]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-specialize.c.inc
softfloat: Define misc operations for bfloat16
[mirror_qemu.git] / fpu / softfloat-specialize.c.inc
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 /*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86 static inline bool no_signaling_nans(float_status *status)
87 {
88 #if defined(TARGET_XTENSA)
89 return status->no_signaling_nans;
90 #else
91 return false;
92 #endif
93 }
94
95 /* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102 static inline bool snan_bit_is_one(float_status *status)
103 {
104 #if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
106 #elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
107 return 1;
108 #else
109 return 0;
110 #endif
111 }
112
113 /*----------------------------------------------------------------------------
114 | For the deconstructed floating-point with fraction FRAC, return true
115 | if the fraction represents a signalling NaN; otherwise false.
116 *----------------------------------------------------------------------------*/
117
118 static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119 {
120 if (no_signaling_nans(status)) {
121 return false;
122 } else {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
125 }
126 }
127
128 /*----------------------------------------------------------------------------
129 | The pattern for a default generated deconstructed floating-point NaN.
130 *----------------------------------------------------------------------------*/
131
132 static FloatParts parts_default_nan(float_status *status)
133 {
134 bool sign = 0;
135 uint64_t frac;
136
137 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
138 /* !snan_bit_is_one, set all bits */
139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144 sign = 1;
145 #elif defined(TARGET_HPPA)
146 /* snan_bit_is_one, set msb-1. */
147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148 #else
149 /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
150 * S390, SH4, TriCore, and Xtensa. I cannot find documentation
151 * for Unicore32; the choice from the original commit is unchanged.
152 * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
153 * do not have floating-point.
154 */
155 if (snan_bit_is_one(status)) {
156 /* set all bits other than msb */
157 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
158 } else {
159 /* set msb */
160 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
161 }
162 #endif
163
164 return (FloatParts) {
165 .cls = float_class_qnan,
166 .sign = sign,
167 .exp = INT_MAX,
168 .frac = frac
169 };
170 }
171
172 /*----------------------------------------------------------------------------
173 | Returns a quiet NaN from a signalling NaN for the deconstructed
174 | floating-point parts.
175 *----------------------------------------------------------------------------*/
176
177 static FloatParts parts_silence_nan(FloatParts a, float_status *status)
178 {
179 g_assert(!no_signaling_nans(status));
180 #if defined(TARGET_HPPA)
181 a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
182 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
183 #else
184 if (snan_bit_is_one(status)) {
185 return parts_default_nan(status);
186 } else {
187 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
188 }
189 #endif
190 a.cls = float_class_qnan;
191 return a;
192 }
193
194 /*----------------------------------------------------------------------------
195 | The pattern for a default generated extended double-precision NaN.
196 *----------------------------------------------------------------------------*/
197 floatx80 floatx80_default_nan(float_status *status)
198 {
199 floatx80 r;
200
201 /* None of the targets that have snan_bit_is_one use floatx80. */
202 assert(!snan_bit_is_one(status));
203 #if defined(TARGET_M68K)
204 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
205 r.high = 0x7FFF;
206 #else
207 /* X86 */
208 r.low = UINT64_C(0xC000000000000000);
209 r.high = 0xFFFF;
210 #endif
211 return r;
212 }
213
214 /*----------------------------------------------------------------------------
215 | The pattern for a default generated extended double-precision inf.
216 *----------------------------------------------------------------------------*/
217
218 #define floatx80_infinity_high 0x7FFF
219 #if defined(TARGET_M68K)
220 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
221 #else
222 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
223 #endif
224
225 const floatx80 floatx80_infinity
226 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
227
228 /*----------------------------------------------------------------------------
229 | Raises the exceptions specified by `flags'. Floating-point traps can be
230 | defined here if desired. It is currently not possible for such a trap
231 | to substitute a result value. If traps are not implemented, this routine
232 | should be simply `float_exception_flags |= flags;'.
233 *----------------------------------------------------------------------------*/
234
235 void float_raise(uint8_t flags, float_status *status)
236 {
237 status->float_exception_flags |= flags;
238 }
239
240 /*----------------------------------------------------------------------------
241 | Internal canonical NaN format.
242 *----------------------------------------------------------------------------*/
243 typedef struct {
244 bool sign;
245 uint64_t high, low;
246 } commonNaNT;
247
248 /*----------------------------------------------------------------------------
249 | Returns 1 if the half-precision floating-point value `a' is a quiet
250 | NaN; otherwise returns 0.
251 *----------------------------------------------------------------------------*/
252
253 bool float16_is_quiet_nan(float16 a_, float_status *status)
254 {
255 if (no_signaling_nans(status)) {
256 return float16_is_any_nan(a_);
257 } else {
258 uint16_t a = float16_val(a_);
259 if (snan_bit_is_one(status)) {
260 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
261 } else {
262
263 return ((a >> 9) & 0x3F) == 0x3F;
264 }
265 }
266 }
267
268 /*----------------------------------------------------------------------------
269 | Returns 1 if the bfloat16 value `a' is a quiet
270 | NaN; otherwise returns 0.
271 *----------------------------------------------------------------------------*/
272
273 bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
274 {
275 if (no_signaling_nans(status)) {
276 return bfloat16_is_any_nan(a_);
277 } else {
278 uint16_t a = a_;
279 if (snan_bit_is_one(status)) {
280 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
281 } else {
282 return ((a >> 6) & 0x1FF) == 0x1FF;
283 }
284 }
285 }
286
287 /*----------------------------------------------------------------------------
288 | Returns 1 if the half-precision floating-point value `a' is a signaling
289 | NaN; otherwise returns 0.
290 *----------------------------------------------------------------------------*/
291
292 bool float16_is_signaling_nan(float16 a_, float_status *status)
293 {
294 if (no_signaling_nans(status)) {
295 return 0;
296 } else {
297 uint16_t a = float16_val(a_);
298 if (snan_bit_is_one(status)) {
299 return ((a >> 9) & 0x3F) == 0x3F;
300 } else {
301 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
302 }
303 }
304 }
305
306 /*----------------------------------------------------------------------------
307 | Returns 1 if the bfloat16 value `a' is a signaling
308 | NaN; otherwise returns 0.
309 *----------------------------------------------------------------------------*/
310
311 bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
312 {
313 if (no_signaling_nans(status)) {
314 return 0;
315 } else {
316 uint16_t a = a_;
317 if (snan_bit_is_one(status)) {
318 return ((a >> 6) & 0x1FF) == 0x1FF;
319 } else {
320 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
321 }
322 }
323 }
324
325 /*----------------------------------------------------------------------------
326 | Returns 1 if the single-precision floating-point value `a' is a quiet
327 | NaN; otherwise returns 0.
328 *----------------------------------------------------------------------------*/
329
330 bool float32_is_quiet_nan(float32 a_, float_status *status)
331 {
332 if (no_signaling_nans(status)) {
333 return float32_is_any_nan(a_);
334 } else {
335 uint32_t a = float32_val(a_);
336 if (snan_bit_is_one(status)) {
337 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
338 } else {
339 return ((uint32_t)(a << 1) >= 0xFF800000);
340 }
341 }
342 }
343
344 /*----------------------------------------------------------------------------
345 | Returns 1 if the single-precision floating-point value `a' is a signaling
346 | NaN; otherwise returns 0.
347 *----------------------------------------------------------------------------*/
348
349 bool float32_is_signaling_nan(float32 a_, float_status *status)
350 {
351 if (no_signaling_nans(status)) {
352 return 0;
353 } else {
354 uint32_t a = float32_val(a_);
355 if (snan_bit_is_one(status)) {
356 return ((uint32_t)(a << 1) >= 0xFF800000);
357 } else {
358 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
359 }
360 }
361 }
362
363 /*----------------------------------------------------------------------------
364 | Returns the result of converting the single-precision floating-point NaN
365 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
366 | exception is raised.
367 *----------------------------------------------------------------------------*/
368
369 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
370 {
371 commonNaNT z;
372
373 if (float32_is_signaling_nan(a, status)) {
374 float_raise(float_flag_invalid, status);
375 }
376 z.sign = float32_val(a) >> 31;
377 z.low = 0;
378 z.high = ((uint64_t)float32_val(a)) << 41;
379 return z;
380 }
381
382 /*----------------------------------------------------------------------------
383 | Returns the result of converting the canonical NaN `a' to the single-
384 | precision floating-point format.
385 *----------------------------------------------------------------------------*/
386
387 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
388 {
389 uint32_t mantissa = a.high >> 41;
390
391 if (status->default_nan_mode) {
392 return float32_default_nan(status);
393 }
394
395 if (mantissa) {
396 return make_float32(
397 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
398 } else {
399 return float32_default_nan(status);
400 }
401 }
402
403 /*----------------------------------------------------------------------------
404 | Select which NaN to propagate for a two-input operation.
405 | IEEE754 doesn't specify all the details of this, so the
406 | algorithm is target-specific.
407 | The routine is passed various bits of information about the
408 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
409 | Note that signalling NaNs are always squashed to quiet NaNs
410 | by the caller, by calling floatXX_silence_nan() before
411 | returning them.
412 |
413 | aIsLargerSignificand is only valid if both a and b are NaNs
414 | of some kind, and is true if a has the larger significand,
415 | or if both a and b have the same significand but a is
416 | positive but b is negative. It is only needed for the x87
417 | tie-break rule.
418 *----------------------------------------------------------------------------*/
419
420 static int pickNaN(FloatClass a_cls, FloatClass b_cls,
421 bool aIsLargerSignificand, float_status *status)
422 {
423 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
424 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
425 * the first of:
426 * 1. A if it is signaling
427 * 2. B if it is signaling
428 * 3. A (quiet)
429 * 4. B (quiet)
430 * A signaling NaN is always quietened before returning it.
431 */
432 /* According to MIPS specifications, if one of the two operands is
433 * a sNaN, a new qNaN has to be generated. This is done in
434 * floatXX_silence_nan(). For qNaN inputs the specifications
435 * says: "When possible, this QNaN result is one of the operand QNaN
436 * values." In practice it seems that most implementations choose
437 * the first operand if both operands are qNaN. In short this gives
438 * the following rules:
439 * 1. A if it is signaling
440 * 2. B if it is signaling
441 * 3. A (quiet)
442 * 4. B (quiet)
443 * A signaling NaN is always silenced before returning it.
444 */
445 if (is_snan(a_cls)) {
446 return 0;
447 } else if (is_snan(b_cls)) {
448 return 1;
449 } else if (is_qnan(a_cls)) {
450 return 0;
451 } else {
452 return 1;
453 }
454 #elif defined(TARGET_PPC) || defined(TARGET_M68K)
455 /* PowerPC propagation rules:
456 * 1. A if it sNaN or qNaN
457 * 2. B if it sNaN or qNaN
458 * A signaling NaN is always silenced before returning it.
459 */
460 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
461 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
462 * If either operand, but not both operands, of an operation is a
463 * nonsignaling NaN, then that NaN is returned as the result. If both
464 * operands are nonsignaling NaNs, then the destination operand
465 * nonsignaling NaN is returned as the result.
466 * If either operand to an operation is a signaling NaN (SNaN), then the
467 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
468 * is set in the FPCR ENABLE byte, then the exception is taken and the
469 * destination is not modified. If the SNaN exception enable bit is not
470 * set, setting the SNaN bit in the operand to a one converts the SNaN to
471 * a nonsignaling NaN. The operation then continues as described in the
472 * preceding paragraph for nonsignaling NaNs.
473 */
474 if (is_nan(a_cls)) {
475 return 0;
476 } else {
477 return 1;
478 }
479 #elif defined(TARGET_XTENSA)
480 /*
481 * Xtensa has two NaN propagation modes.
482 * Which one is active is controlled by float_status::use_first_nan.
483 */
484 if (status->use_first_nan) {
485 if (is_nan(a_cls)) {
486 return 0;
487 } else {
488 return 1;
489 }
490 } else {
491 if (is_nan(b_cls)) {
492 return 1;
493 } else {
494 return 0;
495 }
496 }
497 #else
498 /* This implements x87 NaN propagation rules:
499 * SNaN + QNaN => return the QNaN
500 * two SNaNs => return the one with the larger significand, silenced
501 * two QNaNs => return the one with the larger significand
502 * SNaN and a non-NaN => return the SNaN, silenced
503 * QNaN and a non-NaN => return the QNaN
504 *
505 * If we get down to comparing significands and they are the same,
506 * return the NaN with the positive sign bit (if any).
507 */
508 if (is_snan(a_cls)) {
509 if (is_snan(b_cls)) {
510 return aIsLargerSignificand ? 0 : 1;
511 }
512 return is_qnan(b_cls) ? 1 : 0;
513 } else if (is_qnan(a_cls)) {
514 if (is_snan(b_cls) || !is_qnan(b_cls)) {
515 return 0;
516 } else {
517 return aIsLargerSignificand ? 0 : 1;
518 }
519 } else {
520 return 1;
521 }
522 #endif
523 }
524
525 /*----------------------------------------------------------------------------
526 | Select which NaN to propagate for a three-input operation.
527 | For the moment we assume that no CPU needs the 'larger significand'
528 | information.
529 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
530 *----------------------------------------------------------------------------*/
531 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
532 bool infzero, float_status *status)
533 {
534 #if defined(TARGET_ARM)
535 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
536 * the default NaN
537 */
538 if (infzero && is_qnan(c_cls)) {
539 float_raise(float_flag_invalid, status);
540 return 3;
541 }
542
543 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
544 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
545 */
546 if (is_snan(c_cls)) {
547 return 2;
548 } else if (is_snan(a_cls)) {
549 return 0;
550 } else if (is_snan(b_cls)) {
551 return 1;
552 } else if (is_qnan(c_cls)) {
553 return 2;
554 } else if (is_qnan(a_cls)) {
555 return 0;
556 } else {
557 return 1;
558 }
559 #elif defined(TARGET_MIPS)
560 if (snan_bit_is_one(status)) {
561 /*
562 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
563 * case sets InvalidOp and returns the default NaN
564 */
565 if (infzero) {
566 float_raise(float_flag_invalid, status);
567 return 3;
568 }
569 /* Prefer sNaN over qNaN, in the a, b, c order. */
570 if (is_snan(a_cls)) {
571 return 0;
572 } else if (is_snan(b_cls)) {
573 return 1;
574 } else if (is_snan(c_cls)) {
575 return 2;
576 } else if (is_qnan(a_cls)) {
577 return 0;
578 } else if (is_qnan(b_cls)) {
579 return 1;
580 } else {
581 return 2;
582 }
583 } else {
584 /*
585 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
586 * case sets InvalidOp and returns the input value 'c'
587 */
588 if (infzero) {
589 float_raise(float_flag_invalid, status);
590 return 2;
591 }
592 /* Prefer sNaN over qNaN, in the c, a, b order. */
593 if (is_snan(c_cls)) {
594 return 2;
595 } else if (is_snan(a_cls)) {
596 return 0;
597 } else if (is_snan(b_cls)) {
598 return 1;
599 } else if (is_qnan(c_cls)) {
600 return 2;
601 } else if (is_qnan(a_cls)) {
602 return 0;
603 } else {
604 return 1;
605 }
606 }
607 #elif defined(TARGET_PPC)
608 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
609 * to return an input NaN if we have one (ie c) rather than generating
610 * a default NaN
611 */
612 if (infzero) {
613 float_raise(float_flag_invalid, status);
614 return 2;
615 }
616
617 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
618 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
619 */
620 if (is_nan(a_cls)) {
621 return 0;
622 } else if (is_nan(c_cls)) {
623 return 2;
624 } else {
625 return 1;
626 }
627 #elif defined(TARGET_XTENSA)
628 /*
629 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
630 * an input NaN if we have one (ie c).
631 */
632 if (infzero) {
633 float_raise(float_flag_invalid, status);
634 return 2;
635 }
636 if (status->use_first_nan) {
637 if (is_nan(a_cls)) {
638 return 0;
639 } else if (is_nan(b_cls)) {
640 return 1;
641 } else {
642 return 2;
643 }
644 } else {
645 if (is_nan(c_cls)) {
646 return 2;
647 } else if (is_nan(b_cls)) {
648 return 1;
649 } else {
650 return 0;
651 }
652 }
653 #else
654 /* A default implementation: prefer a to b to c.
655 * This is unlikely to actually match any real implementation.
656 */
657 if (is_nan(a_cls)) {
658 return 0;
659 } else if (is_nan(b_cls)) {
660 return 1;
661 } else {
662 return 2;
663 }
664 #endif
665 }
666
667 /*----------------------------------------------------------------------------
668 | Takes two single-precision floating-point values `a' and `b', one of which
669 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
670 | signaling NaN, the invalid exception is raised.
671 *----------------------------------------------------------------------------*/
672
673 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
674 {
675 bool aIsLargerSignificand;
676 uint32_t av, bv;
677 FloatClass a_cls, b_cls;
678
679 /* This is not complete, but is good enough for pickNaN. */
680 a_cls = (!float32_is_any_nan(a)
681 ? float_class_normal
682 : float32_is_signaling_nan(a, status)
683 ? float_class_snan
684 : float_class_qnan);
685 b_cls = (!float32_is_any_nan(b)
686 ? float_class_normal
687 : float32_is_signaling_nan(b, status)
688 ? float_class_snan
689 : float_class_qnan);
690
691 av = float32_val(a);
692 bv = float32_val(b);
693
694 if (is_snan(a_cls) || is_snan(b_cls)) {
695 float_raise(float_flag_invalid, status);
696 }
697
698 if (status->default_nan_mode) {
699 return float32_default_nan(status);
700 }
701
702 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
703 aIsLargerSignificand = 0;
704 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
705 aIsLargerSignificand = 1;
706 } else {
707 aIsLargerSignificand = (av < bv) ? 1 : 0;
708 }
709
710 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
711 if (is_snan(b_cls)) {
712 return float32_silence_nan(b, status);
713 }
714 return b;
715 } else {
716 if (is_snan(a_cls)) {
717 return float32_silence_nan(a, status);
718 }
719 return a;
720 }
721 }
722
723 /*----------------------------------------------------------------------------
724 | Returns 1 if the double-precision floating-point value `a' is a quiet
725 | NaN; otherwise returns 0.
726 *----------------------------------------------------------------------------*/
727
728 bool float64_is_quiet_nan(float64 a_, float_status *status)
729 {
730 if (no_signaling_nans(status)) {
731 return float64_is_any_nan(a_);
732 } else {
733 uint64_t a = float64_val(a_);
734 if (snan_bit_is_one(status)) {
735 return (((a >> 51) & 0xFFF) == 0xFFE)
736 && (a & 0x0007FFFFFFFFFFFFULL);
737 } else {
738 return ((a << 1) >= 0xFFF0000000000000ULL);
739 }
740 }
741 }
742
743 /*----------------------------------------------------------------------------
744 | Returns 1 if the double-precision floating-point value `a' is a signaling
745 | NaN; otherwise returns 0.
746 *----------------------------------------------------------------------------*/
747
748 bool float64_is_signaling_nan(float64 a_, float_status *status)
749 {
750 if (no_signaling_nans(status)) {
751 return 0;
752 } else {
753 uint64_t a = float64_val(a_);
754 if (snan_bit_is_one(status)) {
755 return ((a << 1) >= 0xFFF0000000000000ULL);
756 } else {
757 return (((a >> 51) & 0xFFF) == 0xFFE)
758 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
759 }
760 }
761 }
762
763 /*----------------------------------------------------------------------------
764 | Returns the result of converting the double-precision floating-point NaN
765 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
766 | exception is raised.
767 *----------------------------------------------------------------------------*/
768
769 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
770 {
771 commonNaNT z;
772
773 if (float64_is_signaling_nan(a, status)) {
774 float_raise(float_flag_invalid, status);
775 }
776 z.sign = float64_val(a) >> 63;
777 z.low = 0;
778 z.high = float64_val(a) << 12;
779 return z;
780 }
781
782 /*----------------------------------------------------------------------------
783 | Returns the result of converting the canonical NaN `a' to the double-
784 | precision floating-point format.
785 *----------------------------------------------------------------------------*/
786
787 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
788 {
789 uint64_t mantissa = a.high >> 12;
790
791 if (status->default_nan_mode) {
792 return float64_default_nan(status);
793 }
794
795 if (mantissa) {
796 return make_float64(
797 (((uint64_t) a.sign) << 63)
798 | UINT64_C(0x7FF0000000000000)
799 | (a.high >> 12));
800 } else {
801 return float64_default_nan(status);
802 }
803 }
804
805 /*----------------------------------------------------------------------------
806 | Takes two double-precision floating-point values `a' and `b', one of which
807 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
808 | signaling NaN, the invalid exception is raised.
809 *----------------------------------------------------------------------------*/
810
811 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
812 {
813 bool aIsLargerSignificand;
814 uint64_t av, bv;
815 FloatClass a_cls, b_cls;
816
817 /* This is not complete, but is good enough for pickNaN. */
818 a_cls = (!float64_is_any_nan(a)
819 ? float_class_normal
820 : float64_is_signaling_nan(a, status)
821 ? float_class_snan
822 : float_class_qnan);
823 b_cls = (!float64_is_any_nan(b)
824 ? float_class_normal
825 : float64_is_signaling_nan(b, status)
826 ? float_class_snan
827 : float_class_qnan);
828
829 av = float64_val(a);
830 bv = float64_val(b);
831
832 if (is_snan(a_cls) || is_snan(b_cls)) {
833 float_raise(float_flag_invalid, status);
834 }
835
836 if (status->default_nan_mode) {
837 return float64_default_nan(status);
838 }
839
840 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
841 aIsLargerSignificand = 0;
842 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
843 aIsLargerSignificand = 1;
844 } else {
845 aIsLargerSignificand = (av < bv) ? 1 : 0;
846 }
847
848 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
849 if (is_snan(b_cls)) {
850 return float64_silence_nan(b, status);
851 }
852 return b;
853 } else {
854 if (is_snan(a_cls)) {
855 return float64_silence_nan(a, status);
856 }
857 return a;
858 }
859 }
860
861 /*----------------------------------------------------------------------------
862 | Returns 1 if the extended double-precision floating-point value `a' is a
863 | quiet NaN; otherwise returns 0. This slightly differs from the same
864 | function for other types as floatx80 has an explicit bit.
865 *----------------------------------------------------------------------------*/
866
867 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
868 {
869 if (no_signaling_nans(status)) {
870 return floatx80_is_any_nan(a);
871 } else {
872 if (snan_bit_is_one(status)) {
873 uint64_t aLow;
874
875 aLow = a.low & ~0x4000000000000000ULL;
876 return ((a.high & 0x7FFF) == 0x7FFF)
877 && (aLow << 1)
878 && (a.low == aLow);
879 } else {
880 return ((a.high & 0x7FFF) == 0x7FFF)
881 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
882 }
883 }
884 }
885
886 /*----------------------------------------------------------------------------
887 | Returns 1 if the extended double-precision floating-point value `a' is a
888 | signaling NaN; otherwise returns 0. This slightly differs from the same
889 | function for other types as floatx80 has an explicit bit.
890 *----------------------------------------------------------------------------*/
891
892 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
893 {
894 if (no_signaling_nans(status)) {
895 return 0;
896 } else {
897 if (snan_bit_is_one(status)) {
898 return ((a.high & 0x7FFF) == 0x7FFF)
899 && ((a.low << 1) >= 0x8000000000000000ULL);
900 } else {
901 uint64_t aLow;
902
903 aLow = a.low & ~UINT64_C(0x4000000000000000);
904 return ((a.high & 0x7FFF) == 0x7FFF)
905 && (uint64_t)(aLow << 1)
906 && (a.low == aLow);
907 }
908 }
909 }
910
911 /*----------------------------------------------------------------------------
912 | Returns a quiet NaN from a signalling NaN for the extended double-precision
913 | floating point value `a'.
914 *----------------------------------------------------------------------------*/
915
916 floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
917 {
918 /* None of the targets that have snan_bit_is_one use floatx80. */
919 assert(!snan_bit_is_one(status));
920 a.low |= UINT64_C(0xC000000000000000);
921 return a;
922 }
923
924 /*----------------------------------------------------------------------------
925 | Returns the result of converting the extended double-precision floating-
926 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
927 | invalid exception is raised.
928 *----------------------------------------------------------------------------*/
929
930 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
931 {
932 floatx80 dflt;
933 commonNaNT z;
934
935 if (floatx80_is_signaling_nan(a, status)) {
936 float_raise(float_flag_invalid, status);
937 }
938 if (a.low >> 63) {
939 z.sign = a.high >> 15;
940 z.low = 0;
941 z.high = a.low << 1;
942 } else {
943 dflt = floatx80_default_nan(status);
944 z.sign = dflt.high >> 15;
945 z.low = 0;
946 z.high = dflt.low << 1;
947 }
948 return z;
949 }
950
951 /*----------------------------------------------------------------------------
952 | Returns the result of converting the canonical NaN `a' to the extended
953 | double-precision floating-point format.
954 *----------------------------------------------------------------------------*/
955
956 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
957 {
958 floatx80 z;
959
960 if (status->default_nan_mode) {
961 return floatx80_default_nan(status);
962 }
963
964 if (a.high >> 1) {
965 z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
966 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
967 } else {
968 z = floatx80_default_nan(status);
969 }
970 return z;
971 }
972
973 /*----------------------------------------------------------------------------
974 | Takes two extended double-precision floating-point values `a' and `b', one
975 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
976 | `b' is a signaling NaN, the invalid exception is raised.
977 *----------------------------------------------------------------------------*/
978
979 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
980 {
981 bool aIsLargerSignificand;
982 FloatClass a_cls, b_cls;
983
984 /* This is not complete, but is good enough for pickNaN. */
985 a_cls = (!floatx80_is_any_nan(a)
986 ? float_class_normal
987 : floatx80_is_signaling_nan(a, status)
988 ? float_class_snan
989 : float_class_qnan);
990 b_cls = (!floatx80_is_any_nan(b)
991 ? float_class_normal
992 : floatx80_is_signaling_nan(b, status)
993 ? float_class_snan
994 : float_class_qnan);
995
996 if (is_snan(a_cls) || is_snan(b_cls)) {
997 float_raise(float_flag_invalid, status);
998 }
999
1000 if (status->default_nan_mode) {
1001 return floatx80_default_nan(status);
1002 }
1003
1004 if (a.low < b.low) {
1005 aIsLargerSignificand = 0;
1006 } else if (b.low < a.low) {
1007 aIsLargerSignificand = 1;
1008 } else {
1009 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1010 }
1011
1012 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1013 if (is_snan(b_cls)) {
1014 return floatx80_silence_nan(b, status);
1015 }
1016 return b;
1017 } else {
1018 if (is_snan(a_cls)) {
1019 return floatx80_silence_nan(a, status);
1020 }
1021 return a;
1022 }
1023 }
1024
1025 /*----------------------------------------------------------------------------
1026 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1027 | NaN; otherwise returns 0.
1028 *----------------------------------------------------------------------------*/
1029
1030 bool float128_is_quiet_nan(float128 a, float_status *status)
1031 {
1032 if (no_signaling_nans(status)) {
1033 return float128_is_any_nan(a);
1034 } else {
1035 if (snan_bit_is_one(status)) {
1036 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1037 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1038 } else {
1039 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1040 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1041 }
1042 }
1043 }
1044
1045 /*----------------------------------------------------------------------------
1046 | Returns 1 if the quadruple-precision floating-point value `a' is a
1047 | signaling NaN; otherwise returns 0.
1048 *----------------------------------------------------------------------------*/
1049
1050 bool float128_is_signaling_nan(float128 a, float_status *status)
1051 {
1052 if (no_signaling_nans(status)) {
1053 return 0;
1054 } else {
1055 if (snan_bit_is_one(status)) {
1056 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1057 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1058 } else {
1059 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1060 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
1061 }
1062 }
1063 }
1064
1065 /*----------------------------------------------------------------------------
1066 | Returns a quiet NaN from a signalling NaN for the quadruple-precision
1067 | floating point value `a'.
1068 *----------------------------------------------------------------------------*/
1069
1070 float128 float128_silence_nan(float128 a, float_status *status)
1071 {
1072 if (no_signaling_nans(status)) {
1073 g_assert_not_reached();
1074 } else {
1075 if (snan_bit_is_one(status)) {
1076 return float128_default_nan(status);
1077 } else {
1078 a.high |= UINT64_C(0x0000800000000000);
1079 return a;
1080 }
1081 }
1082 }
1083
1084 /*----------------------------------------------------------------------------
1085 | Returns the result of converting the quadruple-precision floating-point NaN
1086 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1087 | exception is raised.
1088 *----------------------------------------------------------------------------*/
1089
1090 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1091 {
1092 commonNaNT z;
1093
1094 if (float128_is_signaling_nan(a, status)) {
1095 float_raise(float_flag_invalid, status);
1096 }
1097 z.sign = a.high >> 63;
1098 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1099 return z;
1100 }
1101
1102 /*----------------------------------------------------------------------------
1103 | Returns the result of converting the canonical NaN `a' to the quadruple-
1104 | precision floating-point format.
1105 *----------------------------------------------------------------------------*/
1106
1107 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1108 {
1109 float128 z;
1110
1111 if (status->default_nan_mode) {
1112 return float128_default_nan(status);
1113 }
1114
1115 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1116 z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1117 return z;
1118 }
1119
1120 /*----------------------------------------------------------------------------
1121 | Takes two quadruple-precision floating-point values `a' and `b', one of
1122 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1123 | `b' is a signaling NaN, the invalid exception is raised.
1124 *----------------------------------------------------------------------------*/
1125
1126 static float128 propagateFloat128NaN(float128 a, float128 b,
1127 float_status *status)
1128 {
1129 bool aIsLargerSignificand;
1130 FloatClass a_cls, b_cls;
1131
1132 /* This is not complete, but is good enough for pickNaN. */
1133 a_cls = (!float128_is_any_nan(a)
1134 ? float_class_normal
1135 : float128_is_signaling_nan(a, status)
1136 ? float_class_snan
1137 : float_class_qnan);
1138 b_cls = (!float128_is_any_nan(b)
1139 ? float_class_normal
1140 : float128_is_signaling_nan(b, status)
1141 ? float_class_snan
1142 : float_class_qnan);
1143
1144 if (is_snan(a_cls) || is_snan(b_cls)) {
1145 float_raise(float_flag_invalid, status);
1146 }
1147
1148 if (status->default_nan_mode) {
1149 return float128_default_nan(status);
1150 }
1151
1152 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1153 aIsLargerSignificand = 0;
1154 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1155 aIsLargerSignificand = 1;
1156 } else {
1157 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1158 }
1159
1160 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1161 if (is_snan(b_cls)) {
1162 return float128_silence_nan(b, status);
1163 }
1164 return b;
1165 } else {
1166 if (is_snan(a_cls)) {
1167 return float128_silence_nan(a, status);
1168 }
1169 return a;
1170 }
1171 }