]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: do not use error_mem_read
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_UNASSIGNED
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 int phys_ram_fd;
58 static int in_migration;
59
60 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61
62 static MemoryRegion *system_memory;
63 static MemoryRegion *system_io;
64
65 AddressSpace address_space_io;
66 AddressSpace address_space_memory;
67 DMAContext dma_context_memory;
68
69 MemoryRegion io_mem_rom, io_mem_notdirty;
70 static MemoryRegion io_mem_unassigned, io_mem_subpage_ram;
71
72 #endif
73
74 CPUArchState *first_cpu;
75 /* current CPU in the current thread. It is only valid inside
76 cpu_exec() */
77 DEFINE_TLS(CPUArchState *,cpu_single_env);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
81 int use_icount;
82
83 #if !defined(CONFIG_USER_ONLY)
84
85 static MemoryRegionSection *phys_sections;
86 static unsigned phys_sections_nb, phys_sections_nb_alloc;
87 static uint16_t phys_section_unassigned;
88 static uint16_t phys_section_notdirty;
89 static uint16_t phys_section_rom;
90 static uint16_t phys_section_watch;
91
92 /* Simple allocator for PhysPageEntry nodes */
93 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
94 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
95
96 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
97
98 static void io_mem_init(void);
99 static void memory_map_init(void);
100 static void *qemu_safe_ram_ptr(ram_addr_t addr);
101
102 static MemoryRegion io_mem_watch;
103 #endif
104
105 #if !defined(CONFIG_USER_ONLY)
106
107 static void phys_map_node_reserve(unsigned nodes)
108 {
109 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
110 typedef PhysPageEntry Node[L2_SIZE];
111 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
112 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
113 phys_map_nodes_nb + nodes);
114 phys_map_nodes = g_renew(Node, phys_map_nodes,
115 phys_map_nodes_nb_alloc);
116 }
117 }
118
119 static uint16_t phys_map_node_alloc(void)
120 {
121 unsigned i;
122 uint16_t ret;
123
124 ret = phys_map_nodes_nb++;
125 assert(ret != PHYS_MAP_NODE_NIL);
126 assert(ret != phys_map_nodes_nb_alloc);
127 for (i = 0; i < L2_SIZE; ++i) {
128 phys_map_nodes[ret][i].is_leaf = 0;
129 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
130 }
131 return ret;
132 }
133
134 static void phys_map_nodes_reset(void)
135 {
136 phys_map_nodes_nb = 0;
137 }
138
139
140 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
141 hwaddr *nb, uint16_t leaf,
142 int level)
143 {
144 PhysPageEntry *p;
145 int i;
146 hwaddr step = (hwaddr)1 << (level * L2_BITS);
147
148 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
149 lp->ptr = phys_map_node_alloc();
150 p = phys_map_nodes[lp->ptr];
151 if (level == 0) {
152 for (i = 0; i < L2_SIZE; i++) {
153 p[i].is_leaf = 1;
154 p[i].ptr = phys_section_unassigned;
155 }
156 }
157 } else {
158 p = phys_map_nodes[lp->ptr];
159 }
160 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
161
162 while (*nb && lp < &p[L2_SIZE]) {
163 if ((*index & (step - 1)) == 0 && *nb >= step) {
164 lp->is_leaf = true;
165 lp->ptr = leaf;
166 *index += step;
167 *nb -= step;
168 } else {
169 phys_page_set_level(lp, index, nb, leaf, level - 1);
170 }
171 ++lp;
172 }
173 }
174
175 static void phys_page_set(AddressSpaceDispatch *d,
176 hwaddr index, hwaddr nb,
177 uint16_t leaf)
178 {
179 /* Wildly overreserve - it doesn't matter much. */
180 phys_map_node_reserve(3 * P_L2_LEVELS);
181
182 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
183 }
184
185 MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
186 {
187 PhysPageEntry lp = d->phys_map;
188 PhysPageEntry *p;
189 int i;
190
191 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
192 if (lp.ptr == PHYS_MAP_NODE_NIL) {
193 return &phys_sections[phys_section_unassigned];
194 }
195 p = phys_map_nodes[lp.ptr];
196 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
197 }
198 return &phys_sections[lp.ptr];
199 }
200
201 bool memory_region_is_unassigned(MemoryRegion *mr)
202 {
203 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
204 && mr != &io_mem_watch;
205 }
206 #endif
207
208 void cpu_exec_init_all(void)
209 {
210 #if !defined(CONFIG_USER_ONLY)
211 qemu_mutex_init(&ram_list.mutex);
212 memory_map_init();
213 io_mem_init();
214 #endif
215 }
216
217 #if !defined(CONFIG_USER_ONLY)
218
219 static int cpu_common_post_load(void *opaque, int version_id)
220 {
221 CPUState *cpu = opaque;
222
223 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
224 version_id is increased. */
225 cpu->interrupt_request &= ~0x01;
226 tlb_flush(cpu->env_ptr, 1);
227
228 return 0;
229 }
230
231 static const VMStateDescription vmstate_cpu_common = {
232 .name = "cpu_common",
233 .version_id = 1,
234 .minimum_version_id = 1,
235 .minimum_version_id_old = 1,
236 .post_load = cpu_common_post_load,
237 .fields = (VMStateField []) {
238 VMSTATE_UINT32(halted, CPUState),
239 VMSTATE_UINT32(interrupt_request, CPUState),
240 VMSTATE_END_OF_LIST()
241 }
242 };
243 #else
244 #define vmstate_cpu_common vmstate_dummy
245 #endif
246
247 CPUState *qemu_get_cpu(int index)
248 {
249 CPUArchState *env = first_cpu;
250 CPUState *cpu = NULL;
251
252 while (env) {
253 cpu = ENV_GET_CPU(env);
254 if (cpu->cpu_index == index) {
255 break;
256 }
257 env = env->next_cpu;
258 }
259
260 return env ? cpu : NULL;
261 }
262
263 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
264 {
265 CPUArchState *env = first_cpu;
266
267 while (env) {
268 func(ENV_GET_CPU(env), data);
269 env = env->next_cpu;
270 }
271 }
272
273 void cpu_exec_init(CPUArchState *env)
274 {
275 CPUState *cpu = ENV_GET_CPU(env);
276 CPUClass *cc = CPU_GET_CLASS(cpu);
277 CPUArchState **penv;
278 int cpu_index;
279
280 #if defined(CONFIG_USER_ONLY)
281 cpu_list_lock();
282 #endif
283 env->next_cpu = NULL;
284 penv = &first_cpu;
285 cpu_index = 0;
286 while (*penv != NULL) {
287 penv = &(*penv)->next_cpu;
288 cpu_index++;
289 }
290 cpu->cpu_index = cpu_index;
291 cpu->numa_node = 0;
292 QTAILQ_INIT(&env->breakpoints);
293 QTAILQ_INIT(&env->watchpoints);
294 #ifndef CONFIG_USER_ONLY
295 cpu->thread_id = qemu_get_thread_id();
296 #endif
297 *penv = env;
298 #if defined(CONFIG_USER_ONLY)
299 cpu_list_unlock();
300 #endif
301 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
302 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
303 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
304 cpu_save, cpu_load, env);
305 assert(cc->vmsd == NULL);
306 #endif
307 if (cc->vmsd != NULL) {
308 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
309 }
310 }
311
312 #if defined(TARGET_HAS_ICE)
313 #if defined(CONFIG_USER_ONLY)
314 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
315 {
316 tb_invalidate_phys_page_range(pc, pc + 1, 0);
317 }
318 #else
319 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
320 {
321 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
322 (pc & ~TARGET_PAGE_MASK));
323 }
324 #endif
325 #endif /* TARGET_HAS_ICE */
326
327 #if defined(CONFIG_USER_ONLY)
328 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
329
330 {
331 }
332
333 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
334 int flags, CPUWatchpoint **watchpoint)
335 {
336 return -ENOSYS;
337 }
338 #else
339 /* Add a watchpoint. */
340 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
341 int flags, CPUWatchpoint **watchpoint)
342 {
343 target_ulong len_mask = ~(len - 1);
344 CPUWatchpoint *wp;
345
346 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
347 if ((len & (len - 1)) || (addr & ~len_mask) ||
348 len == 0 || len > TARGET_PAGE_SIZE) {
349 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
350 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
351 return -EINVAL;
352 }
353 wp = g_malloc(sizeof(*wp));
354
355 wp->vaddr = addr;
356 wp->len_mask = len_mask;
357 wp->flags = flags;
358
359 /* keep all GDB-injected watchpoints in front */
360 if (flags & BP_GDB)
361 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
362 else
363 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
364
365 tlb_flush_page(env, addr);
366
367 if (watchpoint)
368 *watchpoint = wp;
369 return 0;
370 }
371
372 /* Remove a specific watchpoint. */
373 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
374 int flags)
375 {
376 target_ulong len_mask = ~(len - 1);
377 CPUWatchpoint *wp;
378
379 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
380 if (addr == wp->vaddr && len_mask == wp->len_mask
381 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
382 cpu_watchpoint_remove_by_ref(env, wp);
383 return 0;
384 }
385 }
386 return -ENOENT;
387 }
388
389 /* Remove a specific watchpoint by reference. */
390 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
391 {
392 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
393
394 tlb_flush_page(env, watchpoint->vaddr);
395
396 g_free(watchpoint);
397 }
398
399 /* Remove all matching watchpoints. */
400 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
401 {
402 CPUWatchpoint *wp, *next;
403
404 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
405 if (wp->flags & mask)
406 cpu_watchpoint_remove_by_ref(env, wp);
407 }
408 }
409 #endif
410
411 /* Add a breakpoint. */
412 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
413 CPUBreakpoint **breakpoint)
414 {
415 #if defined(TARGET_HAS_ICE)
416 CPUBreakpoint *bp;
417
418 bp = g_malloc(sizeof(*bp));
419
420 bp->pc = pc;
421 bp->flags = flags;
422
423 /* keep all GDB-injected breakpoints in front */
424 if (flags & BP_GDB)
425 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
426 else
427 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
428
429 breakpoint_invalidate(env, pc);
430
431 if (breakpoint)
432 *breakpoint = bp;
433 return 0;
434 #else
435 return -ENOSYS;
436 #endif
437 }
438
439 /* Remove a specific breakpoint. */
440 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
441 {
442 #if defined(TARGET_HAS_ICE)
443 CPUBreakpoint *bp;
444
445 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
446 if (bp->pc == pc && bp->flags == flags) {
447 cpu_breakpoint_remove_by_ref(env, bp);
448 return 0;
449 }
450 }
451 return -ENOENT;
452 #else
453 return -ENOSYS;
454 #endif
455 }
456
457 /* Remove a specific breakpoint by reference. */
458 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
459 {
460 #if defined(TARGET_HAS_ICE)
461 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
462
463 breakpoint_invalidate(env, breakpoint->pc);
464
465 g_free(breakpoint);
466 #endif
467 }
468
469 /* Remove all matching breakpoints. */
470 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
471 {
472 #if defined(TARGET_HAS_ICE)
473 CPUBreakpoint *bp, *next;
474
475 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
476 if (bp->flags & mask)
477 cpu_breakpoint_remove_by_ref(env, bp);
478 }
479 #endif
480 }
481
482 /* enable or disable single step mode. EXCP_DEBUG is returned by the
483 CPU loop after each instruction */
484 void cpu_single_step(CPUArchState *env, int enabled)
485 {
486 #if defined(TARGET_HAS_ICE)
487 if (env->singlestep_enabled != enabled) {
488 env->singlestep_enabled = enabled;
489 if (kvm_enabled())
490 kvm_update_guest_debug(env, 0);
491 else {
492 /* must flush all the translated code to avoid inconsistencies */
493 /* XXX: only flush what is necessary */
494 tb_flush(env);
495 }
496 }
497 #endif
498 }
499
500 void cpu_exit(CPUArchState *env)
501 {
502 CPUState *cpu = ENV_GET_CPU(env);
503
504 cpu->exit_request = 1;
505 cpu->tcg_exit_req = 1;
506 }
507
508 void cpu_abort(CPUArchState *env, const char *fmt, ...)
509 {
510 va_list ap;
511 va_list ap2;
512
513 va_start(ap, fmt);
514 va_copy(ap2, ap);
515 fprintf(stderr, "qemu: fatal: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
519 if (qemu_log_enabled()) {
520 qemu_log("qemu: fatal: ");
521 qemu_log_vprintf(fmt, ap2);
522 qemu_log("\n");
523 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
524 qemu_log_flush();
525 qemu_log_close();
526 }
527 va_end(ap2);
528 va_end(ap);
529 #if defined(CONFIG_USER_ONLY)
530 {
531 struct sigaction act;
532 sigfillset(&act.sa_mask);
533 act.sa_handler = SIG_DFL;
534 sigaction(SIGABRT, &act, NULL);
535 }
536 #endif
537 abort();
538 }
539
540 CPUArchState *cpu_copy(CPUArchState *env)
541 {
542 CPUArchState *new_env = cpu_init(env->cpu_model_str);
543 CPUArchState *next_cpu = new_env->next_cpu;
544 #if defined(TARGET_HAS_ICE)
545 CPUBreakpoint *bp;
546 CPUWatchpoint *wp;
547 #endif
548
549 memcpy(new_env, env, sizeof(CPUArchState));
550
551 /* Preserve chaining. */
552 new_env->next_cpu = next_cpu;
553
554 /* Clone all break/watchpoints.
555 Note: Once we support ptrace with hw-debug register access, make sure
556 BP_CPU break/watchpoints are handled correctly on clone. */
557 QTAILQ_INIT(&env->breakpoints);
558 QTAILQ_INIT(&env->watchpoints);
559 #if defined(TARGET_HAS_ICE)
560 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
561 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
562 }
563 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
564 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
565 wp->flags, NULL);
566 }
567 #endif
568
569 return new_env;
570 }
571
572 #if !defined(CONFIG_USER_ONLY)
573 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
574 uintptr_t length)
575 {
576 uintptr_t start1;
577
578 /* we modify the TLB cache so that the dirty bit will be set again
579 when accessing the range */
580 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
581 /* Check that we don't span multiple blocks - this breaks the
582 address comparisons below. */
583 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
584 != (end - 1) - start) {
585 abort();
586 }
587 cpu_tlb_reset_dirty_all(start1, length);
588
589 }
590
591 /* Note: start and end must be within the same ram block. */
592 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
593 int dirty_flags)
594 {
595 uintptr_t length;
596
597 start &= TARGET_PAGE_MASK;
598 end = TARGET_PAGE_ALIGN(end);
599
600 length = end - start;
601 if (length == 0)
602 return;
603 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
604
605 if (tcg_enabled()) {
606 tlb_reset_dirty_range_all(start, end, length);
607 }
608 }
609
610 static int cpu_physical_memory_set_dirty_tracking(int enable)
611 {
612 int ret = 0;
613 in_migration = enable;
614 return ret;
615 }
616
617 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
618 MemoryRegionSection *section,
619 target_ulong vaddr,
620 hwaddr paddr,
621 int prot,
622 target_ulong *address)
623 {
624 hwaddr iotlb;
625 CPUWatchpoint *wp;
626
627 if (memory_region_is_ram(section->mr)) {
628 /* Normal RAM. */
629 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
630 + memory_region_section_addr(section, paddr);
631 if (!section->readonly) {
632 iotlb |= phys_section_notdirty;
633 } else {
634 iotlb |= phys_section_rom;
635 }
636 } else {
637 iotlb = section - phys_sections;
638 iotlb += memory_region_section_addr(section, paddr);
639 }
640
641 /* Make accesses to pages with watchpoints go via the
642 watchpoint trap routines. */
643 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
644 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
645 /* Avoid trapping reads of pages with a write breakpoint. */
646 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
647 iotlb = phys_section_watch + paddr;
648 *address |= TLB_MMIO;
649 break;
650 }
651 }
652 }
653
654 return iotlb;
655 }
656 #endif /* defined(CONFIG_USER_ONLY) */
657
658 #if !defined(CONFIG_USER_ONLY)
659
660 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
661 typedef struct subpage_t {
662 MemoryRegion iomem;
663 hwaddr base;
664 uint16_t sub_section[TARGET_PAGE_SIZE];
665 } subpage_t;
666
667 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
668 uint16_t section);
669 static subpage_t *subpage_init(hwaddr base);
670 static void destroy_page_desc(uint16_t section_index)
671 {
672 MemoryRegionSection *section = &phys_sections[section_index];
673 MemoryRegion *mr = section->mr;
674
675 if (mr->subpage) {
676 subpage_t *subpage = container_of(mr, subpage_t, iomem);
677 memory_region_destroy(&subpage->iomem);
678 g_free(subpage);
679 }
680 }
681
682 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
683 {
684 unsigned i;
685 PhysPageEntry *p;
686
687 if (lp->ptr == PHYS_MAP_NODE_NIL) {
688 return;
689 }
690
691 p = phys_map_nodes[lp->ptr];
692 for (i = 0; i < L2_SIZE; ++i) {
693 if (!p[i].is_leaf) {
694 destroy_l2_mapping(&p[i], level - 1);
695 } else {
696 destroy_page_desc(p[i].ptr);
697 }
698 }
699 lp->is_leaf = 0;
700 lp->ptr = PHYS_MAP_NODE_NIL;
701 }
702
703 static void destroy_all_mappings(AddressSpaceDispatch *d)
704 {
705 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
706 phys_map_nodes_reset();
707 }
708
709 static uint16_t phys_section_add(MemoryRegionSection *section)
710 {
711 /* The physical section number is ORed with a page-aligned
712 * pointer to produce the iotlb entries. Thus it should
713 * never overflow into the page-aligned value.
714 */
715 assert(phys_sections_nb < TARGET_PAGE_SIZE);
716
717 if (phys_sections_nb == phys_sections_nb_alloc) {
718 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
719 phys_sections = g_renew(MemoryRegionSection, phys_sections,
720 phys_sections_nb_alloc);
721 }
722 phys_sections[phys_sections_nb] = *section;
723 return phys_sections_nb++;
724 }
725
726 static void phys_sections_clear(void)
727 {
728 phys_sections_nb = 0;
729 }
730
731 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
732 {
733 subpage_t *subpage;
734 hwaddr base = section->offset_within_address_space
735 & TARGET_PAGE_MASK;
736 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
737 MemoryRegionSection subsection = {
738 .offset_within_address_space = base,
739 .size = TARGET_PAGE_SIZE,
740 };
741 hwaddr start, end;
742
743 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
744
745 if (!(existing->mr->subpage)) {
746 subpage = subpage_init(base);
747 subsection.mr = &subpage->iomem;
748 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
749 phys_section_add(&subsection));
750 } else {
751 subpage = container_of(existing->mr, subpage_t, iomem);
752 }
753 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
754 end = start + section->size - 1;
755 subpage_register(subpage, start, end, phys_section_add(section));
756 }
757
758
759 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
760 {
761 hwaddr start_addr = section->offset_within_address_space;
762 ram_addr_t size = section->size;
763 hwaddr addr;
764 uint16_t section_index = phys_section_add(section);
765
766 assert(size);
767
768 addr = start_addr;
769 phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
770 section_index);
771 }
772
773 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > MAX_PHYS_ADDR_SPACE_BITS)
774
775 static MemoryRegionSection limit(MemoryRegionSection section)
776 {
777 section.size = MIN(section.offset_within_address_space + section.size,
778 MAX_PHYS_ADDR + 1)
779 - section.offset_within_address_space;
780
781 return section;
782 }
783
784 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
785 {
786 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
787 MemoryRegionSection now = limit(*section), remain = limit(*section);
788
789 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
790 || (now.size < TARGET_PAGE_SIZE)) {
791 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
792 - now.offset_within_address_space,
793 now.size);
794 register_subpage(d, &now);
795 remain.size -= now.size;
796 remain.offset_within_address_space += now.size;
797 remain.offset_within_region += now.size;
798 }
799 while (remain.size >= TARGET_PAGE_SIZE) {
800 now = remain;
801 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
802 now.size = TARGET_PAGE_SIZE;
803 register_subpage(d, &now);
804 } else {
805 now.size &= TARGET_PAGE_MASK;
806 register_multipage(d, &now);
807 }
808 remain.size -= now.size;
809 remain.offset_within_address_space += now.size;
810 remain.offset_within_region += now.size;
811 }
812 now = remain;
813 if (now.size) {
814 register_subpage(d, &now);
815 }
816 }
817
818 void qemu_flush_coalesced_mmio_buffer(void)
819 {
820 if (kvm_enabled())
821 kvm_flush_coalesced_mmio_buffer();
822 }
823
824 void qemu_mutex_lock_ramlist(void)
825 {
826 qemu_mutex_lock(&ram_list.mutex);
827 }
828
829 void qemu_mutex_unlock_ramlist(void)
830 {
831 qemu_mutex_unlock(&ram_list.mutex);
832 }
833
834 #if defined(__linux__) && !defined(TARGET_S390X)
835
836 #include <sys/vfs.h>
837
838 #define HUGETLBFS_MAGIC 0x958458f6
839
840 static long gethugepagesize(const char *path)
841 {
842 struct statfs fs;
843 int ret;
844
845 do {
846 ret = statfs(path, &fs);
847 } while (ret != 0 && errno == EINTR);
848
849 if (ret != 0) {
850 perror(path);
851 return 0;
852 }
853
854 if (fs.f_type != HUGETLBFS_MAGIC)
855 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
856
857 return fs.f_bsize;
858 }
859
860 static void *file_ram_alloc(RAMBlock *block,
861 ram_addr_t memory,
862 const char *path)
863 {
864 char *filename;
865 char *sanitized_name;
866 char *c;
867 void *area;
868 int fd;
869 #ifdef MAP_POPULATE
870 int flags;
871 #endif
872 unsigned long hpagesize;
873
874 hpagesize = gethugepagesize(path);
875 if (!hpagesize) {
876 return NULL;
877 }
878
879 if (memory < hpagesize) {
880 return NULL;
881 }
882
883 if (kvm_enabled() && !kvm_has_sync_mmu()) {
884 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
885 return NULL;
886 }
887
888 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
889 sanitized_name = g_strdup(block->mr->name);
890 for (c = sanitized_name; *c != '\0'; c++) {
891 if (*c == '/')
892 *c = '_';
893 }
894
895 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
896 sanitized_name);
897 g_free(sanitized_name);
898
899 fd = mkstemp(filename);
900 if (fd < 0) {
901 perror("unable to create backing store for hugepages");
902 g_free(filename);
903 return NULL;
904 }
905 unlink(filename);
906 g_free(filename);
907
908 memory = (memory+hpagesize-1) & ~(hpagesize-1);
909
910 /*
911 * ftruncate is not supported by hugetlbfs in older
912 * hosts, so don't bother bailing out on errors.
913 * If anything goes wrong with it under other filesystems,
914 * mmap will fail.
915 */
916 if (ftruncate(fd, memory))
917 perror("ftruncate");
918
919 #ifdef MAP_POPULATE
920 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
921 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
922 * to sidestep this quirk.
923 */
924 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
925 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
926 #else
927 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
928 #endif
929 if (area == MAP_FAILED) {
930 perror("file_ram_alloc: can't mmap RAM pages");
931 close(fd);
932 return (NULL);
933 }
934 block->fd = fd;
935 return area;
936 }
937 #endif
938
939 static ram_addr_t find_ram_offset(ram_addr_t size)
940 {
941 RAMBlock *block, *next_block;
942 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
943
944 assert(size != 0); /* it would hand out same offset multiple times */
945
946 if (QTAILQ_EMPTY(&ram_list.blocks))
947 return 0;
948
949 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
950 ram_addr_t end, next = RAM_ADDR_MAX;
951
952 end = block->offset + block->length;
953
954 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
955 if (next_block->offset >= end) {
956 next = MIN(next, next_block->offset);
957 }
958 }
959 if (next - end >= size && next - end < mingap) {
960 offset = end;
961 mingap = next - end;
962 }
963 }
964
965 if (offset == RAM_ADDR_MAX) {
966 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
967 (uint64_t)size);
968 abort();
969 }
970
971 return offset;
972 }
973
974 ram_addr_t last_ram_offset(void)
975 {
976 RAMBlock *block;
977 ram_addr_t last = 0;
978
979 QTAILQ_FOREACH(block, &ram_list.blocks, next)
980 last = MAX(last, block->offset + block->length);
981
982 return last;
983 }
984
985 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
986 {
987 int ret;
988 QemuOpts *machine_opts;
989
990 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
991 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
992 if (machine_opts &&
993 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
994 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
995 if (ret) {
996 perror("qemu_madvise");
997 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
998 "but dump_guest_core=off specified\n");
999 }
1000 }
1001 }
1002
1003 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1004 {
1005 RAMBlock *new_block, *block;
1006
1007 new_block = NULL;
1008 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1009 if (block->offset == addr) {
1010 new_block = block;
1011 break;
1012 }
1013 }
1014 assert(new_block);
1015 assert(!new_block->idstr[0]);
1016
1017 if (dev) {
1018 char *id = qdev_get_dev_path(dev);
1019 if (id) {
1020 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1021 g_free(id);
1022 }
1023 }
1024 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1025
1026 /* This assumes the iothread lock is taken here too. */
1027 qemu_mutex_lock_ramlist();
1028 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1029 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1030 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1031 new_block->idstr);
1032 abort();
1033 }
1034 }
1035 qemu_mutex_unlock_ramlist();
1036 }
1037
1038 static int memory_try_enable_merging(void *addr, size_t len)
1039 {
1040 QemuOpts *opts;
1041
1042 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1043 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1044 /* disabled by the user */
1045 return 0;
1046 }
1047
1048 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1049 }
1050
1051 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1052 MemoryRegion *mr)
1053 {
1054 RAMBlock *block, *new_block;
1055
1056 size = TARGET_PAGE_ALIGN(size);
1057 new_block = g_malloc0(sizeof(*new_block));
1058
1059 /* This assumes the iothread lock is taken here too. */
1060 qemu_mutex_lock_ramlist();
1061 new_block->mr = mr;
1062 new_block->offset = find_ram_offset(size);
1063 if (host) {
1064 new_block->host = host;
1065 new_block->flags |= RAM_PREALLOC_MASK;
1066 } else {
1067 if (mem_path) {
1068 #if defined (__linux__) && !defined(TARGET_S390X)
1069 new_block->host = file_ram_alloc(new_block, size, mem_path);
1070 if (!new_block->host) {
1071 new_block->host = qemu_anon_ram_alloc(size);
1072 memory_try_enable_merging(new_block->host, size);
1073 }
1074 #else
1075 fprintf(stderr, "-mem-path option unsupported\n");
1076 exit(1);
1077 #endif
1078 } else {
1079 if (xen_enabled()) {
1080 xen_ram_alloc(new_block->offset, size, mr);
1081 } else if (kvm_enabled()) {
1082 /* some s390/kvm configurations have special constraints */
1083 new_block->host = kvm_ram_alloc(size);
1084 } else {
1085 new_block->host = qemu_anon_ram_alloc(size);
1086 }
1087 memory_try_enable_merging(new_block->host, size);
1088 }
1089 }
1090 new_block->length = size;
1091
1092 /* Keep the list sorted from biggest to smallest block. */
1093 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1094 if (block->length < new_block->length) {
1095 break;
1096 }
1097 }
1098 if (block) {
1099 QTAILQ_INSERT_BEFORE(block, new_block, next);
1100 } else {
1101 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1102 }
1103 ram_list.mru_block = NULL;
1104
1105 ram_list.version++;
1106 qemu_mutex_unlock_ramlist();
1107
1108 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1109 last_ram_offset() >> TARGET_PAGE_BITS);
1110 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1111 0, size >> TARGET_PAGE_BITS);
1112 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1113
1114 qemu_ram_setup_dump(new_block->host, size);
1115 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1116
1117 if (kvm_enabled())
1118 kvm_setup_guest_memory(new_block->host, size);
1119
1120 return new_block->offset;
1121 }
1122
1123 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1124 {
1125 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1126 }
1127
1128 void qemu_ram_free_from_ptr(ram_addr_t addr)
1129 {
1130 RAMBlock *block;
1131
1132 /* This assumes the iothread lock is taken here too. */
1133 qemu_mutex_lock_ramlist();
1134 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1135 if (addr == block->offset) {
1136 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1137 ram_list.mru_block = NULL;
1138 ram_list.version++;
1139 g_free(block);
1140 break;
1141 }
1142 }
1143 qemu_mutex_unlock_ramlist();
1144 }
1145
1146 void qemu_ram_free(ram_addr_t addr)
1147 {
1148 RAMBlock *block;
1149
1150 /* This assumes the iothread lock is taken here too. */
1151 qemu_mutex_lock_ramlist();
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (addr == block->offset) {
1154 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1155 ram_list.mru_block = NULL;
1156 ram_list.version++;
1157 if (block->flags & RAM_PREALLOC_MASK) {
1158 ;
1159 } else if (mem_path) {
1160 #if defined (__linux__) && !defined(TARGET_S390X)
1161 if (block->fd) {
1162 munmap(block->host, block->length);
1163 close(block->fd);
1164 } else {
1165 qemu_anon_ram_free(block->host, block->length);
1166 }
1167 #else
1168 abort();
1169 #endif
1170 } else {
1171 if (xen_enabled()) {
1172 xen_invalidate_map_cache_entry(block->host);
1173 } else {
1174 qemu_anon_ram_free(block->host, block->length);
1175 }
1176 }
1177 g_free(block);
1178 break;
1179 }
1180 }
1181 qemu_mutex_unlock_ramlist();
1182
1183 }
1184
1185 #ifndef _WIN32
1186 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1187 {
1188 RAMBlock *block;
1189 ram_addr_t offset;
1190 int flags;
1191 void *area, *vaddr;
1192
1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1194 offset = addr - block->offset;
1195 if (offset < block->length) {
1196 vaddr = block->host + offset;
1197 if (block->flags & RAM_PREALLOC_MASK) {
1198 ;
1199 } else {
1200 flags = MAP_FIXED;
1201 munmap(vaddr, length);
1202 if (mem_path) {
1203 #if defined(__linux__) && !defined(TARGET_S390X)
1204 if (block->fd) {
1205 #ifdef MAP_POPULATE
1206 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1207 MAP_PRIVATE;
1208 #else
1209 flags |= MAP_PRIVATE;
1210 #endif
1211 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1212 flags, block->fd, offset);
1213 } else {
1214 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1215 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1216 flags, -1, 0);
1217 }
1218 #else
1219 abort();
1220 #endif
1221 } else {
1222 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1223 flags |= MAP_SHARED | MAP_ANONYMOUS;
1224 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1225 flags, -1, 0);
1226 #else
1227 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1228 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1229 flags, -1, 0);
1230 #endif
1231 }
1232 if (area != vaddr) {
1233 fprintf(stderr, "Could not remap addr: "
1234 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1235 length, addr);
1236 exit(1);
1237 }
1238 memory_try_enable_merging(vaddr, length);
1239 qemu_ram_setup_dump(vaddr, length);
1240 }
1241 return;
1242 }
1243 }
1244 }
1245 #endif /* !_WIN32 */
1246
1247 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1248 With the exception of the softmmu code in this file, this should
1249 only be used for local memory (e.g. video ram) that the device owns,
1250 and knows it isn't going to access beyond the end of the block.
1251
1252 It should not be used for general purpose DMA.
1253 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1254 */
1255 void *qemu_get_ram_ptr(ram_addr_t addr)
1256 {
1257 RAMBlock *block;
1258
1259 /* The list is protected by the iothread lock here. */
1260 block = ram_list.mru_block;
1261 if (block && addr - block->offset < block->length) {
1262 goto found;
1263 }
1264 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1265 if (addr - block->offset < block->length) {
1266 goto found;
1267 }
1268 }
1269
1270 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1271 abort();
1272
1273 found:
1274 ram_list.mru_block = block;
1275 if (xen_enabled()) {
1276 /* We need to check if the requested address is in the RAM
1277 * because we don't want to map the entire memory in QEMU.
1278 * In that case just map until the end of the page.
1279 */
1280 if (block->offset == 0) {
1281 return xen_map_cache(addr, 0, 0);
1282 } else if (block->host == NULL) {
1283 block->host =
1284 xen_map_cache(block->offset, block->length, 1);
1285 }
1286 }
1287 return block->host + (addr - block->offset);
1288 }
1289
1290 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1291 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1292 *
1293 * ??? Is this still necessary?
1294 */
1295 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1296 {
1297 RAMBlock *block;
1298
1299 /* The list is protected by the iothread lock here. */
1300 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1301 if (addr - block->offset < block->length) {
1302 if (xen_enabled()) {
1303 /* We need to check if the requested address is in the RAM
1304 * because we don't want to map the entire memory in QEMU.
1305 * In that case just map until the end of the page.
1306 */
1307 if (block->offset == 0) {
1308 return xen_map_cache(addr, 0, 0);
1309 } else if (block->host == NULL) {
1310 block->host =
1311 xen_map_cache(block->offset, block->length, 1);
1312 }
1313 }
1314 return block->host + (addr - block->offset);
1315 }
1316 }
1317
1318 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1319 abort();
1320
1321 return NULL;
1322 }
1323
1324 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1325 * but takes a size argument */
1326 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1327 {
1328 if (*size == 0) {
1329 return NULL;
1330 }
1331 if (xen_enabled()) {
1332 return xen_map_cache(addr, *size, 1);
1333 } else {
1334 RAMBlock *block;
1335
1336 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1337 if (addr - block->offset < block->length) {
1338 if (addr - block->offset + *size > block->length)
1339 *size = block->length - addr + block->offset;
1340 return block->host + (addr - block->offset);
1341 }
1342 }
1343
1344 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1345 abort();
1346 }
1347 }
1348
1349 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1350 {
1351 RAMBlock *block;
1352 uint8_t *host = ptr;
1353
1354 if (xen_enabled()) {
1355 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1356 return 0;
1357 }
1358
1359 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1360 /* This case append when the block is not mapped. */
1361 if (block->host == NULL) {
1362 continue;
1363 }
1364 if (host - block->host < block->length) {
1365 *ram_addr = block->offset + (host - block->host);
1366 return 0;
1367 }
1368 }
1369
1370 return -1;
1371 }
1372
1373 /* Some of the softmmu routines need to translate from a host pointer
1374 (typically a TLB entry) back to a ram offset. */
1375 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1376 {
1377 ram_addr_t ram_addr;
1378
1379 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1380 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1381 abort();
1382 }
1383 return ram_addr;
1384 }
1385
1386 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1387 unsigned size)
1388 {
1389 #ifdef DEBUG_UNASSIGNED
1390 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1391 #endif
1392 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1393 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
1394 #endif
1395 return 0;
1396 }
1397
1398 static void unassigned_mem_write(void *opaque, hwaddr addr,
1399 uint64_t val, unsigned size)
1400 {
1401 #ifdef DEBUG_UNASSIGNED
1402 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1403 #endif
1404 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1405 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
1406 #endif
1407 }
1408
1409 static const MemoryRegionOps unassigned_mem_ops = {
1410 .read = unassigned_mem_read,
1411 .write = unassigned_mem_write,
1412 .endianness = DEVICE_NATIVE_ENDIAN,
1413 };
1414
1415 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1416 uint64_t val, unsigned size)
1417 {
1418 int dirty_flags;
1419 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1420 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1421 tb_invalidate_phys_page_fast(ram_addr, size);
1422 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1423 }
1424 switch (size) {
1425 case 1:
1426 stb_p(qemu_get_ram_ptr(ram_addr), val);
1427 break;
1428 case 2:
1429 stw_p(qemu_get_ram_ptr(ram_addr), val);
1430 break;
1431 case 4:
1432 stl_p(qemu_get_ram_ptr(ram_addr), val);
1433 break;
1434 default:
1435 abort();
1436 }
1437 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1438 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1439 /* we remove the notdirty callback only if the code has been
1440 flushed */
1441 if (dirty_flags == 0xff)
1442 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1443 }
1444
1445 static const MemoryRegionOps notdirty_mem_ops = {
1446 .read = unassigned_mem_read,
1447 .write = notdirty_mem_write,
1448 .endianness = DEVICE_NATIVE_ENDIAN,
1449 };
1450
1451 /* Generate a debug exception if a watchpoint has been hit. */
1452 static void check_watchpoint(int offset, int len_mask, int flags)
1453 {
1454 CPUArchState *env = cpu_single_env;
1455 target_ulong pc, cs_base;
1456 target_ulong vaddr;
1457 CPUWatchpoint *wp;
1458 int cpu_flags;
1459
1460 if (env->watchpoint_hit) {
1461 /* We re-entered the check after replacing the TB. Now raise
1462 * the debug interrupt so that is will trigger after the
1463 * current instruction. */
1464 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1465 return;
1466 }
1467 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1468 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1469 if ((vaddr == (wp->vaddr & len_mask) ||
1470 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1471 wp->flags |= BP_WATCHPOINT_HIT;
1472 if (!env->watchpoint_hit) {
1473 env->watchpoint_hit = wp;
1474 tb_check_watchpoint(env);
1475 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1476 env->exception_index = EXCP_DEBUG;
1477 cpu_loop_exit(env);
1478 } else {
1479 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1480 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1481 cpu_resume_from_signal(env, NULL);
1482 }
1483 }
1484 } else {
1485 wp->flags &= ~BP_WATCHPOINT_HIT;
1486 }
1487 }
1488 }
1489
1490 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1491 so these check for a hit then pass through to the normal out-of-line
1492 phys routines. */
1493 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1494 unsigned size)
1495 {
1496 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1497 switch (size) {
1498 case 1: return ldub_phys(addr);
1499 case 2: return lduw_phys(addr);
1500 case 4: return ldl_phys(addr);
1501 default: abort();
1502 }
1503 }
1504
1505 static void watch_mem_write(void *opaque, hwaddr addr,
1506 uint64_t val, unsigned size)
1507 {
1508 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1509 switch (size) {
1510 case 1:
1511 stb_phys(addr, val);
1512 break;
1513 case 2:
1514 stw_phys(addr, val);
1515 break;
1516 case 4:
1517 stl_phys(addr, val);
1518 break;
1519 default: abort();
1520 }
1521 }
1522
1523 static const MemoryRegionOps watch_mem_ops = {
1524 .read = watch_mem_read,
1525 .write = watch_mem_write,
1526 .endianness = DEVICE_NATIVE_ENDIAN,
1527 };
1528
1529 static uint64_t subpage_read(void *opaque, hwaddr addr,
1530 unsigned len)
1531 {
1532 subpage_t *mmio = opaque;
1533 unsigned int idx = SUBPAGE_IDX(addr);
1534 MemoryRegionSection *section;
1535 #if defined(DEBUG_SUBPAGE)
1536 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
1537 mmio, len, addr, idx);
1538 #endif
1539
1540 section = &phys_sections[mmio->sub_section[idx]];
1541 addr += mmio->base;
1542 addr -= section->offset_within_address_space;
1543 addr += section->offset_within_region;
1544 return io_mem_read(section->mr, addr, len);
1545 }
1546
1547 static void subpage_write(void *opaque, hwaddr addr,
1548 uint64_t value, unsigned len)
1549 {
1550 subpage_t *mmio = opaque;
1551 unsigned int idx = SUBPAGE_IDX(addr);
1552 MemoryRegionSection *section;
1553 #if defined(DEBUG_SUBPAGE)
1554 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1555 " idx %d value %"PRIx64"\n",
1556 __func__, mmio, len, addr, idx, value);
1557 #endif
1558
1559 section = &phys_sections[mmio->sub_section[idx]];
1560 addr += mmio->base;
1561 addr -= section->offset_within_address_space;
1562 addr += section->offset_within_region;
1563 io_mem_write(section->mr, addr, value, len);
1564 }
1565
1566 static const MemoryRegionOps subpage_ops = {
1567 .read = subpage_read,
1568 .write = subpage_write,
1569 .endianness = DEVICE_NATIVE_ENDIAN,
1570 };
1571
1572 static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
1573 unsigned size)
1574 {
1575 ram_addr_t raddr = addr;
1576 void *ptr = qemu_get_ram_ptr(raddr);
1577 switch (size) {
1578 case 1: return ldub_p(ptr);
1579 case 2: return lduw_p(ptr);
1580 case 4: return ldl_p(ptr);
1581 default: abort();
1582 }
1583 }
1584
1585 static void subpage_ram_write(void *opaque, hwaddr addr,
1586 uint64_t value, unsigned size)
1587 {
1588 ram_addr_t raddr = addr;
1589 void *ptr = qemu_get_ram_ptr(raddr);
1590 switch (size) {
1591 case 1: return stb_p(ptr, value);
1592 case 2: return stw_p(ptr, value);
1593 case 4: return stl_p(ptr, value);
1594 default: abort();
1595 }
1596 }
1597
1598 static const MemoryRegionOps subpage_ram_ops = {
1599 .read = subpage_ram_read,
1600 .write = subpage_ram_write,
1601 .endianness = DEVICE_NATIVE_ENDIAN,
1602 };
1603
1604 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1605 uint16_t section)
1606 {
1607 int idx, eidx;
1608
1609 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1610 return -1;
1611 idx = SUBPAGE_IDX(start);
1612 eidx = SUBPAGE_IDX(end);
1613 #if defined(DEBUG_SUBPAGE)
1614 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1615 mmio, start, end, idx, eidx, memory);
1616 #endif
1617 if (memory_region_is_ram(phys_sections[section].mr)) {
1618 MemoryRegionSection new_section = phys_sections[section];
1619 new_section.mr = &io_mem_subpage_ram;
1620 section = phys_section_add(&new_section);
1621 }
1622 for (; idx <= eidx; idx++) {
1623 mmio->sub_section[idx] = section;
1624 }
1625
1626 return 0;
1627 }
1628
1629 static subpage_t *subpage_init(hwaddr base)
1630 {
1631 subpage_t *mmio;
1632
1633 mmio = g_malloc0(sizeof(subpage_t));
1634
1635 mmio->base = base;
1636 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1637 "subpage", TARGET_PAGE_SIZE);
1638 mmio->iomem.subpage = true;
1639 #if defined(DEBUG_SUBPAGE)
1640 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1641 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1642 #endif
1643 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1644
1645 return mmio;
1646 }
1647
1648 static uint16_t dummy_section(MemoryRegion *mr)
1649 {
1650 MemoryRegionSection section = {
1651 .mr = mr,
1652 .offset_within_address_space = 0,
1653 .offset_within_region = 0,
1654 .size = UINT64_MAX,
1655 };
1656
1657 return phys_section_add(&section);
1658 }
1659
1660 MemoryRegion *iotlb_to_region(hwaddr index)
1661 {
1662 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1663 }
1664
1665 static void io_mem_init(void)
1666 {
1667 memory_region_init_io(&io_mem_rom, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1668 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1669 "unassigned", UINT64_MAX);
1670 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
1671 "notdirty", UINT64_MAX);
1672 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
1673 "subpage-ram", UINT64_MAX);
1674 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1675 "watch", UINT64_MAX);
1676 }
1677
1678 static void mem_begin(MemoryListener *listener)
1679 {
1680 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1681
1682 destroy_all_mappings(d);
1683 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1684 }
1685
1686 static void core_begin(MemoryListener *listener)
1687 {
1688 phys_sections_clear();
1689 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1690 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1691 phys_section_rom = dummy_section(&io_mem_rom);
1692 phys_section_watch = dummy_section(&io_mem_watch);
1693 }
1694
1695 static void tcg_commit(MemoryListener *listener)
1696 {
1697 CPUArchState *env;
1698
1699 /* since each CPU stores ram addresses in its TLB cache, we must
1700 reset the modified entries */
1701 /* XXX: slow ! */
1702 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1703 tlb_flush(env, 1);
1704 }
1705 }
1706
1707 static void core_log_global_start(MemoryListener *listener)
1708 {
1709 cpu_physical_memory_set_dirty_tracking(1);
1710 }
1711
1712 static void core_log_global_stop(MemoryListener *listener)
1713 {
1714 cpu_physical_memory_set_dirty_tracking(0);
1715 }
1716
1717 static void io_region_add(MemoryListener *listener,
1718 MemoryRegionSection *section)
1719 {
1720 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1721
1722 mrio->mr = section->mr;
1723 mrio->offset = section->offset_within_region;
1724 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1725 section->offset_within_address_space, section->size);
1726 ioport_register(&mrio->iorange);
1727 }
1728
1729 static void io_region_del(MemoryListener *listener,
1730 MemoryRegionSection *section)
1731 {
1732 isa_unassign_ioport(section->offset_within_address_space, section->size);
1733 }
1734
1735 static MemoryListener core_memory_listener = {
1736 .begin = core_begin,
1737 .log_global_start = core_log_global_start,
1738 .log_global_stop = core_log_global_stop,
1739 .priority = 1,
1740 };
1741
1742 static MemoryListener io_memory_listener = {
1743 .region_add = io_region_add,
1744 .region_del = io_region_del,
1745 .priority = 0,
1746 };
1747
1748 static MemoryListener tcg_memory_listener = {
1749 .commit = tcg_commit,
1750 };
1751
1752 void address_space_init_dispatch(AddressSpace *as)
1753 {
1754 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1755
1756 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1757 d->listener = (MemoryListener) {
1758 .begin = mem_begin,
1759 .region_add = mem_add,
1760 .region_nop = mem_add,
1761 .priority = 0,
1762 };
1763 as->dispatch = d;
1764 memory_listener_register(&d->listener, as);
1765 }
1766
1767 void address_space_destroy_dispatch(AddressSpace *as)
1768 {
1769 AddressSpaceDispatch *d = as->dispatch;
1770
1771 memory_listener_unregister(&d->listener);
1772 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1773 g_free(d);
1774 as->dispatch = NULL;
1775 }
1776
1777 static void memory_map_init(void)
1778 {
1779 system_memory = g_malloc(sizeof(*system_memory));
1780 memory_region_init(system_memory, "system", INT64_MAX);
1781 address_space_init(&address_space_memory, system_memory);
1782 address_space_memory.name = "memory";
1783
1784 system_io = g_malloc(sizeof(*system_io));
1785 memory_region_init(system_io, "io", 65536);
1786 address_space_init(&address_space_io, system_io);
1787 address_space_io.name = "I/O";
1788
1789 memory_listener_register(&core_memory_listener, &address_space_memory);
1790 memory_listener_register(&io_memory_listener, &address_space_io);
1791 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1792
1793 dma_context_init(&dma_context_memory, &address_space_memory,
1794 NULL, NULL, NULL);
1795 }
1796
1797 MemoryRegion *get_system_memory(void)
1798 {
1799 return system_memory;
1800 }
1801
1802 MemoryRegion *get_system_io(void)
1803 {
1804 return system_io;
1805 }
1806
1807 #endif /* !defined(CONFIG_USER_ONLY) */
1808
1809 /* physical memory access (slow version, mainly for debug) */
1810 #if defined(CONFIG_USER_ONLY)
1811 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1812 uint8_t *buf, int len, int is_write)
1813 {
1814 int l, flags;
1815 target_ulong page;
1816 void * p;
1817
1818 while (len > 0) {
1819 page = addr & TARGET_PAGE_MASK;
1820 l = (page + TARGET_PAGE_SIZE) - addr;
1821 if (l > len)
1822 l = len;
1823 flags = page_get_flags(page);
1824 if (!(flags & PAGE_VALID))
1825 return -1;
1826 if (is_write) {
1827 if (!(flags & PAGE_WRITE))
1828 return -1;
1829 /* XXX: this code should not depend on lock_user */
1830 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1831 return -1;
1832 memcpy(p, buf, l);
1833 unlock_user(p, addr, l);
1834 } else {
1835 if (!(flags & PAGE_READ))
1836 return -1;
1837 /* XXX: this code should not depend on lock_user */
1838 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1839 return -1;
1840 memcpy(buf, p, l);
1841 unlock_user(p, addr, 0);
1842 }
1843 len -= l;
1844 buf += l;
1845 addr += l;
1846 }
1847 return 0;
1848 }
1849
1850 #else
1851
1852 static void invalidate_and_set_dirty(hwaddr addr,
1853 hwaddr length)
1854 {
1855 if (!cpu_physical_memory_is_dirty(addr)) {
1856 /* invalidate code */
1857 tb_invalidate_phys_page_range(addr, addr + length, 0);
1858 /* set dirty bit */
1859 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1860 }
1861 xen_modified_memory(addr, length);
1862 }
1863
1864 void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1865 int len, bool is_write)
1866 {
1867 AddressSpaceDispatch *d = as->dispatch;
1868 int l;
1869 uint8_t *ptr;
1870 uint32_t val;
1871 hwaddr page;
1872 MemoryRegionSection *section;
1873
1874 while (len > 0) {
1875 page = addr & TARGET_PAGE_MASK;
1876 l = (page + TARGET_PAGE_SIZE) - addr;
1877 if (l > len)
1878 l = len;
1879 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
1880
1881 if (is_write) {
1882 if (!memory_region_is_ram(section->mr)) {
1883 hwaddr addr1;
1884 addr1 = memory_region_section_addr(section, addr);
1885 /* XXX: could force cpu_single_env to NULL to avoid
1886 potential bugs */
1887 if (l >= 4 && ((addr1 & 3) == 0)) {
1888 /* 32 bit write access */
1889 val = ldl_p(buf);
1890 io_mem_write(section->mr, addr1, val, 4);
1891 l = 4;
1892 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1893 /* 16 bit write access */
1894 val = lduw_p(buf);
1895 io_mem_write(section->mr, addr1, val, 2);
1896 l = 2;
1897 } else {
1898 /* 8 bit write access */
1899 val = ldub_p(buf);
1900 io_mem_write(section->mr, addr1, val, 1);
1901 l = 1;
1902 }
1903 } else if (!section->readonly) {
1904 ram_addr_t addr1;
1905 addr1 = memory_region_get_ram_addr(section->mr)
1906 + memory_region_section_addr(section, addr);
1907 /* RAM case */
1908 ptr = qemu_get_ram_ptr(addr1);
1909 memcpy(ptr, buf, l);
1910 invalidate_and_set_dirty(addr1, l);
1911 }
1912 } else {
1913 if (!(memory_region_is_ram(section->mr) ||
1914 memory_region_is_romd(section->mr))) {
1915 hwaddr addr1;
1916 /* I/O case */
1917 addr1 = memory_region_section_addr(section, addr);
1918 if (l >= 4 && ((addr1 & 3) == 0)) {
1919 /* 32 bit read access */
1920 val = io_mem_read(section->mr, addr1, 4);
1921 stl_p(buf, val);
1922 l = 4;
1923 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1924 /* 16 bit read access */
1925 val = io_mem_read(section->mr, addr1, 2);
1926 stw_p(buf, val);
1927 l = 2;
1928 } else {
1929 /* 8 bit read access */
1930 val = io_mem_read(section->mr, addr1, 1);
1931 stb_p(buf, val);
1932 l = 1;
1933 }
1934 } else {
1935 /* RAM case */
1936 ptr = qemu_get_ram_ptr(section->mr->ram_addr
1937 + memory_region_section_addr(section,
1938 addr));
1939 memcpy(buf, ptr, l);
1940 }
1941 }
1942 len -= l;
1943 buf += l;
1944 addr += l;
1945 }
1946 }
1947
1948 void address_space_write(AddressSpace *as, hwaddr addr,
1949 const uint8_t *buf, int len)
1950 {
1951 address_space_rw(as, addr, (uint8_t *)buf, len, true);
1952 }
1953
1954 /**
1955 * address_space_read: read from an address space.
1956 *
1957 * @as: #AddressSpace to be accessed
1958 * @addr: address within that address space
1959 * @buf: buffer with the data transferred
1960 */
1961 void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1962 {
1963 address_space_rw(as, addr, buf, len, false);
1964 }
1965
1966
1967 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1968 int len, int is_write)
1969 {
1970 return address_space_rw(&address_space_memory, addr, buf, len, is_write);
1971 }
1972
1973 /* used for ROM loading : can write in RAM and ROM */
1974 void cpu_physical_memory_write_rom(hwaddr addr,
1975 const uint8_t *buf, int len)
1976 {
1977 AddressSpaceDispatch *d = address_space_memory.dispatch;
1978 int l;
1979 uint8_t *ptr;
1980 hwaddr page;
1981 MemoryRegionSection *section;
1982
1983 while (len > 0) {
1984 page = addr & TARGET_PAGE_MASK;
1985 l = (page + TARGET_PAGE_SIZE) - addr;
1986 if (l > len)
1987 l = len;
1988 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
1989
1990 if (!(memory_region_is_ram(section->mr) ||
1991 memory_region_is_romd(section->mr))) {
1992 /* do nothing */
1993 } else {
1994 unsigned long addr1;
1995 addr1 = memory_region_get_ram_addr(section->mr)
1996 + memory_region_section_addr(section, addr);
1997 /* ROM/RAM case */
1998 ptr = qemu_get_ram_ptr(addr1);
1999 memcpy(ptr, buf, l);
2000 invalidate_and_set_dirty(addr1, l);
2001 }
2002 len -= l;
2003 buf += l;
2004 addr += l;
2005 }
2006 }
2007
2008 typedef struct {
2009 void *buffer;
2010 hwaddr addr;
2011 hwaddr len;
2012 } BounceBuffer;
2013
2014 static BounceBuffer bounce;
2015
2016 typedef struct MapClient {
2017 void *opaque;
2018 void (*callback)(void *opaque);
2019 QLIST_ENTRY(MapClient) link;
2020 } MapClient;
2021
2022 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2023 = QLIST_HEAD_INITIALIZER(map_client_list);
2024
2025 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2026 {
2027 MapClient *client = g_malloc(sizeof(*client));
2028
2029 client->opaque = opaque;
2030 client->callback = callback;
2031 QLIST_INSERT_HEAD(&map_client_list, client, link);
2032 return client;
2033 }
2034
2035 static void cpu_unregister_map_client(void *_client)
2036 {
2037 MapClient *client = (MapClient *)_client;
2038
2039 QLIST_REMOVE(client, link);
2040 g_free(client);
2041 }
2042
2043 static void cpu_notify_map_clients(void)
2044 {
2045 MapClient *client;
2046
2047 while (!QLIST_EMPTY(&map_client_list)) {
2048 client = QLIST_FIRST(&map_client_list);
2049 client->callback(client->opaque);
2050 cpu_unregister_map_client(client);
2051 }
2052 }
2053
2054 /* Map a physical memory region into a host virtual address.
2055 * May map a subset of the requested range, given by and returned in *plen.
2056 * May return NULL if resources needed to perform the mapping are exhausted.
2057 * Use only for reads OR writes - not for read-modify-write operations.
2058 * Use cpu_register_map_client() to know when retrying the map operation is
2059 * likely to succeed.
2060 */
2061 void *address_space_map(AddressSpace *as,
2062 hwaddr addr,
2063 hwaddr *plen,
2064 bool is_write)
2065 {
2066 AddressSpaceDispatch *d = as->dispatch;
2067 hwaddr len = *plen;
2068 hwaddr todo = 0;
2069 int l;
2070 hwaddr page;
2071 MemoryRegionSection *section;
2072 ram_addr_t raddr = RAM_ADDR_MAX;
2073 ram_addr_t rlen;
2074 void *ret;
2075
2076 while (len > 0) {
2077 page = addr & TARGET_PAGE_MASK;
2078 l = (page + TARGET_PAGE_SIZE) - addr;
2079 if (l > len)
2080 l = len;
2081 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
2082
2083 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
2084 if (todo || bounce.buffer) {
2085 break;
2086 }
2087 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2088 bounce.addr = addr;
2089 bounce.len = l;
2090 if (!is_write) {
2091 address_space_read(as, addr, bounce.buffer, l);
2092 }
2093
2094 *plen = l;
2095 return bounce.buffer;
2096 }
2097 if (!todo) {
2098 raddr = memory_region_get_ram_addr(section->mr)
2099 + memory_region_section_addr(section, addr);
2100 }
2101
2102 len -= l;
2103 addr += l;
2104 todo += l;
2105 }
2106 rlen = todo;
2107 ret = qemu_ram_ptr_length(raddr, &rlen);
2108 *plen = rlen;
2109 return ret;
2110 }
2111
2112 /* Unmaps a memory region previously mapped by address_space_map().
2113 * Will also mark the memory as dirty if is_write == 1. access_len gives
2114 * the amount of memory that was actually read or written by the caller.
2115 */
2116 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2117 int is_write, hwaddr access_len)
2118 {
2119 if (buffer != bounce.buffer) {
2120 if (is_write) {
2121 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2122 while (access_len) {
2123 unsigned l;
2124 l = TARGET_PAGE_SIZE;
2125 if (l > access_len)
2126 l = access_len;
2127 invalidate_and_set_dirty(addr1, l);
2128 addr1 += l;
2129 access_len -= l;
2130 }
2131 }
2132 if (xen_enabled()) {
2133 xen_invalidate_map_cache_entry(buffer);
2134 }
2135 return;
2136 }
2137 if (is_write) {
2138 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2139 }
2140 qemu_vfree(bounce.buffer);
2141 bounce.buffer = NULL;
2142 cpu_notify_map_clients();
2143 }
2144
2145 void *cpu_physical_memory_map(hwaddr addr,
2146 hwaddr *plen,
2147 int is_write)
2148 {
2149 return address_space_map(&address_space_memory, addr, plen, is_write);
2150 }
2151
2152 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2153 int is_write, hwaddr access_len)
2154 {
2155 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2156 }
2157
2158 /* warning: addr must be aligned */
2159 static inline uint32_t ldl_phys_internal(hwaddr addr,
2160 enum device_endian endian)
2161 {
2162 uint8_t *ptr;
2163 uint32_t val;
2164 MemoryRegionSection *section;
2165
2166 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2167
2168 if (!(memory_region_is_ram(section->mr) ||
2169 memory_region_is_romd(section->mr))) {
2170 /* I/O case */
2171 addr = memory_region_section_addr(section, addr);
2172 val = io_mem_read(section->mr, addr, 4);
2173 #if defined(TARGET_WORDS_BIGENDIAN)
2174 if (endian == DEVICE_LITTLE_ENDIAN) {
2175 val = bswap32(val);
2176 }
2177 #else
2178 if (endian == DEVICE_BIG_ENDIAN) {
2179 val = bswap32(val);
2180 }
2181 #endif
2182 } else {
2183 /* RAM case */
2184 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2185 & TARGET_PAGE_MASK)
2186 + memory_region_section_addr(section, addr));
2187 switch (endian) {
2188 case DEVICE_LITTLE_ENDIAN:
2189 val = ldl_le_p(ptr);
2190 break;
2191 case DEVICE_BIG_ENDIAN:
2192 val = ldl_be_p(ptr);
2193 break;
2194 default:
2195 val = ldl_p(ptr);
2196 break;
2197 }
2198 }
2199 return val;
2200 }
2201
2202 uint32_t ldl_phys(hwaddr addr)
2203 {
2204 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2205 }
2206
2207 uint32_t ldl_le_phys(hwaddr addr)
2208 {
2209 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2210 }
2211
2212 uint32_t ldl_be_phys(hwaddr addr)
2213 {
2214 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2215 }
2216
2217 /* warning: addr must be aligned */
2218 static inline uint64_t ldq_phys_internal(hwaddr addr,
2219 enum device_endian endian)
2220 {
2221 uint8_t *ptr;
2222 uint64_t val;
2223 MemoryRegionSection *section;
2224
2225 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2226
2227 if (!(memory_region_is_ram(section->mr) ||
2228 memory_region_is_romd(section->mr))) {
2229 /* I/O case */
2230 addr = memory_region_section_addr(section, addr);
2231
2232 /* XXX This is broken when device endian != cpu endian.
2233 Fix and add "endian" variable check */
2234 #ifdef TARGET_WORDS_BIGENDIAN
2235 val = io_mem_read(section->mr, addr, 4) << 32;
2236 val |= io_mem_read(section->mr, addr + 4, 4);
2237 #else
2238 val = io_mem_read(section->mr, addr, 4);
2239 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
2240 #endif
2241 } else {
2242 /* RAM case */
2243 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2244 & TARGET_PAGE_MASK)
2245 + memory_region_section_addr(section, addr));
2246 switch (endian) {
2247 case DEVICE_LITTLE_ENDIAN:
2248 val = ldq_le_p(ptr);
2249 break;
2250 case DEVICE_BIG_ENDIAN:
2251 val = ldq_be_p(ptr);
2252 break;
2253 default:
2254 val = ldq_p(ptr);
2255 break;
2256 }
2257 }
2258 return val;
2259 }
2260
2261 uint64_t ldq_phys(hwaddr addr)
2262 {
2263 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2264 }
2265
2266 uint64_t ldq_le_phys(hwaddr addr)
2267 {
2268 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2269 }
2270
2271 uint64_t ldq_be_phys(hwaddr addr)
2272 {
2273 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2274 }
2275
2276 /* XXX: optimize */
2277 uint32_t ldub_phys(hwaddr addr)
2278 {
2279 uint8_t val;
2280 cpu_physical_memory_read(addr, &val, 1);
2281 return val;
2282 }
2283
2284 /* warning: addr must be aligned */
2285 static inline uint32_t lduw_phys_internal(hwaddr addr,
2286 enum device_endian endian)
2287 {
2288 uint8_t *ptr;
2289 uint64_t val;
2290 MemoryRegionSection *section;
2291
2292 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2293
2294 if (!(memory_region_is_ram(section->mr) ||
2295 memory_region_is_romd(section->mr))) {
2296 /* I/O case */
2297 addr = memory_region_section_addr(section, addr);
2298 val = io_mem_read(section->mr, addr, 2);
2299 #if defined(TARGET_WORDS_BIGENDIAN)
2300 if (endian == DEVICE_LITTLE_ENDIAN) {
2301 val = bswap16(val);
2302 }
2303 #else
2304 if (endian == DEVICE_BIG_ENDIAN) {
2305 val = bswap16(val);
2306 }
2307 #endif
2308 } else {
2309 /* RAM case */
2310 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2311 & TARGET_PAGE_MASK)
2312 + memory_region_section_addr(section, addr));
2313 switch (endian) {
2314 case DEVICE_LITTLE_ENDIAN:
2315 val = lduw_le_p(ptr);
2316 break;
2317 case DEVICE_BIG_ENDIAN:
2318 val = lduw_be_p(ptr);
2319 break;
2320 default:
2321 val = lduw_p(ptr);
2322 break;
2323 }
2324 }
2325 return val;
2326 }
2327
2328 uint32_t lduw_phys(hwaddr addr)
2329 {
2330 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2331 }
2332
2333 uint32_t lduw_le_phys(hwaddr addr)
2334 {
2335 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2336 }
2337
2338 uint32_t lduw_be_phys(hwaddr addr)
2339 {
2340 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2341 }
2342
2343 /* warning: addr must be aligned. The ram page is not masked as dirty
2344 and the code inside is not invalidated. It is useful if the dirty
2345 bits are used to track modified PTEs */
2346 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2347 {
2348 uint8_t *ptr;
2349 MemoryRegionSection *section;
2350
2351 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2352
2353 if (!memory_region_is_ram(section->mr) || section->readonly) {
2354 addr = memory_region_section_addr(section, addr);
2355 if (memory_region_is_ram(section->mr)) {
2356 section = &phys_sections[phys_section_rom];
2357 }
2358 io_mem_write(section->mr, addr, val, 4);
2359 } else {
2360 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
2361 & TARGET_PAGE_MASK)
2362 + memory_region_section_addr(section, addr);
2363 ptr = qemu_get_ram_ptr(addr1);
2364 stl_p(ptr, val);
2365
2366 if (unlikely(in_migration)) {
2367 if (!cpu_physical_memory_is_dirty(addr1)) {
2368 /* invalidate code */
2369 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2370 /* set dirty bit */
2371 cpu_physical_memory_set_dirty_flags(
2372 addr1, (0xff & ~CODE_DIRTY_FLAG));
2373 }
2374 }
2375 }
2376 }
2377
2378 /* warning: addr must be aligned */
2379 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2380 enum device_endian endian)
2381 {
2382 uint8_t *ptr;
2383 MemoryRegionSection *section;
2384
2385 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2386
2387 if (!memory_region_is_ram(section->mr) || section->readonly) {
2388 addr = memory_region_section_addr(section, addr);
2389 if (memory_region_is_ram(section->mr)) {
2390 section = &phys_sections[phys_section_rom];
2391 }
2392 #if defined(TARGET_WORDS_BIGENDIAN)
2393 if (endian == DEVICE_LITTLE_ENDIAN) {
2394 val = bswap32(val);
2395 }
2396 #else
2397 if (endian == DEVICE_BIG_ENDIAN) {
2398 val = bswap32(val);
2399 }
2400 #endif
2401 io_mem_write(section->mr, addr, val, 4);
2402 } else {
2403 unsigned long addr1;
2404 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2405 + memory_region_section_addr(section, addr);
2406 /* RAM case */
2407 ptr = qemu_get_ram_ptr(addr1);
2408 switch (endian) {
2409 case DEVICE_LITTLE_ENDIAN:
2410 stl_le_p(ptr, val);
2411 break;
2412 case DEVICE_BIG_ENDIAN:
2413 stl_be_p(ptr, val);
2414 break;
2415 default:
2416 stl_p(ptr, val);
2417 break;
2418 }
2419 invalidate_and_set_dirty(addr1, 4);
2420 }
2421 }
2422
2423 void stl_phys(hwaddr addr, uint32_t val)
2424 {
2425 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2426 }
2427
2428 void stl_le_phys(hwaddr addr, uint32_t val)
2429 {
2430 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2431 }
2432
2433 void stl_be_phys(hwaddr addr, uint32_t val)
2434 {
2435 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2436 }
2437
2438 /* XXX: optimize */
2439 void stb_phys(hwaddr addr, uint32_t val)
2440 {
2441 uint8_t v = val;
2442 cpu_physical_memory_write(addr, &v, 1);
2443 }
2444
2445 /* warning: addr must be aligned */
2446 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2447 enum device_endian endian)
2448 {
2449 uint8_t *ptr;
2450 MemoryRegionSection *section;
2451
2452 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2453
2454 if (!memory_region_is_ram(section->mr) || section->readonly) {
2455 addr = memory_region_section_addr(section, addr);
2456 if (memory_region_is_ram(section->mr)) {
2457 section = &phys_sections[phys_section_rom];
2458 }
2459 #if defined(TARGET_WORDS_BIGENDIAN)
2460 if (endian == DEVICE_LITTLE_ENDIAN) {
2461 val = bswap16(val);
2462 }
2463 #else
2464 if (endian == DEVICE_BIG_ENDIAN) {
2465 val = bswap16(val);
2466 }
2467 #endif
2468 io_mem_write(section->mr, addr, val, 2);
2469 } else {
2470 unsigned long addr1;
2471 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2472 + memory_region_section_addr(section, addr);
2473 /* RAM case */
2474 ptr = qemu_get_ram_ptr(addr1);
2475 switch (endian) {
2476 case DEVICE_LITTLE_ENDIAN:
2477 stw_le_p(ptr, val);
2478 break;
2479 case DEVICE_BIG_ENDIAN:
2480 stw_be_p(ptr, val);
2481 break;
2482 default:
2483 stw_p(ptr, val);
2484 break;
2485 }
2486 invalidate_and_set_dirty(addr1, 2);
2487 }
2488 }
2489
2490 void stw_phys(hwaddr addr, uint32_t val)
2491 {
2492 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2493 }
2494
2495 void stw_le_phys(hwaddr addr, uint32_t val)
2496 {
2497 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2498 }
2499
2500 void stw_be_phys(hwaddr addr, uint32_t val)
2501 {
2502 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2503 }
2504
2505 /* XXX: optimize */
2506 void stq_phys(hwaddr addr, uint64_t val)
2507 {
2508 val = tswap64(val);
2509 cpu_physical_memory_write(addr, &val, 8);
2510 }
2511
2512 void stq_le_phys(hwaddr addr, uint64_t val)
2513 {
2514 val = cpu_to_le64(val);
2515 cpu_physical_memory_write(addr, &val, 8);
2516 }
2517
2518 void stq_be_phys(hwaddr addr, uint64_t val)
2519 {
2520 val = cpu_to_be64(val);
2521 cpu_physical_memory_write(addr, &val, 8);
2522 }
2523
2524 /* virtual memory access for debug (includes writing to ROM) */
2525 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2526 uint8_t *buf, int len, int is_write)
2527 {
2528 int l;
2529 hwaddr phys_addr;
2530 target_ulong page;
2531
2532 while (len > 0) {
2533 page = addr & TARGET_PAGE_MASK;
2534 phys_addr = cpu_get_phys_page_debug(env, page);
2535 /* if no physical page mapped, return an error */
2536 if (phys_addr == -1)
2537 return -1;
2538 l = (page + TARGET_PAGE_SIZE) - addr;
2539 if (l > len)
2540 l = len;
2541 phys_addr += (addr & ~TARGET_PAGE_MASK);
2542 if (is_write)
2543 cpu_physical_memory_write_rom(phys_addr, buf, l);
2544 else
2545 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2546 len -= l;
2547 buf += l;
2548 addr += l;
2549 }
2550 return 0;
2551 }
2552 #endif
2553
2554 #if !defined(CONFIG_USER_ONLY)
2555
2556 /*
2557 * A helper function for the _utterly broken_ virtio device model to find out if
2558 * it's running on a big endian machine. Don't do this at home kids!
2559 */
2560 bool virtio_is_big_endian(void);
2561 bool virtio_is_big_endian(void)
2562 {
2563 #if defined(TARGET_WORDS_BIGENDIAN)
2564 return true;
2565 #else
2566 return false;
2567 #endif
2568 }
2569
2570 #endif
2571
2572 #ifndef CONFIG_USER_ONLY
2573 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2574 {
2575 MemoryRegionSection *section;
2576
2577 section = phys_page_find(address_space_memory.dispatch,
2578 phys_addr >> TARGET_PAGE_BITS);
2579
2580 return !(memory_region_is_ram(section->mr) ||
2581 memory_region_is_romd(section->mr));
2582 }
2583 #endif