]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-specialize.c.inc
Merge remote-tracking branch 'remotes/ericb/tags/pull-nbd-2021-05-11' into staging
[mirror_qemu.git] / fpu / softfloat-specialize.c.inc
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 /*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86 static inline bool no_signaling_nans(float_status *status)
87 {
88 #if defined(TARGET_XTENSA)
89 return status->no_signaling_nans;
90 #else
91 return false;
92 #endif
93 }
94
95 /* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102 static inline bool snan_bit_is_one(float_status *status)
103 {
104 #if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
106 #elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107 return 1;
108 #else
109 return 0;
110 #endif
111 }
112
113 /*----------------------------------------------------------------------------
114 | For the deconstructed floating-point with fraction FRAC, return true
115 | if the fraction represents a signalling NaN; otherwise false.
116 *----------------------------------------------------------------------------*/
117
118 static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119 {
120 if (no_signaling_nans(status)) {
121 return false;
122 } else {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
125 }
126 }
127
128 /*----------------------------------------------------------------------------
129 | The pattern for a default generated deconstructed floating-point NaN.
130 *----------------------------------------------------------------------------*/
131
132 static void parts64_default_nan(FloatParts64 *p, float_status *status)
133 {
134 bool sign = 0;
135 uint64_t frac;
136
137 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
138 /* !snan_bit_is_one, set all bits */
139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144 sign = 1;
145 #elif defined(TARGET_HPPA)
146 /* snan_bit_is_one, set msb-1. */
147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148 #elif defined(TARGET_HEXAGON)
149 sign = 1;
150 frac = ~0ULL;
151 #else
152 /*
153 * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154 * S390, SH4, TriCore, and Xtensa. Our other supported targets,
155 * CRIS, Nios2, and Tile, do not have floating-point.
156 */
157 if (snan_bit_is_one(status)) {
158 /* set all bits other than msb */
159 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160 } else {
161 /* set msb */
162 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163 }
164 #endif
165
166 *p = (FloatParts64) {
167 .cls = float_class_qnan,
168 .sign = sign,
169 .exp = INT_MAX,
170 .frac = frac
171 };
172 }
173
174 static void parts128_default_nan(FloatParts128 *p, float_status *status)
175 {
176 /*
177 * Extrapolate from the choices made by parts64_default_nan to fill
178 * in the quad-floating format. If the low bit is set, assume we
179 * want to set all non-snan bits.
180 */
181 FloatParts64 p64;
182 parts64_default_nan(&p64, status);
183
184 *p = (FloatParts128) {
185 .cls = float_class_qnan,
186 .sign = p64.sign,
187 .exp = INT_MAX,
188 .frac_hi = p64.frac,
189 .frac_lo = -(p64.frac & 1)
190 };
191 }
192
193 /*----------------------------------------------------------------------------
194 | Returns a quiet NaN from a signalling NaN for the deconstructed
195 | floating-point parts.
196 *----------------------------------------------------------------------------*/
197
198 static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
199 {
200 g_assert(!no_signaling_nans(status));
201 g_assert(!status->default_nan_mode);
202
203 /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
204 if (snan_bit_is_one(status)) {
205 frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
206 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
207 } else {
208 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
209 }
210 return frac;
211 }
212
213 static void parts64_silence_nan(FloatParts64 *p, float_status *status)
214 {
215 p->frac = parts_silence_nan_frac(p->frac, status);
216 p->cls = float_class_qnan;
217 }
218
219 static void parts128_silence_nan(FloatParts128 *p, float_status *status)
220 {
221 p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
222 p->cls = float_class_qnan;
223 }
224
225 /*----------------------------------------------------------------------------
226 | The pattern for a default generated extended double-precision NaN.
227 *----------------------------------------------------------------------------*/
228 floatx80 floatx80_default_nan(float_status *status)
229 {
230 floatx80 r;
231
232 /* None of the targets that have snan_bit_is_one use floatx80. */
233 assert(!snan_bit_is_one(status));
234 #if defined(TARGET_M68K)
235 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
236 r.high = 0x7FFF;
237 #else
238 /* X86 */
239 r.low = UINT64_C(0xC000000000000000);
240 r.high = 0xFFFF;
241 #endif
242 return r;
243 }
244
245 /*----------------------------------------------------------------------------
246 | The pattern for a default generated extended double-precision inf.
247 *----------------------------------------------------------------------------*/
248
249 #define floatx80_infinity_high 0x7FFF
250 #if defined(TARGET_M68K)
251 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
252 #else
253 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
254 #endif
255
256 const floatx80 floatx80_infinity
257 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
258
259 /*----------------------------------------------------------------------------
260 | Internal canonical NaN format.
261 *----------------------------------------------------------------------------*/
262 typedef struct {
263 bool sign;
264 uint64_t high, low;
265 } commonNaNT;
266
267 /*----------------------------------------------------------------------------
268 | Returns 1 if the half-precision floating-point value `a' is a quiet
269 | NaN; otherwise returns 0.
270 *----------------------------------------------------------------------------*/
271
272 bool float16_is_quiet_nan(float16 a_, float_status *status)
273 {
274 if (no_signaling_nans(status)) {
275 return float16_is_any_nan(a_);
276 } else {
277 uint16_t a = float16_val(a_);
278 if (snan_bit_is_one(status)) {
279 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
280 } else {
281
282 return ((a >> 9) & 0x3F) == 0x3F;
283 }
284 }
285 }
286
287 /*----------------------------------------------------------------------------
288 | Returns 1 if the bfloat16 value `a' is a quiet
289 | NaN; otherwise returns 0.
290 *----------------------------------------------------------------------------*/
291
292 bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
293 {
294 if (no_signaling_nans(status)) {
295 return bfloat16_is_any_nan(a_);
296 } else {
297 uint16_t a = a_;
298 if (snan_bit_is_one(status)) {
299 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
300 } else {
301 return ((a >> 6) & 0x1FF) == 0x1FF;
302 }
303 }
304 }
305
306 /*----------------------------------------------------------------------------
307 | Returns 1 if the half-precision floating-point value `a' is a signaling
308 | NaN; otherwise returns 0.
309 *----------------------------------------------------------------------------*/
310
311 bool float16_is_signaling_nan(float16 a_, float_status *status)
312 {
313 if (no_signaling_nans(status)) {
314 return 0;
315 } else {
316 uint16_t a = float16_val(a_);
317 if (snan_bit_is_one(status)) {
318 return ((a >> 9) & 0x3F) == 0x3F;
319 } else {
320 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
321 }
322 }
323 }
324
325 /*----------------------------------------------------------------------------
326 | Returns 1 if the bfloat16 value `a' is a signaling
327 | NaN; otherwise returns 0.
328 *----------------------------------------------------------------------------*/
329
330 bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
331 {
332 if (no_signaling_nans(status)) {
333 return 0;
334 } else {
335 uint16_t a = a_;
336 if (snan_bit_is_one(status)) {
337 return ((a >> 6) & 0x1FF) == 0x1FF;
338 } else {
339 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
340 }
341 }
342 }
343
344 /*----------------------------------------------------------------------------
345 | Returns 1 if the single-precision floating-point value `a' is a quiet
346 | NaN; otherwise returns 0.
347 *----------------------------------------------------------------------------*/
348
349 bool float32_is_quiet_nan(float32 a_, float_status *status)
350 {
351 if (no_signaling_nans(status)) {
352 return float32_is_any_nan(a_);
353 } else {
354 uint32_t a = float32_val(a_);
355 if (snan_bit_is_one(status)) {
356 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
357 } else {
358 return ((uint32_t)(a << 1) >= 0xFF800000);
359 }
360 }
361 }
362
363 /*----------------------------------------------------------------------------
364 | Returns 1 if the single-precision floating-point value `a' is a signaling
365 | NaN; otherwise returns 0.
366 *----------------------------------------------------------------------------*/
367
368 bool float32_is_signaling_nan(float32 a_, float_status *status)
369 {
370 if (no_signaling_nans(status)) {
371 return 0;
372 } else {
373 uint32_t a = float32_val(a_);
374 if (snan_bit_is_one(status)) {
375 return ((uint32_t)(a << 1) >= 0xFF800000);
376 } else {
377 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
378 }
379 }
380 }
381
382 /*----------------------------------------------------------------------------
383 | Returns the result of converting the single-precision floating-point NaN
384 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
385 | exception is raised.
386 *----------------------------------------------------------------------------*/
387
388 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
389 {
390 commonNaNT z;
391
392 if (float32_is_signaling_nan(a, status)) {
393 float_raise(float_flag_invalid, status);
394 }
395 z.sign = float32_val(a) >> 31;
396 z.low = 0;
397 z.high = ((uint64_t)float32_val(a)) << 41;
398 return z;
399 }
400
401 /*----------------------------------------------------------------------------
402 | Returns the result of converting the canonical NaN `a' to the single-
403 | precision floating-point format.
404 *----------------------------------------------------------------------------*/
405
406 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
407 {
408 uint32_t mantissa = a.high >> 41;
409
410 if (status->default_nan_mode) {
411 return float32_default_nan(status);
412 }
413
414 if (mantissa) {
415 return make_float32(
416 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
417 } else {
418 return float32_default_nan(status);
419 }
420 }
421
422 /*----------------------------------------------------------------------------
423 | Select which NaN to propagate for a two-input operation.
424 | IEEE754 doesn't specify all the details of this, so the
425 | algorithm is target-specific.
426 | The routine is passed various bits of information about the
427 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
428 | Note that signalling NaNs are always squashed to quiet NaNs
429 | by the caller, by calling floatXX_silence_nan() before
430 | returning them.
431 |
432 | aIsLargerSignificand is only valid if both a and b are NaNs
433 | of some kind, and is true if a has the larger significand,
434 | or if both a and b have the same significand but a is
435 | positive but b is negative. It is only needed for the x87
436 | tie-break rule.
437 *----------------------------------------------------------------------------*/
438
439 static int pickNaN(FloatClass a_cls, FloatClass b_cls,
440 bool aIsLargerSignificand, float_status *status)
441 {
442 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
443 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
444 * the first of:
445 * 1. A if it is signaling
446 * 2. B if it is signaling
447 * 3. A (quiet)
448 * 4. B (quiet)
449 * A signaling NaN is always quietened before returning it.
450 */
451 /* According to MIPS specifications, if one of the two operands is
452 * a sNaN, a new qNaN has to be generated. This is done in
453 * floatXX_silence_nan(). For qNaN inputs the specifications
454 * says: "When possible, this QNaN result is one of the operand QNaN
455 * values." In practice it seems that most implementations choose
456 * the first operand if both operands are qNaN. In short this gives
457 * the following rules:
458 * 1. A if it is signaling
459 * 2. B if it is signaling
460 * 3. A (quiet)
461 * 4. B (quiet)
462 * A signaling NaN is always silenced before returning it.
463 */
464 if (is_snan(a_cls)) {
465 return 0;
466 } else if (is_snan(b_cls)) {
467 return 1;
468 } else if (is_qnan(a_cls)) {
469 return 0;
470 } else {
471 return 1;
472 }
473 #elif defined(TARGET_PPC) || defined(TARGET_M68K)
474 /* PowerPC propagation rules:
475 * 1. A if it sNaN or qNaN
476 * 2. B if it sNaN or qNaN
477 * A signaling NaN is always silenced before returning it.
478 */
479 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
480 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
481 * If either operand, but not both operands, of an operation is a
482 * nonsignaling NaN, then that NaN is returned as the result. If both
483 * operands are nonsignaling NaNs, then the destination operand
484 * nonsignaling NaN is returned as the result.
485 * If either operand to an operation is a signaling NaN (SNaN), then the
486 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
487 * is set in the FPCR ENABLE byte, then the exception is taken and the
488 * destination is not modified. If the SNaN exception enable bit is not
489 * set, setting the SNaN bit in the operand to a one converts the SNaN to
490 * a nonsignaling NaN. The operation then continues as described in the
491 * preceding paragraph for nonsignaling NaNs.
492 */
493 if (is_nan(a_cls)) {
494 return 0;
495 } else {
496 return 1;
497 }
498 #elif defined(TARGET_XTENSA)
499 /*
500 * Xtensa has two NaN propagation modes.
501 * Which one is active is controlled by float_status::use_first_nan.
502 */
503 if (status->use_first_nan) {
504 if (is_nan(a_cls)) {
505 return 0;
506 } else {
507 return 1;
508 }
509 } else {
510 if (is_nan(b_cls)) {
511 return 1;
512 } else {
513 return 0;
514 }
515 }
516 #else
517 /* This implements x87 NaN propagation rules:
518 * SNaN + QNaN => return the QNaN
519 * two SNaNs => return the one with the larger significand, silenced
520 * two QNaNs => return the one with the larger significand
521 * SNaN and a non-NaN => return the SNaN, silenced
522 * QNaN and a non-NaN => return the QNaN
523 *
524 * If we get down to comparing significands and they are the same,
525 * return the NaN with the positive sign bit (if any).
526 */
527 if (is_snan(a_cls)) {
528 if (is_snan(b_cls)) {
529 return aIsLargerSignificand ? 0 : 1;
530 }
531 return is_qnan(b_cls) ? 1 : 0;
532 } else if (is_qnan(a_cls)) {
533 if (is_snan(b_cls) || !is_qnan(b_cls)) {
534 return 0;
535 } else {
536 return aIsLargerSignificand ? 0 : 1;
537 }
538 } else {
539 return 1;
540 }
541 #endif
542 }
543
544 /*----------------------------------------------------------------------------
545 | Select which NaN to propagate for a three-input operation.
546 | For the moment we assume that no CPU needs the 'larger significand'
547 | information.
548 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
549 *----------------------------------------------------------------------------*/
550 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
551 bool infzero, float_status *status)
552 {
553 #if defined(TARGET_ARM)
554 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
555 * the default NaN
556 */
557 if (infzero && is_qnan(c_cls)) {
558 float_raise(float_flag_invalid, status);
559 return 3;
560 }
561
562 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
563 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
564 */
565 if (is_snan(c_cls)) {
566 return 2;
567 } else if (is_snan(a_cls)) {
568 return 0;
569 } else if (is_snan(b_cls)) {
570 return 1;
571 } else if (is_qnan(c_cls)) {
572 return 2;
573 } else if (is_qnan(a_cls)) {
574 return 0;
575 } else {
576 return 1;
577 }
578 #elif defined(TARGET_MIPS)
579 if (snan_bit_is_one(status)) {
580 /*
581 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
582 * case sets InvalidOp and returns the default NaN
583 */
584 if (infzero) {
585 float_raise(float_flag_invalid, status);
586 return 3;
587 }
588 /* Prefer sNaN over qNaN, in the a, b, c order. */
589 if (is_snan(a_cls)) {
590 return 0;
591 } else if (is_snan(b_cls)) {
592 return 1;
593 } else if (is_snan(c_cls)) {
594 return 2;
595 } else if (is_qnan(a_cls)) {
596 return 0;
597 } else if (is_qnan(b_cls)) {
598 return 1;
599 } else {
600 return 2;
601 }
602 } else {
603 /*
604 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
605 * case sets InvalidOp and returns the input value 'c'
606 */
607 if (infzero) {
608 float_raise(float_flag_invalid, status);
609 return 2;
610 }
611 /* Prefer sNaN over qNaN, in the c, a, b order. */
612 if (is_snan(c_cls)) {
613 return 2;
614 } else if (is_snan(a_cls)) {
615 return 0;
616 } else if (is_snan(b_cls)) {
617 return 1;
618 } else if (is_qnan(c_cls)) {
619 return 2;
620 } else if (is_qnan(a_cls)) {
621 return 0;
622 } else {
623 return 1;
624 }
625 }
626 #elif defined(TARGET_PPC)
627 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
628 * to return an input NaN if we have one (ie c) rather than generating
629 * a default NaN
630 */
631 if (infzero) {
632 float_raise(float_flag_invalid, status);
633 return 2;
634 }
635
636 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
637 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
638 */
639 if (is_nan(a_cls)) {
640 return 0;
641 } else if (is_nan(c_cls)) {
642 return 2;
643 } else {
644 return 1;
645 }
646 #elif defined(TARGET_RISCV)
647 /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
648 if (infzero) {
649 float_raise(float_flag_invalid, status);
650 }
651 return 3; /* default NaN */
652 #elif defined(TARGET_XTENSA)
653 /*
654 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
655 * an input NaN if we have one (ie c).
656 */
657 if (infzero) {
658 float_raise(float_flag_invalid, status);
659 return 2;
660 }
661 if (status->use_first_nan) {
662 if (is_nan(a_cls)) {
663 return 0;
664 } else if (is_nan(b_cls)) {
665 return 1;
666 } else {
667 return 2;
668 }
669 } else {
670 if (is_nan(c_cls)) {
671 return 2;
672 } else if (is_nan(b_cls)) {
673 return 1;
674 } else {
675 return 0;
676 }
677 }
678 #else
679 /* A default implementation: prefer a to b to c.
680 * This is unlikely to actually match any real implementation.
681 */
682 if (is_nan(a_cls)) {
683 return 0;
684 } else if (is_nan(b_cls)) {
685 return 1;
686 } else {
687 return 2;
688 }
689 #endif
690 }
691
692 /*----------------------------------------------------------------------------
693 | Takes two single-precision floating-point values `a' and `b', one of which
694 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
695 | signaling NaN, the invalid exception is raised.
696 *----------------------------------------------------------------------------*/
697
698 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
699 {
700 bool aIsLargerSignificand;
701 uint32_t av, bv;
702 FloatClass a_cls, b_cls;
703
704 /* This is not complete, but is good enough for pickNaN. */
705 a_cls = (!float32_is_any_nan(a)
706 ? float_class_normal
707 : float32_is_signaling_nan(a, status)
708 ? float_class_snan
709 : float_class_qnan);
710 b_cls = (!float32_is_any_nan(b)
711 ? float_class_normal
712 : float32_is_signaling_nan(b, status)
713 ? float_class_snan
714 : float_class_qnan);
715
716 av = float32_val(a);
717 bv = float32_val(b);
718
719 if (is_snan(a_cls) || is_snan(b_cls)) {
720 float_raise(float_flag_invalid, status);
721 }
722
723 if (status->default_nan_mode) {
724 return float32_default_nan(status);
725 }
726
727 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
728 aIsLargerSignificand = 0;
729 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
730 aIsLargerSignificand = 1;
731 } else {
732 aIsLargerSignificand = (av < bv) ? 1 : 0;
733 }
734
735 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
736 if (is_snan(b_cls)) {
737 return float32_silence_nan(b, status);
738 }
739 return b;
740 } else {
741 if (is_snan(a_cls)) {
742 return float32_silence_nan(a, status);
743 }
744 return a;
745 }
746 }
747
748 /*----------------------------------------------------------------------------
749 | Returns 1 if the double-precision floating-point value `a' is a quiet
750 | NaN; otherwise returns 0.
751 *----------------------------------------------------------------------------*/
752
753 bool float64_is_quiet_nan(float64 a_, float_status *status)
754 {
755 if (no_signaling_nans(status)) {
756 return float64_is_any_nan(a_);
757 } else {
758 uint64_t a = float64_val(a_);
759 if (snan_bit_is_one(status)) {
760 return (((a >> 51) & 0xFFF) == 0xFFE)
761 && (a & 0x0007FFFFFFFFFFFFULL);
762 } else {
763 return ((a << 1) >= 0xFFF0000000000000ULL);
764 }
765 }
766 }
767
768 /*----------------------------------------------------------------------------
769 | Returns 1 if the double-precision floating-point value `a' is a signaling
770 | NaN; otherwise returns 0.
771 *----------------------------------------------------------------------------*/
772
773 bool float64_is_signaling_nan(float64 a_, float_status *status)
774 {
775 if (no_signaling_nans(status)) {
776 return 0;
777 } else {
778 uint64_t a = float64_val(a_);
779 if (snan_bit_is_one(status)) {
780 return ((a << 1) >= 0xFFF0000000000000ULL);
781 } else {
782 return (((a >> 51) & 0xFFF) == 0xFFE)
783 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
784 }
785 }
786 }
787
788 /*----------------------------------------------------------------------------
789 | Returns the result of converting the double-precision floating-point NaN
790 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
791 | exception is raised.
792 *----------------------------------------------------------------------------*/
793
794 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
795 {
796 commonNaNT z;
797
798 if (float64_is_signaling_nan(a, status)) {
799 float_raise(float_flag_invalid, status);
800 }
801 z.sign = float64_val(a) >> 63;
802 z.low = 0;
803 z.high = float64_val(a) << 12;
804 return z;
805 }
806
807 /*----------------------------------------------------------------------------
808 | Returns the result of converting the canonical NaN `a' to the double-
809 | precision floating-point format.
810 *----------------------------------------------------------------------------*/
811
812 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
813 {
814 uint64_t mantissa = a.high >> 12;
815
816 if (status->default_nan_mode) {
817 return float64_default_nan(status);
818 }
819
820 if (mantissa) {
821 return make_float64(
822 (((uint64_t) a.sign) << 63)
823 | UINT64_C(0x7FF0000000000000)
824 | (a.high >> 12));
825 } else {
826 return float64_default_nan(status);
827 }
828 }
829
830 /*----------------------------------------------------------------------------
831 | Takes two double-precision floating-point values `a' and `b', one of which
832 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
833 | signaling NaN, the invalid exception is raised.
834 *----------------------------------------------------------------------------*/
835
836 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
837 {
838 bool aIsLargerSignificand;
839 uint64_t av, bv;
840 FloatClass a_cls, b_cls;
841
842 /* This is not complete, but is good enough for pickNaN. */
843 a_cls = (!float64_is_any_nan(a)
844 ? float_class_normal
845 : float64_is_signaling_nan(a, status)
846 ? float_class_snan
847 : float_class_qnan);
848 b_cls = (!float64_is_any_nan(b)
849 ? float_class_normal
850 : float64_is_signaling_nan(b, status)
851 ? float_class_snan
852 : float_class_qnan);
853
854 av = float64_val(a);
855 bv = float64_val(b);
856
857 if (is_snan(a_cls) || is_snan(b_cls)) {
858 float_raise(float_flag_invalid, status);
859 }
860
861 if (status->default_nan_mode) {
862 return float64_default_nan(status);
863 }
864
865 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
866 aIsLargerSignificand = 0;
867 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
868 aIsLargerSignificand = 1;
869 } else {
870 aIsLargerSignificand = (av < bv) ? 1 : 0;
871 }
872
873 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
874 if (is_snan(b_cls)) {
875 return float64_silence_nan(b, status);
876 }
877 return b;
878 } else {
879 if (is_snan(a_cls)) {
880 return float64_silence_nan(a, status);
881 }
882 return a;
883 }
884 }
885
886 /*----------------------------------------------------------------------------
887 | Returns 1 if the extended double-precision floating-point value `a' is a
888 | quiet NaN; otherwise returns 0. This slightly differs from the same
889 | function for other types as floatx80 has an explicit bit.
890 *----------------------------------------------------------------------------*/
891
892 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
893 {
894 if (no_signaling_nans(status)) {
895 return floatx80_is_any_nan(a);
896 } else {
897 if (snan_bit_is_one(status)) {
898 uint64_t aLow;
899
900 aLow = a.low & ~0x4000000000000000ULL;
901 return ((a.high & 0x7FFF) == 0x7FFF)
902 && (aLow << 1)
903 && (a.low == aLow);
904 } else {
905 return ((a.high & 0x7FFF) == 0x7FFF)
906 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
907 }
908 }
909 }
910
911 /*----------------------------------------------------------------------------
912 | Returns 1 if the extended double-precision floating-point value `a' is a
913 | signaling NaN; otherwise returns 0. This slightly differs from the same
914 | function for other types as floatx80 has an explicit bit.
915 *----------------------------------------------------------------------------*/
916
917 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
918 {
919 if (no_signaling_nans(status)) {
920 return 0;
921 } else {
922 if (snan_bit_is_one(status)) {
923 return ((a.high & 0x7FFF) == 0x7FFF)
924 && ((a.low << 1) >= 0x8000000000000000ULL);
925 } else {
926 uint64_t aLow;
927
928 aLow = a.low & ~UINT64_C(0x4000000000000000);
929 return ((a.high & 0x7FFF) == 0x7FFF)
930 && (uint64_t)(aLow << 1)
931 && (a.low == aLow);
932 }
933 }
934 }
935
936 /*----------------------------------------------------------------------------
937 | Returns a quiet NaN from a signalling NaN for the extended double-precision
938 | floating point value `a'.
939 *----------------------------------------------------------------------------*/
940
941 floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
942 {
943 /* None of the targets that have snan_bit_is_one use floatx80. */
944 assert(!snan_bit_is_one(status));
945 a.low |= UINT64_C(0xC000000000000000);
946 return a;
947 }
948
949 /*----------------------------------------------------------------------------
950 | Returns the result of converting the extended double-precision floating-
951 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
952 | invalid exception is raised.
953 *----------------------------------------------------------------------------*/
954
955 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
956 {
957 floatx80 dflt;
958 commonNaNT z;
959
960 if (floatx80_is_signaling_nan(a, status)) {
961 float_raise(float_flag_invalid, status);
962 }
963 if (a.low >> 63) {
964 z.sign = a.high >> 15;
965 z.low = 0;
966 z.high = a.low << 1;
967 } else {
968 dflt = floatx80_default_nan(status);
969 z.sign = dflt.high >> 15;
970 z.low = 0;
971 z.high = dflt.low << 1;
972 }
973 return z;
974 }
975
976 /*----------------------------------------------------------------------------
977 | Returns the result of converting the canonical NaN `a' to the extended
978 | double-precision floating-point format.
979 *----------------------------------------------------------------------------*/
980
981 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
982 {
983 floatx80 z;
984
985 if (status->default_nan_mode) {
986 return floatx80_default_nan(status);
987 }
988
989 if (a.high >> 1) {
990 z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
991 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
992 } else {
993 z = floatx80_default_nan(status);
994 }
995 return z;
996 }
997
998 /*----------------------------------------------------------------------------
999 | Takes two extended double-precision floating-point values `a' and `b', one
1000 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
1001 | `b' is a signaling NaN, the invalid exception is raised.
1002 *----------------------------------------------------------------------------*/
1003
1004 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
1005 {
1006 bool aIsLargerSignificand;
1007 FloatClass a_cls, b_cls;
1008
1009 /* This is not complete, but is good enough for pickNaN. */
1010 a_cls = (!floatx80_is_any_nan(a)
1011 ? float_class_normal
1012 : floatx80_is_signaling_nan(a, status)
1013 ? float_class_snan
1014 : float_class_qnan);
1015 b_cls = (!floatx80_is_any_nan(b)
1016 ? float_class_normal
1017 : floatx80_is_signaling_nan(b, status)
1018 ? float_class_snan
1019 : float_class_qnan);
1020
1021 if (is_snan(a_cls) || is_snan(b_cls)) {
1022 float_raise(float_flag_invalid, status);
1023 }
1024
1025 if (status->default_nan_mode) {
1026 return floatx80_default_nan(status);
1027 }
1028
1029 if (a.low < b.low) {
1030 aIsLargerSignificand = 0;
1031 } else if (b.low < a.low) {
1032 aIsLargerSignificand = 1;
1033 } else {
1034 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1035 }
1036
1037 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1038 if (is_snan(b_cls)) {
1039 return floatx80_silence_nan(b, status);
1040 }
1041 return b;
1042 } else {
1043 if (is_snan(a_cls)) {
1044 return floatx80_silence_nan(a, status);
1045 }
1046 return a;
1047 }
1048 }
1049
1050 /*----------------------------------------------------------------------------
1051 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1052 | NaN; otherwise returns 0.
1053 *----------------------------------------------------------------------------*/
1054
1055 bool float128_is_quiet_nan(float128 a, float_status *status)
1056 {
1057 if (no_signaling_nans(status)) {
1058 return float128_is_any_nan(a);
1059 } else {
1060 if (snan_bit_is_one(status)) {
1061 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1062 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1063 } else {
1064 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1065 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1066 }
1067 }
1068 }
1069
1070 /*----------------------------------------------------------------------------
1071 | Returns 1 if the quadruple-precision floating-point value `a' is a
1072 | signaling NaN; otherwise returns 0.
1073 *----------------------------------------------------------------------------*/
1074
1075 bool float128_is_signaling_nan(float128 a, float_status *status)
1076 {
1077 if (no_signaling_nans(status)) {
1078 return 0;
1079 } else {
1080 if (snan_bit_is_one(status)) {
1081 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1082 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1083 } else {
1084 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1085 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
1086 }
1087 }
1088 }
1089
1090 /*----------------------------------------------------------------------------
1091 | Returns the result of converting the quadruple-precision floating-point NaN
1092 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1093 | exception is raised.
1094 *----------------------------------------------------------------------------*/
1095
1096 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1097 {
1098 commonNaNT z;
1099
1100 if (float128_is_signaling_nan(a, status)) {
1101 float_raise(float_flag_invalid, status);
1102 }
1103 z.sign = a.high >> 63;
1104 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1105 return z;
1106 }
1107
1108 /*----------------------------------------------------------------------------
1109 | Returns the result of converting the canonical NaN `a' to the quadruple-
1110 | precision floating-point format.
1111 *----------------------------------------------------------------------------*/
1112
1113 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1114 {
1115 float128 z;
1116
1117 if (status->default_nan_mode) {
1118 return float128_default_nan(status);
1119 }
1120
1121 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1122 z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1123 return z;
1124 }
1125
1126 /*----------------------------------------------------------------------------
1127 | Takes two quadruple-precision floating-point values `a' and `b', one of
1128 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1129 | `b' is a signaling NaN, the invalid exception is raised.
1130 *----------------------------------------------------------------------------*/
1131
1132 static float128 propagateFloat128NaN(float128 a, float128 b,
1133 float_status *status)
1134 {
1135 bool aIsLargerSignificand;
1136 FloatClass a_cls, b_cls;
1137
1138 /* This is not complete, but is good enough for pickNaN. */
1139 a_cls = (!float128_is_any_nan(a)
1140 ? float_class_normal
1141 : float128_is_signaling_nan(a, status)
1142 ? float_class_snan
1143 : float_class_qnan);
1144 b_cls = (!float128_is_any_nan(b)
1145 ? float_class_normal
1146 : float128_is_signaling_nan(b, status)
1147 ? float_class_snan
1148 : float_class_qnan);
1149
1150 if (is_snan(a_cls) || is_snan(b_cls)) {
1151 float_raise(float_flag_invalid, status);
1152 }
1153
1154 if (status->default_nan_mode) {
1155 return float128_default_nan(status);
1156 }
1157
1158 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1159 aIsLargerSignificand = 0;
1160 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1161 aIsLargerSignificand = 1;
1162 } else {
1163 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1164 }
1165
1166 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1167 if (is_snan(b_cls)) {
1168 return float128_silence_nan(b, status);
1169 }
1170 return b;
1171 } else {
1172 if (is_snan(a_cls)) {
1173 return float128_silence_nan(a, status);
1174 }
1175 return a;
1176 }
1177 }