]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: ram_block_discard_range
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
47 #include "trace-root.h"
48
49 #endif
50 #include "exec/cpu-all.h"
51 #include "qemu/rcu_queue.h"
52 #include "qemu/main-loop.h"
53 #include "translate-all.h"
54 #include "sysemu/replay.h"
55
56 #include "exec/memory-internal.h"
57 #include "exec/ram_addr.h"
58 #include "exec/log.h"
59
60 #include "migration/vmstate.h"
61
62 #include "qemu/range.h"
63 #ifndef _WIN32
64 #include "qemu/mmap-alloc.h"
65 #endif
66
67 //#define DEBUG_SUBPAGE
68
69 #if !defined(CONFIG_USER_ONLY)
70 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
71 * are protected by the ramlist lock.
72 */
73 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
74
75 static MemoryRegion *system_memory;
76 static MemoryRegion *system_io;
77
78 AddressSpace address_space_io;
79 AddressSpace address_space_memory;
80
81 MemoryRegion io_mem_rom, io_mem_notdirty;
82 static MemoryRegion io_mem_unassigned;
83
84 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
85 #define RAM_PREALLOC (1 << 0)
86
87 /* RAM is mmap-ed with MAP_SHARED */
88 #define RAM_SHARED (1 << 1)
89
90 /* Only a portion of RAM (used_length) is actually used, and migrated.
91 * This used_length size can change across reboots.
92 */
93 #define RAM_RESIZEABLE (1 << 2)
94
95 #endif
96
97 #ifdef TARGET_PAGE_BITS_VARY
98 int target_page_bits;
99 bool target_page_bits_decided;
100 #endif
101
102 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
103 /* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
105 __thread CPUState *current_cpu;
106 /* 0 = Do not count executed instructions.
107 1 = Precise instruction counting.
108 2 = Adaptive rate instruction counting. */
109 int use_icount;
110
111 bool set_preferred_target_page_bits(int bits)
112 {
113 /* The target page size is the lowest common denominator for all
114 * the CPUs in the system, so we can only make it smaller, never
115 * larger. And we can't make it smaller once we've committed to
116 * a particular size.
117 */
118 #ifdef TARGET_PAGE_BITS_VARY
119 assert(bits >= TARGET_PAGE_BITS_MIN);
120 if (target_page_bits == 0 || target_page_bits > bits) {
121 if (target_page_bits_decided) {
122 return false;
123 }
124 target_page_bits = bits;
125 }
126 #endif
127 return true;
128 }
129
130 #if !defined(CONFIG_USER_ONLY)
131
132 static void finalize_target_page_bits(void)
133 {
134 #ifdef TARGET_PAGE_BITS_VARY
135 if (target_page_bits == 0) {
136 target_page_bits = TARGET_PAGE_BITS_MIN;
137 }
138 target_page_bits_decided = true;
139 #endif
140 }
141
142 typedef struct PhysPageEntry PhysPageEntry;
143
144 struct PhysPageEntry {
145 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 uint32_t skip : 6;
147 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
148 uint32_t ptr : 26;
149 };
150
151 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define ADDR_SPACE_BITS 64
155
156 #define P_L2_BITS 9
157 #define P_L2_SIZE (1 << P_L2_BITS)
158
159 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160
161 typedef PhysPageEntry Node[P_L2_SIZE];
162
163 typedef struct PhysPageMap {
164 struct rcu_head rcu;
165
166 unsigned sections_nb;
167 unsigned sections_nb_alloc;
168 unsigned nodes_nb;
169 unsigned nodes_nb_alloc;
170 Node *nodes;
171 MemoryRegionSection *sections;
172 } PhysPageMap;
173
174 struct AddressSpaceDispatch {
175 struct rcu_head rcu;
176
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
182 PhysPageMap map;
183 AddressSpace *as;
184 };
185
186 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
187 typedef struct subpage_t {
188 MemoryRegion iomem;
189 AddressSpace *as;
190 hwaddr base;
191 uint16_t sub_section[];
192 } subpage_t;
193
194 #define PHYS_SECTION_UNASSIGNED 0
195 #define PHYS_SECTION_NOTDIRTY 1
196 #define PHYS_SECTION_ROM 2
197 #define PHYS_SECTION_WATCH 3
198
199 static void io_mem_init(void);
200 static void memory_map_init(void);
201 static void tcg_commit(MemoryListener *listener);
202
203 static MemoryRegion io_mem_watch;
204
205 /**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212 struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217 };
218
219 #endif
220
221 #if !defined(CONFIG_USER_ONLY)
222
223 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
224 {
225 static unsigned alloc_hint = 16;
226 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
228 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
229 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
230 alloc_hint = map->nodes_nb_alloc;
231 }
232 }
233
234 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
235 {
236 unsigned i;
237 uint32_t ret;
238 PhysPageEntry e;
239 PhysPageEntry *p;
240
241 ret = map->nodes_nb++;
242 p = map->nodes[ret];
243 assert(ret != PHYS_MAP_NODE_NIL);
244 assert(ret != map->nodes_nb_alloc);
245
246 e.skip = leaf ? 0 : 1;
247 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
248 for (i = 0; i < P_L2_SIZE; ++i) {
249 memcpy(&p[i], &e, sizeof(e));
250 }
251 return ret;
252 }
253
254 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
255 hwaddr *index, hwaddr *nb, uint16_t leaf,
256 int level)
257 {
258 PhysPageEntry *p;
259 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
260
261 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
262 lp->ptr = phys_map_node_alloc(map, level == 0);
263 }
264 p = map->nodes[lp->ptr];
265 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
266
267 while (*nb && lp < &p[P_L2_SIZE]) {
268 if ((*index & (step - 1)) == 0 && *nb >= step) {
269 lp->skip = 0;
270 lp->ptr = leaf;
271 *index += step;
272 *nb -= step;
273 } else {
274 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
275 }
276 ++lp;
277 }
278 }
279
280 static void phys_page_set(AddressSpaceDispatch *d,
281 hwaddr index, hwaddr nb,
282 uint16_t leaf)
283 {
284 /* Wildly overreserve - it doesn't matter much. */
285 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
286
287 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
288 }
289
290 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
291 * and update our entry so we can skip it and go directly to the destination.
292 */
293 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
294 {
295 unsigned valid_ptr = P_L2_SIZE;
296 int valid = 0;
297 PhysPageEntry *p;
298 int i;
299
300 if (lp->ptr == PHYS_MAP_NODE_NIL) {
301 return;
302 }
303
304 p = nodes[lp->ptr];
305 for (i = 0; i < P_L2_SIZE; i++) {
306 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
307 continue;
308 }
309
310 valid_ptr = i;
311 valid++;
312 if (p[i].skip) {
313 phys_page_compact(&p[i], nodes);
314 }
315 }
316
317 /* We can only compress if there's only one child. */
318 if (valid != 1) {
319 return;
320 }
321
322 assert(valid_ptr < P_L2_SIZE);
323
324 /* Don't compress if it won't fit in the # of bits we have. */
325 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
326 return;
327 }
328
329 lp->ptr = p[valid_ptr].ptr;
330 if (!p[valid_ptr].skip) {
331 /* If our only child is a leaf, make this a leaf. */
332 /* By design, we should have made this node a leaf to begin with so we
333 * should never reach here.
334 * But since it's so simple to handle this, let's do it just in case we
335 * change this rule.
336 */
337 lp->skip = 0;
338 } else {
339 lp->skip += p[valid_ptr].skip;
340 }
341 }
342
343 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
344 {
345 if (d->phys_map.skip) {
346 phys_page_compact(&d->phys_map, d->map.nodes);
347 }
348 }
349
350 static inline bool section_covers_addr(const MemoryRegionSection *section,
351 hwaddr addr)
352 {
353 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
354 * the section must cover the entire address space.
355 */
356 return int128_gethi(section->size) ||
357 range_covers_byte(section->offset_within_address_space,
358 int128_getlo(section->size), addr);
359 }
360
361 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
362 Node *nodes, MemoryRegionSection *sections)
363 {
364 PhysPageEntry *p;
365 hwaddr index = addr >> TARGET_PAGE_BITS;
366 int i;
367
368 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
369 if (lp.ptr == PHYS_MAP_NODE_NIL) {
370 return &sections[PHYS_SECTION_UNASSIGNED];
371 }
372 p = nodes[lp.ptr];
373 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
374 }
375
376 if (section_covers_addr(&sections[lp.ptr], addr)) {
377 return &sections[lp.ptr];
378 } else {
379 return &sections[PHYS_SECTION_UNASSIGNED];
380 }
381 }
382
383 bool memory_region_is_unassigned(MemoryRegion *mr)
384 {
385 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
386 && mr != &io_mem_watch;
387 }
388
389 /* Called from RCU critical section */
390 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
391 hwaddr addr,
392 bool resolve_subpage)
393 {
394 MemoryRegionSection *section = atomic_read(&d->mru_section);
395 subpage_t *subpage;
396 bool update;
397
398 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
399 section_covers_addr(section, addr)) {
400 update = false;
401 } else {
402 section = phys_page_find(d->phys_map, addr, d->map.nodes,
403 d->map.sections);
404 update = true;
405 }
406 if (resolve_subpage && section->mr->subpage) {
407 subpage = container_of(section->mr, subpage_t, iomem);
408 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
409 }
410 if (update) {
411 atomic_set(&d->mru_section, section);
412 }
413 return section;
414 }
415
416 /* Called from RCU critical section */
417 static MemoryRegionSection *
418 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
419 hwaddr *plen, bool resolve_subpage)
420 {
421 MemoryRegionSection *section;
422 MemoryRegion *mr;
423 Int128 diff;
424
425 section = address_space_lookup_region(d, addr, resolve_subpage);
426 /* Compute offset within MemoryRegionSection */
427 addr -= section->offset_within_address_space;
428
429 /* Compute offset within MemoryRegion */
430 *xlat = addr + section->offset_within_region;
431
432 mr = section->mr;
433
434 /* MMIO registers can be expected to perform full-width accesses based only
435 * on their address, without considering adjacent registers that could
436 * decode to completely different MemoryRegions. When such registers
437 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
438 * regions overlap wildly. For this reason we cannot clamp the accesses
439 * here.
440 *
441 * If the length is small (as is the case for address_space_ldl/stl),
442 * everything works fine. If the incoming length is large, however,
443 * the caller really has to do the clamping through memory_access_size.
444 */
445 if (memory_region_is_ram(mr)) {
446 diff = int128_sub(section->size, int128_make64(addr));
447 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
448 }
449 return section;
450 }
451
452 /* Called from RCU critical section */
453 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
454 bool is_write)
455 {
456 IOMMUTLBEntry iotlb = {0};
457 MemoryRegionSection *section;
458 MemoryRegion *mr;
459
460 for (;;) {
461 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
462 section = address_space_lookup_region(d, addr, false);
463 addr = addr - section->offset_within_address_space
464 + section->offset_within_region;
465 mr = section->mr;
466
467 if (!mr->iommu_ops) {
468 break;
469 }
470
471 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
472 if (!(iotlb.perm & (1 << is_write))) {
473 iotlb.target_as = NULL;
474 break;
475 }
476
477 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
478 | (addr & iotlb.addr_mask));
479 as = iotlb.target_as;
480 }
481
482 return iotlb;
483 }
484
485 /* Called from RCU critical section */
486 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
487 hwaddr *xlat, hwaddr *plen,
488 bool is_write)
489 {
490 IOMMUTLBEntry iotlb;
491 MemoryRegionSection *section;
492 MemoryRegion *mr;
493
494 for (;;) {
495 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
496 section = address_space_translate_internal(d, addr, &addr, plen, true);
497 mr = section->mr;
498
499 if (!mr->iommu_ops) {
500 break;
501 }
502
503 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
504 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
505 | (addr & iotlb.addr_mask));
506 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
507 if (!(iotlb.perm & (1 << is_write))) {
508 mr = &io_mem_unassigned;
509 break;
510 }
511
512 as = iotlb.target_as;
513 }
514
515 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
516 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
517 *plen = MIN(page, *plen);
518 }
519
520 *xlat = addr;
521 return mr;
522 }
523
524 /* Called from RCU critical section */
525 MemoryRegionSection *
526 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
527 hwaddr *xlat, hwaddr *plen)
528 {
529 MemoryRegionSection *section;
530 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
531
532 section = address_space_translate_internal(d, addr, xlat, plen, false);
533
534 assert(!section->mr->iommu_ops);
535 return section;
536 }
537 #endif
538
539 #if !defined(CONFIG_USER_ONLY)
540
541 static int cpu_common_post_load(void *opaque, int version_id)
542 {
543 CPUState *cpu = opaque;
544
545 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
546 version_id is increased. */
547 cpu->interrupt_request &= ~0x01;
548 tlb_flush(cpu);
549
550 return 0;
551 }
552
553 static int cpu_common_pre_load(void *opaque)
554 {
555 CPUState *cpu = opaque;
556
557 cpu->exception_index = -1;
558
559 return 0;
560 }
561
562 static bool cpu_common_exception_index_needed(void *opaque)
563 {
564 CPUState *cpu = opaque;
565
566 return tcg_enabled() && cpu->exception_index != -1;
567 }
568
569 static const VMStateDescription vmstate_cpu_common_exception_index = {
570 .name = "cpu_common/exception_index",
571 .version_id = 1,
572 .minimum_version_id = 1,
573 .needed = cpu_common_exception_index_needed,
574 .fields = (VMStateField[]) {
575 VMSTATE_INT32(exception_index, CPUState),
576 VMSTATE_END_OF_LIST()
577 }
578 };
579
580 static bool cpu_common_crash_occurred_needed(void *opaque)
581 {
582 CPUState *cpu = opaque;
583
584 return cpu->crash_occurred;
585 }
586
587 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
588 .name = "cpu_common/crash_occurred",
589 .version_id = 1,
590 .minimum_version_id = 1,
591 .needed = cpu_common_crash_occurred_needed,
592 .fields = (VMStateField[]) {
593 VMSTATE_BOOL(crash_occurred, CPUState),
594 VMSTATE_END_OF_LIST()
595 }
596 };
597
598 const VMStateDescription vmstate_cpu_common = {
599 .name = "cpu_common",
600 .version_id = 1,
601 .minimum_version_id = 1,
602 .pre_load = cpu_common_pre_load,
603 .post_load = cpu_common_post_load,
604 .fields = (VMStateField[]) {
605 VMSTATE_UINT32(halted, CPUState),
606 VMSTATE_UINT32(interrupt_request, CPUState),
607 VMSTATE_END_OF_LIST()
608 },
609 .subsections = (const VMStateDescription*[]) {
610 &vmstate_cpu_common_exception_index,
611 &vmstate_cpu_common_crash_occurred,
612 NULL
613 }
614 };
615
616 #endif
617
618 CPUState *qemu_get_cpu(int index)
619 {
620 CPUState *cpu;
621
622 CPU_FOREACH(cpu) {
623 if (cpu->cpu_index == index) {
624 return cpu;
625 }
626 }
627
628 return NULL;
629 }
630
631 #if !defined(CONFIG_USER_ONLY)
632 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
633 {
634 CPUAddressSpace *newas;
635
636 /* Target code should have set num_ases before calling us */
637 assert(asidx < cpu->num_ases);
638
639 if (asidx == 0) {
640 /* address space 0 gets the convenience alias */
641 cpu->as = as;
642 }
643
644 /* KVM cannot currently support multiple address spaces. */
645 assert(asidx == 0 || !kvm_enabled());
646
647 if (!cpu->cpu_ases) {
648 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
649 }
650
651 newas = &cpu->cpu_ases[asidx];
652 newas->cpu = cpu;
653 newas->as = as;
654 if (tcg_enabled()) {
655 newas->tcg_as_listener.commit = tcg_commit;
656 memory_listener_register(&newas->tcg_as_listener, as);
657 }
658 }
659
660 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
661 {
662 /* Return the AddressSpace corresponding to the specified index */
663 return cpu->cpu_ases[asidx].as;
664 }
665 #endif
666
667 void cpu_exec_unrealizefn(CPUState *cpu)
668 {
669 CPUClass *cc = CPU_GET_CLASS(cpu);
670
671 cpu_list_remove(cpu);
672
673 if (cc->vmsd != NULL) {
674 vmstate_unregister(NULL, cc->vmsd, cpu);
675 }
676 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
677 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
678 }
679 }
680
681 void cpu_exec_initfn(CPUState *cpu)
682 {
683 cpu->as = NULL;
684 cpu->num_ases = 0;
685
686 #ifndef CONFIG_USER_ONLY
687 cpu->thread_id = qemu_get_thread_id();
688
689 /* This is a softmmu CPU object, so create a property for it
690 * so users can wire up its memory. (This can't go in qom/cpu.c
691 * because that file is compiled only once for both user-mode
692 * and system builds.) The default if no link is set up is to use
693 * the system address space.
694 */
695 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
696 (Object **)&cpu->memory,
697 qdev_prop_allow_set_link_before_realize,
698 OBJ_PROP_LINK_UNREF_ON_RELEASE,
699 &error_abort);
700 cpu->memory = system_memory;
701 object_ref(OBJECT(cpu->memory));
702 #endif
703 }
704
705 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
706 {
707 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
708
709 cpu_list_add(cpu);
710
711 #ifndef CONFIG_USER_ONLY
712 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
713 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
714 }
715 if (cc->vmsd != NULL) {
716 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
717 }
718 #endif
719 }
720
721 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
722 {
723 /* Flush the whole TB as this will not have race conditions
724 * even if we don't have proper locking yet.
725 * Ideally we would just invalidate the TBs for the
726 * specified PC.
727 */
728 tb_flush(cpu);
729 }
730
731 #if defined(CONFIG_USER_ONLY)
732 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
733
734 {
735 }
736
737 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
738 int flags)
739 {
740 return -ENOSYS;
741 }
742
743 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
744 {
745 }
746
747 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
748 int flags, CPUWatchpoint **watchpoint)
749 {
750 return -ENOSYS;
751 }
752 #else
753 /* Add a watchpoint. */
754 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
755 int flags, CPUWatchpoint **watchpoint)
756 {
757 CPUWatchpoint *wp;
758
759 /* forbid ranges which are empty or run off the end of the address space */
760 if (len == 0 || (addr + len - 1) < addr) {
761 error_report("tried to set invalid watchpoint at %"
762 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
763 return -EINVAL;
764 }
765 wp = g_malloc(sizeof(*wp));
766
767 wp->vaddr = addr;
768 wp->len = len;
769 wp->flags = flags;
770
771 /* keep all GDB-injected watchpoints in front */
772 if (flags & BP_GDB) {
773 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
774 } else {
775 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
776 }
777
778 tlb_flush_page(cpu, addr);
779
780 if (watchpoint)
781 *watchpoint = wp;
782 return 0;
783 }
784
785 /* Remove a specific watchpoint. */
786 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
787 int flags)
788 {
789 CPUWatchpoint *wp;
790
791 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
792 if (addr == wp->vaddr && len == wp->len
793 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
794 cpu_watchpoint_remove_by_ref(cpu, wp);
795 return 0;
796 }
797 }
798 return -ENOENT;
799 }
800
801 /* Remove a specific watchpoint by reference. */
802 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
803 {
804 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
805
806 tlb_flush_page(cpu, watchpoint->vaddr);
807
808 g_free(watchpoint);
809 }
810
811 /* Remove all matching watchpoints. */
812 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
813 {
814 CPUWatchpoint *wp, *next;
815
816 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
817 if (wp->flags & mask) {
818 cpu_watchpoint_remove_by_ref(cpu, wp);
819 }
820 }
821 }
822
823 /* Return true if this watchpoint address matches the specified
824 * access (ie the address range covered by the watchpoint overlaps
825 * partially or completely with the address range covered by the
826 * access).
827 */
828 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
829 vaddr addr,
830 vaddr len)
831 {
832 /* We know the lengths are non-zero, but a little caution is
833 * required to avoid errors in the case where the range ends
834 * exactly at the top of the address space and so addr + len
835 * wraps round to zero.
836 */
837 vaddr wpend = wp->vaddr + wp->len - 1;
838 vaddr addrend = addr + len - 1;
839
840 return !(addr > wpend || wp->vaddr > addrend);
841 }
842
843 #endif
844
845 /* Add a breakpoint. */
846 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
847 CPUBreakpoint **breakpoint)
848 {
849 CPUBreakpoint *bp;
850
851 bp = g_malloc(sizeof(*bp));
852
853 bp->pc = pc;
854 bp->flags = flags;
855
856 /* keep all GDB-injected breakpoints in front */
857 if (flags & BP_GDB) {
858 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
859 } else {
860 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
861 }
862
863 breakpoint_invalidate(cpu, pc);
864
865 if (breakpoint) {
866 *breakpoint = bp;
867 }
868 return 0;
869 }
870
871 /* Remove a specific breakpoint. */
872 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
873 {
874 CPUBreakpoint *bp;
875
876 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
877 if (bp->pc == pc && bp->flags == flags) {
878 cpu_breakpoint_remove_by_ref(cpu, bp);
879 return 0;
880 }
881 }
882 return -ENOENT;
883 }
884
885 /* Remove a specific breakpoint by reference. */
886 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
887 {
888 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
889
890 breakpoint_invalidate(cpu, breakpoint->pc);
891
892 g_free(breakpoint);
893 }
894
895 /* Remove all matching breakpoints. */
896 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
897 {
898 CPUBreakpoint *bp, *next;
899
900 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
901 if (bp->flags & mask) {
902 cpu_breakpoint_remove_by_ref(cpu, bp);
903 }
904 }
905 }
906
907 /* enable or disable single step mode. EXCP_DEBUG is returned by the
908 CPU loop after each instruction */
909 void cpu_single_step(CPUState *cpu, int enabled)
910 {
911 if (cpu->singlestep_enabled != enabled) {
912 cpu->singlestep_enabled = enabled;
913 if (kvm_enabled()) {
914 kvm_update_guest_debug(cpu, 0);
915 } else {
916 /* must flush all the translated code to avoid inconsistencies */
917 /* XXX: only flush what is necessary */
918 tb_flush(cpu);
919 }
920 }
921 }
922
923 void cpu_abort(CPUState *cpu, const char *fmt, ...)
924 {
925 va_list ap;
926 va_list ap2;
927
928 va_start(ap, fmt);
929 va_copy(ap2, ap);
930 fprintf(stderr, "qemu: fatal: ");
931 vfprintf(stderr, fmt, ap);
932 fprintf(stderr, "\n");
933 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
934 if (qemu_log_separate()) {
935 qemu_log_lock();
936 qemu_log("qemu: fatal: ");
937 qemu_log_vprintf(fmt, ap2);
938 qemu_log("\n");
939 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
940 qemu_log_flush();
941 qemu_log_unlock();
942 qemu_log_close();
943 }
944 va_end(ap2);
945 va_end(ap);
946 replay_finish();
947 #if defined(CONFIG_USER_ONLY)
948 {
949 struct sigaction act;
950 sigfillset(&act.sa_mask);
951 act.sa_handler = SIG_DFL;
952 sigaction(SIGABRT, &act, NULL);
953 }
954 #endif
955 abort();
956 }
957
958 #if !defined(CONFIG_USER_ONLY)
959 /* Called from RCU critical section */
960 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
961 {
962 RAMBlock *block;
963
964 block = atomic_rcu_read(&ram_list.mru_block);
965 if (block && addr - block->offset < block->max_length) {
966 return block;
967 }
968 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
969 if (addr - block->offset < block->max_length) {
970 goto found;
971 }
972 }
973
974 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
975 abort();
976
977 found:
978 /* It is safe to write mru_block outside the iothread lock. This
979 * is what happens:
980 *
981 * mru_block = xxx
982 * rcu_read_unlock()
983 * xxx removed from list
984 * rcu_read_lock()
985 * read mru_block
986 * mru_block = NULL;
987 * call_rcu(reclaim_ramblock, xxx);
988 * rcu_read_unlock()
989 *
990 * atomic_rcu_set is not needed here. The block was already published
991 * when it was placed into the list. Here we're just making an extra
992 * copy of the pointer.
993 */
994 ram_list.mru_block = block;
995 return block;
996 }
997
998 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
999 {
1000 CPUState *cpu;
1001 ram_addr_t start1;
1002 RAMBlock *block;
1003 ram_addr_t end;
1004
1005 end = TARGET_PAGE_ALIGN(start + length);
1006 start &= TARGET_PAGE_MASK;
1007
1008 rcu_read_lock();
1009 block = qemu_get_ram_block(start);
1010 assert(block == qemu_get_ram_block(end - 1));
1011 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1012 CPU_FOREACH(cpu) {
1013 tlb_reset_dirty(cpu, start1, length);
1014 }
1015 rcu_read_unlock();
1016 }
1017
1018 /* Note: start and end must be within the same ram block. */
1019 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1020 ram_addr_t length,
1021 unsigned client)
1022 {
1023 DirtyMemoryBlocks *blocks;
1024 unsigned long end, page;
1025 bool dirty = false;
1026
1027 if (length == 0) {
1028 return false;
1029 }
1030
1031 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1032 page = start >> TARGET_PAGE_BITS;
1033
1034 rcu_read_lock();
1035
1036 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1037
1038 while (page < end) {
1039 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1040 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1041 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1042
1043 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1044 offset, num);
1045 page += num;
1046 }
1047
1048 rcu_read_unlock();
1049
1050 if (dirty && tcg_enabled()) {
1051 tlb_reset_dirty_range_all(start, length);
1052 }
1053
1054 return dirty;
1055 }
1056
1057 /* Called from RCU critical section */
1058 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1059 MemoryRegionSection *section,
1060 target_ulong vaddr,
1061 hwaddr paddr, hwaddr xlat,
1062 int prot,
1063 target_ulong *address)
1064 {
1065 hwaddr iotlb;
1066 CPUWatchpoint *wp;
1067
1068 if (memory_region_is_ram(section->mr)) {
1069 /* Normal RAM. */
1070 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1071 if (!section->readonly) {
1072 iotlb |= PHYS_SECTION_NOTDIRTY;
1073 } else {
1074 iotlb |= PHYS_SECTION_ROM;
1075 }
1076 } else {
1077 AddressSpaceDispatch *d;
1078
1079 d = atomic_rcu_read(&section->address_space->dispatch);
1080 iotlb = section - d->map.sections;
1081 iotlb += xlat;
1082 }
1083
1084 /* Make accesses to pages with watchpoints go via the
1085 watchpoint trap routines. */
1086 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1087 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1088 /* Avoid trapping reads of pages with a write breakpoint. */
1089 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1090 iotlb = PHYS_SECTION_WATCH + paddr;
1091 *address |= TLB_MMIO;
1092 break;
1093 }
1094 }
1095 }
1096
1097 return iotlb;
1098 }
1099 #endif /* defined(CONFIG_USER_ONLY) */
1100
1101 #if !defined(CONFIG_USER_ONLY)
1102
1103 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1104 uint16_t section);
1105 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1106
1107 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1108 qemu_anon_ram_alloc;
1109
1110 /*
1111 * Set a custom physical guest memory alloator.
1112 * Accelerators with unusual needs may need this. Hopefully, we can
1113 * get rid of it eventually.
1114 */
1115 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1116 {
1117 phys_mem_alloc = alloc;
1118 }
1119
1120 static uint16_t phys_section_add(PhysPageMap *map,
1121 MemoryRegionSection *section)
1122 {
1123 /* The physical section number is ORed with a page-aligned
1124 * pointer to produce the iotlb entries. Thus it should
1125 * never overflow into the page-aligned value.
1126 */
1127 assert(map->sections_nb < TARGET_PAGE_SIZE);
1128
1129 if (map->sections_nb == map->sections_nb_alloc) {
1130 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1131 map->sections = g_renew(MemoryRegionSection, map->sections,
1132 map->sections_nb_alloc);
1133 }
1134 map->sections[map->sections_nb] = *section;
1135 memory_region_ref(section->mr);
1136 return map->sections_nb++;
1137 }
1138
1139 static void phys_section_destroy(MemoryRegion *mr)
1140 {
1141 bool have_sub_page = mr->subpage;
1142
1143 memory_region_unref(mr);
1144
1145 if (have_sub_page) {
1146 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1147 object_unref(OBJECT(&subpage->iomem));
1148 g_free(subpage);
1149 }
1150 }
1151
1152 static void phys_sections_free(PhysPageMap *map)
1153 {
1154 while (map->sections_nb > 0) {
1155 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1156 phys_section_destroy(section->mr);
1157 }
1158 g_free(map->sections);
1159 g_free(map->nodes);
1160 }
1161
1162 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1163 {
1164 subpage_t *subpage;
1165 hwaddr base = section->offset_within_address_space
1166 & TARGET_PAGE_MASK;
1167 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1168 d->map.nodes, d->map.sections);
1169 MemoryRegionSection subsection = {
1170 .offset_within_address_space = base,
1171 .size = int128_make64(TARGET_PAGE_SIZE),
1172 };
1173 hwaddr start, end;
1174
1175 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1176
1177 if (!(existing->mr->subpage)) {
1178 subpage = subpage_init(d->as, base);
1179 subsection.address_space = d->as;
1180 subsection.mr = &subpage->iomem;
1181 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1182 phys_section_add(&d->map, &subsection));
1183 } else {
1184 subpage = container_of(existing->mr, subpage_t, iomem);
1185 }
1186 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1187 end = start + int128_get64(section->size) - 1;
1188 subpage_register(subpage, start, end,
1189 phys_section_add(&d->map, section));
1190 }
1191
1192
1193 static void register_multipage(AddressSpaceDispatch *d,
1194 MemoryRegionSection *section)
1195 {
1196 hwaddr start_addr = section->offset_within_address_space;
1197 uint16_t section_index = phys_section_add(&d->map, section);
1198 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1199 TARGET_PAGE_BITS));
1200
1201 assert(num_pages);
1202 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1203 }
1204
1205 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1206 {
1207 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1208 AddressSpaceDispatch *d = as->next_dispatch;
1209 MemoryRegionSection now = *section, remain = *section;
1210 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1211
1212 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1213 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1214 - now.offset_within_address_space;
1215
1216 now.size = int128_min(int128_make64(left), now.size);
1217 register_subpage(d, &now);
1218 } else {
1219 now.size = int128_zero();
1220 }
1221 while (int128_ne(remain.size, now.size)) {
1222 remain.size = int128_sub(remain.size, now.size);
1223 remain.offset_within_address_space += int128_get64(now.size);
1224 remain.offset_within_region += int128_get64(now.size);
1225 now = remain;
1226 if (int128_lt(remain.size, page_size)) {
1227 register_subpage(d, &now);
1228 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1229 now.size = page_size;
1230 register_subpage(d, &now);
1231 } else {
1232 now.size = int128_and(now.size, int128_neg(page_size));
1233 register_multipage(d, &now);
1234 }
1235 }
1236 }
1237
1238 void qemu_flush_coalesced_mmio_buffer(void)
1239 {
1240 if (kvm_enabled())
1241 kvm_flush_coalesced_mmio_buffer();
1242 }
1243
1244 void qemu_mutex_lock_ramlist(void)
1245 {
1246 qemu_mutex_lock(&ram_list.mutex);
1247 }
1248
1249 void qemu_mutex_unlock_ramlist(void)
1250 {
1251 qemu_mutex_unlock(&ram_list.mutex);
1252 }
1253
1254 #ifdef __linux__
1255 static int64_t get_file_size(int fd)
1256 {
1257 int64_t size = lseek(fd, 0, SEEK_END);
1258 if (size < 0) {
1259 return -errno;
1260 }
1261 return size;
1262 }
1263
1264 static void *file_ram_alloc(RAMBlock *block,
1265 ram_addr_t memory,
1266 const char *path,
1267 Error **errp)
1268 {
1269 bool unlink_on_error = false;
1270 char *filename;
1271 char *sanitized_name;
1272 char *c;
1273 void *area = MAP_FAILED;
1274 int fd = -1;
1275 int64_t file_size;
1276
1277 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1278 error_setg(errp,
1279 "host lacks kvm mmu notifiers, -mem-path unsupported");
1280 return NULL;
1281 }
1282
1283 for (;;) {
1284 fd = open(path, O_RDWR);
1285 if (fd >= 0) {
1286 /* @path names an existing file, use it */
1287 break;
1288 }
1289 if (errno == ENOENT) {
1290 /* @path names a file that doesn't exist, create it */
1291 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1292 if (fd >= 0) {
1293 unlink_on_error = true;
1294 break;
1295 }
1296 } else if (errno == EISDIR) {
1297 /* @path names a directory, create a file there */
1298 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1299 sanitized_name = g_strdup(memory_region_name(block->mr));
1300 for (c = sanitized_name; *c != '\0'; c++) {
1301 if (*c == '/') {
1302 *c = '_';
1303 }
1304 }
1305
1306 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1307 sanitized_name);
1308 g_free(sanitized_name);
1309
1310 fd = mkstemp(filename);
1311 if (fd >= 0) {
1312 unlink(filename);
1313 g_free(filename);
1314 break;
1315 }
1316 g_free(filename);
1317 }
1318 if (errno != EEXIST && errno != EINTR) {
1319 error_setg_errno(errp, errno,
1320 "can't open backing store %s for guest RAM",
1321 path);
1322 goto error;
1323 }
1324 /*
1325 * Try again on EINTR and EEXIST. The latter happens when
1326 * something else creates the file between our two open().
1327 */
1328 }
1329
1330 block->page_size = qemu_fd_getpagesize(fd);
1331 block->mr->align = block->page_size;
1332 #if defined(__s390x__)
1333 if (kvm_enabled()) {
1334 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1335 }
1336 #endif
1337
1338 file_size = get_file_size(fd);
1339
1340 if (memory < block->page_size) {
1341 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1342 "or larger than page size 0x%zx",
1343 memory, block->page_size);
1344 goto error;
1345 }
1346
1347 if (file_size > 0 && file_size < memory) {
1348 error_setg(errp, "backing store %s size 0x%" PRIx64
1349 " does not match 'size' option 0x" RAM_ADDR_FMT,
1350 path, file_size, memory);
1351 goto error;
1352 }
1353
1354 memory = ROUND_UP(memory, block->page_size);
1355
1356 /*
1357 * ftruncate is not supported by hugetlbfs in older
1358 * hosts, so don't bother bailing out on errors.
1359 * If anything goes wrong with it under other filesystems,
1360 * mmap will fail.
1361 *
1362 * Do not truncate the non-empty backend file to avoid corrupting
1363 * the existing data in the file. Disabling shrinking is not
1364 * enough. For example, the current vNVDIMM implementation stores
1365 * the guest NVDIMM labels at the end of the backend file. If the
1366 * backend file is later extended, QEMU will not be able to find
1367 * those labels. Therefore, extending the non-empty backend file
1368 * is disabled as well.
1369 */
1370 if (!file_size && ftruncate(fd, memory)) {
1371 perror("ftruncate");
1372 }
1373
1374 area = qemu_ram_mmap(fd, memory, block->mr->align,
1375 block->flags & RAM_SHARED);
1376 if (area == MAP_FAILED) {
1377 error_setg_errno(errp, errno,
1378 "unable to map backing store for guest RAM");
1379 goto error;
1380 }
1381
1382 if (mem_prealloc) {
1383 os_mem_prealloc(fd, area, memory, errp);
1384 if (errp && *errp) {
1385 goto error;
1386 }
1387 }
1388
1389 block->fd = fd;
1390 return area;
1391
1392 error:
1393 if (area != MAP_FAILED) {
1394 qemu_ram_munmap(area, memory);
1395 }
1396 if (unlink_on_error) {
1397 unlink(path);
1398 }
1399 if (fd != -1) {
1400 close(fd);
1401 }
1402 return NULL;
1403 }
1404 #endif
1405
1406 /* Called with the ramlist lock held. */
1407 static ram_addr_t find_ram_offset(ram_addr_t size)
1408 {
1409 RAMBlock *block, *next_block;
1410 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1411
1412 assert(size != 0); /* it would hand out same offset multiple times */
1413
1414 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1415 return 0;
1416 }
1417
1418 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1419 ram_addr_t end, next = RAM_ADDR_MAX;
1420
1421 end = block->offset + block->max_length;
1422
1423 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1424 if (next_block->offset >= end) {
1425 next = MIN(next, next_block->offset);
1426 }
1427 }
1428 if (next - end >= size && next - end < mingap) {
1429 offset = end;
1430 mingap = next - end;
1431 }
1432 }
1433
1434 if (offset == RAM_ADDR_MAX) {
1435 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1436 (uint64_t)size);
1437 abort();
1438 }
1439
1440 return offset;
1441 }
1442
1443 ram_addr_t last_ram_offset(void)
1444 {
1445 RAMBlock *block;
1446 ram_addr_t last = 0;
1447
1448 rcu_read_lock();
1449 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1450 last = MAX(last, block->offset + block->max_length);
1451 }
1452 rcu_read_unlock();
1453 return last;
1454 }
1455
1456 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1457 {
1458 int ret;
1459
1460 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1461 if (!machine_dump_guest_core(current_machine)) {
1462 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1463 if (ret) {
1464 perror("qemu_madvise");
1465 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1466 "but dump_guest_core=off specified\n");
1467 }
1468 }
1469 }
1470
1471 const char *qemu_ram_get_idstr(RAMBlock *rb)
1472 {
1473 return rb->idstr;
1474 }
1475
1476 /* Called with iothread lock held. */
1477 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1478 {
1479 RAMBlock *block;
1480
1481 assert(new_block);
1482 assert(!new_block->idstr[0]);
1483
1484 if (dev) {
1485 char *id = qdev_get_dev_path(dev);
1486 if (id) {
1487 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1488 g_free(id);
1489 }
1490 }
1491 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1492
1493 rcu_read_lock();
1494 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1495 if (block != new_block &&
1496 !strcmp(block->idstr, new_block->idstr)) {
1497 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1498 new_block->idstr);
1499 abort();
1500 }
1501 }
1502 rcu_read_unlock();
1503 }
1504
1505 /* Called with iothread lock held. */
1506 void qemu_ram_unset_idstr(RAMBlock *block)
1507 {
1508 /* FIXME: arch_init.c assumes that this is not called throughout
1509 * migration. Ignore the problem since hot-unplug during migration
1510 * does not work anyway.
1511 */
1512 if (block) {
1513 memset(block->idstr, 0, sizeof(block->idstr));
1514 }
1515 }
1516
1517 size_t qemu_ram_pagesize(RAMBlock *rb)
1518 {
1519 return rb->page_size;
1520 }
1521
1522 static int memory_try_enable_merging(void *addr, size_t len)
1523 {
1524 if (!machine_mem_merge(current_machine)) {
1525 /* disabled by the user */
1526 return 0;
1527 }
1528
1529 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1530 }
1531
1532 /* Only legal before guest might have detected the memory size: e.g. on
1533 * incoming migration, or right after reset.
1534 *
1535 * As memory core doesn't know how is memory accessed, it is up to
1536 * resize callback to update device state and/or add assertions to detect
1537 * misuse, if necessary.
1538 */
1539 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1540 {
1541 assert(block);
1542
1543 newsize = HOST_PAGE_ALIGN(newsize);
1544
1545 if (block->used_length == newsize) {
1546 return 0;
1547 }
1548
1549 if (!(block->flags & RAM_RESIZEABLE)) {
1550 error_setg_errno(errp, EINVAL,
1551 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1552 " in != 0x" RAM_ADDR_FMT, block->idstr,
1553 newsize, block->used_length);
1554 return -EINVAL;
1555 }
1556
1557 if (block->max_length < newsize) {
1558 error_setg_errno(errp, EINVAL,
1559 "Length too large: %s: 0x" RAM_ADDR_FMT
1560 " > 0x" RAM_ADDR_FMT, block->idstr,
1561 newsize, block->max_length);
1562 return -EINVAL;
1563 }
1564
1565 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1566 block->used_length = newsize;
1567 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1568 DIRTY_CLIENTS_ALL);
1569 memory_region_set_size(block->mr, newsize);
1570 if (block->resized) {
1571 block->resized(block->idstr, newsize, block->host);
1572 }
1573 return 0;
1574 }
1575
1576 /* Called with ram_list.mutex held */
1577 static void dirty_memory_extend(ram_addr_t old_ram_size,
1578 ram_addr_t new_ram_size)
1579 {
1580 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1581 DIRTY_MEMORY_BLOCK_SIZE);
1582 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1583 DIRTY_MEMORY_BLOCK_SIZE);
1584 int i;
1585
1586 /* Only need to extend if block count increased */
1587 if (new_num_blocks <= old_num_blocks) {
1588 return;
1589 }
1590
1591 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1592 DirtyMemoryBlocks *old_blocks;
1593 DirtyMemoryBlocks *new_blocks;
1594 int j;
1595
1596 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1597 new_blocks = g_malloc(sizeof(*new_blocks) +
1598 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1599
1600 if (old_num_blocks) {
1601 memcpy(new_blocks->blocks, old_blocks->blocks,
1602 old_num_blocks * sizeof(old_blocks->blocks[0]));
1603 }
1604
1605 for (j = old_num_blocks; j < new_num_blocks; j++) {
1606 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1607 }
1608
1609 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1610
1611 if (old_blocks) {
1612 g_free_rcu(old_blocks, rcu);
1613 }
1614 }
1615 }
1616
1617 static void ram_block_add(RAMBlock *new_block, Error **errp)
1618 {
1619 RAMBlock *block;
1620 RAMBlock *last_block = NULL;
1621 ram_addr_t old_ram_size, new_ram_size;
1622 Error *err = NULL;
1623
1624 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1625
1626 qemu_mutex_lock_ramlist();
1627 new_block->offset = find_ram_offset(new_block->max_length);
1628
1629 if (!new_block->host) {
1630 if (xen_enabled()) {
1631 xen_ram_alloc(new_block->offset, new_block->max_length,
1632 new_block->mr, &err);
1633 if (err) {
1634 error_propagate(errp, err);
1635 qemu_mutex_unlock_ramlist();
1636 return;
1637 }
1638 } else {
1639 new_block->host = phys_mem_alloc(new_block->max_length,
1640 &new_block->mr->align);
1641 if (!new_block->host) {
1642 error_setg_errno(errp, errno,
1643 "cannot set up guest memory '%s'",
1644 memory_region_name(new_block->mr));
1645 qemu_mutex_unlock_ramlist();
1646 return;
1647 }
1648 memory_try_enable_merging(new_block->host, new_block->max_length);
1649 }
1650 }
1651
1652 new_ram_size = MAX(old_ram_size,
1653 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1654 if (new_ram_size > old_ram_size) {
1655 migration_bitmap_extend(old_ram_size, new_ram_size);
1656 dirty_memory_extend(old_ram_size, new_ram_size);
1657 }
1658 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1659 * QLIST (which has an RCU-friendly variant) does not have insertion at
1660 * tail, so save the last element in last_block.
1661 */
1662 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1663 last_block = block;
1664 if (block->max_length < new_block->max_length) {
1665 break;
1666 }
1667 }
1668 if (block) {
1669 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1670 } else if (last_block) {
1671 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1672 } else { /* list is empty */
1673 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1674 }
1675 ram_list.mru_block = NULL;
1676
1677 /* Write list before version */
1678 smp_wmb();
1679 ram_list.version++;
1680 qemu_mutex_unlock_ramlist();
1681
1682 cpu_physical_memory_set_dirty_range(new_block->offset,
1683 new_block->used_length,
1684 DIRTY_CLIENTS_ALL);
1685
1686 if (new_block->host) {
1687 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1688 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1689 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1690 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1691 ram_block_notify_add(new_block->host, new_block->max_length);
1692 }
1693 }
1694
1695 #ifdef __linux__
1696 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1697 bool share, const char *mem_path,
1698 Error **errp)
1699 {
1700 RAMBlock *new_block;
1701 Error *local_err = NULL;
1702
1703 if (xen_enabled()) {
1704 error_setg(errp, "-mem-path not supported with Xen");
1705 return NULL;
1706 }
1707
1708 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1709 /*
1710 * file_ram_alloc() needs to allocate just like
1711 * phys_mem_alloc, but we haven't bothered to provide
1712 * a hook there.
1713 */
1714 error_setg(errp,
1715 "-mem-path not supported with this accelerator");
1716 return NULL;
1717 }
1718
1719 size = HOST_PAGE_ALIGN(size);
1720 new_block = g_malloc0(sizeof(*new_block));
1721 new_block->mr = mr;
1722 new_block->used_length = size;
1723 new_block->max_length = size;
1724 new_block->flags = share ? RAM_SHARED : 0;
1725 new_block->host = file_ram_alloc(new_block, size,
1726 mem_path, errp);
1727 if (!new_block->host) {
1728 g_free(new_block);
1729 return NULL;
1730 }
1731
1732 ram_block_add(new_block, &local_err);
1733 if (local_err) {
1734 g_free(new_block);
1735 error_propagate(errp, local_err);
1736 return NULL;
1737 }
1738 return new_block;
1739 }
1740 #endif
1741
1742 static
1743 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1744 void (*resized)(const char*,
1745 uint64_t length,
1746 void *host),
1747 void *host, bool resizeable,
1748 MemoryRegion *mr, Error **errp)
1749 {
1750 RAMBlock *new_block;
1751 Error *local_err = NULL;
1752
1753 size = HOST_PAGE_ALIGN(size);
1754 max_size = HOST_PAGE_ALIGN(max_size);
1755 new_block = g_malloc0(sizeof(*new_block));
1756 new_block->mr = mr;
1757 new_block->resized = resized;
1758 new_block->used_length = size;
1759 new_block->max_length = max_size;
1760 assert(max_size >= size);
1761 new_block->fd = -1;
1762 new_block->page_size = getpagesize();
1763 new_block->host = host;
1764 if (host) {
1765 new_block->flags |= RAM_PREALLOC;
1766 }
1767 if (resizeable) {
1768 new_block->flags |= RAM_RESIZEABLE;
1769 }
1770 ram_block_add(new_block, &local_err);
1771 if (local_err) {
1772 g_free(new_block);
1773 error_propagate(errp, local_err);
1774 return NULL;
1775 }
1776 return new_block;
1777 }
1778
1779 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1780 MemoryRegion *mr, Error **errp)
1781 {
1782 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1783 }
1784
1785 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1786 {
1787 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1788 }
1789
1790 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1791 void (*resized)(const char*,
1792 uint64_t length,
1793 void *host),
1794 MemoryRegion *mr, Error **errp)
1795 {
1796 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1797 }
1798
1799 static void reclaim_ramblock(RAMBlock *block)
1800 {
1801 if (block->flags & RAM_PREALLOC) {
1802 ;
1803 } else if (xen_enabled()) {
1804 xen_invalidate_map_cache_entry(block->host);
1805 #ifndef _WIN32
1806 } else if (block->fd >= 0) {
1807 qemu_ram_munmap(block->host, block->max_length);
1808 close(block->fd);
1809 #endif
1810 } else {
1811 qemu_anon_ram_free(block->host, block->max_length);
1812 }
1813 g_free(block);
1814 }
1815
1816 void qemu_ram_free(RAMBlock *block)
1817 {
1818 if (!block) {
1819 return;
1820 }
1821
1822 if (block->host) {
1823 ram_block_notify_remove(block->host, block->max_length);
1824 }
1825
1826 qemu_mutex_lock_ramlist();
1827 QLIST_REMOVE_RCU(block, next);
1828 ram_list.mru_block = NULL;
1829 /* Write list before version */
1830 smp_wmb();
1831 ram_list.version++;
1832 call_rcu(block, reclaim_ramblock, rcu);
1833 qemu_mutex_unlock_ramlist();
1834 }
1835
1836 #ifndef _WIN32
1837 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1838 {
1839 RAMBlock *block;
1840 ram_addr_t offset;
1841 int flags;
1842 void *area, *vaddr;
1843
1844 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1845 offset = addr - block->offset;
1846 if (offset < block->max_length) {
1847 vaddr = ramblock_ptr(block, offset);
1848 if (block->flags & RAM_PREALLOC) {
1849 ;
1850 } else if (xen_enabled()) {
1851 abort();
1852 } else {
1853 flags = MAP_FIXED;
1854 if (block->fd >= 0) {
1855 flags |= (block->flags & RAM_SHARED ?
1856 MAP_SHARED : MAP_PRIVATE);
1857 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1858 flags, block->fd, offset);
1859 } else {
1860 /*
1861 * Remap needs to match alloc. Accelerators that
1862 * set phys_mem_alloc never remap. If they did,
1863 * we'd need a remap hook here.
1864 */
1865 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1866
1867 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1868 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1869 flags, -1, 0);
1870 }
1871 if (area != vaddr) {
1872 fprintf(stderr, "Could not remap addr: "
1873 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1874 length, addr);
1875 exit(1);
1876 }
1877 memory_try_enable_merging(vaddr, length);
1878 qemu_ram_setup_dump(vaddr, length);
1879 }
1880 }
1881 }
1882 }
1883 #endif /* !_WIN32 */
1884
1885 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1886 * This should not be used for general purpose DMA. Use address_space_map
1887 * or address_space_rw instead. For local memory (e.g. video ram) that the
1888 * device owns, use memory_region_get_ram_ptr.
1889 *
1890 * Called within RCU critical section.
1891 */
1892 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1893 {
1894 RAMBlock *block = ram_block;
1895
1896 if (block == NULL) {
1897 block = qemu_get_ram_block(addr);
1898 addr -= block->offset;
1899 }
1900
1901 if (xen_enabled() && block->host == NULL) {
1902 /* We need to check if the requested address is in the RAM
1903 * because we don't want to map the entire memory in QEMU.
1904 * In that case just map until the end of the page.
1905 */
1906 if (block->offset == 0) {
1907 return xen_map_cache(addr, 0, 0);
1908 }
1909
1910 block->host = xen_map_cache(block->offset, block->max_length, 1);
1911 }
1912 return ramblock_ptr(block, addr);
1913 }
1914
1915 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1916 * but takes a size argument.
1917 *
1918 * Called within RCU critical section.
1919 */
1920 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1921 hwaddr *size)
1922 {
1923 RAMBlock *block = ram_block;
1924 if (*size == 0) {
1925 return NULL;
1926 }
1927
1928 if (block == NULL) {
1929 block = qemu_get_ram_block(addr);
1930 addr -= block->offset;
1931 }
1932 *size = MIN(*size, block->max_length - addr);
1933
1934 if (xen_enabled() && block->host == NULL) {
1935 /* We need to check if the requested address is in the RAM
1936 * because we don't want to map the entire memory in QEMU.
1937 * In that case just map the requested area.
1938 */
1939 if (block->offset == 0) {
1940 return xen_map_cache(addr, *size, 1);
1941 }
1942
1943 block->host = xen_map_cache(block->offset, block->max_length, 1);
1944 }
1945
1946 return ramblock_ptr(block, addr);
1947 }
1948
1949 /*
1950 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1951 * in that RAMBlock.
1952 *
1953 * ptr: Host pointer to look up
1954 * round_offset: If true round the result offset down to a page boundary
1955 * *ram_addr: set to result ram_addr
1956 * *offset: set to result offset within the RAMBlock
1957 *
1958 * Returns: RAMBlock (or NULL if not found)
1959 *
1960 * By the time this function returns, the returned pointer is not protected
1961 * by RCU anymore. If the caller is not within an RCU critical section and
1962 * does not hold the iothread lock, it must have other means of protecting the
1963 * pointer, such as a reference to the region that includes the incoming
1964 * ram_addr_t.
1965 */
1966 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1967 ram_addr_t *offset)
1968 {
1969 RAMBlock *block;
1970 uint8_t *host = ptr;
1971
1972 if (xen_enabled()) {
1973 ram_addr_t ram_addr;
1974 rcu_read_lock();
1975 ram_addr = xen_ram_addr_from_mapcache(ptr);
1976 block = qemu_get_ram_block(ram_addr);
1977 if (block) {
1978 *offset = ram_addr - block->offset;
1979 }
1980 rcu_read_unlock();
1981 return block;
1982 }
1983
1984 rcu_read_lock();
1985 block = atomic_rcu_read(&ram_list.mru_block);
1986 if (block && block->host && host - block->host < block->max_length) {
1987 goto found;
1988 }
1989
1990 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1991 /* This case append when the block is not mapped. */
1992 if (block->host == NULL) {
1993 continue;
1994 }
1995 if (host - block->host < block->max_length) {
1996 goto found;
1997 }
1998 }
1999
2000 rcu_read_unlock();
2001 return NULL;
2002
2003 found:
2004 *offset = (host - block->host);
2005 if (round_offset) {
2006 *offset &= TARGET_PAGE_MASK;
2007 }
2008 rcu_read_unlock();
2009 return block;
2010 }
2011
2012 /*
2013 * Finds the named RAMBlock
2014 *
2015 * name: The name of RAMBlock to find
2016 *
2017 * Returns: RAMBlock (or NULL if not found)
2018 */
2019 RAMBlock *qemu_ram_block_by_name(const char *name)
2020 {
2021 RAMBlock *block;
2022
2023 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2024 if (!strcmp(name, block->idstr)) {
2025 return block;
2026 }
2027 }
2028
2029 return NULL;
2030 }
2031
2032 /* Some of the softmmu routines need to translate from a host pointer
2033 (typically a TLB entry) back to a ram offset. */
2034 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2035 {
2036 RAMBlock *block;
2037 ram_addr_t offset;
2038
2039 block = qemu_ram_block_from_host(ptr, false, &offset);
2040 if (!block) {
2041 return RAM_ADDR_INVALID;
2042 }
2043
2044 return block->offset + offset;
2045 }
2046
2047 /* Called within RCU critical section. */
2048 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2049 uint64_t val, unsigned size)
2050 {
2051 bool locked = false;
2052
2053 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2054 locked = true;
2055 tb_lock();
2056 tb_invalidate_phys_page_fast(ram_addr, size);
2057 }
2058 switch (size) {
2059 case 1:
2060 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2061 break;
2062 case 2:
2063 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2064 break;
2065 case 4:
2066 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2067 break;
2068 default:
2069 abort();
2070 }
2071
2072 if (locked) {
2073 tb_unlock();
2074 }
2075
2076 /* Set both VGA and migration bits for simplicity and to remove
2077 * the notdirty callback faster.
2078 */
2079 cpu_physical_memory_set_dirty_range(ram_addr, size,
2080 DIRTY_CLIENTS_NOCODE);
2081 /* we remove the notdirty callback only if the code has been
2082 flushed */
2083 if (!cpu_physical_memory_is_clean(ram_addr)) {
2084 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2085 }
2086 }
2087
2088 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2089 unsigned size, bool is_write)
2090 {
2091 return is_write;
2092 }
2093
2094 static const MemoryRegionOps notdirty_mem_ops = {
2095 .write = notdirty_mem_write,
2096 .valid.accepts = notdirty_mem_accepts,
2097 .endianness = DEVICE_NATIVE_ENDIAN,
2098 };
2099
2100 /* Generate a debug exception if a watchpoint has been hit. */
2101 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2102 {
2103 CPUState *cpu = current_cpu;
2104 CPUClass *cc = CPU_GET_CLASS(cpu);
2105 CPUArchState *env = cpu->env_ptr;
2106 target_ulong pc, cs_base;
2107 target_ulong vaddr;
2108 CPUWatchpoint *wp;
2109 uint32_t cpu_flags;
2110
2111 if (cpu->watchpoint_hit) {
2112 /* We re-entered the check after replacing the TB. Now raise
2113 * the debug interrupt so that is will trigger after the
2114 * current instruction. */
2115 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2116 return;
2117 }
2118 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2119 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2120 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2121 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2122 && (wp->flags & flags)) {
2123 if (flags == BP_MEM_READ) {
2124 wp->flags |= BP_WATCHPOINT_HIT_READ;
2125 } else {
2126 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2127 }
2128 wp->hitaddr = vaddr;
2129 wp->hitattrs = attrs;
2130 if (!cpu->watchpoint_hit) {
2131 if (wp->flags & BP_CPU &&
2132 !cc->debug_check_watchpoint(cpu, wp)) {
2133 wp->flags &= ~BP_WATCHPOINT_HIT;
2134 continue;
2135 }
2136 cpu->watchpoint_hit = wp;
2137
2138 /* Both tb_lock and iothread_mutex will be reset when
2139 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2140 * back into the cpu_exec main loop.
2141 */
2142 tb_lock();
2143 tb_check_watchpoint(cpu);
2144 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2145 cpu->exception_index = EXCP_DEBUG;
2146 cpu_loop_exit(cpu);
2147 } else {
2148 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2149 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2150 cpu_loop_exit_noexc(cpu);
2151 }
2152 }
2153 } else {
2154 wp->flags &= ~BP_WATCHPOINT_HIT;
2155 }
2156 }
2157 }
2158
2159 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2160 so these check for a hit then pass through to the normal out-of-line
2161 phys routines. */
2162 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2163 unsigned size, MemTxAttrs attrs)
2164 {
2165 MemTxResult res;
2166 uint64_t data;
2167 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2168 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2169
2170 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2171 switch (size) {
2172 case 1:
2173 data = address_space_ldub(as, addr, attrs, &res);
2174 break;
2175 case 2:
2176 data = address_space_lduw(as, addr, attrs, &res);
2177 break;
2178 case 4:
2179 data = address_space_ldl(as, addr, attrs, &res);
2180 break;
2181 default: abort();
2182 }
2183 *pdata = data;
2184 return res;
2185 }
2186
2187 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2188 uint64_t val, unsigned size,
2189 MemTxAttrs attrs)
2190 {
2191 MemTxResult res;
2192 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2193 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2194
2195 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2196 switch (size) {
2197 case 1:
2198 address_space_stb(as, addr, val, attrs, &res);
2199 break;
2200 case 2:
2201 address_space_stw(as, addr, val, attrs, &res);
2202 break;
2203 case 4:
2204 address_space_stl(as, addr, val, attrs, &res);
2205 break;
2206 default: abort();
2207 }
2208 return res;
2209 }
2210
2211 static const MemoryRegionOps watch_mem_ops = {
2212 .read_with_attrs = watch_mem_read,
2213 .write_with_attrs = watch_mem_write,
2214 .endianness = DEVICE_NATIVE_ENDIAN,
2215 };
2216
2217 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2218 unsigned len, MemTxAttrs attrs)
2219 {
2220 subpage_t *subpage = opaque;
2221 uint8_t buf[8];
2222 MemTxResult res;
2223
2224 #if defined(DEBUG_SUBPAGE)
2225 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2226 subpage, len, addr);
2227 #endif
2228 res = address_space_read(subpage->as, addr + subpage->base,
2229 attrs, buf, len);
2230 if (res) {
2231 return res;
2232 }
2233 switch (len) {
2234 case 1:
2235 *data = ldub_p(buf);
2236 return MEMTX_OK;
2237 case 2:
2238 *data = lduw_p(buf);
2239 return MEMTX_OK;
2240 case 4:
2241 *data = ldl_p(buf);
2242 return MEMTX_OK;
2243 case 8:
2244 *data = ldq_p(buf);
2245 return MEMTX_OK;
2246 default:
2247 abort();
2248 }
2249 }
2250
2251 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2252 uint64_t value, unsigned len, MemTxAttrs attrs)
2253 {
2254 subpage_t *subpage = opaque;
2255 uint8_t buf[8];
2256
2257 #if defined(DEBUG_SUBPAGE)
2258 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2259 " value %"PRIx64"\n",
2260 __func__, subpage, len, addr, value);
2261 #endif
2262 switch (len) {
2263 case 1:
2264 stb_p(buf, value);
2265 break;
2266 case 2:
2267 stw_p(buf, value);
2268 break;
2269 case 4:
2270 stl_p(buf, value);
2271 break;
2272 case 8:
2273 stq_p(buf, value);
2274 break;
2275 default:
2276 abort();
2277 }
2278 return address_space_write(subpage->as, addr + subpage->base,
2279 attrs, buf, len);
2280 }
2281
2282 static bool subpage_accepts(void *opaque, hwaddr addr,
2283 unsigned len, bool is_write)
2284 {
2285 subpage_t *subpage = opaque;
2286 #if defined(DEBUG_SUBPAGE)
2287 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2288 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2289 #endif
2290
2291 return address_space_access_valid(subpage->as, addr + subpage->base,
2292 len, is_write);
2293 }
2294
2295 static const MemoryRegionOps subpage_ops = {
2296 .read_with_attrs = subpage_read,
2297 .write_with_attrs = subpage_write,
2298 .impl.min_access_size = 1,
2299 .impl.max_access_size = 8,
2300 .valid.min_access_size = 1,
2301 .valid.max_access_size = 8,
2302 .valid.accepts = subpage_accepts,
2303 .endianness = DEVICE_NATIVE_ENDIAN,
2304 };
2305
2306 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2307 uint16_t section)
2308 {
2309 int idx, eidx;
2310
2311 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2312 return -1;
2313 idx = SUBPAGE_IDX(start);
2314 eidx = SUBPAGE_IDX(end);
2315 #if defined(DEBUG_SUBPAGE)
2316 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2317 __func__, mmio, start, end, idx, eidx, section);
2318 #endif
2319 for (; idx <= eidx; idx++) {
2320 mmio->sub_section[idx] = section;
2321 }
2322
2323 return 0;
2324 }
2325
2326 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2327 {
2328 subpage_t *mmio;
2329
2330 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2331 mmio->as = as;
2332 mmio->base = base;
2333 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2334 NULL, TARGET_PAGE_SIZE);
2335 mmio->iomem.subpage = true;
2336 #if defined(DEBUG_SUBPAGE)
2337 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2338 mmio, base, TARGET_PAGE_SIZE);
2339 #endif
2340 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2341
2342 return mmio;
2343 }
2344
2345 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2346 MemoryRegion *mr)
2347 {
2348 assert(as);
2349 MemoryRegionSection section = {
2350 .address_space = as,
2351 .mr = mr,
2352 .offset_within_address_space = 0,
2353 .offset_within_region = 0,
2354 .size = int128_2_64(),
2355 };
2356
2357 return phys_section_add(map, &section);
2358 }
2359
2360 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2361 {
2362 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2363 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2364 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2365 MemoryRegionSection *sections = d->map.sections;
2366
2367 return sections[index & ~TARGET_PAGE_MASK].mr;
2368 }
2369
2370 static void io_mem_init(void)
2371 {
2372 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2373 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2374 NULL, UINT64_MAX);
2375
2376 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2377 * which can be called without the iothread mutex.
2378 */
2379 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2380 NULL, UINT64_MAX);
2381 memory_region_clear_global_locking(&io_mem_notdirty);
2382
2383 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2384 NULL, UINT64_MAX);
2385 }
2386
2387 static void mem_begin(MemoryListener *listener)
2388 {
2389 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2390 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2391 uint16_t n;
2392
2393 n = dummy_section(&d->map, as, &io_mem_unassigned);
2394 assert(n == PHYS_SECTION_UNASSIGNED);
2395 n = dummy_section(&d->map, as, &io_mem_notdirty);
2396 assert(n == PHYS_SECTION_NOTDIRTY);
2397 n = dummy_section(&d->map, as, &io_mem_rom);
2398 assert(n == PHYS_SECTION_ROM);
2399 n = dummy_section(&d->map, as, &io_mem_watch);
2400 assert(n == PHYS_SECTION_WATCH);
2401
2402 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2403 d->as = as;
2404 as->next_dispatch = d;
2405 }
2406
2407 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2408 {
2409 phys_sections_free(&d->map);
2410 g_free(d);
2411 }
2412
2413 static void mem_commit(MemoryListener *listener)
2414 {
2415 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2416 AddressSpaceDispatch *cur = as->dispatch;
2417 AddressSpaceDispatch *next = as->next_dispatch;
2418
2419 phys_page_compact_all(next, next->map.nodes_nb);
2420
2421 atomic_rcu_set(&as->dispatch, next);
2422 if (cur) {
2423 call_rcu(cur, address_space_dispatch_free, rcu);
2424 }
2425 }
2426
2427 static void tcg_commit(MemoryListener *listener)
2428 {
2429 CPUAddressSpace *cpuas;
2430 AddressSpaceDispatch *d;
2431
2432 /* since each CPU stores ram addresses in its TLB cache, we must
2433 reset the modified entries */
2434 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2435 cpu_reloading_memory_map();
2436 /* The CPU and TLB are protected by the iothread lock.
2437 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2438 * may have split the RCU critical section.
2439 */
2440 d = atomic_rcu_read(&cpuas->as->dispatch);
2441 atomic_rcu_set(&cpuas->memory_dispatch, d);
2442 tlb_flush(cpuas->cpu);
2443 }
2444
2445 void address_space_init_dispatch(AddressSpace *as)
2446 {
2447 as->dispatch = NULL;
2448 as->dispatch_listener = (MemoryListener) {
2449 .begin = mem_begin,
2450 .commit = mem_commit,
2451 .region_add = mem_add,
2452 .region_nop = mem_add,
2453 .priority = 0,
2454 };
2455 memory_listener_register(&as->dispatch_listener, as);
2456 }
2457
2458 void address_space_unregister(AddressSpace *as)
2459 {
2460 memory_listener_unregister(&as->dispatch_listener);
2461 }
2462
2463 void address_space_destroy_dispatch(AddressSpace *as)
2464 {
2465 AddressSpaceDispatch *d = as->dispatch;
2466
2467 atomic_rcu_set(&as->dispatch, NULL);
2468 if (d) {
2469 call_rcu(d, address_space_dispatch_free, rcu);
2470 }
2471 }
2472
2473 static void memory_map_init(void)
2474 {
2475 system_memory = g_malloc(sizeof(*system_memory));
2476
2477 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2478 address_space_init(&address_space_memory, system_memory, "memory");
2479
2480 system_io = g_malloc(sizeof(*system_io));
2481 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2482 65536);
2483 address_space_init(&address_space_io, system_io, "I/O");
2484 }
2485
2486 MemoryRegion *get_system_memory(void)
2487 {
2488 return system_memory;
2489 }
2490
2491 MemoryRegion *get_system_io(void)
2492 {
2493 return system_io;
2494 }
2495
2496 #endif /* !defined(CONFIG_USER_ONLY) */
2497
2498 /* physical memory access (slow version, mainly for debug) */
2499 #if defined(CONFIG_USER_ONLY)
2500 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2501 uint8_t *buf, int len, int is_write)
2502 {
2503 int l, flags;
2504 target_ulong page;
2505 void * p;
2506
2507 while (len > 0) {
2508 page = addr & TARGET_PAGE_MASK;
2509 l = (page + TARGET_PAGE_SIZE) - addr;
2510 if (l > len)
2511 l = len;
2512 flags = page_get_flags(page);
2513 if (!(flags & PAGE_VALID))
2514 return -1;
2515 if (is_write) {
2516 if (!(flags & PAGE_WRITE))
2517 return -1;
2518 /* XXX: this code should not depend on lock_user */
2519 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2520 return -1;
2521 memcpy(p, buf, l);
2522 unlock_user(p, addr, l);
2523 } else {
2524 if (!(flags & PAGE_READ))
2525 return -1;
2526 /* XXX: this code should not depend on lock_user */
2527 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2528 return -1;
2529 memcpy(buf, p, l);
2530 unlock_user(p, addr, 0);
2531 }
2532 len -= l;
2533 buf += l;
2534 addr += l;
2535 }
2536 return 0;
2537 }
2538
2539 #else
2540
2541 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2542 hwaddr length)
2543 {
2544 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2545 addr += memory_region_get_ram_addr(mr);
2546
2547 /* No early return if dirty_log_mask is or becomes 0, because
2548 * cpu_physical_memory_set_dirty_range will still call
2549 * xen_modified_memory.
2550 */
2551 if (dirty_log_mask) {
2552 dirty_log_mask =
2553 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2554 }
2555 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2556 tb_lock();
2557 tb_invalidate_phys_range(addr, addr + length);
2558 tb_unlock();
2559 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2560 }
2561 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2562 }
2563
2564 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2565 {
2566 unsigned access_size_max = mr->ops->valid.max_access_size;
2567
2568 /* Regions are assumed to support 1-4 byte accesses unless
2569 otherwise specified. */
2570 if (access_size_max == 0) {
2571 access_size_max = 4;
2572 }
2573
2574 /* Bound the maximum access by the alignment of the address. */
2575 if (!mr->ops->impl.unaligned) {
2576 unsigned align_size_max = addr & -addr;
2577 if (align_size_max != 0 && align_size_max < access_size_max) {
2578 access_size_max = align_size_max;
2579 }
2580 }
2581
2582 /* Don't attempt accesses larger than the maximum. */
2583 if (l > access_size_max) {
2584 l = access_size_max;
2585 }
2586 l = pow2floor(l);
2587
2588 return l;
2589 }
2590
2591 static bool prepare_mmio_access(MemoryRegion *mr)
2592 {
2593 bool unlocked = !qemu_mutex_iothread_locked();
2594 bool release_lock = false;
2595
2596 if (unlocked && mr->global_locking) {
2597 qemu_mutex_lock_iothread();
2598 unlocked = false;
2599 release_lock = true;
2600 }
2601 if (mr->flush_coalesced_mmio) {
2602 if (unlocked) {
2603 qemu_mutex_lock_iothread();
2604 }
2605 qemu_flush_coalesced_mmio_buffer();
2606 if (unlocked) {
2607 qemu_mutex_unlock_iothread();
2608 }
2609 }
2610
2611 return release_lock;
2612 }
2613
2614 /* Called within RCU critical section. */
2615 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2616 MemTxAttrs attrs,
2617 const uint8_t *buf,
2618 int len, hwaddr addr1,
2619 hwaddr l, MemoryRegion *mr)
2620 {
2621 uint8_t *ptr;
2622 uint64_t val;
2623 MemTxResult result = MEMTX_OK;
2624 bool release_lock = false;
2625
2626 for (;;) {
2627 if (!memory_access_is_direct(mr, true)) {
2628 release_lock |= prepare_mmio_access(mr);
2629 l = memory_access_size(mr, l, addr1);
2630 /* XXX: could force current_cpu to NULL to avoid
2631 potential bugs */
2632 switch (l) {
2633 case 8:
2634 /* 64 bit write access */
2635 val = ldq_p(buf);
2636 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2637 attrs);
2638 break;
2639 case 4:
2640 /* 32 bit write access */
2641 val = (uint32_t)ldl_p(buf);
2642 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2643 attrs);
2644 break;
2645 case 2:
2646 /* 16 bit write access */
2647 val = lduw_p(buf);
2648 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2649 attrs);
2650 break;
2651 case 1:
2652 /* 8 bit write access */
2653 val = ldub_p(buf);
2654 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2655 attrs);
2656 break;
2657 default:
2658 abort();
2659 }
2660 } else {
2661 /* RAM case */
2662 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2663 memcpy(ptr, buf, l);
2664 invalidate_and_set_dirty(mr, addr1, l);
2665 }
2666
2667 if (release_lock) {
2668 qemu_mutex_unlock_iothread();
2669 release_lock = false;
2670 }
2671
2672 len -= l;
2673 buf += l;
2674 addr += l;
2675
2676 if (!len) {
2677 break;
2678 }
2679
2680 l = len;
2681 mr = address_space_translate(as, addr, &addr1, &l, true);
2682 }
2683
2684 return result;
2685 }
2686
2687 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2688 const uint8_t *buf, int len)
2689 {
2690 hwaddr l;
2691 hwaddr addr1;
2692 MemoryRegion *mr;
2693 MemTxResult result = MEMTX_OK;
2694
2695 if (len > 0) {
2696 rcu_read_lock();
2697 l = len;
2698 mr = address_space_translate(as, addr, &addr1, &l, true);
2699 result = address_space_write_continue(as, addr, attrs, buf, len,
2700 addr1, l, mr);
2701 rcu_read_unlock();
2702 }
2703
2704 return result;
2705 }
2706
2707 /* Called within RCU critical section. */
2708 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2709 MemTxAttrs attrs, uint8_t *buf,
2710 int len, hwaddr addr1, hwaddr l,
2711 MemoryRegion *mr)
2712 {
2713 uint8_t *ptr;
2714 uint64_t val;
2715 MemTxResult result = MEMTX_OK;
2716 bool release_lock = false;
2717
2718 for (;;) {
2719 if (!memory_access_is_direct(mr, false)) {
2720 /* I/O case */
2721 release_lock |= prepare_mmio_access(mr);
2722 l = memory_access_size(mr, l, addr1);
2723 switch (l) {
2724 case 8:
2725 /* 64 bit read access */
2726 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2727 attrs);
2728 stq_p(buf, val);
2729 break;
2730 case 4:
2731 /* 32 bit read access */
2732 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2733 attrs);
2734 stl_p(buf, val);
2735 break;
2736 case 2:
2737 /* 16 bit read access */
2738 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2739 attrs);
2740 stw_p(buf, val);
2741 break;
2742 case 1:
2743 /* 8 bit read access */
2744 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2745 attrs);
2746 stb_p(buf, val);
2747 break;
2748 default:
2749 abort();
2750 }
2751 } else {
2752 /* RAM case */
2753 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2754 memcpy(buf, ptr, l);
2755 }
2756
2757 if (release_lock) {
2758 qemu_mutex_unlock_iothread();
2759 release_lock = false;
2760 }
2761
2762 len -= l;
2763 buf += l;
2764 addr += l;
2765
2766 if (!len) {
2767 break;
2768 }
2769
2770 l = len;
2771 mr = address_space_translate(as, addr, &addr1, &l, false);
2772 }
2773
2774 return result;
2775 }
2776
2777 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2778 MemTxAttrs attrs, uint8_t *buf, int len)
2779 {
2780 hwaddr l;
2781 hwaddr addr1;
2782 MemoryRegion *mr;
2783 MemTxResult result = MEMTX_OK;
2784
2785 if (len > 0) {
2786 rcu_read_lock();
2787 l = len;
2788 mr = address_space_translate(as, addr, &addr1, &l, false);
2789 result = address_space_read_continue(as, addr, attrs, buf, len,
2790 addr1, l, mr);
2791 rcu_read_unlock();
2792 }
2793
2794 return result;
2795 }
2796
2797 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2798 uint8_t *buf, int len, bool is_write)
2799 {
2800 if (is_write) {
2801 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2802 } else {
2803 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2804 }
2805 }
2806
2807 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2808 int len, int is_write)
2809 {
2810 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2811 buf, len, is_write);
2812 }
2813
2814 enum write_rom_type {
2815 WRITE_DATA,
2816 FLUSH_CACHE,
2817 };
2818
2819 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2820 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2821 {
2822 hwaddr l;
2823 uint8_t *ptr;
2824 hwaddr addr1;
2825 MemoryRegion *mr;
2826
2827 rcu_read_lock();
2828 while (len > 0) {
2829 l = len;
2830 mr = address_space_translate(as, addr, &addr1, &l, true);
2831
2832 if (!(memory_region_is_ram(mr) ||
2833 memory_region_is_romd(mr))) {
2834 l = memory_access_size(mr, l, addr1);
2835 } else {
2836 /* ROM/RAM case */
2837 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2838 switch (type) {
2839 case WRITE_DATA:
2840 memcpy(ptr, buf, l);
2841 invalidate_and_set_dirty(mr, addr1, l);
2842 break;
2843 case FLUSH_CACHE:
2844 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2845 break;
2846 }
2847 }
2848 len -= l;
2849 buf += l;
2850 addr += l;
2851 }
2852 rcu_read_unlock();
2853 }
2854
2855 /* used for ROM loading : can write in RAM and ROM */
2856 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2857 const uint8_t *buf, int len)
2858 {
2859 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2860 }
2861
2862 void cpu_flush_icache_range(hwaddr start, int len)
2863 {
2864 /*
2865 * This function should do the same thing as an icache flush that was
2866 * triggered from within the guest. For TCG we are always cache coherent,
2867 * so there is no need to flush anything. For KVM / Xen we need to flush
2868 * the host's instruction cache at least.
2869 */
2870 if (tcg_enabled()) {
2871 return;
2872 }
2873
2874 cpu_physical_memory_write_rom_internal(&address_space_memory,
2875 start, NULL, len, FLUSH_CACHE);
2876 }
2877
2878 typedef struct {
2879 MemoryRegion *mr;
2880 void *buffer;
2881 hwaddr addr;
2882 hwaddr len;
2883 bool in_use;
2884 } BounceBuffer;
2885
2886 static BounceBuffer bounce;
2887
2888 typedef struct MapClient {
2889 QEMUBH *bh;
2890 QLIST_ENTRY(MapClient) link;
2891 } MapClient;
2892
2893 QemuMutex map_client_list_lock;
2894 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2895 = QLIST_HEAD_INITIALIZER(map_client_list);
2896
2897 static void cpu_unregister_map_client_do(MapClient *client)
2898 {
2899 QLIST_REMOVE(client, link);
2900 g_free(client);
2901 }
2902
2903 static void cpu_notify_map_clients_locked(void)
2904 {
2905 MapClient *client;
2906
2907 while (!QLIST_EMPTY(&map_client_list)) {
2908 client = QLIST_FIRST(&map_client_list);
2909 qemu_bh_schedule(client->bh);
2910 cpu_unregister_map_client_do(client);
2911 }
2912 }
2913
2914 void cpu_register_map_client(QEMUBH *bh)
2915 {
2916 MapClient *client = g_malloc(sizeof(*client));
2917
2918 qemu_mutex_lock(&map_client_list_lock);
2919 client->bh = bh;
2920 QLIST_INSERT_HEAD(&map_client_list, client, link);
2921 if (!atomic_read(&bounce.in_use)) {
2922 cpu_notify_map_clients_locked();
2923 }
2924 qemu_mutex_unlock(&map_client_list_lock);
2925 }
2926
2927 void cpu_exec_init_all(void)
2928 {
2929 qemu_mutex_init(&ram_list.mutex);
2930 /* The data structures we set up here depend on knowing the page size,
2931 * so no more changes can be made after this point.
2932 * In an ideal world, nothing we did before we had finished the
2933 * machine setup would care about the target page size, and we could
2934 * do this much later, rather than requiring board models to state
2935 * up front what their requirements are.
2936 */
2937 finalize_target_page_bits();
2938 io_mem_init();
2939 memory_map_init();
2940 qemu_mutex_init(&map_client_list_lock);
2941 }
2942
2943 void cpu_unregister_map_client(QEMUBH *bh)
2944 {
2945 MapClient *client;
2946
2947 qemu_mutex_lock(&map_client_list_lock);
2948 QLIST_FOREACH(client, &map_client_list, link) {
2949 if (client->bh == bh) {
2950 cpu_unregister_map_client_do(client);
2951 break;
2952 }
2953 }
2954 qemu_mutex_unlock(&map_client_list_lock);
2955 }
2956
2957 static void cpu_notify_map_clients(void)
2958 {
2959 qemu_mutex_lock(&map_client_list_lock);
2960 cpu_notify_map_clients_locked();
2961 qemu_mutex_unlock(&map_client_list_lock);
2962 }
2963
2964 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2965 {
2966 MemoryRegion *mr;
2967 hwaddr l, xlat;
2968
2969 rcu_read_lock();
2970 while (len > 0) {
2971 l = len;
2972 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2973 if (!memory_access_is_direct(mr, is_write)) {
2974 l = memory_access_size(mr, l, addr);
2975 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2976 rcu_read_unlock();
2977 return false;
2978 }
2979 }
2980
2981 len -= l;
2982 addr += l;
2983 }
2984 rcu_read_unlock();
2985 return true;
2986 }
2987
2988 static hwaddr
2989 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
2990 MemoryRegion *mr, hwaddr base, hwaddr len,
2991 bool is_write)
2992 {
2993 hwaddr done = 0;
2994 hwaddr xlat;
2995 MemoryRegion *this_mr;
2996
2997 for (;;) {
2998 target_len -= len;
2999 addr += len;
3000 done += len;
3001 if (target_len == 0) {
3002 return done;
3003 }
3004
3005 len = target_len;
3006 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3007 if (this_mr != mr || xlat != base + done) {
3008 return done;
3009 }
3010 }
3011 }
3012
3013 /* Map a physical memory region into a host virtual address.
3014 * May map a subset of the requested range, given by and returned in *plen.
3015 * May return NULL if resources needed to perform the mapping are exhausted.
3016 * Use only for reads OR writes - not for read-modify-write operations.
3017 * Use cpu_register_map_client() to know when retrying the map operation is
3018 * likely to succeed.
3019 */
3020 void *address_space_map(AddressSpace *as,
3021 hwaddr addr,
3022 hwaddr *plen,
3023 bool is_write)
3024 {
3025 hwaddr len = *plen;
3026 hwaddr l, xlat;
3027 MemoryRegion *mr;
3028 void *ptr;
3029
3030 if (len == 0) {
3031 return NULL;
3032 }
3033
3034 l = len;
3035 rcu_read_lock();
3036 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3037
3038 if (!memory_access_is_direct(mr, is_write)) {
3039 if (atomic_xchg(&bounce.in_use, true)) {
3040 rcu_read_unlock();
3041 return NULL;
3042 }
3043 /* Avoid unbounded allocations */
3044 l = MIN(l, TARGET_PAGE_SIZE);
3045 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3046 bounce.addr = addr;
3047 bounce.len = l;
3048
3049 memory_region_ref(mr);
3050 bounce.mr = mr;
3051 if (!is_write) {
3052 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3053 bounce.buffer, l);
3054 }
3055
3056 rcu_read_unlock();
3057 *plen = l;
3058 return bounce.buffer;
3059 }
3060
3061
3062 memory_region_ref(mr);
3063 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3064 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3065 rcu_read_unlock();
3066
3067 return ptr;
3068 }
3069
3070 /* Unmaps a memory region previously mapped by address_space_map().
3071 * Will also mark the memory as dirty if is_write == 1. access_len gives
3072 * the amount of memory that was actually read or written by the caller.
3073 */
3074 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3075 int is_write, hwaddr access_len)
3076 {
3077 if (buffer != bounce.buffer) {
3078 MemoryRegion *mr;
3079 ram_addr_t addr1;
3080
3081 mr = memory_region_from_host(buffer, &addr1);
3082 assert(mr != NULL);
3083 if (is_write) {
3084 invalidate_and_set_dirty(mr, addr1, access_len);
3085 }
3086 if (xen_enabled()) {
3087 xen_invalidate_map_cache_entry(buffer);
3088 }
3089 memory_region_unref(mr);
3090 return;
3091 }
3092 if (is_write) {
3093 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3094 bounce.buffer, access_len);
3095 }
3096 qemu_vfree(bounce.buffer);
3097 bounce.buffer = NULL;
3098 memory_region_unref(bounce.mr);
3099 atomic_mb_set(&bounce.in_use, false);
3100 cpu_notify_map_clients();
3101 }
3102
3103 void *cpu_physical_memory_map(hwaddr addr,
3104 hwaddr *plen,
3105 int is_write)
3106 {
3107 return address_space_map(&address_space_memory, addr, plen, is_write);
3108 }
3109
3110 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3111 int is_write, hwaddr access_len)
3112 {
3113 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3114 }
3115
3116 #define ARG1_DECL AddressSpace *as
3117 #define ARG1 as
3118 #define SUFFIX
3119 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3120 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3121 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3122 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3123 #define RCU_READ_LOCK(...) rcu_read_lock()
3124 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3125 #include "memory_ldst.inc.c"
3126
3127 int64_t address_space_cache_init(MemoryRegionCache *cache,
3128 AddressSpace *as,
3129 hwaddr addr,
3130 hwaddr len,
3131 bool is_write)
3132 {
3133 hwaddr l, xlat;
3134 MemoryRegion *mr;
3135 void *ptr;
3136
3137 assert(len > 0);
3138
3139 l = len;
3140 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3141 if (!memory_access_is_direct(mr, is_write)) {
3142 return -EINVAL;
3143 }
3144
3145 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3146 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3147
3148 cache->xlat = xlat;
3149 cache->is_write = is_write;
3150 cache->mr = mr;
3151 cache->ptr = ptr;
3152 cache->len = l;
3153 memory_region_ref(cache->mr);
3154
3155 return l;
3156 }
3157
3158 void address_space_cache_invalidate(MemoryRegionCache *cache,
3159 hwaddr addr,
3160 hwaddr access_len)
3161 {
3162 assert(cache->is_write);
3163 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3164 }
3165
3166 void address_space_cache_destroy(MemoryRegionCache *cache)
3167 {
3168 if (!cache->mr) {
3169 return;
3170 }
3171
3172 if (xen_enabled()) {
3173 xen_invalidate_map_cache_entry(cache->ptr);
3174 }
3175 memory_region_unref(cache->mr);
3176 cache->mr = NULL;
3177 }
3178
3179 /* Called from RCU critical section. This function has the same
3180 * semantics as address_space_translate, but it only works on a
3181 * predefined range of a MemoryRegion that was mapped with
3182 * address_space_cache_init.
3183 */
3184 static inline MemoryRegion *address_space_translate_cached(
3185 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3186 hwaddr *plen, bool is_write)
3187 {
3188 assert(addr < cache->len && *plen <= cache->len - addr);
3189 *xlat = addr + cache->xlat;
3190 return cache->mr;
3191 }
3192
3193 #define ARG1_DECL MemoryRegionCache *cache
3194 #define ARG1 cache
3195 #define SUFFIX _cached
3196 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3197 #define IS_DIRECT(mr, is_write) true
3198 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3199 #define INVALIDATE(mr, ofs, len) ((void)0)
3200 #define RCU_READ_LOCK() ((void)0)
3201 #define RCU_READ_UNLOCK() ((void)0)
3202 #include "memory_ldst.inc.c"
3203
3204 /* virtual memory access for debug (includes writing to ROM) */
3205 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3206 uint8_t *buf, int len, int is_write)
3207 {
3208 int l;
3209 hwaddr phys_addr;
3210 target_ulong page;
3211
3212 while (len > 0) {
3213 int asidx;
3214 MemTxAttrs attrs;
3215
3216 page = addr & TARGET_PAGE_MASK;
3217 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3218 asidx = cpu_asidx_from_attrs(cpu, attrs);
3219 /* if no physical page mapped, return an error */
3220 if (phys_addr == -1)
3221 return -1;
3222 l = (page + TARGET_PAGE_SIZE) - addr;
3223 if (l > len)
3224 l = len;
3225 phys_addr += (addr & ~TARGET_PAGE_MASK);
3226 if (is_write) {
3227 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3228 phys_addr, buf, l);
3229 } else {
3230 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3231 MEMTXATTRS_UNSPECIFIED,
3232 buf, l, 0);
3233 }
3234 len -= l;
3235 buf += l;
3236 addr += l;
3237 }
3238 return 0;
3239 }
3240
3241 /*
3242 * Allows code that needs to deal with migration bitmaps etc to still be built
3243 * target independent.
3244 */
3245 size_t qemu_target_page_bits(void)
3246 {
3247 return TARGET_PAGE_BITS;
3248 }
3249
3250 #endif
3251
3252 /*
3253 * A helper function for the _utterly broken_ virtio device model to find out if
3254 * it's running on a big endian machine. Don't do this at home kids!
3255 */
3256 bool target_words_bigendian(void);
3257 bool target_words_bigendian(void)
3258 {
3259 #if defined(TARGET_WORDS_BIGENDIAN)
3260 return true;
3261 #else
3262 return false;
3263 #endif
3264 }
3265
3266 #ifndef CONFIG_USER_ONLY
3267 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3268 {
3269 MemoryRegion*mr;
3270 hwaddr l = 1;
3271 bool res;
3272
3273 rcu_read_lock();
3274 mr = address_space_translate(&address_space_memory,
3275 phys_addr, &phys_addr, &l, false);
3276
3277 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3278 rcu_read_unlock();
3279 return res;
3280 }
3281
3282 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3283 {
3284 RAMBlock *block;
3285 int ret = 0;
3286
3287 rcu_read_lock();
3288 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3289 ret = func(block->idstr, block->host, block->offset,
3290 block->used_length, opaque);
3291 if (ret) {
3292 break;
3293 }
3294 }
3295 rcu_read_unlock();
3296 return ret;
3297 }
3298
3299 /*
3300 * Unmap pages of memory from start to start+length such that
3301 * they a) read as 0, b) Trigger whatever fault mechanism
3302 * the OS provides for postcopy.
3303 * The pages must be unmapped by the end of the function.
3304 * Returns: 0 on success, none-0 on failure
3305 *
3306 */
3307 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3308 {
3309 int ret = -1;
3310
3311 uint8_t *host_startaddr = rb->host + start;
3312
3313 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3314 error_report("ram_block_discard_range: Unaligned start address: %p",
3315 host_startaddr);
3316 goto err;
3317 }
3318
3319 if ((start + length) <= rb->used_length) {
3320 uint8_t *host_endaddr = host_startaddr + length;
3321 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3322 error_report("ram_block_discard_range: Unaligned end address: %p",
3323 host_endaddr);
3324 goto err;
3325 }
3326
3327 errno = ENOTSUP; /* If we are missing MADVISE etc */
3328
3329 #if defined(CONFIG_MADVISE)
3330 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3331 * freeing the page.
3332 */
3333 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3334 #endif
3335 if (ret) {
3336 ret = -errno;
3337 error_report("ram_block_discard_range: Failed to discard range "
3338 "%s:%" PRIx64 " +%zx (%d)",
3339 rb->idstr, start, length, ret);
3340 }
3341 } else {
3342 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3343 "/%zx/" RAM_ADDR_FMT")",
3344 rb->idstr, start, length, rb->used_length);
3345 }
3346
3347 err:
3348 return ret;
3349 }
3350
3351 #endif