]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-specialize.c.inc
9pfs: refactor 'name_idx' -> 'nwalked' in v9fs_walk()
[mirror_qemu.git] / fpu / softfloat-specialize.c.inc
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 /*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86 static inline bool no_signaling_nans(float_status *status)
87 {
88 #if defined(TARGET_XTENSA)
89 return status->no_signaling_nans;
90 #else
91 return false;
92 #endif
93 }
94
95 /* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102 static inline bool snan_bit_is_one(float_status *status)
103 {
104 #if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
106 #elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107 return 1;
108 #else
109 return 0;
110 #endif
111 }
112
113 /*----------------------------------------------------------------------------
114 | For the deconstructed floating-point with fraction FRAC, return true
115 | if the fraction represents a signalling NaN; otherwise false.
116 *----------------------------------------------------------------------------*/
117
118 static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119 {
120 if (no_signaling_nans(status)) {
121 return false;
122 } else {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
125 }
126 }
127
128 /*----------------------------------------------------------------------------
129 | The pattern for a default generated deconstructed floating-point NaN.
130 *----------------------------------------------------------------------------*/
131
132 static void parts64_default_nan(FloatParts64 *p, float_status *status)
133 {
134 bool sign = 0;
135 uint64_t frac;
136
137 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
138 /* !snan_bit_is_one, set all bits */
139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144 sign = 1;
145 #elif defined(TARGET_HPPA)
146 /* snan_bit_is_one, set msb-1. */
147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148 #elif defined(TARGET_HEXAGON)
149 sign = 1;
150 frac = ~0ULL;
151 #else
152 /*
153 * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154 * S390, SH4, TriCore, and Xtensa. Our other supported targets,
155 * CRIS, Nios2, and Tile, do not have floating-point.
156 */
157 if (snan_bit_is_one(status)) {
158 /* set all bits other than msb */
159 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160 } else {
161 /* set msb */
162 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163 }
164 #endif
165
166 *p = (FloatParts64) {
167 .cls = float_class_qnan,
168 .sign = sign,
169 .exp = INT_MAX,
170 .frac = frac
171 };
172 }
173
174 static void parts128_default_nan(FloatParts128 *p, float_status *status)
175 {
176 /*
177 * Extrapolate from the choices made by parts64_default_nan to fill
178 * in the quad-floating format. If the low bit is set, assume we
179 * want to set all non-snan bits.
180 */
181 FloatParts64 p64;
182 parts64_default_nan(&p64, status);
183
184 *p = (FloatParts128) {
185 .cls = float_class_qnan,
186 .sign = p64.sign,
187 .exp = INT_MAX,
188 .frac_hi = p64.frac,
189 .frac_lo = -(p64.frac & 1)
190 };
191 }
192
193 /*----------------------------------------------------------------------------
194 | Returns a quiet NaN from a signalling NaN for the deconstructed
195 | floating-point parts.
196 *----------------------------------------------------------------------------*/
197
198 static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
199 {
200 g_assert(!no_signaling_nans(status));
201
202 /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
203 if (snan_bit_is_one(status)) {
204 frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
205 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
206 } else {
207 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
208 }
209 return frac;
210 }
211
212 static void parts64_silence_nan(FloatParts64 *p, float_status *status)
213 {
214 p->frac = parts_silence_nan_frac(p->frac, status);
215 p->cls = float_class_qnan;
216 }
217
218 static void parts128_silence_nan(FloatParts128 *p, float_status *status)
219 {
220 p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
221 p->cls = float_class_qnan;
222 }
223
224 /*----------------------------------------------------------------------------
225 | The pattern for a default generated extended double-precision NaN.
226 *----------------------------------------------------------------------------*/
227 floatx80 floatx80_default_nan(float_status *status)
228 {
229 floatx80 r;
230
231 /* None of the targets that have snan_bit_is_one use floatx80. */
232 assert(!snan_bit_is_one(status));
233 #if defined(TARGET_M68K)
234 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
235 r.high = 0x7FFF;
236 #else
237 /* X86 */
238 r.low = UINT64_C(0xC000000000000000);
239 r.high = 0xFFFF;
240 #endif
241 return r;
242 }
243
244 /*----------------------------------------------------------------------------
245 | The pattern for a default generated extended double-precision inf.
246 *----------------------------------------------------------------------------*/
247
248 #define floatx80_infinity_high 0x7FFF
249 #if defined(TARGET_M68K)
250 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
251 #else
252 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
253 #endif
254
255 const floatx80 floatx80_infinity
256 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
257
258 /*----------------------------------------------------------------------------
259 | Returns 1 if the half-precision floating-point value `a' is a quiet
260 | NaN; otherwise returns 0.
261 *----------------------------------------------------------------------------*/
262
263 bool float16_is_quiet_nan(float16 a_, float_status *status)
264 {
265 if (no_signaling_nans(status)) {
266 return float16_is_any_nan(a_);
267 } else {
268 uint16_t a = float16_val(a_);
269 if (snan_bit_is_one(status)) {
270 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
271 } else {
272
273 return ((a >> 9) & 0x3F) == 0x3F;
274 }
275 }
276 }
277
278 /*----------------------------------------------------------------------------
279 | Returns 1 if the bfloat16 value `a' is a quiet
280 | NaN; otherwise returns 0.
281 *----------------------------------------------------------------------------*/
282
283 bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
284 {
285 if (no_signaling_nans(status)) {
286 return bfloat16_is_any_nan(a_);
287 } else {
288 uint16_t a = a_;
289 if (snan_bit_is_one(status)) {
290 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
291 } else {
292 return ((a >> 6) & 0x1FF) == 0x1FF;
293 }
294 }
295 }
296
297 /*----------------------------------------------------------------------------
298 | Returns 1 if the half-precision floating-point value `a' is a signaling
299 | NaN; otherwise returns 0.
300 *----------------------------------------------------------------------------*/
301
302 bool float16_is_signaling_nan(float16 a_, float_status *status)
303 {
304 if (no_signaling_nans(status)) {
305 return 0;
306 } else {
307 uint16_t a = float16_val(a_);
308 if (snan_bit_is_one(status)) {
309 return ((a >> 9) & 0x3F) == 0x3F;
310 } else {
311 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
312 }
313 }
314 }
315
316 /*----------------------------------------------------------------------------
317 | Returns 1 if the bfloat16 value `a' is a signaling
318 | NaN; otherwise returns 0.
319 *----------------------------------------------------------------------------*/
320
321 bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
322 {
323 if (no_signaling_nans(status)) {
324 return 0;
325 } else {
326 uint16_t a = a_;
327 if (snan_bit_is_one(status)) {
328 return ((a >> 6) & 0x1FF) == 0x1FF;
329 } else {
330 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
331 }
332 }
333 }
334
335 /*----------------------------------------------------------------------------
336 | Returns 1 if the single-precision floating-point value `a' is a quiet
337 | NaN; otherwise returns 0.
338 *----------------------------------------------------------------------------*/
339
340 bool float32_is_quiet_nan(float32 a_, float_status *status)
341 {
342 if (no_signaling_nans(status)) {
343 return float32_is_any_nan(a_);
344 } else {
345 uint32_t a = float32_val(a_);
346 if (snan_bit_is_one(status)) {
347 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
348 } else {
349 return ((uint32_t)(a << 1) >= 0xFF800000);
350 }
351 }
352 }
353
354 /*----------------------------------------------------------------------------
355 | Returns 1 if the single-precision floating-point value `a' is a signaling
356 | NaN; otherwise returns 0.
357 *----------------------------------------------------------------------------*/
358
359 bool float32_is_signaling_nan(float32 a_, float_status *status)
360 {
361 if (no_signaling_nans(status)) {
362 return 0;
363 } else {
364 uint32_t a = float32_val(a_);
365 if (snan_bit_is_one(status)) {
366 return ((uint32_t)(a << 1) >= 0xFF800000);
367 } else {
368 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
369 }
370 }
371 }
372
373 /*----------------------------------------------------------------------------
374 | Select which NaN to propagate for a two-input operation.
375 | IEEE754 doesn't specify all the details of this, so the
376 | algorithm is target-specific.
377 | The routine is passed various bits of information about the
378 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
379 | Note that signalling NaNs are always squashed to quiet NaNs
380 | by the caller, by calling floatXX_silence_nan() before
381 | returning them.
382 |
383 | aIsLargerSignificand is only valid if both a and b are NaNs
384 | of some kind, and is true if a has the larger significand,
385 | or if both a and b have the same significand but a is
386 | positive but b is negative. It is only needed for the x87
387 | tie-break rule.
388 *----------------------------------------------------------------------------*/
389
390 static int pickNaN(FloatClass a_cls, FloatClass b_cls,
391 bool aIsLargerSignificand, float_status *status)
392 {
393 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
394 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
395 * the first of:
396 * 1. A if it is signaling
397 * 2. B if it is signaling
398 * 3. A (quiet)
399 * 4. B (quiet)
400 * A signaling NaN is always quietened before returning it.
401 */
402 /* According to MIPS specifications, if one of the two operands is
403 * a sNaN, a new qNaN has to be generated. This is done in
404 * floatXX_silence_nan(). For qNaN inputs the specifications
405 * says: "When possible, this QNaN result is one of the operand QNaN
406 * values." In practice it seems that most implementations choose
407 * the first operand if both operands are qNaN. In short this gives
408 * the following rules:
409 * 1. A if it is signaling
410 * 2. B if it is signaling
411 * 3. A (quiet)
412 * 4. B (quiet)
413 * A signaling NaN is always silenced before returning it.
414 */
415 if (is_snan(a_cls)) {
416 return 0;
417 } else if (is_snan(b_cls)) {
418 return 1;
419 } else if (is_qnan(a_cls)) {
420 return 0;
421 } else {
422 return 1;
423 }
424 #elif defined(TARGET_PPC) || defined(TARGET_M68K)
425 /* PowerPC propagation rules:
426 * 1. A if it sNaN or qNaN
427 * 2. B if it sNaN or qNaN
428 * A signaling NaN is always silenced before returning it.
429 */
430 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
431 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
432 * If either operand, but not both operands, of an operation is a
433 * nonsignaling NaN, then that NaN is returned as the result. If both
434 * operands are nonsignaling NaNs, then the destination operand
435 * nonsignaling NaN is returned as the result.
436 * If either operand to an operation is a signaling NaN (SNaN), then the
437 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
438 * is set in the FPCR ENABLE byte, then the exception is taken and the
439 * destination is not modified. If the SNaN exception enable bit is not
440 * set, setting the SNaN bit in the operand to a one converts the SNaN to
441 * a nonsignaling NaN. The operation then continues as described in the
442 * preceding paragraph for nonsignaling NaNs.
443 */
444 if (is_nan(a_cls)) {
445 return 0;
446 } else {
447 return 1;
448 }
449 #elif defined(TARGET_XTENSA)
450 /*
451 * Xtensa has two NaN propagation modes.
452 * Which one is active is controlled by float_status::use_first_nan.
453 */
454 if (status->use_first_nan) {
455 if (is_nan(a_cls)) {
456 return 0;
457 } else {
458 return 1;
459 }
460 } else {
461 if (is_nan(b_cls)) {
462 return 1;
463 } else {
464 return 0;
465 }
466 }
467 #else
468 /* This implements x87 NaN propagation rules:
469 * SNaN + QNaN => return the QNaN
470 * two SNaNs => return the one with the larger significand, silenced
471 * two QNaNs => return the one with the larger significand
472 * SNaN and a non-NaN => return the SNaN, silenced
473 * QNaN and a non-NaN => return the QNaN
474 *
475 * If we get down to comparing significands and they are the same,
476 * return the NaN with the positive sign bit (if any).
477 */
478 if (is_snan(a_cls)) {
479 if (is_snan(b_cls)) {
480 return aIsLargerSignificand ? 0 : 1;
481 }
482 return is_qnan(b_cls) ? 1 : 0;
483 } else if (is_qnan(a_cls)) {
484 if (is_snan(b_cls) || !is_qnan(b_cls)) {
485 return 0;
486 } else {
487 return aIsLargerSignificand ? 0 : 1;
488 }
489 } else {
490 return 1;
491 }
492 #endif
493 }
494
495 /*----------------------------------------------------------------------------
496 | Select which NaN to propagate for a three-input operation.
497 | For the moment we assume that no CPU needs the 'larger significand'
498 | information.
499 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
500 *----------------------------------------------------------------------------*/
501 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
502 bool infzero, float_status *status)
503 {
504 #if defined(TARGET_ARM)
505 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
506 * the default NaN
507 */
508 if (infzero && is_qnan(c_cls)) {
509 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
510 return 3;
511 }
512
513 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
514 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
515 */
516 if (is_snan(c_cls)) {
517 return 2;
518 } else if (is_snan(a_cls)) {
519 return 0;
520 } else if (is_snan(b_cls)) {
521 return 1;
522 } else if (is_qnan(c_cls)) {
523 return 2;
524 } else if (is_qnan(a_cls)) {
525 return 0;
526 } else {
527 return 1;
528 }
529 #elif defined(TARGET_MIPS)
530 if (snan_bit_is_one(status)) {
531 /*
532 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
533 * case sets InvalidOp and returns the default NaN
534 */
535 if (infzero) {
536 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
537 return 3;
538 }
539 /* Prefer sNaN over qNaN, in the a, b, c order. */
540 if (is_snan(a_cls)) {
541 return 0;
542 } else if (is_snan(b_cls)) {
543 return 1;
544 } else if (is_snan(c_cls)) {
545 return 2;
546 } else if (is_qnan(a_cls)) {
547 return 0;
548 } else if (is_qnan(b_cls)) {
549 return 1;
550 } else {
551 return 2;
552 }
553 } else {
554 /*
555 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
556 * case sets InvalidOp and returns the input value 'c'
557 */
558 if (infzero) {
559 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
560 return 2;
561 }
562 /* Prefer sNaN over qNaN, in the c, a, b order. */
563 if (is_snan(c_cls)) {
564 return 2;
565 } else if (is_snan(a_cls)) {
566 return 0;
567 } else if (is_snan(b_cls)) {
568 return 1;
569 } else if (is_qnan(c_cls)) {
570 return 2;
571 } else if (is_qnan(a_cls)) {
572 return 0;
573 } else {
574 return 1;
575 }
576 }
577 #elif defined(TARGET_PPC)
578 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
579 * to return an input NaN if we have one (ie c) rather than generating
580 * a default NaN
581 */
582 if (infzero) {
583 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
584 return 2;
585 }
586
587 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
588 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
589 */
590 if (is_nan(a_cls)) {
591 return 0;
592 } else if (is_nan(c_cls)) {
593 return 2;
594 } else {
595 return 1;
596 }
597 #elif defined(TARGET_RISCV)
598 /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
599 if (infzero) {
600 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
601 }
602 return 3; /* default NaN */
603 #elif defined(TARGET_XTENSA)
604 /*
605 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
606 * an input NaN if we have one (ie c).
607 */
608 if (infzero) {
609 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
610 return 2;
611 }
612 if (status->use_first_nan) {
613 if (is_nan(a_cls)) {
614 return 0;
615 } else if (is_nan(b_cls)) {
616 return 1;
617 } else {
618 return 2;
619 }
620 } else {
621 if (is_nan(c_cls)) {
622 return 2;
623 } else if (is_nan(b_cls)) {
624 return 1;
625 } else {
626 return 0;
627 }
628 }
629 #else
630 /* A default implementation: prefer a to b to c.
631 * This is unlikely to actually match any real implementation.
632 */
633 if (is_nan(a_cls)) {
634 return 0;
635 } else if (is_nan(b_cls)) {
636 return 1;
637 } else {
638 return 2;
639 }
640 #endif
641 }
642
643 /*----------------------------------------------------------------------------
644 | Returns 1 if the double-precision floating-point value `a' is a quiet
645 | NaN; otherwise returns 0.
646 *----------------------------------------------------------------------------*/
647
648 bool float64_is_quiet_nan(float64 a_, float_status *status)
649 {
650 if (no_signaling_nans(status)) {
651 return float64_is_any_nan(a_);
652 } else {
653 uint64_t a = float64_val(a_);
654 if (snan_bit_is_one(status)) {
655 return (((a >> 51) & 0xFFF) == 0xFFE)
656 && (a & 0x0007FFFFFFFFFFFFULL);
657 } else {
658 return ((a << 1) >= 0xFFF0000000000000ULL);
659 }
660 }
661 }
662
663 /*----------------------------------------------------------------------------
664 | Returns 1 if the double-precision floating-point value `a' is a signaling
665 | NaN; otherwise returns 0.
666 *----------------------------------------------------------------------------*/
667
668 bool float64_is_signaling_nan(float64 a_, float_status *status)
669 {
670 if (no_signaling_nans(status)) {
671 return 0;
672 } else {
673 uint64_t a = float64_val(a_);
674 if (snan_bit_is_one(status)) {
675 return ((a << 1) >= 0xFFF0000000000000ULL);
676 } else {
677 return (((a >> 51) & 0xFFF) == 0xFFE)
678 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
679 }
680 }
681 }
682
683 /*----------------------------------------------------------------------------
684 | Returns 1 if the extended double-precision floating-point value `a' is a
685 | quiet NaN; otherwise returns 0. This slightly differs from the same
686 | function for other types as floatx80 has an explicit bit.
687 *----------------------------------------------------------------------------*/
688
689 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
690 {
691 if (no_signaling_nans(status)) {
692 return floatx80_is_any_nan(a);
693 } else {
694 if (snan_bit_is_one(status)) {
695 uint64_t aLow;
696
697 aLow = a.low & ~0x4000000000000000ULL;
698 return ((a.high & 0x7FFF) == 0x7FFF)
699 && (aLow << 1)
700 && (a.low == aLow);
701 } else {
702 return ((a.high & 0x7FFF) == 0x7FFF)
703 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
704 }
705 }
706 }
707
708 /*----------------------------------------------------------------------------
709 | Returns 1 if the extended double-precision floating-point value `a' is a
710 | signaling NaN; otherwise returns 0. This slightly differs from the same
711 | function for other types as floatx80 has an explicit bit.
712 *----------------------------------------------------------------------------*/
713
714 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
715 {
716 if (no_signaling_nans(status)) {
717 return 0;
718 } else {
719 if (snan_bit_is_one(status)) {
720 return ((a.high & 0x7FFF) == 0x7FFF)
721 && ((a.low << 1) >= 0x8000000000000000ULL);
722 } else {
723 uint64_t aLow;
724
725 aLow = a.low & ~UINT64_C(0x4000000000000000);
726 return ((a.high & 0x7FFF) == 0x7FFF)
727 && (uint64_t)(aLow << 1)
728 && (a.low == aLow);
729 }
730 }
731 }
732
733 /*----------------------------------------------------------------------------
734 | Returns a quiet NaN from a signalling NaN for the extended double-precision
735 | floating point value `a'.
736 *----------------------------------------------------------------------------*/
737
738 floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
739 {
740 /* None of the targets that have snan_bit_is_one use floatx80. */
741 assert(!snan_bit_is_one(status));
742 a.low |= UINT64_C(0xC000000000000000);
743 return a;
744 }
745
746 /*----------------------------------------------------------------------------
747 | Takes two extended double-precision floating-point values `a' and `b', one
748 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
749 | `b' is a signaling NaN, the invalid exception is raised.
750 *----------------------------------------------------------------------------*/
751
752 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
753 {
754 bool aIsLargerSignificand;
755 FloatClass a_cls, b_cls;
756
757 /* This is not complete, but is good enough for pickNaN. */
758 a_cls = (!floatx80_is_any_nan(a)
759 ? float_class_normal
760 : floatx80_is_signaling_nan(a, status)
761 ? float_class_snan
762 : float_class_qnan);
763 b_cls = (!floatx80_is_any_nan(b)
764 ? float_class_normal
765 : floatx80_is_signaling_nan(b, status)
766 ? float_class_snan
767 : float_class_qnan);
768
769 if (is_snan(a_cls) || is_snan(b_cls)) {
770 float_raise(float_flag_invalid, status);
771 }
772
773 if (status->default_nan_mode) {
774 return floatx80_default_nan(status);
775 }
776
777 if (a.low < b.low) {
778 aIsLargerSignificand = 0;
779 } else if (b.low < a.low) {
780 aIsLargerSignificand = 1;
781 } else {
782 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
783 }
784
785 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
786 if (is_snan(b_cls)) {
787 return floatx80_silence_nan(b, status);
788 }
789 return b;
790 } else {
791 if (is_snan(a_cls)) {
792 return floatx80_silence_nan(a, status);
793 }
794 return a;
795 }
796 }
797
798 /*----------------------------------------------------------------------------
799 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
800 | NaN; otherwise returns 0.
801 *----------------------------------------------------------------------------*/
802
803 bool float128_is_quiet_nan(float128 a, float_status *status)
804 {
805 if (no_signaling_nans(status)) {
806 return float128_is_any_nan(a);
807 } else {
808 if (snan_bit_is_one(status)) {
809 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
810 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
811 } else {
812 return ((a.high << 1) >= 0xFFFF000000000000ULL)
813 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
814 }
815 }
816 }
817
818 /*----------------------------------------------------------------------------
819 | Returns 1 if the quadruple-precision floating-point value `a' is a
820 | signaling NaN; otherwise returns 0.
821 *----------------------------------------------------------------------------*/
822
823 bool float128_is_signaling_nan(float128 a, float_status *status)
824 {
825 if (no_signaling_nans(status)) {
826 return 0;
827 } else {
828 if (snan_bit_is_one(status)) {
829 return ((a.high << 1) >= 0xFFFF000000000000ULL)
830 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
831 } else {
832 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
833 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
834 }
835 }
836 }