]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
postcopy: enhance ram_block_discard_range for hugepages
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
47 #include "trace-root.h"
48
49 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
50 #include <fcntl.h>
51 #include <linux/falloc.h>
52 #endif
53
54 #endif
55 #include "exec/cpu-all.h"
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
60
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
64
65 #include "migration/vmstate.h"
66
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
71
72 //#define DEBUG_SUBPAGE
73
74 #if !defined(CONFIG_USER_ONLY)
75 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
76 * are protected by the ramlist lock.
77 */
78 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
79
80 static MemoryRegion *system_memory;
81 static MemoryRegion *system_io;
82
83 AddressSpace address_space_io;
84 AddressSpace address_space_memory;
85
86 MemoryRegion io_mem_rom, io_mem_notdirty;
87 static MemoryRegion io_mem_unassigned;
88
89 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
90 #define RAM_PREALLOC (1 << 0)
91
92 /* RAM is mmap-ed with MAP_SHARED */
93 #define RAM_SHARED (1 << 1)
94
95 /* Only a portion of RAM (used_length) is actually used, and migrated.
96 * This used_length size can change across reboots.
97 */
98 #define RAM_RESIZEABLE (1 << 2)
99
100 #endif
101
102 #ifdef TARGET_PAGE_BITS_VARY
103 int target_page_bits;
104 bool target_page_bits_decided;
105 #endif
106
107 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
108 /* current CPU in the current thread. It is only valid inside
109 cpu_exec() */
110 __thread CPUState *current_cpu;
111 /* 0 = Do not count executed instructions.
112 1 = Precise instruction counting.
113 2 = Adaptive rate instruction counting. */
114 int use_icount;
115
116 bool set_preferred_target_page_bits(int bits)
117 {
118 /* The target page size is the lowest common denominator for all
119 * the CPUs in the system, so we can only make it smaller, never
120 * larger. And we can't make it smaller once we've committed to
121 * a particular size.
122 */
123 #ifdef TARGET_PAGE_BITS_VARY
124 assert(bits >= TARGET_PAGE_BITS_MIN);
125 if (target_page_bits == 0 || target_page_bits > bits) {
126 if (target_page_bits_decided) {
127 return false;
128 }
129 target_page_bits = bits;
130 }
131 #endif
132 return true;
133 }
134
135 #if !defined(CONFIG_USER_ONLY)
136
137 static void finalize_target_page_bits(void)
138 {
139 #ifdef TARGET_PAGE_BITS_VARY
140 if (target_page_bits == 0) {
141 target_page_bits = TARGET_PAGE_BITS_MIN;
142 }
143 target_page_bits_decided = true;
144 #endif
145 }
146
147 typedef struct PhysPageEntry PhysPageEntry;
148
149 struct PhysPageEntry {
150 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
151 uint32_t skip : 6;
152 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
153 uint32_t ptr : 26;
154 };
155
156 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define ADDR_SPACE_BITS 64
160
161 #define P_L2_BITS 9
162 #define P_L2_SIZE (1 << P_L2_BITS)
163
164 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
165
166 typedef PhysPageEntry Node[P_L2_SIZE];
167
168 typedef struct PhysPageMap {
169 struct rcu_head rcu;
170
171 unsigned sections_nb;
172 unsigned sections_nb_alloc;
173 unsigned nodes_nb;
174 unsigned nodes_nb_alloc;
175 Node *nodes;
176 MemoryRegionSection *sections;
177 } PhysPageMap;
178
179 struct AddressSpaceDispatch {
180 struct rcu_head rcu;
181
182 MemoryRegionSection *mru_section;
183 /* This is a multi-level map on the physical address space.
184 * The bottom level has pointers to MemoryRegionSections.
185 */
186 PhysPageEntry phys_map;
187 PhysPageMap map;
188 AddressSpace *as;
189 };
190
191 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
192 typedef struct subpage_t {
193 MemoryRegion iomem;
194 AddressSpace *as;
195 hwaddr base;
196 uint16_t sub_section[];
197 } subpage_t;
198
199 #define PHYS_SECTION_UNASSIGNED 0
200 #define PHYS_SECTION_NOTDIRTY 1
201 #define PHYS_SECTION_ROM 2
202 #define PHYS_SECTION_WATCH 3
203
204 static void io_mem_init(void);
205 static void memory_map_init(void);
206 static void tcg_commit(MemoryListener *listener);
207
208 static MemoryRegion io_mem_watch;
209
210 /**
211 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
212 * @cpu: the CPU whose AddressSpace this is
213 * @as: the AddressSpace itself
214 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
215 * @tcg_as_listener: listener for tracking changes to the AddressSpace
216 */
217 struct CPUAddressSpace {
218 CPUState *cpu;
219 AddressSpace *as;
220 struct AddressSpaceDispatch *memory_dispatch;
221 MemoryListener tcg_as_listener;
222 };
223
224 #endif
225
226 #if !defined(CONFIG_USER_ONLY)
227
228 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
229 {
230 static unsigned alloc_hint = 16;
231 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
232 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
234 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
235 alloc_hint = map->nodes_nb_alloc;
236 }
237 }
238
239 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
240 {
241 unsigned i;
242 uint32_t ret;
243 PhysPageEntry e;
244 PhysPageEntry *p;
245
246 ret = map->nodes_nb++;
247 p = map->nodes[ret];
248 assert(ret != PHYS_MAP_NODE_NIL);
249 assert(ret != map->nodes_nb_alloc);
250
251 e.skip = leaf ? 0 : 1;
252 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
253 for (i = 0; i < P_L2_SIZE; ++i) {
254 memcpy(&p[i], &e, sizeof(e));
255 }
256 return ret;
257 }
258
259 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
260 hwaddr *index, hwaddr *nb, uint16_t leaf,
261 int level)
262 {
263 PhysPageEntry *p;
264 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
265
266 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
267 lp->ptr = phys_map_node_alloc(map, level == 0);
268 }
269 p = map->nodes[lp->ptr];
270 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
271
272 while (*nb && lp < &p[P_L2_SIZE]) {
273 if ((*index & (step - 1)) == 0 && *nb >= step) {
274 lp->skip = 0;
275 lp->ptr = leaf;
276 *index += step;
277 *nb -= step;
278 } else {
279 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
280 }
281 ++lp;
282 }
283 }
284
285 static void phys_page_set(AddressSpaceDispatch *d,
286 hwaddr index, hwaddr nb,
287 uint16_t leaf)
288 {
289 /* Wildly overreserve - it doesn't matter much. */
290 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
291
292 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
293 }
294
295 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
296 * and update our entry so we can skip it and go directly to the destination.
297 */
298 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
299 {
300 unsigned valid_ptr = P_L2_SIZE;
301 int valid = 0;
302 PhysPageEntry *p;
303 int i;
304
305 if (lp->ptr == PHYS_MAP_NODE_NIL) {
306 return;
307 }
308
309 p = nodes[lp->ptr];
310 for (i = 0; i < P_L2_SIZE; i++) {
311 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
312 continue;
313 }
314
315 valid_ptr = i;
316 valid++;
317 if (p[i].skip) {
318 phys_page_compact(&p[i], nodes);
319 }
320 }
321
322 /* We can only compress if there's only one child. */
323 if (valid != 1) {
324 return;
325 }
326
327 assert(valid_ptr < P_L2_SIZE);
328
329 /* Don't compress if it won't fit in the # of bits we have. */
330 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
331 return;
332 }
333
334 lp->ptr = p[valid_ptr].ptr;
335 if (!p[valid_ptr].skip) {
336 /* If our only child is a leaf, make this a leaf. */
337 /* By design, we should have made this node a leaf to begin with so we
338 * should never reach here.
339 * But since it's so simple to handle this, let's do it just in case we
340 * change this rule.
341 */
342 lp->skip = 0;
343 } else {
344 lp->skip += p[valid_ptr].skip;
345 }
346 }
347
348 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
349 {
350 if (d->phys_map.skip) {
351 phys_page_compact(&d->phys_map, d->map.nodes);
352 }
353 }
354
355 static inline bool section_covers_addr(const MemoryRegionSection *section,
356 hwaddr addr)
357 {
358 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
359 * the section must cover the entire address space.
360 */
361 return int128_gethi(section->size) ||
362 range_covers_byte(section->offset_within_address_space,
363 int128_getlo(section->size), addr);
364 }
365
366 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
367 Node *nodes, MemoryRegionSection *sections)
368 {
369 PhysPageEntry *p;
370 hwaddr index = addr >> TARGET_PAGE_BITS;
371 int i;
372
373 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
374 if (lp.ptr == PHYS_MAP_NODE_NIL) {
375 return &sections[PHYS_SECTION_UNASSIGNED];
376 }
377 p = nodes[lp.ptr];
378 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
379 }
380
381 if (section_covers_addr(&sections[lp.ptr], addr)) {
382 return &sections[lp.ptr];
383 } else {
384 return &sections[PHYS_SECTION_UNASSIGNED];
385 }
386 }
387
388 bool memory_region_is_unassigned(MemoryRegion *mr)
389 {
390 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
391 && mr != &io_mem_watch;
392 }
393
394 /* Called from RCU critical section */
395 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
396 hwaddr addr,
397 bool resolve_subpage)
398 {
399 MemoryRegionSection *section = atomic_read(&d->mru_section);
400 subpage_t *subpage;
401 bool update;
402
403 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
404 section_covers_addr(section, addr)) {
405 update = false;
406 } else {
407 section = phys_page_find(d->phys_map, addr, d->map.nodes,
408 d->map.sections);
409 update = true;
410 }
411 if (resolve_subpage && section->mr->subpage) {
412 subpage = container_of(section->mr, subpage_t, iomem);
413 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
414 }
415 if (update) {
416 atomic_set(&d->mru_section, section);
417 }
418 return section;
419 }
420
421 /* Called from RCU critical section */
422 static MemoryRegionSection *
423 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
424 hwaddr *plen, bool resolve_subpage)
425 {
426 MemoryRegionSection *section;
427 MemoryRegion *mr;
428 Int128 diff;
429
430 section = address_space_lookup_region(d, addr, resolve_subpage);
431 /* Compute offset within MemoryRegionSection */
432 addr -= section->offset_within_address_space;
433
434 /* Compute offset within MemoryRegion */
435 *xlat = addr + section->offset_within_region;
436
437 mr = section->mr;
438
439 /* MMIO registers can be expected to perform full-width accesses based only
440 * on their address, without considering adjacent registers that could
441 * decode to completely different MemoryRegions. When such registers
442 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
443 * regions overlap wildly. For this reason we cannot clamp the accesses
444 * here.
445 *
446 * If the length is small (as is the case for address_space_ldl/stl),
447 * everything works fine. If the incoming length is large, however,
448 * the caller really has to do the clamping through memory_access_size.
449 */
450 if (memory_region_is_ram(mr)) {
451 diff = int128_sub(section->size, int128_make64(addr));
452 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
453 }
454 return section;
455 }
456
457 /* Called from RCU critical section */
458 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
459 bool is_write)
460 {
461 IOMMUTLBEntry iotlb = {0};
462 MemoryRegionSection *section;
463 MemoryRegion *mr;
464
465 for (;;) {
466 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
467 section = address_space_lookup_region(d, addr, false);
468 addr = addr - section->offset_within_address_space
469 + section->offset_within_region;
470 mr = section->mr;
471
472 if (!mr->iommu_ops) {
473 break;
474 }
475
476 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
477 if (!(iotlb.perm & (1 << is_write))) {
478 iotlb.target_as = NULL;
479 break;
480 }
481
482 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
483 | (addr & iotlb.addr_mask));
484 as = iotlb.target_as;
485 }
486
487 return iotlb;
488 }
489
490 /* Called from RCU critical section */
491 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
492 hwaddr *xlat, hwaddr *plen,
493 bool is_write)
494 {
495 IOMMUTLBEntry iotlb;
496 MemoryRegionSection *section;
497 MemoryRegion *mr;
498
499 for (;;) {
500 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
501 section = address_space_translate_internal(d, addr, &addr, plen, true);
502 mr = section->mr;
503
504 if (!mr->iommu_ops) {
505 break;
506 }
507
508 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
509 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
510 | (addr & iotlb.addr_mask));
511 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
512 if (!(iotlb.perm & (1 << is_write))) {
513 mr = &io_mem_unassigned;
514 break;
515 }
516
517 as = iotlb.target_as;
518 }
519
520 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
521 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
522 *plen = MIN(page, *plen);
523 }
524
525 *xlat = addr;
526 return mr;
527 }
528
529 /* Called from RCU critical section */
530 MemoryRegionSection *
531 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
532 hwaddr *xlat, hwaddr *plen)
533 {
534 MemoryRegionSection *section;
535 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
536
537 section = address_space_translate_internal(d, addr, xlat, plen, false);
538
539 assert(!section->mr->iommu_ops);
540 return section;
541 }
542 #endif
543
544 #if !defined(CONFIG_USER_ONLY)
545
546 static int cpu_common_post_load(void *opaque, int version_id)
547 {
548 CPUState *cpu = opaque;
549
550 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
551 version_id is increased. */
552 cpu->interrupt_request &= ~0x01;
553 tlb_flush(cpu);
554
555 return 0;
556 }
557
558 static int cpu_common_pre_load(void *opaque)
559 {
560 CPUState *cpu = opaque;
561
562 cpu->exception_index = -1;
563
564 return 0;
565 }
566
567 static bool cpu_common_exception_index_needed(void *opaque)
568 {
569 CPUState *cpu = opaque;
570
571 return tcg_enabled() && cpu->exception_index != -1;
572 }
573
574 static const VMStateDescription vmstate_cpu_common_exception_index = {
575 .name = "cpu_common/exception_index",
576 .version_id = 1,
577 .minimum_version_id = 1,
578 .needed = cpu_common_exception_index_needed,
579 .fields = (VMStateField[]) {
580 VMSTATE_INT32(exception_index, CPUState),
581 VMSTATE_END_OF_LIST()
582 }
583 };
584
585 static bool cpu_common_crash_occurred_needed(void *opaque)
586 {
587 CPUState *cpu = opaque;
588
589 return cpu->crash_occurred;
590 }
591
592 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
593 .name = "cpu_common/crash_occurred",
594 .version_id = 1,
595 .minimum_version_id = 1,
596 .needed = cpu_common_crash_occurred_needed,
597 .fields = (VMStateField[]) {
598 VMSTATE_BOOL(crash_occurred, CPUState),
599 VMSTATE_END_OF_LIST()
600 }
601 };
602
603 const VMStateDescription vmstate_cpu_common = {
604 .name = "cpu_common",
605 .version_id = 1,
606 .minimum_version_id = 1,
607 .pre_load = cpu_common_pre_load,
608 .post_load = cpu_common_post_load,
609 .fields = (VMStateField[]) {
610 VMSTATE_UINT32(halted, CPUState),
611 VMSTATE_UINT32(interrupt_request, CPUState),
612 VMSTATE_END_OF_LIST()
613 },
614 .subsections = (const VMStateDescription*[]) {
615 &vmstate_cpu_common_exception_index,
616 &vmstate_cpu_common_crash_occurred,
617 NULL
618 }
619 };
620
621 #endif
622
623 CPUState *qemu_get_cpu(int index)
624 {
625 CPUState *cpu;
626
627 CPU_FOREACH(cpu) {
628 if (cpu->cpu_index == index) {
629 return cpu;
630 }
631 }
632
633 return NULL;
634 }
635
636 #if !defined(CONFIG_USER_ONLY)
637 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
638 {
639 CPUAddressSpace *newas;
640
641 /* Target code should have set num_ases before calling us */
642 assert(asidx < cpu->num_ases);
643
644 if (asidx == 0) {
645 /* address space 0 gets the convenience alias */
646 cpu->as = as;
647 }
648
649 /* KVM cannot currently support multiple address spaces. */
650 assert(asidx == 0 || !kvm_enabled());
651
652 if (!cpu->cpu_ases) {
653 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
654 }
655
656 newas = &cpu->cpu_ases[asidx];
657 newas->cpu = cpu;
658 newas->as = as;
659 if (tcg_enabled()) {
660 newas->tcg_as_listener.commit = tcg_commit;
661 memory_listener_register(&newas->tcg_as_listener, as);
662 }
663 }
664
665 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
666 {
667 /* Return the AddressSpace corresponding to the specified index */
668 return cpu->cpu_ases[asidx].as;
669 }
670 #endif
671
672 void cpu_exec_unrealizefn(CPUState *cpu)
673 {
674 CPUClass *cc = CPU_GET_CLASS(cpu);
675
676 cpu_list_remove(cpu);
677
678 if (cc->vmsd != NULL) {
679 vmstate_unregister(NULL, cc->vmsd, cpu);
680 }
681 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
682 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
683 }
684 }
685
686 void cpu_exec_initfn(CPUState *cpu)
687 {
688 cpu->as = NULL;
689 cpu->num_ases = 0;
690
691 #ifndef CONFIG_USER_ONLY
692 cpu->thread_id = qemu_get_thread_id();
693
694 /* This is a softmmu CPU object, so create a property for it
695 * so users can wire up its memory. (This can't go in qom/cpu.c
696 * because that file is compiled only once for both user-mode
697 * and system builds.) The default if no link is set up is to use
698 * the system address space.
699 */
700 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
701 (Object **)&cpu->memory,
702 qdev_prop_allow_set_link_before_realize,
703 OBJ_PROP_LINK_UNREF_ON_RELEASE,
704 &error_abort);
705 cpu->memory = system_memory;
706 object_ref(OBJECT(cpu->memory));
707 #endif
708 }
709
710 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
711 {
712 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
713
714 cpu_list_add(cpu);
715
716 #ifndef CONFIG_USER_ONLY
717 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
718 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
719 }
720 if (cc->vmsd != NULL) {
721 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
722 }
723 #endif
724 }
725
726 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
727 {
728 /* Flush the whole TB as this will not have race conditions
729 * even if we don't have proper locking yet.
730 * Ideally we would just invalidate the TBs for the
731 * specified PC.
732 */
733 tb_flush(cpu);
734 }
735
736 #if defined(CONFIG_USER_ONLY)
737 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
738
739 {
740 }
741
742 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
743 int flags)
744 {
745 return -ENOSYS;
746 }
747
748 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
749 {
750 }
751
752 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
753 int flags, CPUWatchpoint **watchpoint)
754 {
755 return -ENOSYS;
756 }
757 #else
758 /* Add a watchpoint. */
759 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
760 int flags, CPUWatchpoint **watchpoint)
761 {
762 CPUWatchpoint *wp;
763
764 /* forbid ranges which are empty or run off the end of the address space */
765 if (len == 0 || (addr + len - 1) < addr) {
766 error_report("tried to set invalid watchpoint at %"
767 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
768 return -EINVAL;
769 }
770 wp = g_malloc(sizeof(*wp));
771
772 wp->vaddr = addr;
773 wp->len = len;
774 wp->flags = flags;
775
776 /* keep all GDB-injected watchpoints in front */
777 if (flags & BP_GDB) {
778 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
779 } else {
780 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
781 }
782
783 tlb_flush_page(cpu, addr);
784
785 if (watchpoint)
786 *watchpoint = wp;
787 return 0;
788 }
789
790 /* Remove a specific watchpoint. */
791 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
792 int flags)
793 {
794 CPUWatchpoint *wp;
795
796 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
797 if (addr == wp->vaddr && len == wp->len
798 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
799 cpu_watchpoint_remove_by_ref(cpu, wp);
800 return 0;
801 }
802 }
803 return -ENOENT;
804 }
805
806 /* Remove a specific watchpoint by reference. */
807 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
808 {
809 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
810
811 tlb_flush_page(cpu, watchpoint->vaddr);
812
813 g_free(watchpoint);
814 }
815
816 /* Remove all matching watchpoints. */
817 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
818 {
819 CPUWatchpoint *wp, *next;
820
821 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
822 if (wp->flags & mask) {
823 cpu_watchpoint_remove_by_ref(cpu, wp);
824 }
825 }
826 }
827
828 /* Return true if this watchpoint address matches the specified
829 * access (ie the address range covered by the watchpoint overlaps
830 * partially or completely with the address range covered by the
831 * access).
832 */
833 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
834 vaddr addr,
835 vaddr len)
836 {
837 /* We know the lengths are non-zero, but a little caution is
838 * required to avoid errors in the case where the range ends
839 * exactly at the top of the address space and so addr + len
840 * wraps round to zero.
841 */
842 vaddr wpend = wp->vaddr + wp->len - 1;
843 vaddr addrend = addr + len - 1;
844
845 return !(addr > wpend || wp->vaddr > addrend);
846 }
847
848 #endif
849
850 /* Add a breakpoint. */
851 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
852 CPUBreakpoint **breakpoint)
853 {
854 CPUBreakpoint *bp;
855
856 bp = g_malloc(sizeof(*bp));
857
858 bp->pc = pc;
859 bp->flags = flags;
860
861 /* keep all GDB-injected breakpoints in front */
862 if (flags & BP_GDB) {
863 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
864 } else {
865 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
866 }
867
868 breakpoint_invalidate(cpu, pc);
869
870 if (breakpoint) {
871 *breakpoint = bp;
872 }
873 return 0;
874 }
875
876 /* Remove a specific breakpoint. */
877 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
878 {
879 CPUBreakpoint *bp;
880
881 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
882 if (bp->pc == pc && bp->flags == flags) {
883 cpu_breakpoint_remove_by_ref(cpu, bp);
884 return 0;
885 }
886 }
887 return -ENOENT;
888 }
889
890 /* Remove a specific breakpoint by reference. */
891 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
892 {
893 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
894
895 breakpoint_invalidate(cpu, breakpoint->pc);
896
897 g_free(breakpoint);
898 }
899
900 /* Remove all matching breakpoints. */
901 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
902 {
903 CPUBreakpoint *bp, *next;
904
905 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
906 if (bp->flags & mask) {
907 cpu_breakpoint_remove_by_ref(cpu, bp);
908 }
909 }
910 }
911
912 /* enable or disable single step mode. EXCP_DEBUG is returned by the
913 CPU loop after each instruction */
914 void cpu_single_step(CPUState *cpu, int enabled)
915 {
916 if (cpu->singlestep_enabled != enabled) {
917 cpu->singlestep_enabled = enabled;
918 if (kvm_enabled()) {
919 kvm_update_guest_debug(cpu, 0);
920 } else {
921 /* must flush all the translated code to avoid inconsistencies */
922 /* XXX: only flush what is necessary */
923 tb_flush(cpu);
924 }
925 }
926 }
927
928 void cpu_abort(CPUState *cpu, const char *fmt, ...)
929 {
930 va_list ap;
931 va_list ap2;
932
933 va_start(ap, fmt);
934 va_copy(ap2, ap);
935 fprintf(stderr, "qemu: fatal: ");
936 vfprintf(stderr, fmt, ap);
937 fprintf(stderr, "\n");
938 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
939 if (qemu_log_separate()) {
940 qemu_log_lock();
941 qemu_log("qemu: fatal: ");
942 qemu_log_vprintf(fmt, ap2);
943 qemu_log("\n");
944 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
945 qemu_log_flush();
946 qemu_log_unlock();
947 qemu_log_close();
948 }
949 va_end(ap2);
950 va_end(ap);
951 replay_finish();
952 #if defined(CONFIG_USER_ONLY)
953 {
954 struct sigaction act;
955 sigfillset(&act.sa_mask);
956 act.sa_handler = SIG_DFL;
957 sigaction(SIGABRT, &act, NULL);
958 }
959 #endif
960 abort();
961 }
962
963 #if !defined(CONFIG_USER_ONLY)
964 /* Called from RCU critical section */
965 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
966 {
967 RAMBlock *block;
968
969 block = atomic_rcu_read(&ram_list.mru_block);
970 if (block && addr - block->offset < block->max_length) {
971 return block;
972 }
973 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
974 if (addr - block->offset < block->max_length) {
975 goto found;
976 }
977 }
978
979 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
980 abort();
981
982 found:
983 /* It is safe to write mru_block outside the iothread lock. This
984 * is what happens:
985 *
986 * mru_block = xxx
987 * rcu_read_unlock()
988 * xxx removed from list
989 * rcu_read_lock()
990 * read mru_block
991 * mru_block = NULL;
992 * call_rcu(reclaim_ramblock, xxx);
993 * rcu_read_unlock()
994 *
995 * atomic_rcu_set is not needed here. The block was already published
996 * when it was placed into the list. Here we're just making an extra
997 * copy of the pointer.
998 */
999 ram_list.mru_block = block;
1000 return block;
1001 }
1002
1003 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1004 {
1005 CPUState *cpu;
1006 ram_addr_t start1;
1007 RAMBlock *block;
1008 ram_addr_t end;
1009
1010 end = TARGET_PAGE_ALIGN(start + length);
1011 start &= TARGET_PAGE_MASK;
1012
1013 rcu_read_lock();
1014 block = qemu_get_ram_block(start);
1015 assert(block == qemu_get_ram_block(end - 1));
1016 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1017 CPU_FOREACH(cpu) {
1018 tlb_reset_dirty(cpu, start1, length);
1019 }
1020 rcu_read_unlock();
1021 }
1022
1023 /* Note: start and end must be within the same ram block. */
1024 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1025 ram_addr_t length,
1026 unsigned client)
1027 {
1028 DirtyMemoryBlocks *blocks;
1029 unsigned long end, page;
1030 bool dirty = false;
1031
1032 if (length == 0) {
1033 return false;
1034 }
1035
1036 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1037 page = start >> TARGET_PAGE_BITS;
1038
1039 rcu_read_lock();
1040
1041 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1042
1043 while (page < end) {
1044 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1045 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1046 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1047
1048 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1049 offset, num);
1050 page += num;
1051 }
1052
1053 rcu_read_unlock();
1054
1055 if (dirty && tcg_enabled()) {
1056 tlb_reset_dirty_range_all(start, length);
1057 }
1058
1059 return dirty;
1060 }
1061
1062 /* Called from RCU critical section */
1063 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1064 MemoryRegionSection *section,
1065 target_ulong vaddr,
1066 hwaddr paddr, hwaddr xlat,
1067 int prot,
1068 target_ulong *address)
1069 {
1070 hwaddr iotlb;
1071 CPUWatchpoint *wp;
1072
1073 if (memory_region_is_ram(section->mr)) {
1074 /* Normal RAM. */
1075 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1076 if (!section->readonly) {
1077 iotlb |= PHYS_SECTION_NOTDIRTY;
1078 } else {
1079 iotlb |= PHYS_SECTION_ROM;
1080 }
1081 } else {
1082 AddressSpaceDispatch *d;
1083
1084 d = atomic_rcu_read(&section->address_space->dispatch);
1085 iotlb = section - d->map.sections;
1086 iotlb += xlat;
1087 }
1088
1089 /* Make accesses to pages with watchpoints go via the
1090 watchpoint trap routines. */
1091 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1092 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1093 /* Avoid trapping reads of pages with a write breakpoint. */
1094 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1095 iotlb = PHYS_SECTION_WATCH + paddr;
1096 *address |= TLB_MMIO;
1097 break;
1098 }
1099 }
1100 }
1101
1102 return iotlb;
1103 }
1104 #endif /* defined(CONFIG_USER_ONLY) */
1105
1106 #if !defined(CONFIG_USER_ONLY)
1107
1108 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1109 uint16_t section);
1110 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1111
1112 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1113 qemu_anon_ram_alloc;
1114
1115 /*
1116 * Set a custom physical guest memory alloator.
1117 * Accelerators with unusual needs may need this. Hopefully, we can
1118 * get rid of it eventually.
1119 */
1120 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1121 {
1122 phys_mem_alloc = alloc;
1123 }
1124
1125 static uint16_t phys_section_add(PhysPageMap *map,
1126 MemoryRegionSection *section)
1127 {
1128 /* The physical section number is ORed with a page-aligned
1129 * pointer to produce the iotlb entries. Thus it should
1130 * never overflow into the page-aligned value.
1131 */
1132 assert(map->sections_nb < TARGET_PAGE_SIZE);
1133
1134 if (map->sections_nb == map->sections_nb_alloc) {
1135 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1136 map->sections = g_renew(MemoryRegionSection, map->sections,
1137 map->sections_nb_alloc);
1138 }
1139 map->sections[map->sections_nb] = *section;
1140 memory_region_ref(section->mr);
1141 return map->sections_nb++;
1142 }
1143
1144 static void phys_section_destroy(MemoryRegion *mr)
1145 {
1146 bool have_sub_page = mr->subpage;
1147
1148 memory_region_unref(mr);
1149
1150 if (have_sub_page) {
1151 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1152 object_unref(OBJECT(&subpage->iomem));
1153 g_free(subpage);
1154 }
1155 }
1156
1157 static void phys_sections_free(PhysPageMap *map)
1158 {
1159 while (map->sections_nb > 0) {
1160 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1161 phys_section_destroy(section->mr);
1162 }
1163 g_free(map->sections);
1164 g_free(map->nodes);
1165 }
1166
1167 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1168 {
1169 subpage_t *subpage;
1170 hwaddr base = section->offset_within_address_space
1171 & TARGET_PAGE_MASK;
1172 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1173 d->map.nodes, d->map.sections);
1174 MemoryRegionSection subsection = {
1175 .offset_within_address_space = base,
1176 .size = int128_make64(TARGET_PAGE_SIZE),
1177 };
1178 hwaddr start, end;
1179
1180 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1181
1182 if (!(existing->mr->subpage)) {
1183 subpage = subpage_init(d->as, base);
1184 subsection.address_space = d->as;
1185 subsection.mr = &subpage->iomem;
1186 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1187 phys_section_add(&d->map, &subsection));
1188 } else {
1189 subpage = container_of(existing->mr, subpage_t, iomem);
1190 }
1191 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1192 end = start + int128_get64(section->size) - 1;
1193 subpage_register(subpage, start, end,
1194 phys_section_add(&d->map, section));
1195 }
1196
1197
1198 static void register_multipage(AddressSpaceDispatch *d,
1199 MemoryRegionSection *section)
1200 {
1201 hwaddr start_addr = section->offset_within_address_space;
1202 uint16_t section_index = phys_section_add(&d->map, section);
1203 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1204 TARGET_PAGE_BITS));
1205
1206 assert(num_pages);
1207 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1208 }
1209
1210 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1211 {
1212 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1213 AddressSpaceDispatch *d = as->next_dispatch;
1214 MemoryRegionSection now = *section, remain = *section;
1215 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1216
1217 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1218 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1219 - now.offset_within_address_space;
1220
1221 now.size = int128_min(int128_make64(left), now.size);
1222 register_subpage(d, &now);
1223 } else {
1224 now.size = int128_zero();
1225 }
1226 while (int128_ne(remain.size, now.size)) {
1227 remain.size = int128_sub(remain.size, now.size);
1228 remain.offset_within_address_space += int128_get64(now.size);
1229 remain.offset_within_region += int128_get64(now.size);
1230 now = remain;
1231 if (int128_lt(remain.size, page_size)) {
1232 register_subpage(d, &now);
1233 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1234 now.size = page_size;
1235 register_subpage(d, &now);
1236 } else {
1237 now.size = int128_and(now.size, int128_neg(page_size));
1238 register_multipage(d, &now);
1239 }
1240 }
1241 }
1242
1243 void qemu_flush_coalesced_mmio_buffer(void)
1244 {
1245 if (kvm_enabled())
1246 kvm_flush_coalesced_mmio_buffer();
1247 }
1248
1249 void qemu_mutex_lock_ramlist(void)
1250 {
1251 qemu_mutex_lock(&ram_list.mutex);
1252 }
1253
1254 void qemu_mutex_unlock_ramlist(void)
1255 {
1256 qemu_mutex_unlock(&ram_list.mutex);
1257 }
1258
1259 #ifdef __linux__
1260 static int64_t get_file_size(int fd)
1261 {
1262 int64_t size = lseek(fd, 0, SEEK_END);
1263 if (size < 0) {
1264 return -errno;
1265 }
1266 return size;
1267 }
1268
1269 static void *file_ram_alloc(RAMBlock *block,
1270 ram_addr_t memory,
1271 const char *path,
1272 Error **errp)
1273 {
1274 bool unlink_on_error = false;
1275 char *filename;
1276 char *sanitized_name;
1277 char *c;
1278 void *area = MAP_FAILED;
1279 int fd = -1;
1280 int64_t file_size;
1281
1282 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1283 error_setg(errp,
1284 "host lacks kvm mmu notifiers, -mem-path unsupported");
1285 return NULL;
1286 }
1287
1288 for (;;) {
1289 fd = open(path, O_RDWR);
1290 if (fd >= 0) {
1291 /* @path names an existing file, use it */
1292 break;
1293 }
1294 if (errno == ENOENT) {
1295 /* @path names a file that doesn't exist, create it */
1296 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1297 if (fd >= 0) {
1298 unlink_on_error = true;
1299 break;
1300 }
1301 } else if (errno == EISDIR) {
1302 /* @path names a directory, create a file there */
1303 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1304 sanitized_name = g_strdup(memory_region_name(block->mr));
1305 for (c = sanitized_name; *c != '\0'; c++) {
1306 if (*c == '/') {
1307 *c = '_';
1308 }
1309 }
1310
1311 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1312 sanitized_name);
1313 g_free(sanitized_name);
1314
1315 fd = mkstemp(filename);
1316 if (fd >= 0) {
1317 unlink(filename);
1318 g_free(filename);
1319 break;
1320 }
1321 g_free(filename);
1322 }
1323 if (errno != EEXIST && errno != EINTR) {
1324 error_setg_errno(errp, errno,
1325 "can't open backing store %s for guest RAM",
1326 path);
1327 goto error;
1328 }
1329 /*
1330 * Try again on EINTR and EEXIST. The latter happens when
1331 * something else creates the file between our two open().
1332 */
1333 }
1334
1335 block->page_size = qemu_fd_getpagesize(fd);
1336 block->mr->align = block->page_size;
1337 #if defined(__s390x__)
1338 if (kvm_enabled()) {
1339 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1340 }
1341 #endif
1342
1343 file_size = get_file_size(fd);
1344
1345 if (memory < block->page_size) {
1346 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1347 "or larger than page size 0x%zx",
1348 memory, block->page_size);
1349 goto error;
1350 }
1351
1352 if (file_size > 0 && file_size < memory) {
1353 error_setg(errp, "backing store %s size 0x%" PRIx64
1354 " does not match 'size' option 0x" RAM_ADDR_FMT,
1355 path, file_size, memory);
1356 goto error;
1357 }
1358
1359 memory = ROUND_UP(memory, block->page_size);
1360
1361 /*
1362 * ftruncate is not supported by hugetlbfs in older
1363 * hosts, so don't bother bailing out on errors.
1364 * If anything goes wrong with it under other filesystems,
1365 * mmap will fail.
1366 *
1367 * Do not truncate the non-empty backend file to avoid corrupting
1368 * the existing data in the file. Disabling shrinking is not
1369 * enough. For example, the current vNVDIMM implementation stores
1370 * the guest NVDIMM labels at the end of the backend file. If the
1371 * backend file is later extended, QEMU will not be able to find
1372 * those labels. Therefore, extending the non-empty backend file
1373 * is disabled as well.
1374 */
1375 if (!file_size && ftruncate(fd, memory)) {
1376 perror("ftruncate");
1377 }
1378
1379 area = qemu_ram_mmap(fd, memory, block->mr->align,
1380 block->flags & RAM_SHARED);
1381 if (area == MAP_FAILED) {
1382 error_setg_errno(errp, errno,
1383 "unable to map backing store for guest RAM");
1384 goto error;
1385 }
1386
1387 if (mem_prealloc) {
1388 os_mem_prealloc(fd, area, memory, errp);
1389 if (errp && *errp) {
1390 goto error;
1391 }
1392 }
1393
1394 block->fd = fd;
1395 return area;
1396
1397 error:
1398 if (area != MAP_FAILED) {
1399 qemu_ram_munmap(area, memory);
1400 }
1401 if (unlink_on_error) {
1402 unlink(path);
1403 }
1404 if (fd != -1) {
1405 close(fd);
1406 }
1407 return NULL;
1408 }
1409 #endif
1410
1411 /* Called with the ramlist lock held. */
1412 static ram_addr_t find_ram_offset(ram_addr_t size)
1413 {
1414 RAMBlock *block, *next_block;
1415 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1416
1417 assert(size != 0); /* it would hand out same offset multiple times */
1418
1419 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1420 return 0;
1421 }
1422
1423 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1424 ram_addr_t end, next = RAM_ADDR_MAX;
1425
1426 end = block->offset + block->max_length;
1427
1428 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1429 if (next_block->offset >= end) {
1430 next = MIN(next, next_block->offset);
1431 }
1432 }
1433 if (next - end >= size && next - end < mingap) {
1434 offset = end;
1435 mingap = next - end;
1436 }
1437 }
1438
1439 if (offset == RAM_ADDR_MAX) {
1440 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1441 (uint64_t)size);
1442 abort();
1443 }
1444
1445 return offset;
1446 }
1447
1448 ram_addr_t last_ram_offset(void)
1449 {
1450 RAMBlock *block;
1451 ram_addr_t last = 0;
1452
1453 rcu_read_lock();
1454 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1455 last = MAX(last, block->offset + block->max_length);
1456 }
1457 rcu_read_unlock();
1458 return last;
1459 }
1460
1461 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1462 {
1463 int ret;
1464
1465 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1466 if (!machine_dump_guest_core(current_machine)) {
1467 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1468 if (ret) {
1469 perror("qemu_madvise");
1470 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1471 "but dump_guest_core=off specified\n");
1472 }
1473 }
1474 }
1475
1476 const char *qemu_ram_get_idstr(RAMBlock *rb)
1477 {
1478 return rb->idstr;
1479 }
1480
1481 /* Called with iothread lock held. */
1482 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1483 {
1484 RAMBlock *block;
1485
1486 assert(new_block);
1487 assert(!new_block->idstr[0]);
1488
1489 if (dev) {
1490 char *id = qdev_get_dev_path(dev);
1491 if (id) {
1492 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1493 g_free(id);
1494 }
1495 }
1496 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1497
1498 rcu_read_lock();
1499 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1500 if (block != new_block &&
1501 !strcmp(block->idstr, new_block->idstr)) {
1502 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1503 new_block->idstr);
1504 abort();
1505 }
1506 }
1507 rcu_read_unlock();
1508 }
1509
1510 /* Called with iothread lock held. */
1511 void qemu_ram_unset_idstr(RAMBlock *block)
1512 {
1513 /* FIXME: arch_init.c assumes that this is not called throughout
1514 * migration. Ignore the problem since hot-unplug during migration
1515 * does not work anyway.
1516 */
1517 if (block) {
1518 memset(block->idstr, 0, sizeof(block->idstr));
1519 }
1520 }
1521
1522 size_t qemu_ram_pagesize(RAMBlock *rb)
1523 {
1524 return rb->page_size;
1525 }
1526
1527 static int memory_try_enable_merging(void *addr, size_t len)
1528 {
1529 if (!machine_mem_merge(current_machine)) {
1530 /* disabled by the user */
1531 return 0;
1532 }
1533
1534 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1535 }
1536
1537 /* Only legal before guest might have detected the memory size: e.g. on
1538 * incoming migration, or right after reset.
1539 *
1540 * As memory core doesn't know how is memory accessed, it is up to
1541 * resize callback to update device state and/or add assertions to detect
1542 * misuse, if necessary.
1543 */
1544 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1545 {
1546 assert(block);
1547
1548 newsize = HOST_PAGE_ALIGN(newsize);
1549
1550 if (block->used_length == newsize) {
1551 return 0;
1552 }
1553
1554 if (!(block->flags & RAM_RESIZEABLE)) {
1555 error_setg_errno(errp, EINVAL,
1556 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1557 " in != 0x" RAM_ADDR_FMT, block->idstr,
1558 newsize, block->used_length);
1559 return -EINVAL;
1560 }
1561
1562 if (block->max_length < newsize) {
1563 error_setg_errno(errp, EINVAL,
1564 "Length too large: %s: 0x" RAM_ADDR_FMT
1565 " > 0x" RAM_ADDR_FMT, block->idstr,
1566 newsize, block->max_length);
1567 return -EINVAL;
1568 }
1569
1570 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1571 block->used_length = newsize;
1572 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1573 DIRTY_CLIENTS_ALL);
1574 memory_region_set_size(block->mr, newsize);
1575 if (block->resized) {
1576 block->resized(block->idstr, newsize, block->host);
1577 }
1578 return 0;
1579 }
1580
1581 /* Called with ram_list.mutex held */
1582 static void dirty_memory_extend(ram_addr_t old_ram_size,
1583 ram_addr_t new_ram_size)
1584 {
1585 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1586 DIRTY_MEMORY_BLOCK_SIZE);
1587 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1588 DIRTY_MEMORY_BLOCK_SIZE);
1589 int i;
1590
1591 /* Only need to extend if block count increased */
1592 if (new_num_blocks <= old_num_blocks) {
1593 return;
1594 }
1595
1596 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1597 DirtyMemoryBlocks *old_blocks;
1598 DirtyMemoryBlocks *new_blocks;
1599 int j;
1600
1601 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1602 new_blocks = g_malloc(sizeof(*new_blocks) +
1603 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1604
1605 if (old_num_blocks) {
1606 memcpy(new_blocks->blocks, old_blocks->blocks,
1607 old_num_blocks * sizeof(old_blocks->blocks[0]));
1608 }
1609
1610 for (j = old_num_blocks; j < new_num_blocks; j++) {
1611 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1612 }
1613
1614 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1615
1616 if (old_blocks) {
1617 g_free_rcu(old_blocks, rcu);
1618 }
1619 }
1620 }
1621
1622 static void ram_block_add(RAMBlock *new_block, Error **errp)
1623 {
1624 RAMBlock *block;
1625 RAMBlock *last_block = NULL;
1626 ram_addr_t old_ram_size, new_ram_size;
1627 Error *err = NULL;
1628
1629 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1630
1631 qemu_mutex_lock_ramlist();
1632 new_block->offset = find_ram_offset(new_block->max_length);
1633
1634 if (!new_block->host) {
1635 if (xen_enabled()) {
1636 xen_ram_alloc(new_block->offset, new_block->max_length,
1637 new_block->mr, &err);
1638 if (err) {
1639 error_propagate(errp, err);
1640 qemu_mutex_unlock_ramlist();
1641 return;
1642 }
1643 } else {
1644 new_block->host = phys_mem_alloc(new_block->max_length,
1645 &new_block->mr->align);
1646 if (!new_block->host) {
1647 error_setg_errno(errp, errno,
1648 "cannot set up guest memory '%s'",
1649 memory_region_name(new_block->mr));
1650 qemu_mutex_unlock_ramlist();
1651 return;
1652 }
1653 memory_try_enable_merging(new_block->host, new_block->max_length);
1654 }
1655 }
1656
1657 new_ram_size = MAX(old_ram_size,
1658 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1659 if (new_ram_size > old_ram_size) {
1660 migration_bitmap_extend(old_ram_size, new_ram_size);
1661 dirty_memory_extend(old_ram_size, new_ram_size);
1662 }
1663 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1664 * QLIST (which has an RCU-friendly variant) does not have insertion at
1665 * tail, so save the last element in last_block.
1666 */
1667 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1668 last_block = block;
1669 if (block->max_length < new_block->max_length) {
1670 break;
1671 }
1672 }
1673 if (block) {
1674 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1675 } else if (last_block) {
1676 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1677 } else { /* list is empty */
1678 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1679 }
1680 ram_list.mru_block = NULL;
1681
1682 /* Write list before version */
1683 smp_wmb();
1684 ram_list.version++;
1685 qemu_mutex_unlock_ramlist();
1686
1687 cpu_physical_memory_set_dirty_range(new_block->offset,
1688 new_block->used_length,
1689 DIRTY_CLIENTS_ALL);
1690
1691 if (new_block->host) {
1692 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1693 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1694 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1695 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1696 ram_block_notify_add(new_block->host, new_block->max_length);
1697 }
1698 }
1699
1700 #ifdef __linux__
1701 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1702 bool share, const char *mem_path,
1703 Error **errp)
1704 {
1705 RAMBlock *new_block;
1706 Error *local_err = NULL;
1707
1708 if (xen_enabled()) {
1709 error_setg(errp, "-mem-path not supported with Xen");
1710 return NULL;
1711 }
1712
1713 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1714 /*
1715 * file_ram_alloc() needs to allocate just like
1716 * phys_mem_alloc, but we haven't bothered to provide
1717 * a hook there.
1718 */
1719 error_setg(errp,
1720 "-mem-path not supported with this accelerator");
1721 return NULL;
1722 }
1723
1724 size = HOST_PAGE_ALIGN(size);
1725 new_block = g_malloc0(sizeof(*new_block));
1726 new_block->mr = mr;
1727 new_block->used_length = size;
1728 new_block->max_length = size;
1729 new_block->flags = share ? RAM_SHARED : 0;
1730 new_block->host = file_ram_alloc(new_block, size,
1731 mem_path, errp);
1732 if (!new_block->host) {
1733 g_free(new_block);
1734 return NULL;
1735 }
1736
1737 ram_block_add(new_block, &local_err);
1738 if (local_err) {
1739 g_free(new_block);
1740 error_propagate(errp, local_err);
1741 return NULL;
1742 }
1743 return new_block;
1744 }
1745 #endif
1746
1747 static
1748 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1749 void (*resized)(const char*,
1750 uint64_t length,
1751 void *host),
1752 void *host, bool resizeable,
1753 MemoryRegion *mr, Error **errp)
1754 {
1755 RAMBlock *new_block;
1756 Error *local_err = NULL;
1757
1758 size = HOST_PAGE_ALIGN(size);
1759 max_size = HOST_PAGE_ALIGN(max_size);
1760 new_block = g_malloc0(sizeof(*new_block));
1761 new_block->mr = mr;
1762 new_block->resized = resized;
1763 new_block->used_length = size;
1764 new_block->max_length = max_size;
1765 assert(max_size >= size);
1766 new_block->fd = -1;
1767 new_block->page_size = getpagesize();
1768 new_block->host = host;
1769 if (host) {
1770 new_block->flags |= RAM_PREALLOC;
1771 }
1772 if (resizeable) {
1773 new_block->flags |= RAM_RESIZEABLE;
1774 }
1775 ram_block_add(new_block, &local_err);
1776 if (local_err) {
1777 g_free(new_block);
1778 error_propagate(errp, local_err);
1779 return NULL;
1780 }
1781 return new_block;
1782 }
1783
1784 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1785 MemoryRegion *mr, Error **errp)
1786 {
1787 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1788 }
1789
1790 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1791 {
1792 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1793 }
1794
1795 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1796 void (*resized)(const char*,
1797 uint64_t length,
1798 void *host),
1799 MemoryRegion *mr, Error **errp)
1800 {
1801 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1802 }
1803
1804 static void reclaim_ramblock(RAMBlock *block)
1805 {
1806 if (block->flags & RAM_PREALLOC) {
1807 ;
1808 } else if (xen_enabled()) {
1809 xen_invalidate_map_cache_entry(block->host);
1810 #ifndef _WIN32
1811 } else if (block->fd >= 0) {
1812 qemu_ram_munmap(block->host, block->max_length);
1813 close(block->fd);
1814 #endif
1815 } else {
1816 qemu_anon_ram_free(block->host, block->max_length);
1817 }
1818 g_free(block);
1819 }
1820
1821 void qemu_ram_free(RAMBlock *block)
1822 {
1823 if (!block) {
1824 return;
1825 }
1826
1827 if (block->host) {
1828 ram_block_notify_remove(block->host, block->max_length);
1829 }
1830
1831 qemu_mutex_lock_ramlist();
1832 QLIST_REMOVE_RCU(block, next);
1833 ram_list.mru_block = NULL;
1834 /* Write list before version */
1835 smp_wmb();
1836 ram_list.version++;
1837 call_rcu(block, reclaim_ramblock, rcu);
1838 qemu_mutex_unlock_ramlist();
1839 }
1840
1841 #ifndef _WIN32
1842 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1843 {
1844 RAMBlock *block;
1845 ram_addr_t offset;
1846 int flags;
1847 void *area, *vaddr;
1848
1849 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1850 offset = addr - block->offset;
1851 if (offset < block->max_length) {
1852 vaddr = ramblock_ptr(block, offset);
1853 if (block->flags & RAM_PREALLOC) {
1854 ;
1855 } else if (xen_enabled()) {
1856 abort();
1857 } else {
1858 flags = MAP_FIXED;
1859 if (block->fd >= 0) {
1860 flags |= (block->flags & RAM_SHARED ?
1861 MAP_SHARED : MAP_PRIVATE);
1862 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1863 flags, block->fd, offset);
1864 } else {
1865 /*
1866 * Remap needs to match alloc. Accelerators that
1867 * set phys_mem_alloc never remap. If they did,
1868 * we'd need a remap hook here.
1869 */
1870 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1871
1872 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1873 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1874 flags, -1, 0);
1875 }
1876 if (area != vaddr) {
1877 fprintf(stderr, "Could not remap addr: "
1878 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1879 length, addr);
1880 exit(1);
1881 }
1882 memory_try_enable_merging(vaddr, length);
1883 qemu_ram_setup_dump(vaddr, length);
1884 }
1885 }
1886 }
1887 }
1888 #endif /* !_WIN32 */
1889
1890 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1891 * This should not be used for general purpose DMA. Use address_space_map
1892 * or address_space_rw instead. For local memory (e.g. video ram) that the
1893 * device owns, use memory_region_get_ram_ptr.
1894 *
1895 * Called within RCU critical section.
1896 */
1897 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1898 {
1899 RAMBlock *block = ram_block;
1900
1901 if (block == NULL) {
1902 block = qemu_get_ram_block(addr);
1903 addr -= block->offset;
1904 }
1905
1906 if (xen_enabled() && block->host == NULL) {
1907 /* We need to check if the requested address is in the RAM
1908 * because we don't want to map the entire memory in QEMU.
1909 * In that case just map until the end of the page.
1910 */
1911 if (block->offset == 0) {
1912 return xen_map_cache(addr, 0, 0);
1913 }
1914
1915 block->host = xen_map_cache(block->offset, block->max_length, 1);
1916 }
1917 return ramblock_ptr(block, addr);
1918 }
1919
1920 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1921 * but takes a size argument.
1922 *
1923 * Called within RCU critical section.
1924 */
1925 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1926 hwaddr *size)
1927 {
1928 RAMBlock *block = ram_block;
1929 if (*size == 0) {
1930 return NULL;
1931 }
1932
1933 if (block == NULL) {
1934 block = qemu_get_ram_block(addr);
1935 addr -= block->offset;
1936 }
1937 *size = MIN(*size, block->max_length - addr);
1938
1939 if (xen_enabled() && block->host == NULL) {
1940 /* We need to check if the requested address is in the RAM
1941 * because we don't want to map the entire memory in QEMU.
1942 * In that case just map the requested area.
1943 */
1944 if (block->offset == 0) {
1945 return xen_map_cache(addr, *size, 1);
1946 }
1947
1948 block->host = xen_map_cache(block->offset, block->max_length, 1);
1949 }
1950
1951 return ramblock_ptr(block, addr);
1952 }
1953
1954 /*
1955 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1956 * in that RAMBlock.
1957 *
1958 * ptr: Host pointer to look up
1959 * round_offset: If true round the result offset down to a page boundary
1960 * *ram_addr: set to result ram_addr
1961 * *offset: set to result offset within the RAMBlock
1962 *
1963 * Returns: RAMBlock (or NULL if not found)
1964 *
1965 * By the time this function returns, the returned pointer is not protected
1966 * by RCU anymore. If the caller is not within an RCU critical section and
1967 * does not hold the iothread lock, it must have other means of protecting the
1968 * pointer, such as a reference to the region that includes the incoming
1969 * ram_addr_t.
1970 */
1971 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1972 ram_addr_t *offset)
1973 {
1974 RAMBlock *block;
1975 uint8_t *host = ptr;
1976
1977 if (xen_enabled()) {
1978 ram_addr_t ram_addr;
1979 rcu_read_lock();
1980 ram_addr = xen_ram_addr_from_mapcache(ptr);
1981 block = qemu_get_ram_block(ram_addr);
1982 if (block) {
1983 *offset = ram_addr - block->offset;
1984 }
1985 rcu_read_unlock();
1986 return block;
1987 }
1988
1989 rcu_read_lock();
1990 block = atomic_rcu_read(&ram_list.mru_block);
1991 if (block && block->host && host - block->host < block->max_length) {
1992 goto found;
1993 }
1994
1995 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1996 /* This case append when the block is not mapped. */
1997 if (block->host == NULL) {
1998 continue;
1999 }
2000 if (host - block->host < block->max_length) {
2001 goto found;
2002 }
2003 }
2004
2005 rcu_read_unlock();
2006 return NULL;
2007
2008 found:
2009 *offset = (host - block->host);
2010 if (round_offset) {
2011 *offset &= TARGET_PAGE_MASK;
2012 }
2013 rcu_read_unlock();
2014 return block;
2015 }
2016
2017 /*
2018 * Finds the named RAMBlock
2019 *
2020 * name: The name of RAMBlock to find
2021 *
2022 * Returns: RAMBlock (or NULL if not found)
2023 */
2024 RAMBlock *qemu_ram_block_by_name(const char *name)
2025 {
2026 RAMBlock *block;
2027
2028 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2029 if (!strcmp(name, block->idstr)) {
2030 return block;
2031 }
2032 }
2033
2034 return NULL;
2035 }
2036
2037 /* Some of the softmmu routines need to translate from a host pointer
2038 (typically a TLB entry) back to a ram offset. */
2039 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2040 {
2041 RAMBlock *block;
2042 ram_addr_t offset;
2043
2044 block = qemu_ram_block_from_host(ptr, false, &offset);
2045 if (!block) {
2046 return RAM_ADDR_INVALID;
2047 }
2048
2049 return block->offset + offset;
2050 }
2051
2052 /* Called within RCU critical section. */
2053 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2054 uint64_t val, unsigned size)
2055 {
2056 bool locked = false;
2057
2058 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2059 locked = true;
2060 tb_lock();
2061 tb_invalidate_phys_page_fast(ram_addr, size);
2062 }
2063 switch (size) {
2064 case 1:
2065 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2066 break;
2067 case 2:
2068 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2069 break;
2070 case 4:
2071 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2072 break;
2073 default:
2074 abort();
2075 }
2076
2077 if (locked) {
2078 tb_unlock();
2079 }
2080
2081 /* Set both VGA and migration bits for simplicity and to remove
2082 * the notdirty callback faster.
2083 */
2084 cpu_physical_memory_set_dirty_range(ram_addr, size,
2085 DIRTY_CLIENTS_NOCODE);
2086 /* we remove the notdirty callback only if the code has been
2087 flushed */
2088 if (!cpu_physical_memory_is_clean(ram_addr)) {
2089 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2090 }
2091 }
2092
2093 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2094 unsigned size, bool is_write)
2095 {
2096 return is_write;
2097 }
2098
2099 static const MemoryRegionOps notdirty_mem_ops = {
2100 .write = notdirty_mem_write,
2101 .valid.accepts = notdirty_mem_accepts,
2102 .endianness = DEVICE_NATIVE_ENDIAN,
2103 };
2104
2105 /* Generate a debug exception if a watchpoint has been hit. */
2106 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2107 {
2108 CPUState *cpu = current_cpu;
2109 CPUClass *cc = CPU_GET_CLASS(cpu);
2110 CPUArchState *env = cpu->env_ptr;
2111 target_ulong pc, cs_base;
2112 target_ulong vaddr;
2113 CPUWatchpoint *wp;
2114 uint32_t cpu_flags;
2115
2116 if (cpu->watchpoint_hit) {
2117 /* We re-entered the check after replacing the TB. Now raise
2118 * the debug interrupt so that is will trigger after the
2119 * current instruction. */
2120 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2121 return;
2122 }
2123 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2124 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2125 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2126 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2127 && (wp->flags & flags)) {
2128 if (flags == BP_MEM_READ) {
2129 wp->flags |= BP_WATCHPOINT_HIT_READ;
2130 } else {
2131 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2132 }
2133 wp->hitaddr = vaddr;
2134 wp->hitattrs = attrs;
2135 if (!cpu->watchpoint_hit) {
2136 if (wp->flags & BP_CPU &&
2137 !cc->debug_check_watchpoint(cpu, wp)) {
2138 wp->flags &= ~BP_WATCHPOINT_HIT;
2139 continue;
2140 }
2141 cpu->watchpoint_hit = wp;
2142
2143 /* Both tb_lock and iothread_mutex will be reset when
2144 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2145 * back into the cpu_exec main loop.
2146 */
2147 tb_lock();
2148 tb_check_watchpoint(cpu);
2149 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2150 cpu->exception_index = EXCP_DEBUG;
2151 cpu_loop_exit(cpu);
2152 } else {
2153 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2154 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2155 cpu_loop_exit_noexc(cpu);
2156 }
2157 }
2158 } else {
2159 wp->flags &= ~BP_WATCHPOINT_HIT;
2160 }
2161 }
2162 }
2163
2164 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2165 so these check for a hit then pass through to the normal out-of-line
2166 phys routines. */
2167 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2168 unsigned size, MemTxAttrs attrs)
2169 {
2170 MemTxResult res;
2171 uint64_t data;
2172 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2173 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2174
2175 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2176 switch (size) {
2177 case 1:
2178 data = address_space_ldub(as, addr, attrs, &res);
2179 break;
2180 case 2:
2181 data = address_space_lduw(as, addr, attrs, &res);
2182 break;
2183 case 4:
2184 data = address_space_ldl(as, addr, attrs, &res);
2185 break;
2186 default: abort();
2187 }
2188 *pdata = data;
2189 return res;
2190 }
2191
2192 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2193 uint64_t val, unsigned size,
2194 MemTxAttrs attrs)
2195 {
2196 MemTxResult res;
2197 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2198 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2199
2200 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2201 switch (size) {
2202 case 1:
2203 address_space_stb(as, addr, val, attrs, &res);
2204 break;
2205 case 2:
2206 address_space_stw(as, addr, val, attrs, &res);
2207 break;
2208 case 4:
2209 address_space_stl(as, addr, val, attrs, &res);
2210 break;
2211 default: abort();
2212 }
2213 return res;
2214 }
2215
2216 static const MemoryRegionOps watch_mem_ops = {
2217 .read_with_attrs = watch_mem_read,
2218 .write_with_attrs = watch_mem_write,
2219 .endianness = DEVICE_NATIVE_ENDIAN,
2220 };
2221
2222 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2223 unsigned len, MemTxAttrs attrs)
2224 {
2225 subpage_t *subpage = opaque;
2226 uint8_t buf[8];
2227 MemTxResult res;
2228
2229 #if defined(DEBUG_SUBPAGE)
2230 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2231 subpage, len, addr);
2232 #endif
2233 res = address_space_read(subpage->as, addr + subpage->base,
2234 attrs, buf, len);
2235 if (res) {
2236 return res;
2237 }
2238 switch (len) {
2239 case 1:
2240 *data = ldub_p(buf);
2241 return MEMTX_OK;
2242 case 2:
2243 *data = lduw_p(buf);
2244 return MEMTX_OK;
2245 case 4:
2246 *data = ldl_p(buf);
2247 return MEMTX_OK;
2248 case 8:
2249 *data = ldq_p(buf);
2250 return MEMTX_OK;
2251 default:
2252 abort();
2253 }
2254 }
2255
2256 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2257 uint64_t value, unsigned len, MemTxAttrs attrs)
2258 {
2259 subpage_t *subpage = opaque;
2260 uint8_t buf[8];
2261
2262 #if defined(DEBUG_SUBPAGE)
2263 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2264 " value %"PRIx64"\n",
2265 __func__, subpage, len, addr, value);
2266 #endif
2267 switch (len) {
2268 case 1:
2269 stb_p(buf, value);
2270 break;
2271 case 2:
2272 stw_p(buf, value);
2273 break;
2274 case 4:
2275 stl_p(buf, value);
2276 break;
2277 case 8:
2278 stq_p(buf, value);
2279 break;
2280 default:
2281 abort();
2282 }
2283 return address_space_write(subpage->as, addr + subpage->base,
2284 attrs, buf, len);
2285 }
2286
2287 static bool subpage_accepts(void *opaque, hwaddr addr,
2288 unsigned len, bool is_write)
2289 {
2290 subpage_t *subpage = opaque;
2291 #if defined(DEBUG_SUBPAGE)
2292 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2293 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2294 #endif
2295
2296 return address_space_access_valid(subpage->as, addr + subpage->base,
2297 len, is_write);
2298 }
2299
2300 static const MemoryRegionOps subpage_ops = {
2301 .read_with_attrs = subpage_read,
2302 .write_with_attrs = subpage_write,
2303 .impl.min_access_size = 1,
2304 .impl.max_access_size = 8,
2305 .valid.min_access_size = 1,
2306 .valid.max_access_size = 8,
2307 .valid.accepts = subpage_accepts,
2308 .endianness = DEVICE_NATIVE_ENDIAN,
2309 };
2310
2311 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2312 uint16_t section)
2313 {
2314 int idx, eidx;
2315
2316 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2317 return -1;
2318 idx = SUBPAGE_IDX(start);
2319 eidx = SUBPAGE_IDX(end);
2320 #if defined(DEBUG_SUBPAGE)
2321 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2322 __func__, mmio, start, end, idx, eidx, section);
2323 #endif
2324 for (; idx <= eidx; idx++) {
2325 mmio->sub_section[idx] = section;
2326 }
2327
2328 return 0;
2329 }
2330
2331 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2332 {
2333 subpage_t *mmio;
2334
2335 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2336 mmio->as = as;
2337 mmio->base = base;
2338 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2339 NULL, TARGET_PAGE_SIZE);
2340 mmio->iomem.subpage = true;
2341 #if defined(DEBUG_SUBPAGE)
2342 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2343 mmio, base, TARGET_PAGE_SIZE);
2344 #endif
2345 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2346
2347 return mmio;
2348 }
2349
2350 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2351 MemoryRegion *mr)
2352 {
2353 assert(as);
2354 MemoryRegionSection section = {
2355 .address_space = as,
2356 .mr = mr,
2357 .offset_within_address_space = 0,
2358 .offset_within_region = 0,
2359 .size = int128_2_64(),
2360 };
2361
2362 return phys_section_add(map, &section);
2363 }
2364
2365 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2366 {
2367 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2368 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2369 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2370 MemoryRegionSection *sections = d->map.sections;
2371
2372 return sections[index & ~TARGET_PAGE_MASK].mr;
2373 }
2374
2375 static void io_mem_init(void)
2376 {
2377 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2378 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2379 NULL, UINT64_MAX);
2380
2381 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2382 * which can be called without the iothread mutex.
2383 */
2384 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2385 NULL, UINT64_MAX);
2386 memory_region_clear_global_locking(&io_mem_notdirty);
2387
2388 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2389 NULL, UINT64_MAX);
2390 }
2391
2392 static void mem_begin(MemoryListener *listener)
2393 {
2394 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2395 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2396 uint16_t n;
2397
2398 n = dummy_section(&d->map, as, &io_mem_unassigned);
2399 assert(n == PHYS_SECTION_UNASSIGNED);
2400 n = dummy_section(&d->map, as, &io_mem_notdirty);
2401 assert(n == PHYS_SECTION_NOTDIRTY);
2402 n = dummy_section(&d->map, as, &io_mem_rom);
2403 assert(n == PHYS_SECTION_ROM);
2404 n = dummy_section(&d->map, as, &io_mem_watch);
2405 assert(n == PHYS_SECTION_WATCH);
2406
2407 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2408 d->as = as;
2409 as->next_dispatch = d;
2410 }
2411
2412 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2413 {
2414 phys_sections_free(&d->map);
2415 g_free(d);
2416 }
2417
2418 static void mem_commit(MemoryListener *listener)
2419 {
2420 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2421 AddressSpaceDispatch *cur = as->dispatch;
2422 AddressSpaceDispatch *next = as->next_dispatch;
2423
2424 phys_page_compact_all(next, next->map.nodes_nb);
2425
2426 atomic_rcu_set(&as->dispatch, next);
2427 if (cur) {
2428 call_rcu(cur, address_space_dispatch_free, rcu);
2429 }
2430 }
2431
2432 static void tcg_commit(MemoryListener *listener)
2433 {
2434 CPUAddressSpace *cpuas;
2435 AddressSpaceDispatch *d;
2436
2437 /* since each CPU stores ram addresses in its TLB cache, we must
2438 reset the modified entries */
2439 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2440 cpu_reloading_memory_map();
2441 /* The CPU and TLB are protected by the iothread lock.
2442 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2443 * may have split the RCU critical section.
2444 */
2445 d = atomic_rcu_read(&cpuas->as->dispatch);
2446 atomic_rcu_set(&cpuas->memory_dispatch, d);
2447 tlb_flush(cpuas->cpu);
2448 }
2449
2450 void address_space_init_dispatch(AddressSpace *as)
2451 {
2452 as->dispatch = NULL;
2453 as->dispatch_listener = (MemoryListener) {
2454 .begin = mem_begin,
2455 .commit = mem_commit,
2456 .region_add = mem_add,
2457 .region_nop = mem_add,
2458 .priority = 0,
2459 };
2460 memory_listener_register(&as->dispatch_listener, as);
2461 }
2462
2463 void address_space_unregister(AddressSpace *as)
2464 {
2465 memory_listener_unregister(&as->dispatch_listener);
2466 }
2467
2468 void address_space_destroy_dispatch(AddressSpace *as)
2469 {
2470 AddressSpaceDispatch *d = as->dispatch;
2471
2472 atomic_rcu_set(&as->dispatch, NULL);
2473 if (d) {
2474 call_rcu(d, address_space_dispatch_free, rcu);
2475 }
2476 }
2477
2478 static void memory_map_init(void)
2479 {
2480 system_memory = g_malloc(sizeof(*system_memory));
2481
2482 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2483 address_space_init(&address_space_memory, system_memory, "memory");
2484
2485 system_io = g_malloc(sizeof(*system_io));
2486 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2487 65536);
2488 address_space_init(&address_space_io, system_io, "I/O");
2489 }
2490
2491 MemoryRegion *get_system_memory(void)
2492 {
2493 return system_memory;
2494 }
2495
2496 MemoryRegion *get_system_io(void)
2497 {
2498 return system_io;
2499 }
2500
2501 #endif /* !defined(CONFIG_USER_ONLY) */
2502
2503 /* physical memory access (slow version, mainly for debug) */
2504 #if defined(CONFIG_USER_ONLY)
2505 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2506 uint8_t *buf, int len, int is_write)
2507 {
2508 int l, flags;
2509 target_ulong page;
2510 void * p;
2511
2512 while (len > 0) {
2513 page = addr & TARGET_PAGE_MASK;
2514 l = (page + TARGET_PAGE_SIZE) - addr;
2515 if (l > len)
2516 l = len;
2517 flags = page_get_flags(page);
2518 if (!(flags & PAGE_VALID))
2519 return -1;
2520 if (is_write) {
2521 if (!(flags & PAGE_WRITE))
2522 return -1;
2523 /* XXX: this code should not depend on lock_user */
2524 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2525 return -1;
2526 memcpy(p, buf, l);
2527 unlock_user(p, addr, l);
2528 } else {
2529 if (!(flags & PAGE_READ))
2530 return -1;
2531 /* XXX: this code should not depend on lock_user */
2532 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2533 return -1;
2534 memcpy(buf, p, l);
2535 unlock_user(p, addr, 0);
2536 }
2537 len -= l;
2538 buf += l;
2539 addr += l;
2540 }
2541 return 0;
2542 }
2543
2544 #else
2545
2546 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2547 hwaddr length)
2548 {
2549 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2550 addr += memory_region_get_ram_addr(mr);
2551
2552 /* No early return if dirty_log_mask is or becomes 0, because
2553 * cpu_physical_memory_set_dirty_range will still call
2554 * xen_modified_memory.
2555 */
2556 if (dirty_log_mask) {
2557 dirty_log_mask =
2558 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2559 }
2560 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2561 tb_lock();
2562 tb_invalidate_phys_range(addr, addr + length);
2563 tb_unlock();
2564 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2565 }
2566 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2567 }
2568
2569 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2570 {
2571 unsigned access_size_max = mr->ops->valid.max_access_size;
2572
2573 /* Regions are assumed to support 1-4 byte accesses unless
2574 otherwise specified. */
2575 if (access_size_max == 0) {
2576 access_size_max = 4;
2577 }
2578
2579 /* Bound the maximum access by the alignment of the address. */
2580 if (!mr->ops->impl.unaligned) {
2581 unsigned align_size_max = addr & -addr;
2582 if (align_size_max != 0 && align_size_max < access_size_max) {
2583 access_size_max = align_size_max;
2584 }
2585 }
2586
2587 /* Don't attempt accesses larger than the maximum. */
2588 if (l > access_size_max) {
2589 l = access_size_max;
2590 }
2591 l = pow2floor(l);
2592
2593 return l;
2594 }
2595
2596 static bool prepare_mmio_access(MemoryRegion *mr)
2597 {
2598 bool unlocked = !qemu_mutex_iothread_locked();
2599 bool release_lock = false;
2600
2601 if (unlocked && mr->global_locking) {
2602 qemu_mutex_lock_iothread();
2603 unlocked = false;
2604 release_lock = true;
2605 }
2606 if (mr->flush_coalesced_mmio) {
2607 if (unlocked) {
2608 qemu_mutex_lock_iothread();
2609 }
2610 qemu_flush_coalesced_mmio_buffer();
2611 if (unlocked) {
2612 qemu_mutex_unlock_iothread();
2613 }
2614 }
2615
2616 return release_lock;
2617 }
2618
2619 /* Called within RCU critical section. */
2620 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2621 MemTxAttrs attrs,
2622 const uint8_t *buf,
2623 int len, hwaddr addr1,
2624 hwaddr l, MemoryRegion *mr)
2625 {
2626 uint8_t *ptr;
2627 uint64_t val;
2628 MemTxResult result = MEMTX_OK;
2629 bool release_lock = false;
2630
2631 for (;;) {
2632 if (!memory_access_is_direct(mr, true)) {
2633 release_lock |= prepare_mmio_access(mr);
2634 l = memory_access_size(mr, l, addr1);
2635 /* XXX: could force current_cpu to NULL to avoid
2636 potential bugs */
2637 switch (l) {
2638 case 8:
2639 /* 64 bit write access */
2640 val = ldq_p(buf);
2641 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2642 attrs);
2643 break;
2644 case 4:
2645 /* 32 bit write access */
2646 val = (uint32_t)ldl_p(buf);
2647 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2648 attrs);
2649 break;
2650 case 2:
2651 /* 16 bit write access */
2652 val = lduw_p(buf);
2653 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2654 attrs);
2655 break;
2656 case 1:
2657 /* 8 bit write access */
2658 val = ldub_p(buf);
2659 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2660 attrs);
2661 break;
2662 default:
2663 abort();
2664 }
2665 } else {
2666 /* RAM case */
2667 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2668 memcpy(ptr, buf, l);
2669 invalidate_and_set_dirty(mr, addr1, l);
2670 }
2671
2672 if (release_lock) {
2673 qemu_mutex_unlock_iothread();
2674 release_lock = false;
2675 }
2676
2677 len -= l;
2678 buf += l;
2679 addr += l;
2680
2681 if (!len) {
2682 break;
2683 }
2684
2685 l = len;
2686 mr = address_space_translate(as, addr, &addr1, &l, true);
2687 }
2688
2689 return result;
2690 }
2691
2692 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2693 const uint8_t *buf, int len)
2694 {
2695 hwaddr l;
2696 hwaddr addr1;
2697 MemoryRegion *mr;
2698 MemTxResult result = MEMTX_OK;
2699
2700 if (len > 0) {
2701 rcu_read_lock();
2702 l = len;
2703 mr = address_space_translate(as, addr, &addr1, &l, true);
2704 result = address_space_write_continue(as, addr, attrs, buf, len,
2705 addr1, l, mr);
2706 rcu_read_unlock();
2707 }
2708
2709 return result;
2710 }
2711
2712 /* Called within RCU critical section. */
2713 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2714 MemTxAttrs attrs, uint8_t *buf,
2715 int len, hwaddr addr1, hwaddr l,
2716 MemoryRegion *mr)
2717 {
2718 uint8_t *ptr;
2719 uint64_t val;
2720 MemTxResult result = MEMTX_OK;
2721 bool release_lock = false;
2722
2723 for (;;) {
2724 if (!memory_access_is_direct(mr, false)) {
2725 /* I/O case */
2726 release_lock |= prepare_mmio_access(mr);
2727 l = memory_access_size(mr, l, addr1);
2728 switch (l) {
2729 case 8:
2730 /* 64 bit read access */
2731 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2732 attrs);
2733 stq_p(buf, val);
2734 break;
2735 case 4:
2736 /* 32 bit read access */
2737 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2738 attrs);
2739 stl_p(buf, val);
2740 break;
2741 case 2:
2742 /* 16 bit read access */
2743 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2744 attrs);
2745 stw_p(buf, val);
2746 break;
2747 case 1:
2748 /* 8 bit read access */
2749 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2750 attrs);
2751 stb_p(buf, val);
2752 break;
2753 default:
2754 abort();
2755 }
2756 } else {
2757 /* RAM case */
2758 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2759 memcpy(buf, ptr, l);
2760 }
2761
2762 if (release_lock) {
2763 qemu_mutex_unlock_iothread();
2764 release_lock = false;
2765 }
2766
2767 len -= l;
2768 buf += l;
2769 addr += l;
2770
2771 if (!len) {
2772 break;
2773 }
2774
2775 l = len;
2776 mr = address_space_translate(as, addr, &addr1, &l, false);
2777 }
2778
2779 return result;
2780 }
2781
2782 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2783 MemTxAttrs attrs, uint8_t *buf, int len)
2784 {
2785 hwaddr l;
2786 hwaddr addr1;
2787 MemoryRegion *mr;
2788 MemTxResult result = MEMTX_OK;
2789
2790 if (len > 0) {
2791 rcu_read_lock();
2792 l = len;
2793 mr = address_space_translate(as, addr, &addr1, &l, false);
2794 result = address_space_read_continue(as, addr, attrs, buf, len,
2795 addr1, l, mr);
2796 rcu_read_unlock();
2797 }
2798
2799 return result;
2800 }
2801
2802 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2803 uint8_t *buf, int len, bool is_write)
2804 {
2805 if (is_write) {
2806 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2807 } else {
2808 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2809 }
2810 }
2811
2812 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2813 int len, int is_write)
2814 {
2815 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2816 buf, len, is_write);
2817 }
2818
2819 enum write_rom_type {
2820 WRITE_DATA,
2821 FLUSH_CACHE,
2822 };
2823
2824 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2825 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2826 {
2827 hwaddr l;
2828 uint8_t *ptr;
2829 hwaddr addr1;
2830 MemoryRegion *mr;
2831
2832 rcu_read_lock();
2833 while (len > 0) {
2834 l = len;
2835 mr = address_space_translate(as, addr, &addr1, &l, true);
2836
2837 if (!(memory_region_is_ram(mr) ||
2838 memory_region_is_romd(mr))) {
2839 l = memory_access_size(mr, l, addr1);
2840 } else {
2841 /* ROM/RAM case */
2842 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2843 switch (type) {
2844 case WRITE_DATA:
2845 memcpy(ptr, buf, l);
2846 invalidate_and_set_dirty(mr, addr1, l);
2847 break;
2848 case FLUSH_CACHE:
2849 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2850 break;
2851 }
2852 }
2853 len -= l;
2854 buf += l;
2855 addr += l;
2856 }
2857 rcu_read_unlock();
2858 }
2859
2860 /* used for ROM loading : can write in RAM and ROM */
2861 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2862 const uint8_t *buf, int len)
2863 {
2864 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2865 }
2866
2867 void cpu_flush_icache_range(hwaddr start, int len)
2868 {
2869 /*
2870 * This function should do the same thing as an icache flush that was
2871 * triggered from within the guest. For TCG we are always cache coherent,
2872 * so there is no need to flush anything. For KVM / Xen we need to flush
2873 * the host's instruction cache at least.
2874 */
2875 if (tcg_enabled()) {
2876 return;
2877 }
2878
2879 cpu_physical_memory_write_rom_internal(&address_space_memory,
2880 start, NULL, len, FLUSH_CACHE);
2881 }
2882
2883 typedef struct {
2884 MemoryRegion *mr;
2885 void *buffer;
2886 hwaddr addr;
2887 hwaddr len;
2888 bool in_use;
2889 } BounceBuffer;
2890
2891 static BounceBuffer bounce;
2892
2893 typedef struct MapClient {
2894 QEMUBH *bh;
2895 QLIST_ENTRY(MapClient) link;
2896 } MapClient;
2897
2898 QemuMutex map_client_list_lock;
2899 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2900 = QLIST_HEAD_INITIALIZER(map_client_list);
2901
2902 static void cpu_unregister_map_client_do(MapClient *client)
2903 {
2904 QLIST_REMOVE(client, link);
2905 g_free(client);
2906 }
2907
2908 static void cpu_notify_map_clients_locked(void)
2909 {
2910 MapClient *client;
2911
2912 while (!QLIST_EMPTY(&map_client_list)) {
2913 client = QLIST_FIRST(&map_client_list);
2914 qemu_bh_schedule(client->bh);
2915 cpu_unregister_map_client_do(client);
2916 }
2917 }
2918
2919 void cpu_register_map_client(QEMUBH *bh)
2920 {
2921 MapClient *client = g_malloc(sizeof(*client));
2922
2923 qemu_mutex_lock(&map_client_list_lock);
2924 client->bh = bh;
2925 QLIST_INSERT_HEAD(&map_client_list, client, link);
2926 if (!atomic_read(&bounce.in_use)) {
2927 cpu_notify_map_clients_locked();
2928 }
2929 qemu_mutex_unlock(&map_client_list_lock);
2930 }
2931
2932 void cpu_exec_init_all(void)
2933 {
2934 qemu_mutex_init(&ram_list.mutex);
2935 /* The data structures we set up here depend on knowing the page size,
2936 * so no more changes can be made after this point.
2937 * In an ideal world, nothing we did before we had finished the
2938 * machine setup would care about the target page size, and we could
2939 * do this much later, rather than requiring board models to state
2940 * up front what their requirements are.
2941 */
2942 finalize_target_page_bits();
2943 io_mem_init();
2944 memory_map_init();
2945 qemu_mutex_init(&map_client_list_lock);
2946 }
2947
2948 void cpu_unregister_map_client(QEMUBH *bh)
2949 {
2950 MapClient *client;
2951
2952 qemu_mutex_lock(&map_client_list_lock);
2953 QLIST_FOREACH(client, &map_client_list, link) {
2954 if (client->bh == bh) {
2955 cpu_unregister_map_client_do(client);
2956 break;
2957 }
2958 }
2959 qemu_mutex_unlock(&map_client_list_lock);
2960 }
2961
2962 static void cpu_notify_map_clients(void)
2963 {
2964 qemu_mutex_lock(&map_client_list_lock);
2965 cpu_notify_map_clients_locked();
2966 qemu_mutex_unlock(&map_client_list_lock);
2967 }
2968
2969 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2970 {
2971 MemoryRegion *mr;
2972 hwaddr l, xlat;
2973
2974 rcu_read_lock();
2975 while (len > 0) {
2976 l = len;
2977 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2978 if (!memory_access_is_direct(mr, is_write)) {
2979 l = memory_access_size(mr, l, addr);
2980 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2981 rcu_read_unlock();
2982 return false;
2983 }
2984 }
2985
2986 len -= l;
2987 addr += l;
2988 }
2989 rcu_read_unlock();
2990 return true;
2991 }
2992
2993 static hwaddr
2994 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
2995 MemoryRegion *mr, hwaddr base, hwaddr len,
2996 bool is_write)
2997 {
2998 hwaddr done = 0;
2999 hwaddr xlat;
3000 MemoryRegion *this_mr;
3001
3002 for (;;) {
3003 target_len -= len;
3004 addr += len;
3005 done += len;
3006 if (target_len == 0) {
3007 return done;
3008 }
3009
3010 len = target_len;
3011 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3012 if (this_mr != mr || xlat != base + done) {
3013 return done;
3014 }
3015 }
3016 }
3017
3018 /* Map a physical memory region into a host virtual address.
3019 * May map a subset of the requested range, given by and returned in *plen.
3020 * May return NULL if resources needed to perform the mapping are exhausted.
3021 * Use only for reads OR writes - not for read-modify-write operations.
3022 * Use cpu_register_map_client() to know when retrying the map operation is
3023 * likely to succeed.
3024 */
3025 void *address_space_map(AddressSpace *as,
3026 hwaddr addr,
3027 hwaddr *plen,
3028 bool is_write)
3029 {
3030 hwaddr len = *plen;
3031 hwaddr l, xlat;
3032 MemoryRegion *mr;
3033 void *ptr;
3034
3035 if (len == 0) {
3036 return NULL;
3037 }
3038
3039 l = len;
3040 rcu_read_lock();
3041 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3042
3043 if (!memory_access_is_direct(mr, is_write)) {
3044 if (atomic_xchg(&bounce.in_use, true)) {
3045 rcu_read_unlock();
3046 return NULL;
3047 }
3048 /* Avoid unbounded allocations */
3049 l = MIN(l, TARGET_PAGE_SIZE);
3050 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3051 bounce.addr = addr;
3052 bounce.len = l;
3053
3054 memory_region_ref(mr);
3055 bounce.mr = mr;
3056 if (!is_write) {
3057 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3058 bounce.buffer, l);
3059 }
3060
3061 rcu_read_unlock();
3062 *plen = l;
3063 return bounce.buffer;
3064 }
3065
3066
3067 memory_region_ref(mr);
3068 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3069 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3070 rcu_read_unlock();
3071
3072 return ptr;
3073 }
3074
3075 /* Unmaps a memory region previously mapped by address_space_map().
3076 * Will also mark the memory as dirty if is_write == 1. access_len gives
3077 * the amount of memory that was actually read or written by the caller.
3078 */
3079 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3080 int is_write, hwaddr access_len)
3081 {
3082 if (buffer != bounce.buffer) {
3083 MemoryRegion *mr;
3084 ram_addr_t addr1;
3085
3086 mr = memory_region_from_host(buffer, &addr1);
3087 assert(mr != NULL);
3088 if (is_write) {
3089 invalidate_and_set_dirty(mr, addr1, access_len);
3090 }
3091 if (xen_enabled()) {
3092 xen_invalidate_map_cache_entry(buffer);
3093 }
3094 memory_region_unref(mr);
3095 return;
3096 }
3097 if (is_write) {
3098 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3099 bounce.buffer, access_len);
3100 }
3101 qemu_vfree(bounce.buffer);
3102 bounce.buffer = NULL;
3103 memory_region_unref(bounce.mr);
3104 atomic_mb_set(&bounce.in_use, false);
3105 cpu_notify_map_clients();
3106 }
3107
3108 void *cpu_physical_memory_map(hwaddr addr,
3109 hwaddr *plen,
3110 int is_write)
3111 {
3112 return address_space_map(&address_space_memory, addr, plen, is_write);
3113 }
3114
3115 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3116 int is_write, hwaddr access_len)
3117 {
3118 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3119 }
3120
3121 #define ARG1_DECL AddressSpace *as
3122 #define ARG1 as
3123 #define SUFFIX
3124 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3125 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3126 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3127 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3128 #define RCU_READ_LOCK(...) rcu_read_lock()
3129 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3130 #include "memory_ldst.inc.c"
3131
3132 int64_t address_space_cache_init(MemoryRegionCache *cache,
3133 AddressSpace *as,
3134 hwaddr addr,
3135 hwaddr len,
3136 bool is_write)
3137 {
3138 hwaddr l, xlat;
3139 MemoryRegion *mr;
3140 void *ptr;
3141
3142 assert(len > 0);
3143
3144 l = len;
3145 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3146 if (!memory_access_is_direct(mr, is_write)) {
3147 return -EINVAL;
3148 }
3149
3150 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3151 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3152
3153 cache->xlat = xlat;
3154 cache->is_write = is_write;
3155 cache->mr = mr;
3156 cache->ptr = ptr;
3157 cache->len = l;
3158 memory_region_ref(cache->mr);
3159
3160 return l;
3161 }
3162
3163 void address_space_cache_invalidate(MemoryRegionCache *cache,
3164 hwaddr addr,
3165 hwaddr access_len)
3166 {
3167 assert(cache->is_write);
3168 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3169 }
3170
3171 void address_space_cache_destroy(MemoryRegionCache *cache)
3172 {
3173 if (!cache->mr) {
3174 return;
3175 }
3176
3177 if (xen_enabled()) {
3178 xen_invalidate_map_cache_entry(cache->ptr);
3179 }
3180 memory_region_unref(cache->mr);
3181 cache->mr = NULL;
3182 }
3183
3184 /* Called from RCU critical section. This function has the same
3185 * semantics as address_space_translate, but it only works on a
3186 * predefined range of a MemoryRegion that was mapped with
3187 * address_space_cache_init.
3188 */
3189 static inline MemoryRegion *address_space_translate_cached(
3190 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3191 hwaddr *plen, bool is_write)
3192 {
3193 assert(addr < cache->len && *plen <= cache->len - addr);
3194 *xlat = addr + cache->xlat;
3195 return cache->mr;
3196 }
3197
3198 #define ARG1_DECL MemoryRegionCache *cache
3199 #define ARG1 cache
3200 #define SUFFIX _cached
3201 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3202 #define IS_DIRECT(mr, is_write) true
3203 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3204 #define INVALIDATE(mr, ofs, len) ((void)0)
3205 #define RCU_READ_LOCK() ((void)0)
3206 #define RCU_READ_UNLOCK() ((void)0)
3207 #include "memory_ldst.inc.c"
3208
3209 /* virtual memory access for debug (includes writing to ROM) */
3210 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3211 uint8_t *buf, int len, int is_write)
3212 {
3213 int l;
3214 hwaddr phys_addr;
3215 target_ulong page;
3216
3217 while (len > 0) {
3218 int asidx;
3219 MemTxAttrs attrs;
3220
3221 page = addr & TARGET_PAGE_MASK;
3222 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3223 asidx = cpu_asidx_from_attrs(cpu, attrs);
3224 /* if no physical page mapped, return an error */
3225 if (phys_addr == -1)
3226 return -1;
3227 l = (page + TARGET_PAGE_SIZE) - addr;
3228 if (l > len)
3229 l = len;
3230 phys_addr += (addr & ~TARGET_PAGE_MASK);
3231 if (is_write) {
3232 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3233 phys_addr, buf, l);
3234 } else {
3235 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3236 MEMTXATTRS_UNSPECIFIED,
3237 buf, l, 0);
3238 }
3239 len -= l;
3240 buf += l;
3241 addr += l;
3242 }
3243 return 0;
3244 }
3245
3246 /*
3247 * Allows code that needs to deal with migration bitmaps etc to still be built
3248 * target independent.
3249 */
3250 size_t qemu_target_page_bits(void)
3251 {
3252 return TARGET_PAGE_BITS;
3253 }
3254
3255 #endif
3256
3257 /*
3258 * A helper function for the _utterly broken_ virtio device model to find out if
3259 * it's running on a big endian machine. Don't do this at home kids!
3260 */
3261 bool target_words_bigendian(void);
3262 bool target_words_bigendian(void)
3263 {
3264 #if defined(TARGET_WORDS_BIGENDIAN)
3265 return true;
3266 #else
3267 return false;
3268 #endif
3269 }
3270
3271 #ifndef CONFIG_USER_ONLY
3272 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3273 {
3274 MemoryRegion*mr;
3275 hwaddr l = 1;
3276 bool res;
3277
3278 rcu_read_lock();
3279 mr = address_space_translate(&address_space_memory,
3280 phys_addr, &phys_addr, &l, false);
3281
3282 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3283 rcu_read_unlock();
3284 return res;
3285 }
3286
3287 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3288 {
3289 RAMBlock *block;
3290 int ret = 0;
3291
3292 rcu_read_lock();
3293 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3294 ret = func(block->idstr, block->host, block->offset,
3295 block->used_length, opaque);
3296 if (ret) {
3297 break;
3298 }
3299 }
3300 rcu_read_unlock();
3301 return ret;
3302 }
3303
3304 /*
3305 * Unmap pages of memory from start to start+length such that
3306 * they a) read as 0, b) Trigger whatever fault mechanism
3307 * the OS provides for postcopy.
3308 * The pages must be unmapped by the end of the function.
3309 * Returns: 0 on success, none-0 on failure
3310 *
3311 */
3312 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3313 {
3314 int ret = -1;
3315
3316 uint8_t *host_startaddr = rb->host + start;
3317
3318 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3319 error_report("ram_block_discard_range: Unaligned start address: %p",
3320 host_startaddr);
3321 goto err;
3322 }
3323
3324 if ((start + length) <= rb->used_length) {
3325 uint8_t *host_endaddr = host_startaddr + length;
3326 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3327 error_report("ram_block_discard_range: Unaligned end address: %p",
3328 host_endaddr);
3329 goto err;
3330 }
3331
3332 errno = ENOTSUP; /* If we are missing MADVISE etc */
3333
3334 if (rb->page_size == qemu_host_page_size) {
3335 #if defined(CONFIG_MADVISE)
3336 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3337 * freeing the page.
3338 */
3339 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3340 #endif
3341 } else {
3342 /* Huge page case - unfortunately it can't do DONTNEED, but
3343 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3344 * huge page file.
3345 */
3346 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3347 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3348 start, length);
3349 #endif
3350 }
3351 if (ret) {
3352 ret = -errno;
3353 error_report("ram_block_discard_range: Failed to discard range "
3354 "%s:%" PRIx64 " +%zx (%d)",
3355 rb->idstr, start, length, ret);
3356 }
3357 } else {
3358 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3359 "/%zx/" RAM_ADDR_FMT")",
3360 rb->idstr, start, length, rb->used_length);
3361 }
3362
3363 err:
3364 return ret;
3365 }
3366
3367 #endif