3000 uint8_t *buf, int len, bool is_write)
3001 {
3002 if (is_write) {
3003 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3004 } else {
3005 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3006 }
3007 }
3008
3009 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3010 int len, int is_write)
3011 {
3012 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3013 buf, len, is_write);
3014 }
3015
3016 enum write_rom_type {
3017 WRITE_DATA,
3018 FLUSH_CACHE,
3019 };
3020
3021 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3022 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3023 {
3024 hwaddr l;
3025 uint8_t *ptr;
3026 hwaddr addr1;
3027 MemoryRegion *mr;
3028
3029 rcu_read_lock();
3030 while (len > 0) {
3031 l = len;
3032 mr = address_space_translate(as, addr, &addr1, &l, true);
3033
3034 if (!(memory_region_is_ram(mr) ||
3035 memory_region_is_romd(mr))) {
3036 l = memory_access_size(mr, l, addr1);
3037 } else {
3038 /* ROM/RAM case */
3039 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3040 switch (type) {
3041 case WRITE_DATA:
3042 memcpy(ptr, buf, l);
3043 invalidate_and_set_dirty(mr, addr1, l);
3044 break;
3045 case FLUSH_CACHE:
3046 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3047 break;
3048 }
3049 }
3050 len -= l;
3051 buf += l;
3052 addr += l;
3053 }
3054 rcu_read_unlock();
3055 }
3056
3057 /* used for ROM loading : can write in RAM and ROM */
3058 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3059 const uint8_t *buf, int len)
3060 {
3061 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3062 }
3063
3064 void cpu_flush_icache_range(hwaddr start, int len)
3065 {
3066 /*
3067 * This function should do the same thing as an icache flush that was
3068 * triggered from within the guest. For TCG we are always cache coherent,
3069 * so there is no need to flush anything. For KVM / Xen we need to flush
3070 * the host's instruction cache at least.
3071 */
3072 if (tcg_enabled()) {
3073 return;
3074 }
3075
3076 cpu_physical_memory_write_rom_internal(&address_space_memory,
3077 start, NULL, len, FLUSH_CACHE);
3078 }
3079
3080 typedef struct {
3081 MemoryRegion *mr;
3082 void *buffer;
3083 hwaddr addr;
3084 hwaddr len;
3085 bool in_use;
3086 } BounceBuffer;
3087
3088 static BounceBuffer bounce;
3089
3090 typedef struct MapClient {
3091 QEMUBH *bh;
3092 QLIST_ENTRY(MapClient) link;
3093 } MapClient;
3094
3095 QemuMutex map_client_list_lock;
3096 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3097 = QLIST_HEAD_INITIALIZER(map_client_list);
3098
3099 static void cpu_unregister_map_client_do(MapClient *client)
3100 {
3101 QLIST_REMOVE(client, link);
3102 g_free(client);
3103 }
3104
3105 static void cpu_notify_map_clients_locked(void)
3106 {
3107 MapClient *client;
3108
3109 while (!QLIST_EMPTY(&map_client_list)) {
3110 client = QLIST_FIRST(&map_client_list);
3111 qemu_bh_schedule(client->bh);
3112 cpu_unregister_map_client_do(client);
3113 }
3114 }
3115
3116 void cpu_register_map_client(QEMUBH *bh)
3117 {
3118 MapClient *client = g_malloc(sizeof(*client));
3119
3120 qemu_mutex_lock(&map_client_list_lock);
3121 client->bh = bh;
3122 QLIST_INSERT_HEAD(&map_client_list, client, link);
3123 if (!atomic_read(&bounce.in_use)) {
3124 cpu_notify_map_clients_locked();
3125 }
3126 qemu_mutex_unlock(&map_client_list_lock);
3127 }
3128
3129 void cpu_exec_init_all(void)
3130 {
3131 qemu_mutex_init(&ram_list.mutex);
3132 /* The data structures we set up here depend on knowing the page size,
3133 * so no more changes can be made after this point.
3134 * In an ideal world, nothing we did before we had finished the
3135 * machine setup would care about the target page size, and we could
3136 * do this much later, rather than requiring board models to state
3137 * up front what their requirements are.
3138 */
3139 finalize_target_page_bits();
3140 io_mem_init();
3141 memory_map_init();
3142 qemu_mutex_init(&map_client_list_lock);
3143 }
3144
3145 void cpu_unregister_map_client(QEMUBH *bh)
3146 {
3147 MapClient *client;
3148
3149 qemu_mutex_lock(&map_client_list_lock);
3150 QLIST_FOREACH(client, &map_client_list, link) {
3151 if (client->bh == bh) {
3152 cpu_unregister_map_client_do(client);
3153 break;
3154 }
3155 }
3156 qemu_mutex_unlock(&map_client_list_lock);
3157 }
3158
3159 static void cpu_notify_map_clients(void)
3160 {
3161 qemu_mutex_lock(&map_client_list_lock);
3162 cpu_notify_map_clients_locked();
3163 qemu_mutex_unlock(&map_client_list_lock);
3164 }
3165
3166 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3167 {
3168 MemoryRegion *mr;
3169 hwaddr l, xlat;
3170
3171 rcu_read_lock();
3172 while (len > 0) {
3173 l = len;
3174 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3175 if (!memory_access_is_direct(mr, is_write)) {
3176 l = memory_access_size(mr, l, addr);
3177 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3178 rcu_read_unlock();
3179 return false;
3180 }
3181 }
3182
3183 len -= l;
3184 addr += l;
3185 }
3186 rcu_read_unlock();
3187 return true;
3188 }
3189
3190 static hwaddr
3191 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3192 MemoryRegion *mr, hwaddr base, hwaddr len,
3193 bool is_write)
3194 {
3195 hwaddr done = 0;
3196 hwaddr xlat;
3197 MemoryRegion *this_mr;
3198
3199 for (;;) {
3200 target_len -= len;
3201 addr += len;
3202 done += len;
3203 if (target_len == 0) {
3204 return done;
3205 }
3206
3207 len = target_len;
3208 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3209 if (this_mr != mr || xlat != base + done) {
3210 return done;
3211 }
3212 }
3213 }
3214
3215 /* Map a physical memory region into a host virtual address.
3216 * May map a subset of the requested range, given by and returned in *plen.
3217 * May return NULL if resources needed to perform the mapping are exhausted.
3218 * Use only for reads OR writes - not for read-modify-write operations.
3219 * Use cpu_register_map_client() to know when retrying the map operation is
3220 * likely to succeed.
3221 */
3222 void *address_space_map(AddressSpace *as,
3223 hwaddr addr,
3224 hwaddr *plen,
3225 bool is_write)
3226 {
3227 hwaddr len = *plen;
3228 hwaddr l, xlat;
3229 MemoryRegion *mr;
3230 void *ptr;
3231
3232 if (len == 0) {
3233 return NULL;
3234 }
3235
3236 l = len;
3237 rcu_read_lock();
3238 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3239
3240 if (!memory_access_is_direct(mr, is_write)) {
3241 if (atomic_xchg(&bounce.in_use, true)) {
3242 rcu_read_unlock();
3243 return NULL;
3244 }
3245 /* Avoid unbounded allocations */
3246 l = MIN(l, TARGET_PAGE_SIZE);
3247 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3248 bounce.addr = addr;
3249 bounce.len = l;
3250
3251 memory_region_ref(mr);
3252 bounce.mr = mr;
3253 if (!is_write) {
3254 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3255 bounce.buffer, l);
3256 }
3257
3258 rcu_read_unlock();
3259 *plen = l;
3260 return bounce.buffer;
3261 }
3262
3263
3264 memory_region_ref(mr);
3265 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3266 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3267 rcu_read_unlock();
3268
3269 return ptr;
3270 }
3271
3272 /* Unmaps a memory region previously mapped by address_space_map().
3273 * Will also mark the memory as dirty if is_write == 1. access_len gives
3274 * the amount of memory that was actually read or written by the caller.
3275 */
3276 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3277 int is_write, hwaddr access_len)
3278 {
3279 if (buffer != bounce.buffer) {
3280 MemoryRegion *mr;
3281 ram_addr_t addr1;
3282
3283 mr = memory_region_from_host(buffer, &addr1);
3284 assert(mr != NULL);
3285 if (is_write) {
3286 invalidate_and_set_dirty(mr, addr1, access_len);
3287 }
3288 if (xen_enabled()) {
3289 xen_invalidate_map_cache_entry(buffer);
3290 }
3291 memory_region_unref(mr);
3292 return;
3293 }
3294 if (is_write) {
3295 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3296 bounce.buffer, access_len);
3297 }
3298 qemu_vfree(bounce.buffer);
3299 bounce.buffer = NULL;
3300 memory_region_unref(bounce.mr);
3301 atomic_mb_set(&bounce.in_use, false);
3302 cpu_notify_map_clients();
3303 }
3304
3305 void *cpu_physical_memory_map(hwaddr addr,
3306 hwaddr *plen,
3307 int is_write)
3308 {
3309 return address_space_map(&address_space_memory, addr, plen, is_write);
3310 }
3311
3312 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3313 int is_write, hwaddr access_len)
3314 {
3315 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3316 }
3317
3318 #define ARG1_DECL AddressSpace *as
3319 #define ARG1 as
3320 #define SUFFIX
3321 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3322 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3323 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3324 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3325 #define RCU_READ_LOCK(...) rcu_read_lock()
3326 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3327 #include "memory_ldst.inc.c"
3328
3329 int64_t address_space_cache_init(MemoryRegionCache *cache,
3330 AddressSpace *as,
3331 hwaddr addr,
3332 hwaddr len,
3333 bool is_write)
3334 {
3335 cache->len = len;
3336 cache->as = as;
3337 cache->xlat = addr;
3338 return len;
3339 }
3340
3341 void address_space_cache_invalidate(MemoryRegionCache *cache,
3342 hwaddr addr,
3343 hwaddr access_len)
3344 {
3345 }
3346
3347 void address_space_cache_destroy(MemoryRegionCache *cache)
3348 {
3349 cache->as = NULL;
3350 }
3351
3352 #define ARG1_DECL MemoryRegionCache *cache
3353 #define ARG1 cache
3354 #define SUFFIX _cached
3355 #define TRANSLATE(addr, ...) \
3356 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3357 #define IS_DIRECT(mr, is_write) true
3358 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3359 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3360 #define RCU_READ_LOCK() rcu_read_lock()
3361 #define RCU_READ_UNLOCK() rcu_read_unlock()
3362 #include "memory_ldst.inc.c"
3363
3364 /* virtual memory access for debug (includes writing to ROM) */
3365 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3366 uint8_t *buf, int len, int is_write)
3367 {
3368 int l;
3369 hwaddr phys_addr;
3370 target_ulong page;
3371
3372 cpu_synchronize_state(cpu);
3373 while (len > 0) {
3374 int asidx;
3375 MemTxAttrs attrs;
3376
3377 page = addr & TARGET_PAGE_MASK;
3378 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3379 asidx = cpu_asidx_from_attrs(cpu, attrs);
3380 /* if no physical page mapped, return an error */
3381 if (phys_addr == -1)
3382 return -1;
3383 l = (page + TARGET_PAGE_SIZE) - addr;
3384 if (l > len)
3385 l = len;
3386 phys_addr += (addr & ~TARGET_PAGE_MASK);
3387 if (is_write) {
3388 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3389 phys_addr, buf, l);
3390 } else {
3391 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3392 MEMTXATTRS_UNSPECIFIED,
3393 buf, l, 0);
3394 }
3395 len -= l;
3396 buf += l;
3397 addr += l;
3398 }
3399 return 0;
3400 }
3401
3402 /*
3403 * Allows code that needs to deal with migration bitmaps etc to still be built
3404 * target independent.
3405 */
3406 size_t qemu_target_page_size(void)
3407 {
3408 return TARGET_PAGE_SIZE;
3409 }
3410
3411 #endif
3412
3413 /*
3414 * A helper function for the _utterly broken_ virtio device model to find out if
3415 * it's running on a big endian machine. Don't do this at home kids!
3416 */
3417 bool target_words_bigendian(void);
3418 bool target_words_bigendian(void)
3419 {
3420 #if defined(TARGET_WORDS_BIGENDIAN)
3421 return true;
3422 #else
3423 return false;
3424 #endif
3425 }
3426
3427 #ifndef CONFIG_USER_ONLY
3428 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3429 {
3430 MemoryRegion*mr;
3431 hwaddr l = 1;
3432 bool res;
3433
3434 rcu_read_lock();
3435 mr = address_space_translate(&address_space_memory,
3436 phys_addr, &phys_addr, &l, false);
3437
3438 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3439 rcu_read_unlock();
3440 return res;
3441 }
3442
3443 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3444 {
3445 RAMBlock *block;
3446 int ret = 0;
3447
3448 rcu_read_lock();
3449 RAMBLOCK_FOREACH(block) {
3450 ret = func(block->idstr, block->host, block->offset,
3451 block->used_length, opaque);
3452 if (ret) {
3453 break;
3454 }
3455 }
3456 rcu_read_unlock();
3457 return ret;
3458 }
3459
3460 /*
3461 * Unmap pages of memory from start to start+length such that
3462 * they a) read as 0, b) Trigger whatever fault mechanism
3463 * the OS provides for postcopy.
3464 * The pages must be unmapped by the end of the function.
3465 * Returns: 0 on success, none-0 on failure
3466 *
3467 */
3468 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3469 {
3470 int ret = -1;
3471
3472 uint8_t *host_startaddr = rb->host + start;
3473
3474 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3475 error_report("ram_block_discard_range: Unaligned start address: %p",
3476 host_startaddr);
3477 goto err;
3478 }
3479
3480 if ((start + length) <= rb->used_length) {
3481 uint8_t *host_endaddr = host_startaddr + length;
3482 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3483 error_report("ram_block_discard_range: Unaligned end address: %p",
3484 host_endaddr);
3485 goto err;
3486 }
3487
3488 errno = ENOTSUP; /* If we are missing MADVISE etc */
3489
3490 if (rb->page_size == qemu_host_page_size) {
3491 #if defined(CONFIG_MADVISE)
3492 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3493 * freeing the page.
3494 */
3495 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3496 #endif
3497 } else {
3498 /* Huge page case - unfortunately it can't do DONTNEED, but
3499 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3500 * huge page file.
3501 */
3502 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3503 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3504 start, length);
3505 #endif
3506 }
3507 if (ret) {
3508 ret = -errno;
3509 error_report("ram_block_discard_range: Failed to discard range "
3510 "%s:%" PRIx64 " +%zx (%d)",
3511 rb->idstr, start, length, ret);
3512 }
3513 } else {
3514 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3515 "/%zx/" RAM_ADDR_FMT")",
3516 rb->idstr, start, length, rb->used_length);
3517 }
3518
3519 err:
3520 return ret;
3521 }
3522
3523 #endif