]> git.proxmox.com Git - qemu.git/blob - fpu/softfloat-native.h
fe737b32b913009226007fdcbeb5c4ae769a2385
[qemu.git] / fpu / softfloat-native.h
1 /* Native implementation of soft float functions */
2 #include <math.h>
3
4 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
5 || defined(CONFIG_SOLARIS)
6 #include <ieeefp.h>
7 #define fabsf(f) ((float)fabs(f))
8 #else
9 #include <fenv.h>
10 #endif
11
12 #if defined(__OpenBSD__) || defined(__NetBSD__)
13 #include <sys/param.h>
14 #endif
15
16 /*
17 * Define some C99-7.12.3 classification macros and
18 * some C99-.12.4 for Solaris systems OS less than 10,
19 * or Solaris 10 systems running GCC 3.x or less.
20 * Solaris 10 with GCC4 does not need these macros as they
21 * are defined in <iso/math_c99.h> with a compiler directive
22 */
23 #if defined(CONFIG_SOLARIS) && \
24 ((CONFIG_SOLARIS_VERSION <= 9 ) || \
25 ((CONFIG_SOLARIS_VERSION == 10) && (__GNUC__ < 4))) \
26 || (defined(__OpenBSD__) && (OpenBSD < 200811))
27 /*
28 * C99 7.12.3 classification macros
29 * and
30 * C99 7.12.14 comparison macros
31 *
32 * ... do not work on Solaris 10 using GNU CC 3.4.x.
33 * Try to workaround the missing / broken C99 math macros.
34 */
35 #if defined(__OpenBSD__)
36 #define unordered(x, y) (isnan(x) || isnan(y))
37 #endif
38
39 #ifdef __NetBSD__
40 #ifndef isgreater
41 #define isgreater(x, y) __builtin_isgreater(x, y)
42 #endif
43 #ifndef isgreaterequal
44 #define isgreaterequal(x, y) __builtin_isgreaterequal(x, y)
45 #endif
46 #ifndef isless
47 #define isless(x, y) __builtin_isless(x, y)
48 #endif
49 #ifndef islessequal
50 #define islessequal(x, y) __builtin_islessequal(x, y)
51 #endif
52 #ifndef isunordered
53 #define isunordered(x, y) __builtin_isunordered(x, y)
54 #endif
55 #endif
56
57
58 #define isnormal(x) (fpclass(x) >= FP_NZERO)
59 #define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y)))
60 #define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y)))
61 #define isless(x, y) ((!unordered(x, y)) && ((x) < (y)))
62 #define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y)))
63 #define isunordered(x,y) unordered(x, y)
64 #endif
65
66 #if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
67
68 #ifndef isnan
69 # define isnan(x) \
70 (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
71 : sizeof (x) == sizeof (double) ? isnan_d (x) \
72 : isnan_f (x))
73 static inline int isnan_f (float x) { return x != x; }
74 static inline int isnan_d (double x) { return x != x; }
75 static inline int isnan_ld (long double x) { return x != x; }
76 #endif
77
78 #ifndef isinf
79 # define isinf(x) \
80 (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
81 : sizeof (x) == sizeof (double) ? isinf_d (x) \
82 : isinf_f (x))
83 static inline int isinf_f (float x) { return isnan (x - x); }
84 static inline int isinf_d (double x) { return isnan (x - x); }
85 static inline int isinf_ld (long double x) { return isnan (x - x); }
86 #endif
87 #endif
88
89 typedef float float32;
90 typedef double float64;
91 #ifdef FLOATX80
92 typedef long double floatx80;
93 #endif
94
95 typedef union {
96 float32 f;
97 uint32_t i;
98 } float32u;
99 typedef union {
100 float64 f;
101 uint64_t i;
102 } float64u;
103 #ifdef FLOATX80
104 typedef union {
105 floatx80 f;
106 struct {
107 uint64_t low;
108 uint16_t high;
109 } i;
110 } floatx80u;
111 #endif
112
113 /*----------------------------------------------------------------------------
114 | Software IEC/IEEE floating-point rounding mode.
115 *----------------------------------------------------------------------------*/
116 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
117 || defined(CONFIG_SOLARIS)
118 #if defined(__OpenBSD__)
119 #define FE_RM FP_RM
120 #define FE_RP FP_RP
121 #define FE_RZ FP_RZ
122 #endif
123 enum {
124 float_round_nearest_even = FP_RN,
125 float_round_down = FP_RM,
126 float_round_up = FP_RP,
127 float_round_to_zero = FP_RZ
128 };
129 #elif defined(__arm__)
130 enum {
131 float_round_nearest_even = 0,
132 float_round_down = 1,
133 float_round_up = 2,
134 float_round_to_zero = 3
135 };
136 #else
137 enum {
138 float_round_nearest_even = FE_TONEAREST,
139 float_round_down = FE_DOWNWARD,
140 float_round_up = FE_UPWARD,
141 float_round_to_zero = FE_TOWARDZERO
142 };
143 #endif
144
145 typedef struct float_status {
146 int float_rounding_mode;
147 #ifdef FLOATX80
148 int floatx80_rounding_precision;
149 #endif
150 } float_status;
151
152 void set_float_rounding_mode(int val STATUS_PARAM);
153 #ifdef FLOATX80
154 void set_floatx80_rounding_precision(int val STATUS_PARAM);
155 #endif
156
157 /*----------------------------------------------------------------------------
158 | Software IEC/IEEE integer-to-floating-point conversion routines.
159 *----------------------------------------------------------------------------*/
160 float32 int32_to_float32( int STATUS_PARAM);
161 float32 uint32_to_float32( unsigned int STATUS_PARAM);
162 float64 int32_to_float64( int STATUS_PARAM);
163 float64 uint32_to_float64( unsigned int STATUS_PARAM);
164 #ifdef FLOATX80
165 floatx80 int32_to_floatx80( int STATUS_PARAM);
166 #endif
167 #ifdef FLOAT128
168 float128 int32_to_float128( int STATUS_PARAM);
169 #endif
170 float32 int64_to_float32( int64_t STATUS_PARAM);
171 float32 uint64_to_float32( uint64_t STATUS_PARAM);
172 float64 int64_to_float64( int64_t STATUS_PARAM);
173 float64 uint64_to_float64( uint64_t v STATUS_PARAM);
174 #ifdef FLOATX80
175 floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
176 #endif
177 #ifdef FLOAT128
178 float128 int64_to_float128( int64_t STATUS_PARAM);
179 #endif
180
181 /*----------------------------------------------------------------------------
182 | Software IEC/IEEE single-precision conversion routines.
183 *----------------------------------------------------------------------------*/
184 int float32_to_int32( float32 STATUS_PARAM);
185 int float32_to_int32_round_to_zero( float32 STATUS_PARAM);
186 unsigned int float32_to_uint32( float32 a STATUS_PARAM);
187 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
188 int64_t float32_to_int64( float32 STATUS_PARAM);
189 int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM);
190 float64 float32_to_float64( float32 STATUS_PARAM);
191 #ifdef FLOATX80
192 floatx80 float32_to_floatx80( float32 STATUS_PARAM);
193 #endif
194 #ifdef FLOAT128
195 float128 float32_to_float128( float32 STATUS_PARAM);
196 #endif
197
198 /*----------------------------------------------------------------------------
199 | Software IEC/IEEE single-precision operations.
200 *----------------------------------------------------------------------------*/
201 float32 float32_round_to_int( float32 STATUS_PARAM);
202 INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
203 {
204 return a + b;
205 }
206 INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
207 {
208 return a - b;
209 }
210 INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
211 {
212 return a * b;
213 }
214 INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
215 {
216 return a / b;
217 }
218 float32 float32_rem( float32, float32 STATUS_PARAM);
219 float32 float32_sqrt( float32 STATUS_PARAM);
220 INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
221 {
222 return a == b;
223 }
224 INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
225 {
226 return a <= b;
227 }
228 INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
229 {
230 return a < b;
231 }
232 INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
233 {
234 return a <= b && a >= b;
235 }
236 INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
237 {
238 return islessequal(a, b);
239 }
240 INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
241 {
242 return isless(a, b);
243 }
244 INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
245 {
246 return isunordered(a, b);
247
248 }
249 int float32_compare( float32, float32 STATUS_PARAM );
250 int float32_compare_quiet( float32, float32 STATUS_PARAM );
251 int float32_is_signaling_nan( float32 );
252 int float32_is_nan( float32 );
253
254 INLINE float32 float32_abs(float32 a)
255 {
256 return fabsf(a);
257 }
258
259 INLINE float32 float32_chs(float32 a)
260 {
261 return -a;
262 }
263
264 INLINE float32 float32_is_infinity(float32 a)
265 {
266 return fpclassify(a) == FP_INFINITE;
267 }
268
269 INLINE float32 float32_is_neg(float32 a)
270 {
271 float32u u;
272 u.f = a;
273 return u.i >> 31;
274 }
275
276 INLINE float32 float32_is_zero(float32 a)
277 {
278 return fpclassify(a) == FP_ZERO;
279 }
280
281 INLINE float32 float32_scalbn(float32 a, int n)
282 {
283 return scalbnf(a, n);
284 }
285
286 /*----------------------------------------------------------------------------
287 | Software IEC/IEEE double-precision conversion routines.
288 *----------------------------------------------------------------------------*/
289 int float64_to_int32( float64 STATUS_PARAM );
290 int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
291 unsigned int float64_to_uint32( float64 STATUS_PARAM );
292 unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
293 int64_t float64_to_int64( float64 STATUS_PARAM );
294 int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
295 uint64_t float64_to_uint64( float64 STATUS_PARAM );
296 uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
297 float32 float64_to_float32( float64 STATUS_PARAM );
298 #ifdef FLOATX80
299 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
300 #endif
301 #ifdef FLOAT128
302 float128 float64_to_float128( float64 STATUS_PARAM );
303 #endif
304
305 /*----------------------------------------------------------------------------
306 | Software IEC/IEEE double-precision operations.
307 *----------------------------------------------------------------------------*/
308 float64 float64_round_to_int( float64 STATUS_PARAM );
309 float64 float64_trunc_to_int( float64 STATUS_PARAM );
310 INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
311 {
312 return a + b;
313 }
314 INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
315 {
316 return a - b;
317 }
318 INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
319 {
320 return a * b;
321 }
322 INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
323 {
324 return a / b;
325 }
326 float64 float64_rem( float64, float64 STATUS_PARAM );
327 float64 float64_sqrt( float64 STATUS_PARAM );
328 INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
329 {
330 return a == b;
331 }
332 INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
333 {
334 return a <= b;
335 }
336 INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
337 {
338 return a < b;
339 }
340 INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
341 {
342 return a <= b && a >= b;
343 }
344 INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
345 {
346 return islessequal(a, b);
347 }
348 INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
349 {
350 return isless(a, b);
351
352 }
353 INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
354 {
355 return isunordered(a, b);
356
357 }
358 int float64_compare( float64, float64 STATUS_PARAM );
359 int float64_compare_quiet( float64, float64 STATUS_PARAM );
360 int float64_is_signaling_nan( float64 );
361 int float64_is_nan( float64 );
362
363 INLINE float64 float64_abs(float64 a)
364 {
365 return fabs(a);
366 }
367
368 INLINE float64 float64_chs(float64 a)
369 {
370 return -a;
371 }
372
373 INLINE float64 float64_is_infinity(float64 a)
374 {
375 return fpclassify(a) == FP_INFINITE;
376 }
377
378 INLINE float64 float64_is_neg(float64 a)
379 {
380 float64u u;
381 u.f = a;
382 return u.i >> 63;
383 }
384
385 INLINE float64 float64_is_zero(float64 a)
386 {
387 return fpclassify(a) == FP_ZERO;
388 }
389
390 INLINE float64 float64_scalbn(float64 a, int n)
391 {
392 return scalbn(a, n);
393 }
394
395 #ifdef FLOATX80
396
397 /*----------------------------------------------------------------------------
398 | Software IEC/IEEE extended double-precision conversion routines.
399 *----------------------------------------------------------------------------*/
400 int floatx80_to_int32( floatx80 STATUS_PARAM );
401 int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
402 int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
403 int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
404 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
405 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
406 #ifdef FLOAT128
407 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
408 #endif
409
410 /*----------------------------------------------------------------------------
411 | Software IEC/IEEE extended double-precision operations.
412 *----------------------------------------------------------------------------*/
413 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
414 INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
415 {
416 return a + b;
417 }
418 INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
419 {
420 return a - b;
421 }
422 INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
423 {
424 return a * b;
425 }
426 INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
427 {
428 return a / b;
429 }
430 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
431 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
432 INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
433 {
434 return a == b;
435 }
436 INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
437 {
438 return a <= b;
439 }
440 INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
441 {
442 return a < b;
443 }
444 INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
445 {
446 return a <= b && a >= b;
447 }
448 INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
449 {
450 return islessequal(a, b);
451 }
452 INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
453 {
454 return isless(a, b);
455
456 }
457 INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
458 {
459 return isunordered(a, b);
460
461 }
462 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
463 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
464 int floatx80_is_signaling_nan( floatx80 );
465 int floatx80_is_nan( floatx80 );
466
467 INLINE floatx80 floatx80_abs(floatx80 a)
468 {
469 return fabsl(a);
470 }
471
472 INLINE floatx80 floatx80_chs(floatx80 a)
473 {
474 return -a;
475 }
476
477 INLINE floatx80 floatx80_is_infinity(floatx80 a)
478 {
479 return fpclassify(a) == FP_INFINITE;
480 }
481
482 INLINE floatx80 floatx80_is_neg(floatx80 a)
483 {
484 floatx80u u;
485 u.f = a;
486 return u.i.high >> 15;
487 }
488
489 INLINE floatx80 floatx80_is_zero(floatx80 a)
490 {
491 return fpclassify(a) == FP_ZERO;
492 }
493
494 INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
495 {
496 return scalbnl(a, n);
497 }
498
499 #endif