]> git.proxmox.com Git - qemu.git/blob - fpu/softfloat-native.h
97fb3c7a5c707c934064dd6dbefdecdbfe70911a
[qemu.git] / fpu / softfloat-native.h
1 /* Native implementation of soft float functions */
2 #include <math.h>
3
4 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
5 || defined(CONFIG_SOLARIS)
6 #include <ieeefp.h>
7 #define fabsf(f) ((float)fabs(f))
8 #else
9 #include <fenv.h>
10 #endif
11
12 #if defined(__OpenBSD__) || defined(__NetBSD__)
13 #include <sys/param.h>
14 #endif
15
16 /*
17 * Define some C99-7.12.3 classification macros and
18 * some C99-.12.4 for Solaris systems OS less than 10,
19 * or Solaris 10 systems running GCC 3.x or less.
20 * Solaris 10 with GCC4 does not need these macros as they
21 * are defined in <iso/math_c99.h> with a compiler directive
22 */
23 #if defined(CONFIG_SOLARIS) && \
24 ((CONFIG_SOLARIS_VERSION <= 9 ) || \
25 ((CONFIG_SOLARIS_VERSION == 10) && (__GNUC__ < 4))) \
26 || (defined(__OpenBSD__) && (OpenBSD < 200811))
27 /*
28 * C99 7.12.3 classification macros
29 * and
30 * C99 7.12.14 comparison macros
31 *
32 * ... do not work on Solaris 10 using GNU CC 3.4.x.
33 * Try to workaround the missing / broken C99 math macros.
34 */
35 #if defined(__OpenBSD__)
36 #define unordered(x, y) (isnan(x) || isnan(y))
37 #endif
38
39 #ifdef __NetBSD__
40 #ifndef isgreater
41 #define isgreater(x, y) __builtin_isgreater(x, y)
42 #endif
43 #ifndef isgreaterequal
44 #define isgreaterequal(x, y) __builtin_isgreaterequal(x, y)
45 #endif
46 #ifndef isless
47 #define isless(x, y) __builtin_isless(x, y)
48 #endif
49 #ifndef islessequal
50 #define islessequal(x, y) __builtin_islessequal(x, y)
51 #endif
52 #ifndef isunordered
53 #define isunordered(x, y) __builtin_isunordered(x, y)
54 #endif
55 #endif
56
57
58 #define isnormal(x) (fpclass(x) >= FP_NZERO)
59 #define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y)))
60 #define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y)))
61 #define isless(x, y) ((!unordered(x, y)) && ((x) < (y)))
62 #define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y)))
63 #define isunordered(x,y) unordered(x, y)
64 #endif
65
66 #if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
67
68 #ifndef isnan
69 # define isnan(x) \
70 (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
71 : sizeof (x) == sizeof (double) ? isnan_d (x) \
72 : isnan_f (x))
73 static inline int isnan_f (float x) { return x != x; }
74 static inline int isnan_d (double x) { return x != x; }
75 static inline int isnan_ld (long double x) { return x != x; }
76 #endif
77
78 #ifndef isinf
79 # define isinf(x) \
80 (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
81 : sizeof (x) == sizeof (double) ? isinf_d (x) \
82 : isinf_f (x))
83 static inline int isinf_f (float x) { return isnan (x - x); }
84 static inline int isinf_d (double x) { return isnan (x - x); }
85 static inline int isinf_ld (long double x) { return isnan (x - x); }
86 #endif
87 #endif
88
89 typedef float float32;
90 typedef double float64;
91 #ifdef FLOATX80
92 typedef long double floatx80;
93 #endif
94
95 typedef union {
96 float32 f;
97 uint32_t i;
98 } float32u;
99 typedef union {
100 float64 f;
101 uint64_t i;
102 } float64u;
103 #ifdef FLOATX80
104 typedef union {
105 floatx80 f;
106 struct {
107 uint64_t low;
108 uint16_t high;
109 } i;
110 } floatx80u;
111 #endif
112
113 /*----------------------------------------------------------------------------
114 | Software IEC/IEEE floating-point rounding mode.
115 *----------------------------------------------------------------------------*/
116 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
117 || defined(CONFIG_SOLARIS)
118 #if defined(__OpenBSD__)
119 #define FE_RM FP_RM
120 #define FE_RP FP_RP
121 #define FE_RZ FP_RZ
122 #endif
123 enum {
124 float_round_nearest_even = FP_RN,
125 float_round_down = FP_RM,
126 float_round_up = FP_RP,
127 float_round_to_zero = FP_RZ
128 };
129 #else
130 enum {
131 float_round_nearest_even = FE_TONEAREST,
132 float_round_down = FE_DOWNWARD,
133 float_round_up = FE_UPWARD,
134 float_round_to_zero = FE_TOWARDZERO
135 };
136 #endif
137
138 typedef struct float_status {
139 int float_rounding_mode;
140 #ifdef FLOATX80
141 int floatx80_rounding_precision;
142 #endif
143 } float_status;
144
145 void set_float_rounding_mode(int val STATUS_PARAM);
146 #ifdef FLOATX80
147 void set_floatx80_rounding_precision(int val STATUS_PARAM);
148 #endif
149
150 /*----------------------------------------------------------------------------
151 | Software IEC/IEEE integer-to-floating-point conversion routines.
152 *----------------------------------------------------------------------------*/
153 float32 int32_to_float32( int STATUS_PARAM);
154 float32 uint32_to_float32( unsigned int STATUS_PARAM);
155 float64 int32_to_float64( int STATUS_PARAM);
156 float64 uint32_to_float64( unsigned int STATUS_PARAM);
157 #ifdef FLOATX80
158 floatx80 int32_to_floatx80( int STATUS_PARAM);
159 #endif
160 #ifdef FLOAT128
161 float128 int32_to_float128( int STATUS_PARAM);
162 #endif
163 float32 int64_to_float32( int64_t STATUS_PARAM);
164 float32 uint64_to_float32( uint64_t STATUS_PARAM);
165 float64 int64_to_float64( int64_t STATUS_PARAM);
166 float64 uint64_to_float64( uint64_t v STATUS_PARAM);
167 #ifdef FLOATX80
168 floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
169 #endif
170 #ifdef FLOAT128
171 float128 int64_to_float128( int64_t STATUS_PARAM);
172 #endif
173
174 /*----------------------------------------------------------------------------
175 | Software IEC/IEEE single-precision conversion constants.
176 *----------------------------------------------------------------------------*/
177 #define float32_zero (0.0)
178 #define float32_one (1.0)
179 #define float32_ln2 (0.6931471)
180 #define float32_pi (3.1415926)
181 #define float32_half (0.5)
182
183 /*----------------------------------------------------------------------------
184 | Software IEC/IEEE single-precision conversion routines.
185 *----------------------------------------------------------------------------*/
186 int float32_to_int32( float32 STATUS_PARAM);
187 int float32_to_int32_round_to_zero( float32 STATUS_PARAM);
188 unsigned int float32_to_uint32( float32 a STATUS_PARAM);
189 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
190 int64_t float32_to_int64( float32 STATUS_PARAM);
191 int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM);
192 float64 float32_to_float64( float32 STATUS_PARAM);
193 #ifdef FLOATX80
194 floatx80 float32_to_floatx80( float32 STATUS_PARAM);
195 #endif
196 #ifdef FLOAT128
197 float128 float32_to_float128( float32 STATUS_PARAM);
198 #endif
199
200 /*----------------------------------------------------------------------------
201 | Software IEC/IEEE single-precision operations.
202 *----------------------------------------------------------------------------*/
203 float32 float32_round_to_int( float32 STATUS_PARAM);
204 INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
205 {
206 return a + b;
207 }
208 INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
209 {
210 return a - b;
211 }
212 INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
213 {
214 return a * b;
215 }
216 INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
217 {
218 return a / b;
219 }
220 float32 float32_rem( float32, float32 STATUS_PARAM);
221 float32 float32_sqrt( float32 STATUS_PARAM);
222 INLINE int float32_eq_quiet( float32 a, float32 b STATUS_PARAM)
223 {
224 return a == b;
225 }
226 INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
227 {
228 return a <= b;
229 }
230 INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
231 {
232 return a < b;
233 }
234 INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
235 {
236 return a <= b && a >= b;
237 }
238 INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
239 {
240 return islessequal(a, b);
241 }
242 INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
243 {
244 return isless(a, b);
245 }
246 INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
247 {
248 return isunordered(a, b);
249 }
250 INLINE int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM)
251 {
252 return isunordered(a, b);
253 }
254 int float32_compare( float32, float32 STATUS_PARAM );
255 int float32_compare_quiet( float32, float32 STATUS_PARAM );
256 int float32_is_signaling_nan( float32 );
257 int float32_is_quiet_nan( float32 );
258
259 INLINE float32 float32_abs(float32 a)
260 {
261 return fabsf(a);
262 }
263
264 INLINE float32 float32_chs(float32 a)
265 {
266 return -a;
267 }
268
269 INLINE float32 float32_is_infinity(float32 a)
270 {
271 return fpclassify(a) == FP_INFINITE;
272 }
273
274 INLINE float32 float32_is_neg(float32 a)
275 {
276 float32u u;
277 u.f = a;
278 return u.i >> 31;
279 }
280
281 INLINE float32 float32_is_zero(float32 a)
282 {
283 return fpclassify(a) == FP_ZERO;
284 }
285
286 INLINE float32 float32_scalbn(float32 a, int n)
287 {
288 return scalbnf(a, n);
289 }
290
291 /*----------------------------------------------------------------------------
292 | Software IEC/IEEE double-precision conversion constants.
293 *----------------------------------------------------------------------------*/
294 #define float64_zero (0.0)
295 #define float64_one (1.0)
296 #define float64_ln2 (0.693147180559945)
297 #define float64_pi (3.141592653589793)
298 #define float64_half (0.5)
299
300 /*----------------------------------------------------------------------------
301 | Software IEC/IEEE double-precision conversion routines.
302 *----------------------------------------------------------------------------*/
303 int float64_to_int32( float64 STATUS_PARAM );
304 int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
305 unsigned int float64_to_uint32( float64 STATUS_PARAM );
306 unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
307 int64_t float64_to_int64( float64 STATUS_PARAM );
308 int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
309 uint64_t float64_to_uint64( float64 STATUS_PARAM );
310 uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
311 float32 float64_to_float32( float64 STATUS_PARAM );
312 #ifdef FLOATX80
313 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
314 #endif
315 #ifdef FLOAT128
316 float128 float64_to_float128( float64 STATUS_PARAM );
317 #endif
318
319 /*----------------------------------------------------------------------------
320 | Software IEC/IEEE double-precision operations.
321 *----------------------------------------------------------------------------*/
322 float64 float64_round_to_int( float64 STATUS_PARAM );
323 float64 float64_trunc_to_int( float64 STATUS_PARAM );
324 INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
325 {
326 return a + b;
327 }
328 INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
329 {
330 return a - b;
331 }
332 INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
333 {
334 return a * b;
335 }
336 INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
337 {
338 return a / b;
339 }
340 float64 float64_rem( float64, float64 STATUS_PARAM );
341 float64 float64_sqrt( float64 STATUS_PARAM );
342 INLINE int float64_eq_quiet( float64 a, float64 b STATUS_PARAM)
343 {
344 return a == b;
345 }
346 INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
347 {
348 return a <= b;
349 }
350 INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
351 {
352 return a < b;
353 }
354 INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
355 {
356 return a <= b && a >= b;
357 }
358 INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
359 {
360 return islessequal(a, b);
361 }
362 INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
363 {
364 return isless(a, b);
365
366 }
367 INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
368 {
369 return isunordered(a, b);
370 }
371 INLINE int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM)
372 {
373 return isunordered(a, b);
374 }
375 int float64_compare( float64, float64 STATUS_PARAM );
376 int float64_compare_quiet( float64, float64 STATUS_PARAM );
377 int float64_is_signaling_nan( float64 );
378 int float64_is_quiet_nan( float64 );
379
380 INLINE float64 float64_abs(float64 a)
381 {
382 return fabs(a);
383 }
384
385 INLINE float64 float64_chs(float64 a)
386 {
387 return -a;
388 }
389
390 INLINE float64 float64_is_infinity(float64 a)
391 {
392 return fpclassify(a) == FP_INFINITE;
393 }
394
395 INLINE float64 float64_is_neg(float64 a)
396 {
397 float64u u;
398 u.f = a;
399 return u.i >> 63;
400 }
401
402 INLINE float64 float64_is_zero(float64 a)
403 {
404 return fpclassify(a) == FP_ZERO;
405 }
406
407 INLINE float64 float64_scalbn(float64 a, int n)
408 {
409 return scalbn(a, n);
410 }
411
412 #ifdef FLOATX80
413
414 /*----------------------------------------------------------------------------
415 | Software IEC/IEEE extended double-precision conversion constants.
416 *----------------------------------------------------------------------------*/
417 #define floatx80_zero (0.0L)
418 #define floatx80_one (1.0L)
419 #define floatx80_ln2 (0.69314718055994530943L)
420 #define floatx80_pi (3.14159265358979323851L)
421 #define floatx80_half (0.5L)
422
423 /*----------------------------------------------------------------------------
424 | Software IEC/IEEE extended double-precision conversion routines.
425 *----------------------------------------------------------------------------*/
426 int floatx80_to_int32( floatx80 STATUS_PARAM );
427 int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
428 int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
429 int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
430 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
431 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
432 #ifdef FLOAT128
433 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
434 #endif
435
436 /*----------------------------------------------------------------------------
437 | Software IEC/IEEE extended double-precision operations.
438 *----------------------------------------------------------------------------*/
439 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
440 INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
441 {
442 return a + b;
443 }
444 INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
445 {
446 return a - b;
447 }
448 INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
449 {
450 return a * b;
451 }
452 INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
453 {
454 return a / b;
455 }
456 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
457 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
458 INLINE int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM)
459 {
460 return a == b;
461 }
462 INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
463 {
464 return a <= b;
465 }
466 INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
467 {
468 return a < b;
469 }
470 INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
471 {
472 return a <= b && a >= b;
473 }
474 INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
475 {
476 return islessequal(a, b);
477 }
478 INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
479 {
480 return isless(a, b);
481
482 }
483 INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
484 {
485 return isunordered(a, b);
486 }
487 INLINE int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM)
488 {
489 return isunordered(a, b);
490 }
491 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
492 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
493 int floatx80_is_signaling_nan( floatx80 );
494 int floatx80_is_quiet_nan( floatx80 );
495
496 INLINE floatx80 floatx80_abs(floatx80 a)
497 {
498 return fabsl(a);
499 }
500
501 INLINE floatx80 floatx80_chs(floatx80 a)
502 {
503 return -a;
504 }
505
506 INLINE floatx80 floatx80_is_infinity(floatx80 a)
507 {
508 return fpclassify(a) == FP_INFINITE;
509 }
510
511 INLINE floatx80 floatx80_is_neg(floatx80 a)
512 {
513 floatx80u u;
514 u.f = a;
515 return u.i.high >> 15;
516 }
517
518 INLINE floatx80 floatx80_is_zero(floatx80 a)
519 {
520 return fpclassify(a) == FP_ZERO;
521 }
522
523 INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
524 {
525 return scalbnl(a, n);
526 }
527
528 #endif