]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-specialize.c.inc
Merge remote-tracking branch 'remotes/kraxel/tags/fixes-20200825-pull-request' into...
[mirror_qemu.git] / fpu / softfloat-specialize.c.inc
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 /*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86 static inline bool no_signaling_nans(float_status *status)
87 {
88 #if defined(TARGET_XTENSA)
89 return status->no_signaling_nans;
90 #else
91 return false;
92 #endif
93 }
94
95 /* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102 static inline bool snan_bit_is_one(float_status *status)
103 {
104 #if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
106 #elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
107 return 1;
108 #else
109 return 0;
110 #endif
111 }
112
113 /*----------------------------------------------------------------------------
114 | For the deconstructed floating-point with fraction FRAC, return true
115 | if the fraction represents a signalling NaN; otherwise false.
116 *----------------------------------------------------------------------------*/
117
118 static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119 {
120 if (no_signaling_nans(status)) {
121 return false;
122 } else {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
125 }
126 }
127
128 /*----------------------------------------------------------------------------
129 | The pattern for a default generated deconstructed floating-point NaN.
130 *----------------------------------------------------------------------------*/
131
132 static FloatParts parts_default_nan(float_status *status)
133 {
134 bool sign = 0;
135 uint64_t frac;
136
137 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
138 /* !snan_bit_is_one, set all bits */
139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144 sign = 1;
145 #elif defined(TARGET_HPPA)
146 /* snan_bit_is_one, set msb-1. */
147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148 #else
149 /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
150 * S390, SH4, TriCore, and Xtensa. I cannot find documentation
151 * for Unicore32; the choice from the original commit is unchanged.
152 * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
153 * do not have floating-point.
154 */
155 if (snan_bit_is_one(status)) {
156 /* set all bits other than msb */
157 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
158 } else {
159 /* set msb */
160 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
161 }
162 #endif
163
164 return (FloatParts) {
165 .cls = float_class_qnan,
166 .sign = sign,
167 .exp = INT_MAX,
168 .frac = frac
169 };
170 }
171
172 /*----------------------------------------------------------------------------
173 | Returns a quiet NaN from a signalling NaN for the deconstructed
174 | floating-point parts.
175 *----------------------------------------------------------------------------*/
176
177 static FloatParts parts_silence_nan(FloatParts a, float_status *status)
178 {
179 g_assert(!no_signaling_nans(status));
180 #if defined(TARGET_HPPA)
181 a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
182 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
183 #else
184 if (snan_bit_is_one(status)) {
185 return parts_default_nan(status);
186 } else {
187 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
188 }
189 #endif
190 a.cls = float_class_qnan;
191 return a;
192 }
193
194 /*----------------------------------------------------------------------------
195 | The pattern for a default generated extended double-precision NaN.
196 *----------------------------------------------------------------------------*/
197 floatx80 floatx80_default_nan(float_status *status)
198 {
199 floatx80 r;
200
201 /* None of the targets that have snan_bit_is_one use floatx80. */
202 assert(!snan_bit_is_one(status));
203 #if defined(TARGET_M68K)
204 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
205 r.high = 0x7FFF;
206 #else
207 /* X86 */
208 r.low = UINT64_C(0xC000000000000000);
209 r.high = 0xFFFF;
210 #endif
211 return r;
212 }
213
214 /*----------------------------------------------------------------------------
215 | The pattern for a default generated extended double-precision inf.
216 *----------------------------------------------------------------------------*/
217
218 #define floatx80_infinity_high 0x7FFF
219 #if defined(TARGET_M68K)
220 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
221 #else
222 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
223 #endif
224
225 const floatx80 floatx80_infinity
226 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
227
228 /*----------------------------------------------------------------------------
229 | Raises the exceptions specified by `flags'. Floating-point traps can be
230 | defined here if desired. It is currently not possible for such a trap
231 | to substitute a result value. If traps are not implemented, this routine
232 | should be simply `float_exception_flags |= flags;'.
233 *----------------------------------------------------------------------------*/
234
235 void float_raise(uint8_t flags, float_status *status)
236 {
237 status->float_exception_flags |= flags;
238 }
239
240 /*----------------------------------------------------------------------------
241 | Internal canonical NaN format.
242 *----------------------------------------------------------------------------*/
243 typedef struct {
244 bool sign;
245 uint64_t high, low;
246 } commonNaNT;
247
248 /*----------------------------------------------------------------------------
249 | Returns 1 if the half-precision floating-point value `a' is a quiet
250 | NaN; otherwise returns 0.
251 *----------------------------------------------------------------------------*/
252
253 bool float16_is_quiet_nan(float16 a_, float_status *status)
254 {
255 if (no_signaling_nans(status)) {
256 return float16_is_any_nan(a_);
257 } else {
258 uint16_t a = float16_val(a_);
259 if (snan_bit_is_one(status)) {
260 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
261 } else {
262
263 return ((a >> 9) & 0x3F) == 0x3F;
264 }
265 }
266 }
267
268 /*----------------------------------------------------------------------------
269 | Returns 1 if the half-precision floating-point value `a' is a signaling
270 | NaN; otherwise returns 0.
271 *----------------------------------------------------------------------------*/
272
273 bool float16_is_signaling_nan(float16 a_, float_status *status)
274 {
275 if (no_signaling_nans(status)) {
276 return 0;
277 } else {
278 uint16_t a = float16_val(a_);
279 if (snan_bit_is_one(status)) {
280 return ((a >> 9) & 0x3F) == 0x3F;
281 } else {
282 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
283 }
284 }
285 }
286
287 /*----------------------------------------------------------------------------
288 | Returns 1 if the single-precision floating-point value `a' is a quiet
289 | NaN; otherwise returns 0.
290 *----------------------------------------------------------------------------*/
291
292 bool float32_is_quiet_nan(float32 a_, float_status *status)
293 {
294 if (no_signaling_nans(status)) {
295 return float32_is_any_nan(a_);
296 } else {
297 uint32_t a = float32_val(a_);
298 if (snan_bit_is_one(status)) {
299 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
300 } else {
301 return ((uint32_t)(a << 1) >= 0xFF800000);
302 }
303 }
304 }
305
306 /*----------------------------------------------------------------------------
307 | Returns 1 if the single-precision floating-point value `a' is a signaling
308 | NaN; otherwise returns 0.
309 *----------------------------------------------------------------------------*/
310
311 bool float32_is_signaling_nan(float32 a_, float_status *status)
312 {
313 if (no_signaling_nans(status)) {
314 return 0;
315 } else {
316 uint32_t a = float32_val(a_);
317 if (snan_bit_is_one(status)) {
318 return ((uint32_t)(a << 1) >= 0xFF800000);
319 } else {
320 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
321 }
322 }
323 }
324
325 /*----------------------------------------------------------------------------
326 | Returns the result of converting the single-precision floating-point NaN
327 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
328 | exception is raised.
329 *----------------------------------------------------------------------------*/
330
331 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
332 {
333 commonNaNT z;
334
335 if (float32_is_signaling_nan(a, status)) {
336 float_raise(float_flag_invalid, status);
337 }
338 z.sign = float32_val(a) >> 31;
339 z.low = 0;
340 z.high = ((uint64_t)float32_val(a)) << 41;
341 return z;
342 }
343
344 /*----------------------------------------------------------------------------
345 | Returns the result of converting the canonical NaN `a' to the single-
346 | precision floating-point format.
347 *----------------------------------------------------------------------------*/
348
349 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
350 {
351 uint32_t mantissa = a.high >> 41;
352
353 if (status->default_nan_mode) {
354 return float32_default_nan(status);
355 }
356
357 if (mantissa) {
358 return make_float32(
359 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
360 } else {
361 return float32_default_nan(status);
362 }
363 }
364
365 /*----------------------------------------------------------------------------
366 | Select which NaN to propagate for a two-input operation.
367 | IEEE754 doesn't specify all the details of this, so the
368 | algorithm is target-specific.
369 | The routine is passed various bits of information about the
370 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
371 | Note that signalling NaNs are always squashed to quiet NaNs
372 | by the caller, by calling floatXX_silence_nan() before
373 | returning them.
374 |
375 | aIsLargerSignificand is only valid if both a and b are NaNs
376 | of some kind, and is true if a has the larger significand,
377 | or if both a and b have the same significand but a is
378 | positive but b is negative. It is only needed for the x87
379 | tie-break rule.
380 *----------------------------------------------------------------------------*/
381
382 static int pickNaN(FloatClass a_cls, FloatClass b_cls,
383 bool aIsLargerSignificand, float_status *status)
384 {
385 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
386 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
387 * the first of:
388 * 1. A if it is signaling
389 * 2. B if it is signaling
390 * 3. A (quiet)
391 * 4. B (quiet)
392 * A signaling NaN is always quietened before returning it.
393 */
394 /* According to MIPS specifications, if one of the two operands is
395 * a sNaN, a new qNaN has to be generated. This is done in
396 * floatXX_silence_nan(). For qNaN inputs the specifications
397 * says: "When possible, this QNaN result is one of the operand QNaN
398 * values." In practice it seems that most implementations choose
399 * the first operand if both operands are qNaN. In short this gives
400 * the following rules:
401 * 1. A if it is signaling
402 * 2. B if it is signaling
403 * 3. A (quiet)
404 * 4. B (quiet)
405 * A signaling NaN is always silenced before returning it.
406 */
407 if (is_snan(a_cls)) {
408 return 0;
409 } else if (is_snan(b_cls)) {
410 return 1;
411 } else if (is_qnan(a_cls)) {
412 return 0;
413 } else {
414 return 1;
415 }
416 #elif defined(TARGET_PPC) || defined(TARGET_M68K)
417 /* PowerPC propagation rules:
418 * 1. A if it sNaN or qNaN
419 * 2. B if it sNaN or qNaN
420 * A signaling NaN is always silenced before returning it.
421 */
422 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
423 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
424 * If either operand, but not both operands, of an operation is a
425 * nonsignaling NaN, then that NaN is returned as the result. If both
426 * operands are nonsignaling NaNs, then the destination operand
427 * nonsignaling NaN is returned as the result.
428 * If either operand to an operation is a signaling NaN (SNaN), then the
429 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
430 * is set in the FPCR ENABLE byte, then the exception is taken and the
431 * destination is not modified. If the SNaN exception enable bit is not
432 * set, setting the SNaN bit in the operand to a one converts the SNaN to
433 * a nonsignaling NaN. The operation then continues as described in the
434 * preceding paragraph for nonsignaling NaNs.
435 */
436 if (is_nan(a_cls)) {
437 return 0;
438 } else {
439 return 1;
440 }
441 #elif defined(TARGET_XTENSA)
442 /*
443 * Xtensa has two NaN propagation modes.
444 * Which one is active is controlled by float_status::use_first_nan.
445 */
446 if (status->use_first_nan) {
447 if (is_nan(a_cls)) {
448 return 0;
449 } else {
450 return 1;
451 }
452 } else {
453 if (is_nan(b_cls)) {
454 return 1;
455 } else {
456 return 0;
457 }
458 }
459 #else
460 /* This implements x87 NaN propagation rules:
461 * SNaN + QNaN => return the QNaN
462 * two SNaNs => return the one with the larger significand, silenced
463 * two QNaNs => return the one with the larger significand
464 * SNaN and a non-NaN => return the SNaN, silenced
465 * QNaN and a non-NaN => return the QNaN
466 *
467 * If we get down to comparing significands and they are the same,
468 * return the NaN with the positive sign bit (if any).
469 */
470 if (is_snan(a_cls)) {
471 if (is_snan(b_cls)) {
472 return aIsLargerSignificand ? 0 : 1;
473 }
474 return is_qnan(b_cls) ? 1 : 0;
475 } else if (is_qnan(a_cls)) {
476 if (is_snan(b_cls) || !is_qnan(b_cls)) {
477 return 0;
478 } else {
479 return aIsLargerSignificand ? 0 : 1;
480 }
481 } else {
482 return 1;
483 }
484 #endif
485 }
486
487 /*----------------------------------------------------------------------------
488 | Select which NaN to propagate for a three-input operation.
489 | For the moment we assume that no CPU needs the 'larger significand'
490 | information.
491 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
492 *----------------------------------------------------------------------------*/
493 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
494 bool infzero, float_status *status)
495 {
496 #if defined(TARGET_ARM)
497 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
498 * the default NaN
499 */
500 if (infzero && is_qnan(c_cls)) {
501 float_raise(float_flag_invalid, status);
502 return 3;
503 }
504
505 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
506 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
507 */
508 if (is_snan(c_cls)) {
509 return 2;
510 } else if (is_snan(a_cls)) {
511 return 0;
512 } else if (is_snan(b_cls)) {
513 return 1;
514 } else if (is_qnan(c_cls)) {
515 return 2;
516 } else if (is_qnan(a_cls)) {
517 return 0;
518 } else {
519 return 1;
520 }
521 #elif defined(TARGET_MIPS)
522 if (snan_bit_is_one(status)) {
523 /*
524 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
525 * case sets InvalidOp and returns the default NaN
526 */
527 if (infzero) {
528 float_raise(float_flag_invalid, status);
529 return 3;
530 }
531 /* Prefer sNaN over qNaN, in the a, b, c order. */
532 if (is_snan(a_cls)) {
533 return 0;
534 } else if (is_snan(b_cls)) {
535 return 1;
536 } else if (is_snan(c_cls)) {
537 return 2;
538 } else if (is_qnan(a_cls)) {
539 return 0;
540 } else if (is_qnan(b_cls)) {
541 return 1;
542 } else {
543 return 2;
544 }
545 } else {
546 /*
547 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
548 * case sets InvalidOp and returns the input value 'c'
549 */
550 if (infzero) {
551 float_raise(float_flag_invalid, status);
552 return 2;
553 }
554 /* Prefer sNaN over qNaN, in the c, a, b order. */
555 if (is_snan(c_cls)) {
556 return 2;
557 } else if (is_snan(a_cls)) {
558 return 0;
559 } else if (is_snan(b_cls)) {
560 return 1;
561 } else if (is_qnan(c_cls)) {
562 return 2;
563 } else if (is_qnan(a_cls)) {
564 return 0;
565 } else {
566 return 1;
567 }
568 }
569 #elif defined(TARGET_PPC)
570 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
571 * to return an input NaN if we have one (ie c) rather than generating
572 * a default NaN
573 */
574 if (infzero) {
575 float_raise(float_flag_invalid, status);
576 return 2;
577 }
578
579 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
580 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
581 */
582 if (is_nan(a_cls)) {
583 return 0;
584 } else if (is_nan(c_cls)) {
585 return 2;
586 } else {
587 return 1;
588 }
589 #elif defined(TARGET_XTENSA)
590 /*
591 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
592 * an input NaN if we have one (ie c).
593 */
594 if (infzero) {
595 float_raise(float_flag_invalid, status);
596 return 2;
597 }
598 if (status->use_first_nan) {
599 if (is_nan(a_cls)) {
600 return 0;
601 } else if (is_nan(b_cls)) {
602 return 1;
603 } else {
604 return 2;
605 }
606 } else {
607 if (is_nan(c_cls)) {
608 return 2;
609 } else if (is_nan(b_cls)) {
610 return 1;
611 } else {
612 return 0;
613 }
614 }
615 #else
616 /* A default implementation: prefer a to b to c.
617 * This is unlikely to actually match any real implementation.
618 */
619 if (is_nan(a_cls)) {
620 return 0;
621 } else if (is_nan(b_cls)) {
622 return 1;
623 } else {
624 return 2;
625 }
626 #endif
627 }
628
629 /*----------------------------------------------------------------------------
630 | Takes two single-precision floating-point values `a' and `b', one of which
631 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
632 | signaling NaN, the invalid exception is raised.
633 *----------------------------------------------------------------------------*/
634
635 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
636 {
637 bool aIsLargerSignificand;
638 uint32_t av, bv;
639 FloatClass a_cls, b_cls;
640
641 /* This is not complete, but is good enough for pickNaN. */
642 a_cls = (!float32_is_any_nan(a)
643 ? float_class_normal
644 : float32_is_signaling_nan(a, status)
645 ? float_class_snan
646 : float_class_qnan);
647 b_cls = (!float32_is_any_nan(b)
648 ? float_class_normal
649 : float32_is_signaling_nan(b, status)
650 ? float_class_snan
651 : float_class_qnan);
652
653 av = float32_val(a);
654 bv = float32_val(b);
655
656 if (is_snan(a_cls) || is_snan(b_cls)) {
657 float_raise(float_flag_invalid, status);
658 }
659
660 if (status->default_nan_mode) {
661 return float32_default_nan(status);
662 }
663
664 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
665 aIsLargerSignificand = 0;
666 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
667 aIsLargerSignificand = 1;
668 } else {
669 aIsLargerSignificand = (av < bv) ? 1 : 0;
670 }
671
672 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
673 if (is_snan(b_cls)) {
674 return float32_silence_nan(b, status);
675 }
676 return b;
677 } else {
678 if (is_snan(a_cls)) {
679 return float32_silence_nan(a, status);
680 }
681 return a;
682 }
683 }
684
685 /*----------------------------------------------------------------------------
686 | Returns 1 if the double-precision floating-point value `a' is a quiet
687 | NaN; otherwise returns 0.
688 *----------------------------------------------------------------------------*/
689
690 bool float64_is_quiet_nan(float64 a_, float_status *status)
691 {
692 if (no_signaling_nans(status)) {
693 return float64_is_any_nan(a_);
694 } else {
695 uint64_t a = float64_val(a_);
696 if (snan_bit_is_one(status)) {
697 return (((a >> 51) & 0xFFF) == 0xFFE)
698 && (a & 0x0007FFFFFFFFFFFFULL);
699 } else {
700 return ((a << 1) >= 0xFFF0000000000000ULL);
701 }
702 }
703 }
704
705 /*----------------------------------------------------------------------------
706 | Returns 1 if the double-precision floating-point value `a' is a signaling
707 | NaN; otherwise returns 0.
708 *----------------------------------------------------------------------------*/
709
710 bool float64_is_signaling_nan(float64 a_, float_status *status)
711 {
712 if (no_signaling_nans(status)) {
713 return 0;
714 } else {
715 uint64_t a = float64_val(a_);
716 if (snan_bit_is_one(status)) {
717 return ((a << 1) >= 0xFFF0000000000000ULL);
718 } else {
719 return (((a >> 51) & 0xFFF) == 0xFFE)
720 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
721 }
722 }
723 }
724
725 /*----------------------------------------------------------------------------
726 | Returns the result of converting the double-precision floating-point NaN
727 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
728 | exception is raised.
729 *----------------------------------------------------------------------------*/
730
731 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
732 {
733 commonNaNT z;
734
735 if (float64_is_signaling_nan(a, status)) {
736 float_raise(float_flag_invalid, status);
737 }
738 z.sign = float64_val(a) >> 63;
739 z.low = 0;
740 z.high = float64_val(a) << 12;
741 return z;
742 }
743
744 /*----------------------------------------------------------------------------
745 | Returns the result of converting the canonical NaN `a' to the double-
746 | precision floating-point format.
747 *----------------------------------------------------------------------------*/
748
749 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
750 {
751 uint64_t mantissa = a.high >> 12;
752
753 if (status->default_nan_mode) {
754 return float64_default_nan(status);
755 }
756
757 if (mantissa) {
758 return make_float64(
759 (((uint64_t) a.sign) << 63)
760 | UINT64_C(0x7FF0000000000000)
761 | (a.high >> 12));
762 } else {
763 return float64_default_nan(status);
764 }
765 }
766
767 /*----------------------------------------------------------------------------
768 | Takes two double-precision floating-point values `a' and `b', one of which
769 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
770 | signaling NaN, the invalid exception is raised.
771 *----------------------------------------------------------------------------*/
772
773 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
774 {
775 bool aIsLargerSignificand;
776 uint64_t av, bv;
777 FloatClass a_cls, b_cls;
778
779 /* This is not complete, but is good enough for pickNaN. */
780 a_cls = (!float64_is_any_nan(a)
781 ? float_class_normal
782 : float64_is_signaling_nan(a, status)
783 ? float_class_snan
784 : float_class_qnan);
785 b_cls = (!float64_is_any_nan(b)
786 ? float_class_normal
787 : float64_is_signaling_nan(b, status)
788 ? float_class_snan
789 : float_class_qnan);
790
791 av = float64_val(a);
792 bv = float64_val(b);
793
794 if (is_snan(a_cls) || is_snan(b_cls)) {
795 float_raise(float_flag_invalid, status);
796 }
797
798 if (status->default_nan_mode) {
799 return float64_default_nan(status);
800 }
801
802 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
803 aIsLargerSignificand = 0;
804 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
805 aIsLargerSignificand = 1;
806 } else {
807 aIsLargerSignificand = (av < bv) ? 1 : 0;
808 }
809
810 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
811 if (is_snan(b_cls)) {
812 return float64_silence_nan(b, status);
813 }
814 return b;
815 } else {
816 if (is_snan(a_cls)) {
817 return float64_silence_nan(a, status);
818 }
819 return a;
820 }
821 }
822
823 /*----------------------------------------------------------------------------
824 | Returns 1 if the extended double-precision floating-point value `a' is a
825 | quiet NaN; otherwise returns 0. This slightly differs from the same
826 | function for other types as floatx80 has an explicit bit.
827 *----------------------------------------------------------------------------*/
828
829 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
830 {
831 if (no_signaling_nans(status)) {
832 return floatx80_is_any_nan(a);
833 } else {
834 if (snan_bit_is_one(status)) {
835 uint64_t aLow;
836
837 aLow = a.low & ~0x4000000000000000ULL;
838 return ((a.high & 0x7FFF) == 0x7FFF)
839 && (aLow << 1)
840 && (a.low == aLow);
841 } else {
842 return ((a.high & 0x7FFF) == 0x7FFF)
843 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
844 }
845 }
846 }
847
848 /*----------------------------------------------------------------------------
849 | Returns 1 if the extended double-precision floating-point value `a' is a
850 | signaling NaN; otherwise returns 0. This slightly differs from the same
851 | function for other types as floatx80 has an explicit bit.
852 *----------------------------------------------------------------------------*/
853
854 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
855 {
856 if (no_signaling_nans(status)) {
857 return 0;
858 } else {
859 if (snan_bit_is_one(status)) {
860 return ((a.high & 0x7FFF) == 0x7FFF)
861 && ((a.low << 1) >= 0x8000000000000000ULL);
862 } else {
863 uint64_t aLow;
864
865 aLow = a.low & ~UINT64_C(0x4000000000000000);
866 return ((a.high & 0x7FFF) == 0x7FFF)
867 && (uint64_t)(aLow << 1)
868 && (a.low == aLow);
869 }
870 }
871 }
872
873 /*----------------------------------------------------------------------------
874 | Returns a quiet NaN from a signalling NaN for the extended double-precision
875 | floating point value `a'.
876 *----------------------------------------------------------------------------*/
877
878 floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
879 {
880 /* None of the targets that have snan_bit_is_one use floatx80. */
881 assert(!snan_bit_is_one(status));
882 a.low |= UINT64_C(0xC000000000000000);
883 return a;
884 }
885
886 /*----------------------------------------------------------------------------
887 | Returns the result of converting the extended double-precision floating-
888 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
889 | invalid exception is raised.
890 *----------------------------------------------------------------------------*/
891
892 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
893 {
894 floatx80 dflt;
895 commonNaNT z;
896
897 if (floatx80_is_signaling_nan(a, status)) {
898 float_raise(float_flag_invalid, status);
899 }
900 if (a.low >> 63) {
901 z.sign = a.high >> 15;
902 z.low = 0;
903 z.high = a.low << 1;
904 } else {
905 dflt = floatx80_default_nan(status);
906 z.sign = dflt.high >> 15;
907 z.low = 0;
908 z.high = dflt.low << 1;
909 }
910 return z;
911 }
912
913 /*----------------------------------------------------------------------------
914 | Returns the result of converting the canonical NaN `a' to the extended
915 | double-precision floating-point format.
916 *----------------------------------------------------------------------------*/
917
918 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
919 {
920 floatx80 z;
921
922 if (status->default_nan_mode) {
923 return floatx80_default_nan(status);
924 }
925
926 if (a.high >> 1) {
927 z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
928 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
929 } else {
930 z = floatx80_default_nan(status);
931 }
932 return z;
933 }
934
935 /*----------------------------------------------------------------------------
936 | Takes two extended double-precision floating-point values `a' and `b', one
937 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
938 | `b' is a signaling NaN, the invalid exception is raised.
939 *----------------------------------------------------------------------------*/
940
941 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
942 {
943 bool aIsLargerSignificand;
944 FloatClass a_cls, b_cls;
945
946 /* This is not complete, but is good enough for pickNaN. */
947 a_cls = (!floatx80_is_any_nan(a)
948 ? float_class_normal
949 : floatx80_is_signaling_nan(a, status)
950 ? float_class_snan
951 : float_class_qnan);
952 b_cls = (!floatx80_is_any_nan(b)
953 ? float_class_normal
954 : floatx80_is_signaling_nan(b, status)
955 ? float_class_snan
956 : float_class_qnan);
957
958 if (is_snan(a_cls) || is_snan(b_cls)) {
959 float_raise(float_flag_invalid, status);
960 }
961
962 if (status->default_nan_mode) {
963 return floatx80_default_nan(status);
964 }
965
966 if (a.low < b.low) {
967 aIsLargerSignificand = 0;
968 } else if (b.low < a.low) {
969 aIsLargerSignificand = 1;
970 } else {
971 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
972 }
973
974 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
975 if (is_snan(b_cls)) {
976 return floatx80_silence_nan(b, status);
977 }
978 return b;
979 } else {
980 if (is_snan(a_cls)) {
981 return floatx80_silence_nan(a, status);
982 }
983 return a;
984 }
985 }
986
987 /*----------------------------------------------------------------------------
988 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
989 | NaN; otherwise returns 0.
990 *----------------------------------------------------------------------------*/
991
992 bool float128_is_quiet_nan(float128 a, float_status *status)
993 {
994 if (no_signaling_nans(status)) {
995 return float128_is_any_nan(a);
996 } else {
997 if (snan_bit_is_one(status)) {
998 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
999 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1000 } else {
1001 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1002 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1003 }
1004 }
1005 }
1006
1007 /*----------------------------------------------------------------------------
1008 | Returns 1 if the quadruple-precision floating-point value `a' is a
1009 | signaling NaN; otherwise returns 0.
1010 *----------------------------------------------------------------------------*/
1011
1012 bool float128_is_signaling_nan(float128 a, float_status *status)
1013 {
1014 if (no_signaling_nans(status)) {
1015 return 0;
1016 } else {
1017 if (snan_bit_is_one(status)) {
1018 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1019 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1020 } else {
1021 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1022 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
1023 }
1024 }
1025 }
1026
1027 /*----------------------------------------------------------------------------
1028 | Returns a quiet NaN from a signalling NaN for the quadruple-precision
1029 | floating point value `a'.
1030 *----------------------------------------------------------------------------*/
1031
1032 float128 float128_silence_nan(float128 a, float_status *status)
1033 {
1034 if (no_signaling_nans(status)) {
1035 g_assert_not_reached();
1036 } else {
1037 if (snan_bit_is_one(status)) {
1038 return float128_default_nan(status);
1039 } else {
1040 a.high |= UINT64_C(0x0000800000000000);
1041 return a;
1042 }
1043 }
1044 }
1045
1046 /*----------------------------------------------------------------------------
1047 | Returns the result of converting the quadruple-precision floating-point NaN
1048 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1049 | exception is raised.
1050 *----------------------------------------------------------------------------*/
1051
1052 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1053 {
1054 commonNaNT z;
1055
1056 if (float128_is_signaling_nan(a, status)) {
1057 float_raise(float_flag_invalid, status);
1058 }
1059 z.sign = a.high >> 63;
1060 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1061 return z;
1062 }
1063
1064 /*----------------------------------------------------------------------------
1065 | Returns the result of converting the canonical NaN `a' to the quadruple-
1066 | precision floating-point format.
1067 *----------------------------------------------------------------------------*/
1068
1069 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1070 {
1071 float128 z;
1072
1073 if (status->default_nan_mode) {
1074 return float128_default_nan(status);
1075 }
1076
1077 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1078 z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1079 return z;
1080 }
1081
1082 /*----------------------------------------------------------------------------
1083 | Takes two quadruple-precision floating-point values `a' and `b', one of
1084 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1085 | `b' is a signaling NaN, the invalid exception is raised.
1086 *----------------------------------------------------------------------------*/
1087
1088 static float128 propagateFloat128NaN(float128 a, float128 b,
1089 float_status *status)
1090 {
1091 bool aIsLargerSignificand;
1092 FloatClass a_cls, b_cls;
1093
1094 /* This is not complete, but is good enough for pickNaN. */
1095 a_cls = (!float128_is_any_nan(a)
1096 ? float_class_normal
1097 : float128_is_signaling_nan(a, status)
1098 ? float_class_snan
1099 : float_class_qnan);
1100 b_cls = (!float128_is_any_nan(b)
1101 ? float_class_normal
1102 : float128_is_signaling_nan(b, status)
1103 ? float_class_snan
1104 : float_class_qnan);
1105
1106 if (is_snan(a_cls) || is_snan(b_cls)) {
1107 float_raise(float_flag_invalid, status);
1108 }
1109
1110 if (status->default_nan_mode) {
1111 return float128_default_nan(status);
1112 }
1113
1114 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1115 aIsLargerSignificand = 0;
1116 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1117 aIsLargerSignificand = 1;
1118 } else {
1119 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1120 }
1121
1122 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1123 if (is_snan(b_cls)) {
1124 return float128_silence_nan(b, status);
1125 }
1126 return b;
1127 } else {
1128 if (is_snan(a_cls)) {
1129 return float128_silence_nan(a, status);
1130 }
1131 return a;
1132 }
1133 }