]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-native.c
more native FPU comparison functions - native FPU remainder
[mirror_qemu.git] / fpu / softfloat-native.c
1 /* Native implementation of soft float functions. Only a single status
2 context is supported */
3 #include "softfloat.h"
4 #include <math.h>
5
6 void set_float_rounding_mode(int val STATUS_PARAM)
7 {
8 STATUS(float_rounding_mode) = val;
9 #if defined(_BSD) && !defined(__APPLE__)
10 fpsetround(val);
11 #elif defined(__arm__)
12 /* nothing to do */
13 #else
14 fesetround(val);
15 #endif
16 }
17
18 #ifdef FLOATX80
19 void set_floatx80_rounding_precision(int val STATUS_PARAM)
20 {
21 STATUS(floatx80_rounding_precision) = val;
22 }
23 #endif
24
25 #if defined(_BSD)
26 #define lrint(d) ((int32_t)rint(d))
27 #define llrint(d) ((int64_t)rint(d))
28 #endif
29
30 #if defined(__powerpc__)
31
32 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
33 double qemu_rint(double x)
34 {
35 double y = 4503599627370496.0;
36 if (fabs(x) >= y)
37 return x;
38 if (x < 0)
39 y = -y;
40 y = (x + y) - y;
41 if (y == 0.0)
42 y = copysign(y, x);
43 return y;
44 }
45
46 #define rint qemu_rint
47 #endif
48
49 /*----------------------------------------------------------------------------
50 | Software IEC/IEEE integer-to-floating-point conversion routines.
51 *----------------------------------------------------------------------------*/
52 float32 int32_to_float32(int v STATUS_PARAM)
53 {
54 return (float32)v;
55 }
56
57 float64 int32_to_float64(int v STATUS_PARAM)
58 {
59 return (float64)v;
60 }
61
62 #ifdef FLOATX80
63 floatx80 int32_to_floatx80(int v STATUS_PARAM)
64 {
65 return (floatx80)v;
66 }
67 #endif
68 float32 int64_to_float32( int64_t v STATUS_PARAM)
69 {
70 return (float32)v;
71 }
72 float64 int64_to_float64( int64_t v STATUS_PARAM)
73 {
74 return (float64)v;
75 }
76 #ifdef FLOATX80
77 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
78 {
79 return (floatx80)v;
80 }
81 #endif
82
83 /*----------------------------------------------------------------------------
84 | Software IEC/IEEE single-precision conversion routines.
85 *----------------------------------------------------------------------------*/
86 int float32_to_int32( float32 a STATUS_PARAM)
87 {
88 return lrintf(a);
89 }
90 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
91 {
92 return (int)a;
93 }
94 int64_t float32_to_int64( float32 a STATUS_PARAM)
95 {
96 return llrintf(a);
97 }
98
99 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
100 {
101 return (int64_t)a;
102 }
103
104 float64 float32_to_float64( float32 a STATUS_PARAM)
105 {
106 return a;
107 }
108 #ifdef FLOATX80
109 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
110 {
111 return a;
112 }
113 #endif
114
115 /*----------------------------------------------------------------------------
116 | Software IEC/IEEE single-precision operations.
117 *----------------------------------------------------------------------------*/
118 float32 float32_round_to_int( float32 a STATUS_PARAM)
119 {
120 return rintf(a);
121 }
122
123 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
124 {
125 return remainderf(a, b);
126 }
127
128 float32 float32_sqrt( float32 a STATUS_PARAM)
129 {
130 return sqrtf(a);
131 }
132 char float32_compare( float32 a, float32 b STATUS_PARAM )
133 {
134 if (a < b) {
135 return -1;
136 } else if (a == b) {
137 return 0;
138 } else if (a > b) {
139 return 1;
140 } else {
141 return 2;
142 }
143 }
144 char float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
145 {
146 if (isless(a, b)) {
147 return -1;
148 } else if (a == b) {
149 return 0;
150 } else if (isgreater(a, b)) {
151 return 1;
152 } else {
153 return 2;
154 }
155 }
156 char float32_is_signaling_nan( float32 a1)
157 {
158 float32u u;
159 uint32_t a;
160 u.f = a1;
161 a = u.i;
162 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
163 }
164
165 /*----------------------------------------------------------------------------
166 | Software IEC/IEEE double-precision conversion routines.
167 *----------------------------------------------------------------------------*/
168 int float64_to_int32( float64 a STATUS_PARAM)
169 {
170 return lrint(a);
171 }
172 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
173 {
174 return (int)a;
175 }
176 int64_t float64_to_int64( float64 a STATUS_PARAM)
177 {
178 return llrint(a);
179 }
180 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
181 {
182 return (int64_t)a;
183 }
184 float32 float64_to_float32( float64 a STATUS_PARAM)
185 {
186 return a;
187 }
188 #ifdef FLOATX80
189 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
190 {
191 return a;
192 }
193 #endif
194 #ifdef FLOAT128
195 float128 float64_to_float128( float64 a STATUS_PARAM)
196 {
197 return a;
198 }
199 #endif
200
201 /*----------------------------------------------------------------------------
202 | Software IEC/IEEE double-precision operations.
203 *----------------------------------------------------------------------------*/
204 float64 float64_round_to_int( float64 a STATUS_PARAM )
205 {
206 #if defined(__arm__)
207 switch(STATUS(float_rounding_mode)) {
208 default:
209 case float_round_nearest_even:
210 asm("rndd %0, %1" : "=f" (a) : "f"(a));
211 break;
212 case float_round_down:
213 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
214 break;
215 case float_round_up:
216 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
217 break;
218 case float_round_to_zero:
219 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
220 break;
221 }
222 #else
223 return rint(a);
224 #endif
225 }
226
227 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
228 {
229 return remainder(a, b);
230 }
231
232 float64 float64_sqrt( float64 a STATUS_PARAM)
233 {
234 return sqrt(a);
235 }
236 char float64_compare( float64 a, float64 b STATUS_PARAM )
237 {
238 if (a < b) {
239 return -1;
240 } else if (a == b) {
241 return 0;
242 } else if (a > b) {
243 return 1;
244 } else {
245 return 2;
246 }
247 }
248 char float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
249 {
250 if (isless(a, b)) {
251 return -1;
252 } else if (a == b) {
253 return 0;
254 } else if (isgreater(a, b)) {
255 return 1;
256 } else {
257 return 2;
258 }
259 }
260 char float64_is_signaling_nan( float64 a1)
261 {
262 float64u u;
263 uint64_t a;
264 u.f = a1;
265 a = u.i;
266 return
267 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
268 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
269
270 }
271
272 #ifdef FLOATX80
273
274 /*----------------------------------------------------------------------------
275 | Software IEC/IEEE extended double-precision conversion routines.
276 *----------------------------------------------------------------------------*/
277 int floatx80_to_int32( floatx80 a STATUS_PARAM)
278 {
279 return lrintl(a);
280 }
281 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
282 {
283 return (int)a;
284 }
285 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
286 {
287 return llrintl(a);
288 }
289 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
290 {
291 return (int64_t)a;
292 }
293 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
294 {
295 return a;
296 }
297 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
298 {
299 return a;
300 }
301
302 /*----------------------------------------------------------------------------
303 | Software IEC/IEEE extended double-precision operations.
304 *----------------------------------------------------------------------------*/
305 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
306 {
307 return rintl(a);
308 }
309 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
310 {
311 return remainderl(a, b);
312 }
313 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
314 {
315 return sqrtl(a);
316 }
317 char floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
318 {
319 if (a < b) {
320 return -1;
321 } else if (a == b) {
322 return 0;
323 } else if (a > b) {
324 return 1;
325 } else {
326 return 2;
327 }
328 }
329 char floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
330 {
331 if (isless(a, b)) {
332 return -1;
333 } else if (a == b) {
334 return 0;
335 } else if (isgreater(a, b)) {
336 return 1;
337 } else {
338 return 2;
339 }
340 }
341 char floatx80_is_signaling_nan( floatx80 a1)
342 {
343 floatx80u u;
344 u.f = a1;
345 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
346 }
347
348 #endif