]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-specialize.c.inc
Merge tag 'pull-tcg-20240130' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / fpu / softfloat-specialize.c.inc
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 /*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86 static inline bool no_signaling_nans(float_status *status)
87 {
88 #if defined(TARGET_XTENSA)
89 return status->no_signaling_nans;
90 #else
91 return false;
92 #endif
93 }
94
95 /* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102 static inline bool snan_bit_is_one(float_status *status)
103 {
104 #if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
106 #elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107 return 1;
108 #else
109 return 0;
110 #endif
111 }
112
113 /*----------------------------------------------------------------------------
114 | For the deconstructed floating-point with fraction FRAC, return true
115 | if the fraction represents a signalling NaN; otherwise false.
116 *----------------------------------------------------------------------------*/
117
118 static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119 {
120 if (no_signaling_nans(status)) {
121 return false;
122 } else {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
125 }
126 }
127
128 /*----------------------------------------------------------------------------
129 | The pattern for a default generated deconstructed floating-point NaN.
130 *----------------------------------------------------------------------------*/
131
132 static void parts64_default_nan(FloatParts64 *p, float_status *status)
133 {
134 bool sign = 0;
135 uint64_t frac;
136
137 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
138 /* !snan_bit_is_one, set all bits */
139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144 sign = 1;
145 #elif defined(TARGET_HPPA)
146 /* snan_bit_is_one, set msb-1. */
147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148 #elif defined(TARGET_HEXAGON)
149 sign = 1;
150 frac = ~0ULL;
151 #else
152 /*
153 * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154 * S390, SH4, TriCore, and Xtensa. Our other supported targets,
155 * CRIS, Nios2, and Tile, do not have floating-point.
156 */
157 if (snan_bit_is_one(status)) {
158 /* set all bits other than msb */
159 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160 } else {
161 /* set msb */
162 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163 }
164 #endif
165
166 *p = (FloatParts64) {
167 .cls = float_class_qnan,
168 .sign = sign,
169 .exp = INT_MAX,
170 .frac = frac
171 };
172 }
173
174 static void parts128_default_nan(FloatParts128 *p, float_status *status)
175 {
176 /*
177 * Extrapolate from the choices made by parts64_default_nan to fill
178 * in the quad-floating format. If the low bit is set, assume we
179 * want to set all non-snan bits.
180 */
181 FloatParts64 p64;
182 parts64_default_nan(&p64, status);
183
184 *p = (FloatParts128) {
185 .cls = float_class_qnan,
186 .sign = p64.sign,
187 .exp = INT_MAX,
188 .frac_hi = p64.frac,
189 .frac_lo = -(p64.frac & 1)
190 };
191 }
192
193 /*----------------------------------------------------------------------------
194 | Returns a quiet NaN from a signalling NaN for the deconstructed
195 | floating-point parts.
196 *----------------------------------------------------------------------------*/
197
198 static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
199 {
200 g_assert(!no_signaling_nans(status));
201
202 /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
203 if (snan_bit_is_one(status)) {
204 frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
205 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
206 } else {
207 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
208 }
209 return frac;
210 }
211
212 static void parts64_silence_nan(FloatParts64 *p, float_status *status)
213 {
214 p->frac = parts_silence_nan_frac(p->frac, status);
215 p->cls = float_class_qnan;
216 }
217
218 static void parts128_silence_nan(FloatParts128 *p, float_status *status)
219 {
220 p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
221 p->cls = float_class_qnan;
222 }
223
224 /*----------------------------------------------------------------------------
225 | The pattern for a default generated extended double-precision NaN.
226 *----------------------------------------------------------------------------*/
227 floatx80 floatx80_default_nan(float_status *status)
228 {
229 floatx80 r;
230
231 /* None of the targets that have snan_bit_is_one use floatx80. */
232 assert(!snan_bit_is_one(status));
233 #if defined(TARGET_M68K)
234 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
235 r.high = 0x7FFF;
236 #else
237 /* X86 */
238 r.low = UINT64_C(0xC000000000000000);
239 r.high = 0xFFFF;
240 #endif
241 return r;
242 }
243
244 /*----------------------------------------------------------------------------
245 | The pattern for a default generated extended double-precision inf.
246 *----------------------------------------------------------------------------*/
247
248 #define floatx80_infinity_high 0x7FFF
249 #if defined(TARGET_M68K)
250 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
251 #else
252 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
253 #endif
254
255 const floatx80 floatx80_infinity
256 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
257
258 /*----------------------------------------------------------------------------
259 | Returns 1 if the half-precision floating-point value `a' is a quiet
260 | NaN; otherwise returns 0.
261 *----------------------------------------------------------------------------*/
262
263 bool float16_is_quiet_nan(float16 a_, float_status *status)
264 {
265 if (no_signaling_nans(status)) {
266 return float16_is_any_nan(a_);
267 } else {
268 uint16_t a = float16_val(a_);
269 if (snan_bit_is_one(status)) {
270 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
271 } else {
272
273 return ((a >> 9) & 0x3F) == 0x3F;
274 }
275 }
276 }
277
278 /*----------------------------------------------------------------------------
279 | Returns 1 if the bfloat16 value `a' is a quiet
280 | NaN; otherwise returns 0.
281 *----------------------------------------------------------------------------*/
282
283 bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
284 {
285 if (no_signaling_nans(status)) {
286 return bfloat16_is_any_nan(a_);
287 } else {
288 uint16_t a = a_;
289 if (snan_bit_is_one(status)) {
290 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
291 } else {
292 return ((a >> 6) & 0x1FF) == 0x1FF;
293 }
294 }
295 }
296
297 /*----------------------------------------------------------------------------
298 | Returns 1 if the half-precision floating-point value `a' is a signaling
299 | NaN; otherwise returns 0.
300 *----------------------------------------------------------------------------*/
301
302 bool float16_is_signaling_nan(float16 a_, float_status *status)
303 {
304 if (no_signaling_nans(status)) {
305 return 0;
306 } else {
307 uint16_t a = float16_val(a_);
308 if (snan_bit_is_one(status)) {
309 return ((a >> 9) & 0x3F) == 0x3F;
310 } else {
311 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
312 }
313 }
314 }
315
316 /*----------------------------------------------------------------------------
317 | Returns 1 if the bfloat16 value `a' is a signaling
318 | NaN; otherwise returns 0.
319 *----------------------------------------------------------------------------*/
320
321 bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
322 {
323 if (no_signaling_nans(status)) {
324 return 0;
325 } else {
326 uint16_t a = a_;
327 if (snan_bit_is_one(status)) {
328 return ((a >> 6) & 0x1FF) == 0x1FF;
329 } else {
330 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
331 }
332 }
333 }
334
335 /*----------------------------------------------------------------------------
336 | Returns 1 if the single-precision floating-point value `a' is a quiet
337 | NaN; otherwise returns 0.
338 *----------------------------------------------------------------------------*/
339
340 bool float32_is_quiet_nan(float32 a_, float_status *status)
341 {
342 if (no_signaling_nans(status)) {
343 return float32_is_any_nan(a_);
344 } else {
345 uint32_t a = float32_val(a_);
346 if (snan_bit_is_one(status)) {
347 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
348 } else {
349 return ((uint32_t)(a << 1) >= 0xFF800000);
350 }
351 }
352 }
353
354 /*----------------------------------------------------------------------------
355 | Returns 1 if the single-precision floating-point value `a' is a signaling
356 | NaN; otherwise returns 0.
357 *----------------------------------------------------------------------------*/
358
359 bool float32_is_signaling_nan(float32 a_, float_status *status)
360 {
361 if (no_signaling_nans(status)) {
362 return 0;
363 } else {
364 uint32_t a = float32_val(a_);
365 if (snan_bit_is_one(status)) {
366 return ((uint32_t)(a << 1) >= 0xFF800000);
367 } else {
368 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
369 }
370 }
371 }
372
373 /*----------------------------------------------------------------------------
374 | Select which NaN to propagate for a two-input operation.
375 | IEEE754 doesn't specify all the details of this, so the
376 | algorithm is target-specific.
377 | The routine is passed various bits of information about the
378 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
379 | Note that signalling NaNs are always squashed to quiet NaNs
380 | by the caller, by calling floatXX_silence_nan() before
381 | returning them.
382 |
383 | aIsLargerSignificand is only valid if both a and b are NaNs
384 | of some kind, and is true if a has the larger significand,
385 | or if both a and b have the same significand but a is
386 | positive but b is negative. It is only needed for the x87
387 | tie-break rule.
388 *----------------------------------------------------------------------------*/
389
390 static int pickNaN(FloatClass a_cls, FloatClass b_cls,
391 bool aIsLargerSignificand, float_status *status)
392 {
393 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA) || \
394 defined(TARGET_LOONGARCH64) || defined(TARGET_S390X)
395 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
396 * the first of:
397 * 1. A if it is signaling
398 * 2. B if it is signaling
399 * 3. A (quiet)
400 * 4. B (quiet)
401 * A signaling NaN is always quietened before returning it.
402 */
403 /* According to MIPS specifications, if one of the two operands is
404 * a sNaN, a new qNaN has to be generated. This is done in
405 * floatXX_silence_nan(). For qNaN inputs the specifications
406 * says: "When possible, this QNaN result is one of the operand QNaN
407 * values." In practice it seems that most implementations choose
408 * the first operand if both operands are qNaN. In short this gives
409 * the following rules:
410 * 1. A if it is signaling
411 * 2. B if it is signaling
412 * 3. A (quiet)
413 * 4. B (quiet)
414 * A signaling NaN is always silenced before returning it.
415 */
416 if (is_snan(a_cls)) {
417 return 0;
418 } else if (is_snan(b_cls)) {
419 return 1;
420 } else if (is_qnan(a_cls)) {
421 return 0;
422 } else {
423 return 1;
424 }
425 #elif defined(TARGET_PPC) || defined(TARGET_M68K)
426 /* PowerPC propagation rules:
427 * 1. A if it sNaN or qNaN
428 * 2. B if it sNaN or qNaN
429 * A signaling NaN is always silenced before returning it.
430 */
431 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
432 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
433 * If either operand, but not both operands, of an operation is a
434 * nonsignaling NaN, then that NaN is returned as the result. If both
435 * operands are nonsignaling NaNs, then the destination operand
436 * nonsignaling NaN is returned as the result.
437 * If either operand to an operation is a signaling NaN (SNaN), then the
438 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
439 * is set in the FPCR ENABLE byte, then the exception is taken and the
440 * destination is not modified. If the SNaN exception enable bit is not
441 * set, setting the SNaN bit in the operand to a one converts the SNaN to
442 * a nonsignaling NaN. The operation then continues as described in the
443 * preceding paragraph for nonsignaling NaNs.
444 */
445 if (is_nan(a_cls)) {
446 return 0;
447 } else {
448 return 1;
449 }
450 #elif defined(TARGET_XTENSA)
451 /*
452 * Xtensa has two NaN propagation modes.
453 * Which one is active is controlled by float_status::use_first_nan.
454 */
455 if (status->use_first_nan) {
456 if (is_nan(a_cls)) {
457 return 0;
458 } else {
459 return 1;
460 }
461 } else {
462 if (is_nan(b_cls)) {
463 return 1;
464 } else {
465 return 0;
466 }
467 }
468 #else
469 /* This implements x87 NaN propagation rules:
470 * SNaN + QNaN => return the QNaN
471 * two SNaNs => return the one with the larger significand, silenced
472 * two QNaNs => return the one with the larger significand
473 * SNaN and a non-NaN => return the SNaN, silenced
474 * QNaN and a non-NaN => return the QNaN
475 *
476 * If we get down to comparing significands and they are the same,
477 * return the NaN with the positive sign bit (if any).
478 */
479 if (is_snan(a_cls)) {
480 if (is_snan(b_cls)) {
481 return aIsLargerSignificand ? 0 : 1;
482 }
483 return is_qnan(b_cls) ? 1 : 0;
484 } else if (is_qnan(a_cls)) {
485 if (is_snan(b_cls) || !is_qnan(b_cls)) {
486 return 0;
487 } else {
488 return aIsLargerSignificand ? 0 : 1;
489 }
490 } else {
491 return 1;
492 }
493 #endif
494 }
495
496 /*----------------------------------------------------------------------------
497 | Select which NaN to propagate for a three-input operation.
498 | For the moment we assume that no CPU needs the 'larger significand'
499 | information.
500 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
501 *----------------------------------------------------------------------------*/
502 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
503 bool infzero, float_status *status)
504 {
505 #if defined(TARGET_ARM)
506 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
507 * the default NaN
508 */
509 if (infzero && is_qnan(c_cls)) {
510 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
511 return 3;
512 }
513
514 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
515 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
516 */
517 if (is_snan(c_cls)) {
518 return 2;
519 } else if (is_snan(a_cls)) {
520 return 0;
521 } else if (is_snan(b_cls)) {
522 return 1;
523 } else if (is_qnan(c_cls)) {
524 return 2;
525 } else if (is_qnan(a_cls)) {
526 return 0;
527 } else {
528 return 1;
529 }
530 #elif defined(TARGET_MIPS)
531 if (snan_bit_is_one(status)) {
532 /*
533 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
534 * case sets InvalidOp and returns the default NaN
535 */
536 if (infzero) {
537 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
538 return 3;
539 }
540 /* Prefer sNaN over qNaN, in the a, b, c order. */
541 if (is_snan(a_cls)) {
542 return 0;
543 } else if (is_snan(b_cls)) {
544 return 1;
545 } else if (is_snan(c_cls)) {
546 return 2;
547 } else if (is_qnan(a_cls)) {
548 return 0;
549 } else if (is_qnan(b_cls)) {
550 return 1;
551 } else {
552 return 2;
553 }
554 } else {
555 /*
556 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
557 * case sets InvalidOp and returns the input value 'c'
558 */
559 if (infzero) {
560 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
561 return 2;
562 }
563 /* Prefer sNaN over qNaN, in the c, a, b order. */
564 if (is_snan(c_cls)) {
565 return 2;
566 } else if (is_snan(a_cls)) {
567 return 0;
568 } else if (is_snan(b_cls)) {
569 return 1;
570 } else if (is_qnan(c_cls)) {
571 return 2;
572 } else if (is_qnan(a_cls)) {
573 return 0;
574 } else {
575 return 1;
576 }
577 }
578 #elif defined(TARGET_LOONGARCH64)
579 /*
580 * For LoongArch systems that conform to IEEE754-2008, the (inf,zero,nan)
581 * case sets InvalidOp and returns the input value 'c'
582 */
583 if (infzero) {
584 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
585 return 2;
586 }
587 /* Prefer sNaN over qNaN, in the c, a, b order. */
588 if (is_snan(c_cls)) {
589 return 2;
590 } else if (is_snan(a_cls)) {
591 return 0;
592 } else if (is_snan(b_cls)) {
593 return 1;
594 } else if (is_qnan(c_cls)) {
595 return 2;
596 } else if (is_qnan(a_cls)) {
597 return 0;
598 } else {
599 return 1;
600 }
601 #elif defined(TARGET_PPC)
602 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
603 * to return an input NaN if we have one (ie c) rather than generating
604 * a default NaN
605 */
606 if (infzero) {
607 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
608 return 2;
609 }
610
611 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
612 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
613 */
614 if (is_nan(a_cls)) {
615 return 0;
616 } else if (is_nan(c_cls)) {
617 return 2;
618 } else {
619 return 1;
620 }
621 #elif defined(TARGET_RISCV)
622 /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
623 if (infzero) {
624 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
625 }
626 return 3; /* default NaN */
627 #elif defined(TARGET_XTENSA)
628 /*
629 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
630 * an input NaN if we have one (ie c).
631 */
632 if (infzero) {
633 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
634 return 2;
635 }
636 if (status->use_first_nan) {
637 if (is_nan(a_cls)) {
638 return 0;
639 } else if (is_nan(b_cls)) {
640 return 1;
641 } else {
642 return 2;
643 }
644 } else {
645 if (is_nan(c_cls)) {
646 return 2;
647 } else if (is_nan(b_cls)) {
648 return 1;
649 } else {
650 return 0;
651 }
652 }
653 #else
654 /* A default implementation: prefer a to b to c.
655 * This is unlikely to actually match any real implementation.
656 */
657 if (is_nan(a_cls)) {
658 return 0;
659 } else if (is_nan(b_cls)) {
660 return 1;
661 } else {
662 return 2;
663 }
664 #endif
665 }
666
667 /*----------------------------------------------------------------------------
668 | Returns 1 if the double-precision floating-point value `a' is a quiet
669 | NaN; otherwise returns 0.
670 *----------------------------------------------------------------------------*/
671
672 bool float64_is_quiet_nan(float64 a_, float_status *status)
673 {
674 if (no_signaling_nans(status)) {
675 return float64_is_any_nan(a_);
676 } else {
677 uint64_t a = float64_val(a_);
678 if (snan_bit_is_one(status)) {
679 return (((a >> 51) & 0xFFF) == 0xFFE)
680 && (a & 0x0007FFFFFFFFFFFFULL);
681 } else {
682 return ((a << 1) >= 0xFFF0000000000000ULL);
683 }
684 }
685 }
686
687 /*----------------------------------------------------------------------------
688 | Returns 1 if the double-precision floating-point value `a' is a signaling
689 | NaN; otherwise returns 0.
690 *----------------------------------------------------------------------------*/
691
692 bool float64_is_signaling_nan(float64 a_, float_status *status)
693 {
694 if (no_signaling_nans(status)) {
695 return 0;
696 } else {
697 uint64_t a = float64_val(a_);
698 if (snan_bit_is_one(status)) {
699 return ((a << 1) >= 0xFFF0000000000000ULL);
700 } else {
701 return (((a >> 51) & 0xFFF) == 0xFFE)
702 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
703 }
704 }
705 }
706
707 /*----------------------------------------------------------------------------
708 | Returns 1 if the extended double-precision floating-point value `a' is a
709 | quiet NaN; otherwise returns 0. This slightly differs from the same
710 | function for other types as floatx80 has an explicit bit.
711 *----------------------------------------------------------------------------*/
712
713 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
714 {
715 if (no_signaling_nans(status)) {
716 return floatx80_is_any_nan(a);
717 } else {
718 if (snan_bit_is_one(status)) {
719 uint64_t aLow;
720
721 aLow = a.low & ~0x4000000000000000ULL;
722 return ((a.high & 0x7FFF) == 0x7FFF)
723 && (aLow << 1)
724 && (a.low == aLow);
725 } else {
726 return ((a.high & 0x7FFF) == 0x7FFF)
727 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
728 }
729 }
730 }
731
732 /*----------------------------------------------------------------------------
733 | Returns 1 if the extended double-precision floating-point value `a' is a
734 | signaling NaN; otherwise returns 0. This slightly differs from the same
735 | function for other types as floatx80 has an explicit bit.
736 *----------------------------------------------------------------------------*/
737
738 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
739 {
740 if (no_signaling_nans(status)) {
741 return 0;
742 } else {
743 if (snan_bit_is_one(status)) {
744 return ((a.high & 0x7FFF) == 0x7FFF)
745 && ((a.low << 1) >= 0x8000000000000000ULL);
746 } else {
747 uint64_t aLow;
748
749 aLow = a.low & ~UINT64_C(0x4000000000000000);
750 return ((a.high & 0x7FFF) == 0x7FFF)
751 && (uint64_t)(aLow << 1)
752 && (a.low == aLow);
753 }
754 }
755 }
756
757 /*----------------------------------------------------------------------------
758 | Returns a quiet NaN from a signalling NaN for the extended double-precision
759 | floating point value `a'.
760 *----------------------------------------------------------------------------*/
761
762 floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
763 {
764 /* None of the targets that have snan_bit_is_one use floatx80. */
765 assert(!snan_bit_is_one(status));
766 a.low |= UINT64_C(0xC000000000000000);
767 return a;
768 }
769
770 /*----------------------------------------------------------------------------
771 | Takes two extended double-precision floating-point values `a' and `b', one
772 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
773 | `b' is a signaling NaN, the invalid exception is raised.
774 *----------------------------------------------------------------------------*/
775
776 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
777 {
778 bool aIsLargerSignificand;
779 FloatClass a_cls, b_cls;
780
781 /* This is not complete, but is good enough for pickNaN. */
782 a_cls = (!floatx80_is_any_nan(a)
783 ? float_class_normal
784 : floatx80_is_signaling_nan(a, status)
785 ? float_class_snan
786 : float_class_qnan);
787 b_cls = (!floatx80_is_any_nan(b)
788 ? float_class_normal
789 : floatx80_is_signaling_nan(b, status)
790 ? float_class_snan
791 : float_class_qnan);
792
793 if (is_snan(a_cls) || is_snan(b_cls)) {
794 float_raise(float_flag_invalid, status);
795 }
796
797 if (status->default_nan_mode) {
798 return floatx80_default_nan(status);
799 }
800
801 if (a.low < b.low) {
802 aIsLargerSignificand = 0;
803 } else if (b.low < a.low) {
804 aIsLargerSignificand = 1;
805 } else {
806 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
807 }
808
809 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
810 if (is_snan(b_cls)) {
811 return floatx80_silence_nan(b, status);
812 }
813 return b;
814 } else {
815 if (is_snan(a_cls)) {
816 return floatx80_silence_nan(a, status);
817 }
818 return a;
819 }
820 }
821
822 /*----------------------------------------------------------------------------
823 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
824 | NaN; otherwise returns 0.
825 *----------------------------------------------------------------------------*/
826
827 bool float128_is_quiet_nan(float128 a, float_status *status)
828 {
829 if (no_signaling_nans(status)) {
830 return float128_is_any_nan(a);
831 } else {
832 if (snan_bit_is_one(status)) {
833 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
834 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
835 } else {
836 return ((a.high << 1) >= 0xFFFF000000000000ULL)
837 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
838 }
839 }
840 }
841
842 /*----------------------------------------------------------------------------
843 | Returns 1 if the quadruple-precision floating-point value `a' is a
844 | signaling NaN; otherwise returns 0.
845 *----------------------------------------------------------------------------*/
846
847 bool float128_is_signaling_nan(float128 a, float_status *status)
848 {
849 if (no_signaling_nans(status)) {
850 return 0;
851 } else {
852 if (snan_bit_is_one(status)) {
853 return ((a.high << 1) >= 0xFFFF000000000000ULL)
854 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
855 } else {
856 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
857 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
858 }
859 }
860 }