]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-specialize.h
softfloat: export some functions
[mirror_qemu.git] / fpu / softfloat-specialize.h
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 #if defined(TARGET_XTENSA)
83 /* Define for architectures which deviate from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86 #define NO_SIGNALING_NANS 1
87 #endif
88
89 /*----------------------------------------------------------------------------
90 | The pattern for a default generated half-precision NaN.
91 *----------------------------------------------------------------------------*/
92 float16 float16_default_nan(float_status *status)
93 {
94 #if defined(TARGET_ARM)
95 return const_float16(0x7E00);
96 #else
97 if (status->snan_bit_is_one) {
98 return const_float16(0x7DFF);
99 } else {
100 #if defined(TARGET_MIPS)
101 return const_float16(0x7E00);
102 #else
103 return const_float16(0xFE00);
104 #endif
105 }
106 #endif
107 }
108
109 /*----------------------------------------------------------------------------
110 | The pattern for a default generated single-precision NaN.
111 *----------------------------------------------------------------------------*/
112 float32 float32_default_nan(float_status *status)
113 {
114 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
115 return const_float32(0x7FFFFFFF);
116 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
117 defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
118 return const_float32(0x7FC00000);
119 #elif defined(TARGET_HPPA)
120 return const_float32(0x7FA00000);
121 #else
122 if (status->snan_bit_is_one) {
123 return const_float32(0x7FBFFFFF);
124 } else {
125 #if defined(TARGET_MIPS)
126 return const_float32(0x7FC00000);
127 #else
128 return const_float32(0xFFC00000);
129 #endif
130 }
131 #endif
132 }
133
134 /*----------------------------------------------------------------------------
135 | The pattern for a default generated double-precision NaN.
136 *----------------------------------------------------------------------------*/
137 float64 float64_default_nan(float_status *status)
138 {
139 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
140 return const_float64(LIT64(0x7FFFFFFFFFFFFFFF));
141 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
142 defined(TARGET_S390X)
143 return const_float64(LIT64(0x7FF8000000000000));
144 #elif defined(TARGET_HPPA)
145 return const_float64(LIT64(0x7FF4000000000000));
146 #else
147 if (status->snan_bit_is_one) {
148 return const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
149 } else {
150 #if defined(TARGET_MIPS)
151 return const_float64(LIT64(0x7FF8000000000000));
152 #else
153 return const_float64(LIT64(0xFFF8000000000000));
154 #endif
155 }
156 #endif
157 }
158
159 /*----------------------------------------------------------------------------
160 | The pattern for a default generated extended double-precision NaN.
161 *----------------------------------------------------------------------------*/
162 floatx80 floatx80_default_nan(float_status *status)
163 {
164 floatx80 r;
165 #if defined(TARGET_M68K)
166 r.low = LIT64(0xFFFFFFFFFFFFFFFF);
167 r.high = 0x7FFF;
168 #else
169 if (status->snan_bit_is_one) {
170 r.low = LIT64(0xBFFFFFFFFFFFFFFF);
171 r.high = 0x7FFF;
172 } else {
173 r.low = LIT64(0xC000000000000000);
174 r.high = 0xFFFF;
175 }
176 #endif
177 return r;
178 }
179
180 /*----------------------------------------------------------------------------
181 | The pattern for a default generated quadruple-precision NaN.
182 *----------------------------------------------------------------------------*/
183 float128 float128_default_nan(float_status *status)
184 {
185 float128 r;
186
187 if (status->snan_bit_is_one) {
188 r.low = LIT64(0xFFFFFFFFFFFFFFFF);
189 r.high = LIT64(0x7FFF7FFFFFFFFFFF);
190 } else {
191 r.low = LIT64(0x0000000000000000);
192 #if defined(TARGET_S390X) || defined(TARGET_PPC)
193 r.high = LIT64(0x7FFF800000000000);
194 #else
195 r.high = LIT64(0xFFFF800000000000);
196 #endif
197 }
198 return r;
199 }
200
201 /*----------------------------------------------------------------------------
202 | Raises the exceptions specified by `flags'. Floating-point traps can be
203 | defined here if desired. It is currently not possible for such a trap
204 | to substitute a result value. If traps are not implemented, this routine
205 | should be simply `float_exception_flags |= flags;'.
206 *----------------------------------------------------------------------------*/
207
208 void float_raise(uint8_t flags, float_status *status)
209 {
210 status->float_exception_flags |= flags;
211 }
212
213 /*----------------------------------------------------------------------------
214 | Internal canonical NaN format.
215 *----------------------------------------------------------------------------*/
216 typedef struct {
217 flag sign;
218 uint64_t high, low;
219 } commonNaNT;
220
221 #ifdef NO_SIGNALING_NANS
222 int float16_is_quiet_nan(float16 a_, float_status *status)
223 {
224 return float16_is_any_nan(a_);
225 }
226
227 int float16_is_signaling_nan(float16 a_, float_status *status)
228 {
229 return 0;
230 }
231 #else
232 /*----------------------------------------------------------------------------
233 | Returns 1 if the half-precision floating-point value `a' is a quiet
234 | NaN; otherwise returns 0.
235 *----------------------------------------------------------------------------*/
236
237 int float16_is_quiet_nan(float16 a_, float_status *status)
238 {
239 uint16_t a = float16_val(a_);
240 if (status->snan_bit_is_one) {
241 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
242 } else {
243 return ((a & ~0x8000) >= 0x7C80);
244 }
245 }
246
247 /*----------------------------------------------------------------------------
248 | Returns 1 if the half-precision floating-point value `a' is a signaling
249 | NaN; otherwise returns 0.
250 *----------------------------------------------------------------------------*/
251
252 int float16_is_signaling_nan(float16 a_, float_status *status)
253 {
254 uint16_t a = float16_val(a_);
255 if (status->snan_bit_is_one) {
256 return ((a & ~0x8000) >= 0x7C80);
257 } else {
258 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
259 }
260 }
261 #endif
262
263 /*----------------------------------------------------------------------------
264 | Returns a quiet NaN if the half-precision floating point value `a' is a
265 | signaling NaN; otherwise returns `a'.
266 *----------------------------------------------------------------------------*/
267 float16 float16_maybe_silence_nan(float16 a_, float_status *status)
268 {
269 if (float16_is_signaling_nan(a_, status)) {
270 if (status->snan_bit_is_one) {
271 return float16_default_nan(status);
272 } else {
273 uint16_t a = float16_val(a_);
274 a |= (1 << 9);
275 return make_float16(a);
276 }
277 }
278 return a_;
279 }
280
281 /*----------------------------------------------------------------------------
282 | Returns the result of converting the half-precision floating-point NaN
283 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
284 | exception is raised.
285 *----------------------------------------------------------------------------*/
286
287 static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
288 {
289 commonNaNT z;
290
291 if (float16_is_signaling_nan(a, status)) {
292 float_raise(float_flag_invalid, status);
293 }
294 z.sign = float16_val(a) >> 15;
295 z.low = 0;
296 z.high = ((uint64_t) float16_val(a)) << 54;
297 return z;
298 }
299
300 /*----------------------------------------------------------------------------
301 | Returns the result of converting the canonical NaN `a' to the half-
302 | precision floating-point format.
303 *----------------------------------------------------------------------------*/
304
305 static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
306 {
307 uint16_t mantissa = a.high >> 54;
308
309 if (status->default_nan_mode) {
310 return float16_default_nan(status);
311 }
312
313 if (mantissa) {
314 return make_float16(((((uint16_t) a.sign) << 15)
315 | (0x1F << 10) | mantissa));
316 } else {
317 return float16_default_nan(status);
318 }
319 }
320
321 #ifdef NO_SIGNALING_NANS
322 int float32_is_quiet_nan(float32 a_, float_status *status)
323 {
324 return float32_is_any_nan(a_);
325 }
326
327 int float32_is_signaling_nan(float32 a_, float_status *status)
328 {
329 return 0;
330 }
331 #else
332 /*----------------------------------------------------------------------------
333 | Returns 1 if the single-precision floating-point value `a' is a quiet
334 | NaN; otherwise returns 0.
335 *----------------------------------------------------------------------------*/
336
337 int float32_is_quiet_nan(float32 a_, float_status *status)
338 {
339 uint32_t a = float32_val(a_);
340 if (status->snan_bit_is_one) {
341 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
342 } else {
343 return ((uint32_t)(a << 1) >= 0xFF800000);
344 }
345 }
346
347 /*----------------------------------------------------------------------------
348 | Returns 1 if the single-precision floating-point value `a' is a signaling
349 | NaN; otherwise returns 0.
350 *----------------------------------------------------------------------------*/
351
352 int float32_is_signaling_nan(float32 a_, float_status *status)
353 {
354 uint32_t a = float32_val(a_);
355 if (status->snan_bit_is_one) {
356 return ((uint32_t)(a << 1) >= 0xFF800000);
357 } else {
358 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
359 }
360 }
361 #endif
362
363 /*----------------------------------------------------------------------------
364 | Returns a quiet NaN if the single-precision floating point value `a' is a
365 | signaling NaN; otherwise returns `a'.
366 *----------------------------------------------------------------------------*/
367
368 float32 float32_maybe_silence_nan(float32 a_, float_status *status)
369 {
370 if (float32_is_signaling_nan(a_, status)) {
371 if (status->snan_bit_is_one) {
372 #ifdef TARGET_HPPA
373 uint32_t a = float32_val(a_);
374 a &= ~0x00400000;
375 a |= 0x00200000;
376 return make_float32(a);
377 #else
378 return float32_default_nan(status);
379 #endif
380 } else {
381 uint32_t a = float32_val(a_);
382 a |= (1 << 22);
383 return make_float32(a);
384 }
385 }
386 return a_;
387 }
388
389 /*----------------------------------------------------------------------------
390 | Returns the result of converting the single-precision floating-point NaN
391 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
392 | exception is raised.
393 *----------------------------------------------------------------------------*/
394
395 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
396 {
397 commonNaNT z;
398
399 if (float32_is_signaling_nan(a, status)) {
400 float_raise(float_flag_invalid, status);
401 }
402 z.sign = float32_val(a) >> 31;
403 z.low = 0;
404 z.high = ((uint64_t)float32_val(a)) << 41;
405 return z;
406 }
407
408 /*----------------------------------------------------------------------------
409 | Returns the result of converting the canonical NaN `a' to the single-
410 | precision floating-point format.
411 *----------------------------------------------------------------------------*/
412
413 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
414 {
415 uint32_t mantissa = a.high >> 41;
416
417 if (status->default_nan_mode) {
418 return float32_default_nan(status);
419 }
420
421 if (mantissa) {
422 return make_float32(
423 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
424 } else {
425 return float32_default_nan(status);
426 }
427 }
428
429 /*----------------------------------------------------------------------------
430 | Select which NaN to propagate for a two-input operation.
431 | IEEE754 doesn't specify all the details of this, so the
432 | algorithm is target-specific.
433 | The routine is passed various bits of information about the
434 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
435 | Note that signalling NaNs are always squashed to quiet NaNs
436 | by the caller, by calling floatXX_maybe_silence_nan() before
437 | returning them.
438 |
439 | aIsLargerSignificand is only valid if both a and b are NaNs
440 | of some kind, and is true if a has the larger significand,
441 | or if both a and b have the same significand but a is
442 | positive but b is negative. It is only needed for the x87
443 | tie-break rule.
444 *----------------------------------------------------------------------------*/
445
446 #if defined(TARGET_ARM)
447 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
448 flag aIsLargerSignificand)
449 {
450 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
451 * the first of:
452 * 1. A if it is signaling
453 * 2. B if it is signaling
454 * 3. A (quiet)
455 * 4. B (quiet)
456 * A signaling NaN is always quietened before returning it.
457 */
458 if (aIsSNaN) {
459 return 0;
460 } else if (bIsSNaN) {
461 return 1;
462 } else if (aIsQNaN) {
463 return 0;
464 } else {
465 return 1;
466 }
467 }
468 #elif defined(TARGET_MIPS) || defined(TARGET_HPPA)
469 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
470 flag aIsLargerSignificand)
471 {
472 /* According to MIPS specifications, if one of the two operands is
473 * a sNaN, a new qNaN has to be generated. This is done in
474 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
475 * says: "When possible, this QNaN result is one of the operand QNaN
476 * values." In practice it seems that most implementations choose
477 * the first operand if both operands are qNaN. In short this gives
478 * the following rules:
479 * 1. A if it is signaling
480 * 2. B if it is signaling
481 * 3. A (quiet)
482 * 4. B (quiet)
483 * A signaling NaN is always silenced before returning it.
484 */
485 if (aIsSNaN) {
486 return 0;
487 } else if (bIsSNaN) {
488 return 1;
489 } else if (aIsQNaN) {
490 return 0;
491 } else {
492 return 1;
493 }
494 }
495 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
496 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
497 flag aIsLargerSignificand)
498 {
499 /* PowerPC propagation rules:
500 * 1. A if it sNaN or qNaN
501 * 2. B if it sNaN or qNaN
502 * A signaling NaN is always silenced before returning it.
503 */
504 if (aIsSNaN || aIsQNaN) {
505 return 0;
506 } else {
507 return 1;
508 }
509 }
510 #elif defined(TARGET_M68K)
511 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
512 flag aIsLargerSignificand)
513 {
514 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
515 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
516 * If either operand, but not both operands, of an operation is a
517 * nonsignaling NaN, then that NaN is returned as the result. If both
518 * operands are nonsignaling NaNs, then the destination operand
519 * nonsignaling NaN is returned as the result.
520 * If either operand to an operation is a signaling NaN (SNaN), then the
521 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
522 * is set in the FPCR ENABLE byte, then the exception is taken and the
523 * destination is not modified. If the SNaN exception enable bit is not
524 * set, setting the SNaN bit in the operand to a one converts the SNaN to
525 * a nonsignaling NaN. The operation then continues as described in the
526 * preceding paragraph for nonsignaling NaNs.
527 */
528 if (aIsQNaN || aIsSNaN) { /* a is the destination operand */
529 return 0; /* return the destination operand */
530 } else {
531 return 1; /* return b */
532 }
533 }
534 #else
535 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
536 flag aIsLargerSignificand)
537 {
538 /* This implements x87 NaN propagation rules:
539 * SNaN + QNaN => return the QNaN
540 * two SNaNs => return the one with the larger significand, silenced
541 * two QNaNs => return the one with the larger significand
542 * SNaN and a non-NaN => return the SNaN, silenced
543 * QNaN and a non-NaN => return the QNaN
544 *
545 * If we get down to comparing significands and they are the same,
546 * return the NaN with the positive sign bit (if any).
547 */
548 if (aIsSNaN) {
549 if (bIsSNaN) {
550 return aIsLargerSignificand ? 0 : 1;
551 }
552 return bIsQNaN ? 1 : 0;
553 } else if (aIsQNaN) {
554 if (bIsSNaN || !bIsQNaN) {
555 return 0;
556 } else {
557 return aIsLargerSignificand ? 0 : 1;
558 }
559 } else {
560 return 1;
561 }
562 }
563 #endif
564
565 /*----------------------------------------------------------------------------
566 | Select which NaN to propagate for a three-input operation.
567 | For the moment we assume that no CPU needs the 'larger significand'
568 | information.
569 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
570 *----------------------------------------------------------------------------*/
571 #if defined(TARGET_ARM)
572 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
573 flag cIsQNaN, flag cIsSNaN, flag infzero,
574 float_status *status)
575 {
576 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
577 * the default NaN
578 */
579 if (infzero && cIsQNaN) {
580 float_raise(float_flag_invalid, status);
581 return 3;
582 }
583
584 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
585 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
586 */
587 if (cIsSNaN) {
588 return 2;
589 } else if (aIsSNaN) {
590 return 0;
591 } else if (bIsSNaN) {
592 return 1;
593 } else if (cIsQNaN) {
594 return 2;
595 } else if (aIsQNaN) {
596 return 0;
597 } else {
598 return 1;
599 }
600 }
601 #elif defined(TARGET_MIPS)
602 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
603 flag cIsQNaN, flag cIsSNaN, flag infzero,
604 float_status *status)
605 {
606 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
607 * the default NaN
608 */
609 if (infzero) {
610 float_raise(float_flag_invalid, status);
611 return 3;
612 }
613
614 if (status->snan_bit_is_one) {
615 /* Prefer sNaN over qNaN, in the a, b, c order. */
616 if (aIsSNaN) {
617 return 0;
618 } else if (bIsSNaN) {
619 return 1;
620 } else if (cIsSNaN) {
621 return 2;
622 } else if (aIsQNaN) {
623 return 0;
624 } else if (bIsQNaN) {
625 return 1;
626 } else {
627 return 2;
628 }
629 } else {
630 /* Prefer sNaN over qNaN, in the c, a, b order. */
631 if (cIsSNaN) {
632 return 2;
633 } else if (aIsSNaN) {
634 return 0;
635 } else if (bIsSNaN) {
636 return 1;
637 } else if (cIsQNaN) {
638 return 2;
639 } else if (aIsQNaN) {
640 return 0;
641 } else {
642 return 1;
643 }
644 }
645 }
646 #elif defined(TARGET_PPC)
647 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
648 flag cIsQNaN, flag cIsSNaN, flag infzero,
649 float_status *status)
650 {
651 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
652 * to return an input NaN if we have one (ie c) rather than generating
653 * a default NaN
654 */
655 if (infzero) {
656 float_raise(float_flag_invalid, status);
657 return 2;
658 }
659
660 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
661 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
662 */
663 if (aIsSNaN || aIsQNaN) {
664 return 0;
665 } else if (cIsSNaN || cIsQNaN) {
666 return 2;
667 } else {
668 return 1;
669 }
670 }
671 #else
672 /* A default implementation: prefer a to b to c.
673 * This is unlikely to actually match any real implementation.
674 */
675 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
676 flag cIsQNaN, flag cIsSNaN, flag infzero,
677 float_status *status)
678 {
679 if (aIsSNaN || aIsQNaN) {
680 return 0;
681 } else if (bIsSNaN || bIsQNaN) {
682 return 1;
683 } else {
684 return 2;
685 }
686 }
687 #endif
688
689 /*----------------------------------------------------------------------------
690 | Takes two single-precision floating-point values `a' and `b', one of which
691 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
692 | signaling NaN, the invalid exception is raised.
693 *----------------------------------------------------------------------------*/
694
695 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
696 {
697 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
698 flag aIsLargerSignificand;
699 uint32_t av, bv;
700
701 aIsQuietNaN = float32_is_quiet_nan(a, status);
702 aIsSignalingNaN = float32_is_signaling_nan(a, status);
703 bIsQuietNaN = float32_is_quiet_nan(b, status);
704 bIsSignalingNaN = float32_is_signaling_nan(b, status);
705 av = float32_val(a);
706 bv = float32_val(b);
707
708 if (aIsSignalingNaN | bIsSignalingNaN) {
709 float_raise(float_flag_invalid, status);
710 }
711
712 if (status->default_nan_mode) {
713 return float32_default_nan(status);
714 }
715
716 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
717 aIsLargerSignificand = 0;
718 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
719 aIsLargerSignificand = 1;
720 } else {
721 aIsLargerSignificand = (av < bv) ? 1 : 0;
722 }
723
724 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
725 aIsLargerSignificand)) {
726 return float32_maybe_silence_nan(b, status);
727 } else {
728 return float32_maybe_silence_nan(a, status);
729 }
730 }
731
732 #ifdef NO_SIGNALING_NANS
733 int float64_is_quiet_nan(float64 a_, float_status *status)
734 {
735 return float64_is_any_nan(a_);
736 }
737
738 int float64_is_signaling_nan(float64 a_, float_status *status)
739 {
740 return 0;
741 }
742 #else
743 /*----------------------------------------------------------------------------
744 | Returns 1 if the double-precision floating-point value `a' is a quiet
745 | NaN; otherwise returns 0.
746 *----------------------------------------------------------------------------*/
747
748 int float64_is_quiet_nan(float64 a_, float_status *status)
749 {
750 uint64_t a = float64_val(a_);
751 if (status->snan_bit_is_one) {
752 return (((a >> 51) & 0xFFF) == 0xFFE)
753 && (a & 0x0007FFFFFFFFFFFFULL);
754 } else {
755 return ((a << 1) >= 0xFFF0000000000000ULL);
756 }
757 }
758
759 /*----------------------------------------------------------------------------
760 | Returns 1 if the double-precision floating-point value `a' is a signaling
761 | NaN; otherwise returns 0.
762 *----------------------------------------------------------------------------*/
763
764 int float64_is_signaling_nan(float64 a_, float_status *status)
765 {
766 uint64_t a = float64_val(a_);
767 if (status->snan_bit_is_one) {
768 return ((a << 1) >= 0xFFF0000000000000ULL);
769 } else {
770 return (((a >> 51) & 0xFFF) == 0xFFE)
771 && (a & LIT64(0x0007FFFFFFFFFFFF));
772 }
773 }
774 #endif
775
776 /*----------------------------------------------------------------------------
777 | Returns a quiet NaN if the double-precision floating point value `a' is a
778 | signaling NaN; otherwise returns `a'.
779 *----------------------------------------------------------------------------*/
780
781 float64 float64_maybe_silence_nan(float64 a_, float_status *status)
782 {
783 if (float64_is_signaling_nan(a_, status)) {
784 if (status->snan_bit_is_one) {
785 #ifdef TARGET_HPPA
786 uint64_t a = float64_val(a_);
787 a &= ~0x0008000000000000ULL;
788 a |= 0x0004000000000000ULL;
789 return make_float64(a);
790 #else
791 return float64_default_nan(status);
792 #endif
793 } else {
794 uint64_t a = float64_val(a_);
795 a |= LIT64(0x0008000000000000);
796 return make_float64(a);
797 }
798 }
799 return a_;
800 }
801
802 /*----------------------------------------------------------------------------
803 | Returns the result of converting the double-precision floating-point NaN
804 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
805 | exception is raised.
806 *----------------------------------------------------------------------------*/
807
808 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
809 {
810 commonNaNT z;
811
812 if (float64_is_signaling_nan(a, status)) {
813 float_raise(float_flag_invalid, status);
814 }
815 z.sign = float64_val(a) >> 63;
816 z.low = 0;
817 z.high = float64_val(a) << 12;
818 return z;
819 }
820
821 /*----------------------------------------------------------------------------
822 | Returns the result of converting the canonical NaN `a' to the double-
823 | precision floating-point format.
824 *----------------------------------------------------------------------------*/
825
826 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
827 {
828 uint64_t mantissa = a.high >> 12;
829
830 if (status->default_nan_mode) {
831 return float64_default_nan(status);
832 }
833
834 if (mantissa) {
835 return make_float64(
836 (((uint64_t) a.sign) << 63)
837 | LIT64(0x7FF0000000000000)
838 | (a.high >> 12));
839 } else {
840 return float64_default_nan(status);
841 }
842 }
843
844 /*----------------------------------------------------------------------------
845 | Takes two double-precision floating-point values `a' and `b', one of which
846 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
847 | signaling NaN, the invalid exception is raised.
848 *----------------------------------------------------------------------------*/
849
850 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
851 {
852 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
853 flag aIsLargerSignificand;
854 uint64_t av, bv;
855
856 aIsQuietNaN = float64_is_quiet_nan(a, status);
857 aIsSignalingNaN = float64_is_signaling_nan(a, status);
858 bIsQuietNaN = float64_is_quiet_nan(b, status);
859 bIsSignalingNaN = float64_is_signaling_nan(b, status);
860 av = float64_val(a);
861 bv = float64_val(b);
862
863 if (aIsSignalingNaN | bIsSignalingNaN) {
864 float_raise(float_flag_invalid, status);
865 }
866
867 if (status->default_nan_mode) {
868 return float64_default_nan(status);
869 }
870
871 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
872 aIsLargerSignificand = 0;
873 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
874 aIsLargerSignificand = 1;
875 } else {
876 aIsLargerSignificand = (av < bv) ? 1 : 0;
877 }
878
879 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
880 aIsLargerSignificand)) {
881 return float64_maybe_silence_nan(b, status);
882 } else {
883 return float64_maybe_silence_nan(a, status);
884 }
885 }
886
887 #ifdef NO_SIGNALING_NANS
888 int floatx80_is_quiet_nan(floatx80 a_, float_status *status)
889 {
890 return floatx80_is_any_nan(a_);
891 }
892
893 int floatx80_is_signaling_nan(floatx80 a_, float_status *status)
894 {
895 return 0;
896 }
897 #else
898 /*----------------------------------------------------------------------------
899 | Returns 1 if the extended double-precision floating-point value `a' is a
900 | quiet NaN; otherwise returns 0. This slightly differs from the same
901 | function for other types as floatx80 has an explicit bit.
902 *----------------------------------------------------------------------------*/
903
904 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
905 {
906 if (status->snan_bit_is_one) {
907 uint64_t aLow;
908
909 aLow = a.low & ~0x4000000000000000ULL;
910 return ((a.high & 0x7FFF) == 0x7FFF)
911 && (aLow << 1)
912 && (a.low == aLow);
913 } else {
914 return ((a.high & 0x7FFF) == 0x7FFF)
915 && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
916 }
917 }
918
919 /*----------------------------------------------------------------------------
920 | Returns 1 if the extended double-precision floating-point value `a' is a
921 | signaling NaN; otherwise returns 0. This slightly differs from the same
922 | function for other types as floatx80 has an explicit bit.
923 *----------------------------------------------------------------------------*/
924
925 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
926 {
927 if (status->snan_bit_is_one) {
928 return ((a.high & 0x7FFF) == 0x7FFF)
929 && ((a.low << 1) >= 0x8000000000000000ULL);
930 } else {
931 uint64_t aLow;
932
933 aLow = a.low & ~LIT64(0x4000000000000000);
934 return ((a.high & 0x7FFF) == 0x7FFF)
935 && (uint64_t)(aLow << 1)
936 && (a.low == aLow);
937 }
938 }
939 #endif
940
941 /*----------------------------------------------------------------------------
942 | Returns a quiet NaN if the extended double-precision floating point value
943 | `a' is a signaling NaN; otherwise returns `a'.
944 *----------------------------------------------------------------------------*/
945
946 floatx80 floatx80_maybe_silence_nan(floatx80 a, float_status *status)
947 {
948 if (floatx80_is_signaling_nan(a, status)) {
949 if (status->snan_bit_is_one) {
950 a = floatx80_default_nan(status);
951 } else {
952 a.low |= LIT64(0xC000000000000000);
953 return a;
954 }
955 }
956 return a;
957 }
958
959 /*----------------------------------------------------------------------------
960 | Returns the result of converting the extended double-precision floating-
961 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
962 | invalid exception is raised.
963 *----------------------------------------------------------------------------*/
964
965 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
966 {
967 floatx80 dflt;
968 commonNaNT z;
969
970 if (floatx80_is_signaling_nan(a, status)) {
971 float_raise(float_flag_invalid, status);
972 }
973 if (a.low >> 63) {
974 z.sign = a.high >> 15;
975 z.low = 0;
976 z.high = a.low << 1;
977 } else {
978 dflt = floatx80_default_nan(status);
979 z.sign = dflt.high >> 15;
980 z.low = 0;
981 z.high = dflt.low << 1;
982 }
983 return z;
984 }
985
986 /*----------------------------------------------------------------------------
987 | Returns the result of converting the canonical NaN `a' to the extended
988 | double-precision floating-point format.
989 *----------------------------------------------------------------------------*/
990
991 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
992 {
993 floatx80 z;
994
995 if (status->default_nan_mode) {
996 return floatx80_default_nan(status);
997 }
998
999 if (a.high >> 1) {
1000 z.low = LIT64(0x8000000000000000) | a.high >> 1;
1001 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
1002 } else {
1003 z = floatx80_default_nan(status);
1004 }
1005 return z;
1006 }
1007
1008 /*----------------------------------------------------------------------------
1009 | Takes two extended double-precision floating-point values `a' and `b', one
1010 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
1011 | `b' is a signaling NaN, the invalid exception is raised.
1012 *----------------------------------------------------------------------------*/
1013
1014 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
1015 {
1016 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1017 flag aIsLargerSignificand;
1018
1019 aIsQuietNaN = floatx80_is_quiet_nan(a, status);
1020 aIsSignalingNaN = floatx80_is_signaling_nan(a, status);
1021 bIsQuietNaN = floatx80_is_quiet_nan(b, status);
1022 bIsSignalingNaN = floatx80_is_signaling_nan(b, status);
1023
1024 if (aIsSignalingNaN | bIsSignalingNaN) {
1025 float_raise(float_flag_invalid, status);
1026 }
1027
1028 if (status->default_nan_mode) {
1029 return floatx80_default_nan(status);
1030 }
1031
1032 if (a.low < b.low) {
1033 aIsLargerSignificand = 0;
1034 } else if (b.low < a.low) {
1035 aIsLargerSignificand = 1;
1036 } else {
1037 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1038 }
1039
1040 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1041 aIsLargerSignificand)) {
1042 return floatx80_maybe_silence_nan(b, status);
1043 } else {
1044 return floatx80_maybe_silence_nan(a, status);
1045 }
1046 }
1047
1048 #ifdef NO_SIGNALING_NANS
1049 int float128_is_quiet_nan(float128 a_, float_status *status)
1050 {
1051 return float128_is_any_nan(a_);
1052 }
1053
1054 int float128_is_signaling_nan(float128 a_, float_status *status)
1055 {
1056 return 0;
1057 }
1058 #else
1059 /*----------------------------------------------------------------------------
1060 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1061 | NaN; otherwise returns 0.
1062 *----------------------------------------------------------------------------*/
1063
1064 int float128_is_quiet_nan(float128 a, float_status *status)
1065 {
1066 if (status->snan_bit_is_one) {
1067 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1068 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1069 } else {
1070 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1071 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1072 }
1073 }
1074
1075 /*----------------------------------------------------------------------------
1076 | Returns 1 if the quadruple-precision floating-point value `a' is a
1077 | signaling NaN; otherwise returns 0.
1078 *----------------------------------------------------------------------------*/
1079
1080 int float128_is_signaling_nan(float128 a, float_status *status)
1081 {
1082 if (status->snan_bit_is_one) {
1083 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1084 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1085 } else {
1086 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1087 && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF)));
1088 }
1089 }
1090 #endif
1091
1092 /*----------------------------------------------------------------------------
1093 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
1094 | a signaling NaN; otherwise returns `a'.
1095 *----------------------------------------------------------------------------*/
1096
1097 float128 float128_maybe_silence_nan(float128 a, float_status *status)
1098 {
1099 if (float128_is_signaling_nan(a, status)) {
1100 if (status->snan_bit_is_one) {
1101 a = float128_default_nan(status);
1102 } else {
1103 a.high |= LIT64(0x0000800000000000);
1104 return a;
1105 }
1106 }
1107 return a;
1108 }
1109
1110 /*----------------------------------------------------------------------------
1111 | Returns the result of converting the quadruple-precision floating-point NaN
1112 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1113 | exception is raised.
1114 *----------------------------------------------------------------------------*/
1115
1116 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1117 {
1118 commonNaNT z;
1119
1120 if (float128_is_signaling_nan(a, status)) {
1121 float_raise(float_flag_invalid, status);
1122 }
1123 z.sign = a.high >> 63;
1124 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1125 return z;
1126 }
1127
1128 /*----------------------------------------------------------------------------
1129 | Returns the result of converting the canonical NaN `a' to the quadruple-
1130 | precision floating-point format.
1131 *----------------------------------------------------------------------------*/
1132
1133 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1134 {
1135 float128 z;
1136
1137 if (status->default_nan_mode) {
1138 return float128_default_nan(status);
1139 }
1140
1141 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1142 z.high |= (((uint64_t)a.sign) << 63) | LIT64(0x7FFF000000000000);
1143 return z;
1144 }
1145
1146 /*----------------------------------------------------------------------------
1147 | Takes two quadruple-precision floating-point values `a' and `b', one of
1148 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1149 | `b' is a signaling NaN, the invalid exception is raised.
1150 *----------------------------------------------------------------------------*/
1151
1152 static float128 propagateFloat128NaN(float128 a, float128 b,
1153 float_status *status)
1154 {
1155 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1156 flag aIsLargerSignificand;
1157
1158 aIsQuietNaN = float128_is_quiet_nan(a, status);
1159 aIsSignalingNaN = float128_is_signaling_nan(a, status);
1160 bIsQuietNaN = float128_is_quiet_nan(b, status);
1161 bIsSignalingNaN = float128_is_signaling_nan(b, status);
1162
1163 if (aIsSignalingNaN | bIsSignalingNaN) {
1164 float_raise(float_flag_invalid, status);
1165 }
1166
1167 if (status->default_nan_mode) {
1168 return float128_default_nan(status);
1169 }
1170
1171 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1172 aIsLargerSignificand = 0;
1173 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1174 aIsLargerSignificand = 1;
1175 } else {
1176 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1177 }
1178
1179 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1180 aIsLargerSignificand)) {
1181 return float128_maybe_silence_nan(b, status);
1182 } else {
1183 return float128_maybe_silence_nan(a, status);
1184 }
1185 }