]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/afs/fsclient.c
afs: Fix dirty-region encoding on ppc32 with 64K pages
[mirror_ubuntu-hirsute-kernel.git] / fs / afs / fsclient.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* AFS File Server client stubs
3 *
4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/circ_buf.h>
12 #include <linux/iversion.h>
13 #include "internal.h"
14 #include "afs_fs.h"
15 #include "xdr_fs.h"
16
17 /*
18 * decode an AFSFid block
19 */
20 static void xdr_decode_AFSFid(const __be32 **_bp, struct afs_fid *fid)
21 {
22 const __be32 *bp = *_bp;
23
24 fid->vid = ntohl(*bp++);
25 fid->vnode = ntohl(*bp++);
26 fid->unique = ntohl(*bp++);
27 *_bp = bp;
28 }
29
30 /*
31 * Dump a bad file status record.
32 */
33 static void xdr_dump_bad(const __be32 *bp)
34 {
35 __be32 x[4];
36 int i;
37
38 pr_notice("AFS XDR: Bad status record\n");
39 for (i = 0; i < 5 * 4 * 4; i += 16) {
40 memcpy(x, bp, 16);
41 bp += 4;
42 pr_notice("%03x: %08x %08x %08x %08x\n",
43 i, ntohl(x[0]), ntohl(x[1]), ntohl(x[2]), ntohl(x[3]));
44 }
45
46 memcpy(x, bp, 4);
47 pr_notice("0x50: %08x\n", ntohl(x[0]));
48 }
49
50 /*
51 * decode an AFSFetchStatus block
52 */
53 static void xdr_decode_AFSFetchStatus(const __be32 **_bp,
54 struct afs_call *call,
55 struct afs_status_cb *scb)
56 {
57 const struct afs_xdr_AFSFetchStatus *xdr = (const void *)*_bp;
58 struct afs_file_status *status = &scb->status;
59 bool inline_error = (call->operation_ID == afs_FS_InlineBulkStatus);
60 u64 data_version, size;
61 u32 type, abort_code;
62
63 abort_code = ntohl(xdr->abort_code);
64
65 if (xdr->if_version != htonl(AFS_FSTATUS_VERSION)) {
66 if (xdr->if_version == htonl(0) &&
67 abort_code != 0 &&
68 inline_error) {
69 /* The OpenAFS fileserver has a bug in FS.InlineBulkStatus
70 * whereby it doesn't set the interface version in the error
71 * case.
72 */
73 status->abort_code = abort_code;
74 scb->have_error = true;
75 goto advance;
76 }
77
78 pr_warn("Unknown AFSFetchStatus version %u\n", ntohl(xdr->if_version));
79 goto bad;
80 }
81
82 if (abort_code != 0 && inline_error) {
83 status->abort_code = abort_code;
84 scb->have_error = true;
85 goto advance;
86 }
87
88 type = ntohl(xdr->type);
89 switch (type) {
90 case AFS_FTYPE_FILE:
91 case AFS_FTYPE_DIR:
92 case AFS_FTYPE_SYMLINK:
93 status->type = type;
94 break;
95 default:
96 goto bad;
97 }
98
99 status->nlink = ntohl(xdr->nlink);
100 status->author = ntohl(xdr->author);
101 status->owner = ntohl(xdr->owner);
102 status->caller_access = ntohl(xdr->caller_access); /* Ticket dependent */
103 status->anon_access = ntohl(xdr->anon_access);
104 status->mode = ntohl(xdr->mode) & S_IALLUGO;
105 status->group = ntohl(xdr->group);
106 status->lock_count = ntohl(xdr->lock_count);
107
108 status->mtime_client.tv_sec = ntohl(xdr->mtime_client);
109 status->mtime_client.tv_nsec = 0;
110 status->mtime_server.tv_sec = ntohl(xdr->mtime_server);
111 status->mtime_server.tv_nsec = 0;
112
113 size = (u64)ntohl(xdr->size_lo);
114 size |= (u64)ntohl(xdr->size_hi) << 32;
115 status->size = size;
116
117 data_version = (u64)ntohl(xdr->data_version_lo);
118 data_version |= (u64)ntohl(xdr->data_version_hi) << 32;
119 status->data_version = data_version;
120 scb->have_status = true;
121 advance:
122 *_bp = (const void *)*_bp + sizeof(*xdr);
123 return;
124
125 bad:
126 xdr_dump_bad(*_bp);
127 afs_protocol_error(call, afs_eproto_bad_status);
128 goto advance;
129 }
130
131 static time64_t xdr_decode_expiry(struct afs_call *call, u32 expiry)
132 {
133 return ktime_divns(call->reply_time, NSEC_PER_SEC) + expiry;
134 }
135
136 static void xdr_decode_AFSCallBack(const __be32 **_bp,
137 struct afs_call *call,
138 struct afs_status_cb *scb)
139 {
140 struct afs_callback *cb = &scb->callback;
141 const __be32 *bp = *_bp;
142
143 bp++; /* version */
144 cb->expires_at = xdr_decode_expiry(call, ntohl(*bp++));
145 bp++; /* type */
146 scb->have_cb = true;
147 *_bp = bp;
148 }
149
150 /*
151 * decode an AFSVolSync block
152 */
153 static void xdr_decode_AFSVolSync(const __be32 **_bp,
154 struct afs_volsync *volsync)
155 {
156 const __be32 *bp = *_bp;
157 u32 creation;
158
159 creation = ntohl(*bp++);
160 bp++; /* spare2 */
161 bp++; /* spare3 */
162 bp++; /* spare4 */
163 bp++; /* spare5 */
164 bp++; /* spare6 */
165 *_bp = bp;
166
167 if (volsync)
168 volsync->creation = creation;
169 }
170
171 /*
172 * encode the requested attributes into an AFSStoreStatus block
173 */
174 static void xdr_encode_AFS_StoreStatus(__be32 **_bp, struct iattr *attr)
175 {
176 __be32 *bp = *_bp;
177 u32 mask = 0, mtime = 0, owner = 0, group = 0, mode = 0;
178
179 mask = 0;
180 if (attr->ia_valid & ATTR_MTIME) {
181 mask |= AFS_SET_MTIME;
182 mtime = attr->ia_mtime.tv_sec;
183 }
184
185 if (attr->ia_valid & ATTR_UID) {
186 mask |= AFS_SET_OWNER;
187 owner = from_kuid(&init_user_ns, attr->ia_uid);
188 }
189
190 if (attr->ia_valid & ATTR_GID) {
191 mask |= AFS_SET_GROUP;
192 group = from_kgid(&init_user_ns, attr->ia_gid);
193 }
194
195 if (attr->ia_valid & ATTR_MODE) {
196 mask |= AFS_SET_MODE;
197 mode = attr->ia_mode & S_IALLUGO;
198 }
199
200 *bp++ = htonl(mask);
201 *bp++ = htonl(mtime);
202 *bp++ = htonl(owner);
203 *bp++ = htonl(group);
204 *bp++ = htonl(mode);
205 *bp++ = 0; /* segment size */
206 *_bp = bp;
207 }
208
209 /*
210 * decode an AFSFetchVolumeStatus block
211 */
212 static void xdr_decode_AFSFetchVolumeStatus(const __be32 **_bp,
213 struct afs_volume_status *vs)
214 {
215 const __be32 *bp = *_bp;
216
217 vs->vid = ntohl(*bp++);
218 vs->parent_id = ntohl(*bp++);
219 vs->online = ntohl(*bp++);
220 vs->in_service = ntohl(*bp++);
221 vs->blessed = ntohl(*bp++);
222 vs->needs_salvage = ntohl(*bp++);
223 vs->type = ntohl(*bp++);
224 vs->min_quota = ntohl(*bp++);
225 vs->max_quota = ntohl(*bp++);
226 vs->blocks_in_use = ntohl(*bp++);
227 vs->part_blocks_avail = ntohl(*bp++);
228 vs->part_max_blocks = ntohl(*bp++);
229 vs->vol_copy_date = 0;
230 vs->vol_backup_date = 0;
231 *_bp = bp;
232 }
233
234 /*
235 * deliver reply data to an FS.FetchStatus
236 */
237 static int afs_deliver_fs_fetch_status(struct afs_call *call)
238 {
239 struct afs_operation *op = call->op;
240 struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
241 const __be32 *bp;
242 int ret;
243
244 ret = afs_transfer_reply(call);
245 if (ret < 0)
246 return ret;
247
248 /* unmarshall the reply once we've received all of it */
249 bp = call->buffer;
250 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
251 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
252 xdr_decode_AFSVolSync(&bp, &op->volsync);
253
254 _leave(" = 0 [done]");
255 return 0;
256 }
257
258 /*
259 * FS.FetchStatus operation type
260 */
261 static const struct afs_call_type afs_RXFSFetchStatus = {
262 .name = "FS.FetchStatus",
263 .op = afs_FS_FetchStatus,
264 .deliver = afs_deliver_fs_fetch_status,
265 .destructor = afs_flat_call_destructor,
266 };
267
268 /*
269 * fetch the status information for a file
270 */
271 void afs_fs_fetch_status(struct afs_operation *op)
272 {
273 struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
274 struct afs_call *call;
275 __be32 *bp;
276
277 _enter(",%x,{%llx:%llu},,",
278 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
279
280 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchStatus,
281 16, (21 + 3 + 6) * 4);
282 if (!call)
283 return afs_op_nomem(op);
284
285 /* marshall the parameters */
286 bp = call->request;
287 bp[0] = htonl(FSFETCHSTATUS);
288 bp[1] = htonl(vp->fid.vid);
289 bp[2] = htonl(vp->fid.vnode);
290 bp[3] = htonl(vp->fid.unique);
291
292 trace_afs_make_fs_call(call, &vp->fid);
293 afs_make_op_call(op, call, GFP_NOFS);
294 }
295
296 /*
297 * deliver reply data to an FS.FetchData
298 */
299 static int afs_deliver_fs_fetch_data(struct afs_call *call)
300 {
301 struct afs_operation *op = call->op;
302 struct afs_vnode_param *vp = &op->file[0];
303 struct afs_read *req = op->fetch.req;
304 const __be32 *bp;
305 unsigned int size;
306 int ret;
307
308 _enter("{%u,%zu/%llu}",
309 call->unmarshall, iov_iter_count(call->iter), req->actual_len);
310
311 switch (call->unmarshall) {
312 case 0:
313 req->actual_len = 0;
314 req->index = 0;
315 req->offset = req->pos & (PAGE_SIZE - 1);
316 call->unmarshall++;
317 if (call->operation_ID == FSFETCHDATA64) {
318 afs_extract_to_tmp64(call);
319 } else {
320 call->tmp_u = htonl(0);
321 afs_extract_to_tmp(call);
322 }
323 fallthrough;
324
325 /* extract the returned data length */
326 case 1:
327 _debug("extract data length");
328 ret = afs_extract_data(call, true);
329 if (ret < 0)
330 return ret;
331
332 req->actual_len = be64_to_cpu(call->tmp64);
333 _debug("DATA length: %llu", req->actual_len);
334 req->remain = min(req->len, req->actual_len);
335 if (req->remain == 0)
336 goto no_more_data;
337
338 call->unmarshall++;
339
340 begin_page:
341 ASSERTCMP(req->index, <, req->nr_pages);
342 if (req->remain > PAGE_SIZE - req->offset)
343 size = PAGE_SIZE - req->offset;
344 else
345 size = req->remain;
346 call->bvec[0].bv_len = size;
347 call->bvec[0].bv_offset = req->offset;
348 call->bvec[0].bv_page = req->pages[req->index];
349 iov_iter_bvec(&call->def_iter, READ, call->bvec, 1, size);
350 ASSERTCMP(size, <=, PAGE_SIZE);
351 fallthrough;
352
353 /* extract the returned data */
354 case 2:
355 _debug("extract data %zu/%llu",
356 iov_iter_count(call->iter), req->remain);
357
358 ret = afs_extract_data(call, true);
359 if (ret < 0)
360 return ret;
361 req->remain -= call->bvec[0].bv_len;
362 req->offset += call->bvec[0].bv_len;
363 ASSERTCMP(req->offset, <=, PAGE_SIZE);
364 if (req->offset == PAGE_SIZE) {
365 req->offset = 0;
366 req->index++;
367 if (req->remain > 0)
368 goto begin_page;
369 }
370
371 ASSERTCMP(req->remain, ==, 0);
372 if (req->actual_len <= req->len)
373 goto no_more_data;
374
375 /* Discard any excess data the server gave us */
376 afs_extract_discard(call, req->actual_len - req->len);
377 call->unmarshall = 3;
378 fallthrough;
379
380 case 3:
381 _debug("extract discard %zu/%llu",
382 iov_iter_count(call->iter), req->actual_len - req->len);
383
384 ret = afs_extract_data(call, true);
385 if (ret < 0)
386 return ret;
387
388 no_more_data:
389 call->unmarshall = 4;
390 afs_extract_to_buf(call, (21 + 3 + 6) * 4);
391 fallthrough;
392
393 /* extract the metadata */
394 case 4:
395 ret = afs_extract_data(call, false);
396 if (ret < 0)
397 return ret;
398
399 bp = call->buffer;
400 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
401 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
402 xdr_decode_AFSVolSync(&bp, &op->volsync);
403
404 req->data_version = vp->scb.status.data_version;
405 req->file_size = vp->scb.status.size;
406
407 call->unmarshall++;
408
409 case 5:
410 break;
411 }
412
413 for (; req->index < req->nr_pages; req->index++) {
414 if (req->offset < PAGE_SIZE)
415 zero_user_segment(req->pages[req->index],
416 req->offset, PAGE_SIZE);
417 req->offset = 0;
418 }
419
420 if (req->page_done)
421 for (req->index = 0; req->index < req->nr_pages; req->index++)
422 req->page_done(req);
423
424 _leave(" = 0 [done]");
425 return 0;
426 }
427
428 /*
429 * FS.FetchData operation type
430 */
431 static const struct afs_call_type afs_RXFSFetchData = {
432 .name = "FS.FetchData",
433 .op = afs_FS_FetchData,
434 .deliver = afs_deliver_fs_fetch_data,
435 .destructor = afs_flat_call_destructor,
436 };
437
438 static const struct afs_call_type afs_RXFSFetchData64 = {
439 .name = "FS.FetchData64",
440 .op = afs_FS_FetchData64,
441 .deliver = afs_deliver_fs_fetch_data,
442 .destructor = afs_flat_call_destructor,
443 };
444
445 /*
446 * fetch data from a very large file
447 */
448 static void afs_fs_fetch_data64(struct afs_operation *op)
449 {
450 struct afs_vnode_param *vp = &op->file[0];
451 struct afs_read *req = op->fetch.req;
452 struct afs_call *call;
453 __be32 *bp;
454
455 _enter("");
456
457 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchData64, 32, (21 + 3 + 6) * 4);
458 if (!call)
459 return afs_op_nomem(op);
460
461 /* marshall the parameters */
462 bp = call->request;
463 bp[0] = htonl(FSFETCHDATA64);
464 bp[1] = htonl(vp->fid.vid);
465 bp[2] = htonl(vp->fid.vnode);
466 bp[3] = htonl(vp->fid.unique);
467 bp[4] = htonl(upper_32_bits(req->pos));
468 bp[5] = htonl(lower_32_bits(req->pos));
469 bp[6] = 0;
470 bp[7] = htonl(lower_32_bits(req->len));
471
472 trace_afs_make_fs_call(call, &vp->fid);
473 afs_make_op_call(op, call, GFP_NOFS);
474 }
475
476 /*
477 * fetch data from a file
478 */
479 void afs_fs_fetch_data(struct afs_operation *op)
480 {
481 struct afs_vnode_param *vp = &op->file[0];
482 struct afs_call *call;
483 struct afs_read *req = op->fetch.req;
484 __be32 *bp;
485
486 if (upper_32_bits(req->pos) ||
487 upper_32_bits(req->len) ||
488 upper_32_bits(req->pos + req->len))
489 return afs_fs_fetch_data64(op);
490
491 _enter("");
492
493 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchData, 24, (21 + 3 + 6) * 4);
494 if (!call)
495 return afs_op_nomem(op);
496
497 /* marshall the parameters */
498 bp = call->request;
499 bp[0] = htonl(FSFETCHDATA);
500 bp[1] = htonl(vp->fid.vid);
501 bp[2] = htonl(vp->fid.vnode);
502 bp[3] = htonl(vp->fid.unique);
503 bp[4] = htonl(lower_32_bits(req->pos));
504 bp[5] = htonl(lower_32_bits(req->len));
505
506 trace_afs_make_fs_call(call, &vp->fid);
507 afs_make_op_call(op, call, GFP_NOFS);
508 }
509
510 /*
511 * deliver reply data to an FS.CreateFile or an FS.MakeDir
512 */
513 static int afs_deliver_fs_create_vnode(struct afs_call *call)
514 {
515 struct afs_operation *op = call->op;
516 struct afs_vnode_param *dvp = &op->file[0];
517 struct afs_vnode_param *vp = &op->file[1];
518 const __be32 *bp;
519 int ret;
520
521 ret = afs_transfer_reply(call);
522 if (ret < 0)
523 return ret;
524
525 /* unmarshall the reply once we've received all of it */
526 bp = call->buffer;
527 xdr_decode_AFSFid(&bp, &op->file[1].fid);
528 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
529 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
530 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
531 xdr_decode_AFSVolSync(&bp, &op->volsync);
532
533 _leave(" = 0 [done]");
534 return 0;
535 }
536
537 /*
538 * FS.CreateFile and FS.MakeDir operation type
539 */
540 static const struct afs_call_type afs_RXFSCreateFile = {
541 .name = "FS.CreateFile",
542 .op = afs_FS_CreateFile,
543 .deliver = afs_deliver_fs_create_vnode,
544 .destructor = afs_flat_call_destructor,
545 };
546
547 /*
548 * Create a file.
549 */
550 void afs_fs_create_file(struct afs_operation *op)
551 {
552 const struct qstr *name = &op->dentry->d_name;
553 struct afs_vnode_param *dvp = &op->file[0];
554 struct afs_call *call;
555 size_t namesz, reqsz, padsz;
556 __be32 *bp;
557
558 _enter("");
559
560 namesz = name->len;
561 padsz = (4 - (namesz & 3)) & 3;
562 reqsz = (5 * 4) + namesz + padsz + (6 * 4);
563
564 call = afs_alloc_flat_call(op->net, &afs_RXFSCreateFile,
565 reqsz, (3 + 21 + 21 + 3 + 6) * 4);
566 if (!call)
567 return afs_op_nomem(op);
568
569 /* marshall the parameters */
570 bp = call->request;
571 *bp++ = htonl(FSCREATEFILE);
572 *bp++ = htonl(dvp->fid.vid);
573 *bp++ = htonl(dvp->fid.vnode);
574 *bp++ = htonl(dvp->fid.unique);
575 *bp++ = htonl(namesz);
576 memcpy(bp, name->name, namesz);
577 bp = (void *) bp + namesz;
578 if (padsz > 0) {
579 memset(bp, 0, padsz);
580 bp = (void *) bp + padsz;
581 }
582 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
583 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
584 *bp++ = 0; /* owner */
585 *bp++ = 0; /* group */
586 *bp++ = htonl(op->create.mode & S_IALLUGO); /* unix mode */
587 *bp++ = 0; /* segment size */
588
589 trace_afs_make_fs_call1(call, &dvp->fid, name);
590 afs_make_op_call(op, call, GFP_NOFS);
591 }
592
593 static const struct afs_call_type afs_RXFSMakeDir = {
594 .name = "FS.MakeDir",
595 .op = afs_FS_MakeDir,
596 .deliver = afs_deliver_fs_create_vnode,
597 .destructor = afs_flat_call_destructor,
598 };
599
600 /*
601 * Create a new directory
602 */
603 void afs_fs_make_dir(struct afs_operation *op)
604 {
605 const struct qstr *name = &op->dentry->d_name;
606 struct afs_vnode_param *dvp = &op->file[0];
607 struct afs_call *call;
608 size_t namesz, reqsz, padsz;
609 __be32 *bp;
610
611 _enter("");
612
613 namesz = name->len;
614 padsz = (4 - (namesz & 3)) & 3;
615 reqsz = (5 * 4) + namesz + padsz + (6 * 4);
616
617 call = afs_alloc_flat_call(op->net, &afs_RXFSMakeDir,
618 reqsz, (3 + 21 + 21 + 3 + 6) * 4);
619 if (!call)
620 return afs_op_nomem(op);
621
622 /* marshall the parameters */
623 bp = call->request;
624 *bp++ = htonl(FSMAKEDIR);
625 *bp++ = htonl(dvp->fid.vid);
626 *bp++ = htonl(dvp->fid.vnode);
627 *bp++ = htonl(dvp->fid.unique);
628 *bp++ = htonl(namesz);
629 memcpy(bp, name->name, namesz);
630 bp = (void *) bp + namesz;
631 if (padsz > 0) {
632 memset(bp, 0, padsz);
633 bp = (void *) bp + padsz;
634 }
635 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
636 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
637 *bp++ = 0; /* owner */
638 *bp++ = 0; /* group */
639 *bp++ = htonl(op->create.mode & S_IALLUGO); /* unix mode */
640 *bp++ = 0; /* segment size */
641
642 trace_afs_make_fs_call1(call, &dvp->fid, name);
643 afs_make_op_call(op, call, GFP_NOFS);
644 }
645
646 /*
647 * Deliver reply data to any operation that returns status and volume sync.
648 */
649 static int afs_deliver_fs_file_status_and_vol(struct afs_call *call)
650 {
651 struct afs_operation *op = call->op;
652 struct afs_vnode_param *vp = &op->file[0];
653 const __be32 *bp;
654 int ret;
655
656 ret = afs_transfer_reply(call);
657 if (ret < 0)
658 return ret;
659
660 /* unmarshall the reply once we've received all of it */
661 bp = call->buffer;
662 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
663 xdr_decode_AFSVolSync(&bp, &op->volsync);
664
665 _leave(" = 0 [done]");
666 return 0;
667 }
668
669 /*
670 * FS.RemoveFile operation type
671 */
672 static const struct afs_call_type afs_RXFSRemoveFile = {
673 .name = "FS.RemoveFile",
674 .op = afs_FS_RemoveFile,
675 .deliver = afs_deliver_fs_file_status_and_vol,
676 .destructor = afs_flat_call_destructor,
677 };
678
679 /*
680 * Remove a file.
681 */
682 void afs_fs_remove_file(struct afs_operation *op)
683 {
684 const struct qstr *name = &op->dentry->d_name;
685 struct afs_vnode_param *dvp = &op->file[0];
686 struct afs_call *call;
687 size_t namesz, reqsz, padsz;
688 __be32 *bp;
689
690 _enter("");
691
692 namesz = name->len;
693 padsz = (4 - (namesz & 3)) & 3;
694 reqsz = (5 * 4) + namesz + padsz;
695
696 call = afs_alloc_flat_call(op->net, &afs_RXFSRemoveFile,
697 reqsz, (21 + 6) * 4);
698 if (!call)
699 return afs_op_nomem(op);
700
701 /* marshall the parameters */
702 bp = call->request;
703 *bp++ = htonl(FSREMOVEFILE);
704 *bp++ = htonl(dvp->fid.vid);
705 *bp++ = htonl(dvp->fid.vnode);
706 *bp++ = htonl(dvp->fid.unique);
707 *bp++ = htonl(namesz);
708 memcpy(bp, name->name, namesz);
709 bp = (void *) bp + namesz;
710 if (padsz > 0) {
711 memset(bp, 0, padsz);
712 bp = (void *) bp + padsz;
713 }
714
715 trace_afs_make_fs_call1(call, &dvp->fid, name);
716 afs_make_op_call(op, call, GFP_NOFS);
717 }
718
719 static const struct afs_call_type afs_RXFSRemoveDir = {
720 .name = "FS.RemoveDir",
721 .op = afs_FS_RemoveDir,
722 .deliver = afs_deliver_fs_file_status_and_vol,
723 .destructor = afs_flat_call_destructor,
724 };
725
726 /*
727 * Remove a directory.
728 */
729 void afs_fs_remove_dir(struct afs_operation *op)
730 {
731 const struct qstr *name = &op->dentry->d_name;
732 struct afs_vnode_param *dvp = &op->file[0];
733 struct afs_call *call;
734 size_t namesz, reqsz, padsz;
735 __be32 *bp;
736
737 _enter("");
738
739 namesz = name->len;
740 padsz = (4 - (namesz & 3)) & 3;
741 reqsz = (5 * 4) + namesz + padsz;
742
743 call = afs_alloc_flat_call(op->net, &afs_RXFSRemoveDir,
744 reqsz, (21 + 6) * 4);
745 if (!call)
746 return afs_op_nomem(op);
747
748 /* marshall the parameters */
749 bp = call->request;
750 *bp++ = htonl(FSREMOVEDIR);
751 *bp++ = htonl(dvp->fid.vid);
752 *bp++ = htonl(dvp->fid.vnode);
753 *bp++ = htonl(dvp->fid.unique);
754 *bp++ = htonl(namesz);
755 memcpy(bp, name->name, namesz);
756 bp = (void *) bp + namesz;
757 if (padsz > 0) {
758 memset(bp, 0, padsz);
759 bp = (void *) bp + padsz;
760 }
761
762 trace_afs_make_fs_call1(call, &dvp->fid, name);
763 afs_make_op_call(op, call, GFP_NOFS);
764 }
765
766 /*
767 * deliver reply data to an FS.Link
768 */
769 static int afs_deliver_fs_link(struct afs_call *call)
770 {
771 struct afs_operation *op = call->op;
772 struct afs_vnode_param *dvp = &op->file[0];
773 struct afs_vnode_param *vp = &op->file[1];
774 const __be32 *bp;
775 int ret;
776
777 _enter("{%u}", call->unmarshall);
778
779 ret = afs_transfer_reply(call);
780 if (ret < 0)
781 return ret;
782
783 /* unmarshall the reply once we've received all of it */
784 bp = call->buffer;
785 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
786 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
787 xdr_decode_AFSVolSync(&bp, &op->volsync);
788
789 _leave(" = 0 [done]");
790 return 0;
791 }
792
793 /*
794 * FS.Link operation type
795 */
796 static const struct afs_call_type afs_RXFSLink = {
797 .name = "FS.Link",
798 .op = afs_FS_Link,
799 .deliver = afs_deliver_fs_link,
800 .destructor = afs_flat_call_destructor,
801 };
802
803 /*
804 * make a hard link
805 */
806 void afs_fs_link(struct afs_operation *op)
807 {
808 const struct qstr *name = &op->dentry->d_name;
809 struct afs_vnode_param *dvp = &op->file[0];
810 struct afs_vnode_param *vp = &op->file[1];
811 struct afs_call *call;
812 size_t namesz, reqsz, padsz;
813 __be32 *bp;
814
815 _enter("");
816
817 namesz = name->len;
818 padsz = (4 - (namesz & 3)) & 3;
819 reqsz = (5 * 4) + namesz + padsz + (3 * 4);
820
821 call = afs_alloc_flat_call(op->net, &afs_RXFSLink, reqsz, (21 + 21 + 6) * 4);
822 if (!call)
823 return afs_op_nomem(op);
824
825 /* marshall the parameters */
826 bp = call->request;
827 *bp++ = htonl(FSLINK);
828 *bp++ = htonl(dvp->fid.vid);
829 *bp++ = htonl(dvp->fid.vnode);
830 *bp++ = htonl(dvp->fid.unique);
831 *bp++ = htonl(namesz);
832 memcpy(bp, name->name, namesz);
833 bp = (void *) bp + namesz;
834 if (padsz > 0) {
835 memset(bp, 0, padsz);
836 bp = (void *) bp + padsz;
837 }
838 *bp++ = htonl(vp->fid.vid);
839 *bp++ = htonl(vp->fid.vnode);
840 *bp++ = htonl(vp->fid.unique);
841
842 trace_afs_make_fs_call1(call, &vp->fid, name);
843 afs_make_op_call(op, call, GFP_NOFS);
844 }
845
846 /*
847 * deliver reply data to an FS.Symlink
848 */
849 static int afs_deliver_fs_symlink(struct afs_call *call)
850 {
851 struct afs_operation *op = call->op;
852 struct afs_vnode_param *dvp = &op->file[0];
853 struct afs_vnode_param *vp = &op->file[1];
854 const __be32 *bp;
855 int ret;
856
857 _enter("{%u}", call->unmarshall);
858
859 ret = afs_transfer_reply(call);
860 if (ret < 0)
861 return ret;
862
863 /* unmarshall the reply once we've received all of it */
864 bp = call->buffer;
865 xdr_decode_AFSFid(&bp, &vp->fid);
866 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
867 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
868 xdr_decode_AFSVolSync(&bp, &op->volsync);
869
870 _leave(" = 0 [done]");
871 return 0;
872 }
873
874 /*
875 * FS.Symlink operation type
876 */
877 static const struct afs_call_type afs_RXFSSymlink = {
878 .name = "FS.Symlink",
879 .op = afs_FS_Symlink,
880 .deliver = afs_deliver_fs_symlink,
881 .destructor = afs_flat_call_destructor,
882 };
883
884 /*
885 * create a symbolic link
886 */
887 void afs_fs_symlink(struct afs_operation *op)
888 {
889 const struct qstr *name = &op->dentry->d_name;
890 struct afs_vnode_param *dvp = &op->file[0];
891 struct afs_call *call;
892 size_t namesz, reqsz, padsz, c_namesz, c_padsz;
893 __be32 *bp;
894
895 _enter("");
896
897 namesz = name->len;
898 padsz = (4 - (namesz & 3)) & 3;
899
900 c_namesz = strlen(op->create.symlink);
901 c_padsz = (4 - (c_namesz & 3)) & 3;
902
903 reqsz = (6 * 4) + namesz + padsz + c_namesz + c_padsz + (6 * 4);
904
905 call = afs_alloc_flat_call(op->net, &afs_RXFSSymlink, reqsz,
906 (3 + 21 + 21 + 6) * 4);
907 if (!call)
908 return afs_op_nomem(op);
909
910 /* marshall the parameters */
911 bp = call->request;
912 *bp++ = htonl(FSSYMLINK);
913 *bp++ = htonl(dvp->fid.vid);
914 *bp++ = htonl(dvp->fid.vnode);
915 *bp++ = htonl(dvp->fid.unique);
916 *bp++ = htonl(namesz);
917 memcpy(bp, name->name, namesz);
918 bp = (void *) bp + namesz;
919 if (padsz > 0) {
920 memset(bp, 0, padsz);
921 bp = (void *) bp + padsz;
922 }
923 *bp++ = htonl(c_namesz);
924 memcpy(bp, op->create.symlink, c_namesz);
925 bp = (void *) bp + c_namesz;
926 if (c_padsz > 0) {
927 memset(bp, 0, c_padsz);
928 bp = (void *) bp + c_padsz;
929 }
930 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
931 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
932 *bp++ = 0; /* owner */
933 *bp++ = 0; /* group */
934 *bp++ = htonl(S_IRWXUGO); /* unix mode */
935 *bp++ = 0; /* segment size */
936
937 trace_afs_make_fs_call1(call, &dvp->fid, name);
938 afs_make_op_call(op, call, GFP_NOFS);
939 }
940
941 /*
942 * deliver reply data to an FS.Rename
943 */
944 static int afs_deliver_fs_rename(struct afs_call *call)
945 {
946 struct afs_operation *op = call->op;
947 struct afs_vnode_param *orig_dvp = &op->file[0];
948 struct afs_vnode_param *new_dvp = &op->file[1];
949 const __be32 *bp;
950 int ret;
951
952 ret = afs_transfer_reply(call);
953 if (ret < 0)
954 return ret;
955
956 bp = call->buffer;
957 /* If the two dirs are the same, we have two copies of the same status
958 * report, so we just decode it twice.
959 */
960 xdr_decode_AFSFetchStatus(&bp, call, &orig_dvp->scb);
961 xdr_decode_AFSFetchStatus(&bp, call, &new_dvp->scb);
962 xdr_decode_AFSVolSync(&bp, &op->volsync);
963
964 _leave(" = 0 [done]");
965 return 0;
966 }
967
968 /*
969 * FS.Rename operation type
970 */
971 static const struct afs_call_type afs_RXFSRename = {
972 .name = "FS.Rename",
973 .op = afs_FS_Rename,
974 .deliver = afs_deliver_fs_rename,
975 .destructor = afs_flat_call_destructor,
976 };
977
978 /*
979 * Rename/move a file or directory.
980 */
981 void afs_fs_rename(struct afs_operation *op)
982 {
983 struct afs_vnode_param *orig_dvp = &op->file[0];
984 struct afs_vnode_param *new_dvp = &op->file[1];
985 const struct qstr *orig_name = &op->dentry->d_name;
986 const struct qstr *new_name = &op->dentry_2->d_name;
987 struct afs_call *call;
988 size_t reqsz, o_namesz, o_padsz, n_namesz, n_padsz;
989 __be32 *bp;
990
991 _enter("");
992
993 o_namesz = orig_name->len;
994 o_padsz = (4 - (o_namesz & 3)) & 3;
995
996 n_namesz = new_name->len;
997 n_padsz = (4 - (n_namesz & 3)) & 3;
998
999 reqsz = (4 * 4) +
1000 4 + o_namesz + o_padsz +
1001 (3 * 4) +
1002 4 + n_namesz + n_padsz;
1003
1004 call = afs_alloc_flat_call(op->net, &afs_RXFSRename, reqsz, (21 + 21 + 6) * 4);
1005 if (!call)
1006 return afs_op_nomem(op);
1007
1008 /* marshall the parameters */
1009 bp = call->request;
1010 *bp++ = htonl(FSRENAME);
1011 *bp++ = htonl(orig_dvp->fid.vid);
1012 *bp++ = htonl(orig_dvp->fid.vnode);
1013 *bp++ = htonl(orig_dvp->fid.unique);
1014 *bp++ = htonl(o_namesz);
1015 memcpy(bp, orig_name->name, o_namesz);
1016 bp = (void *) bp + o_namesz;
1017 if (o_padsz > 0) {
1018 memset(bp, 0, o_padsz);
1019 bp = (void *) bp + o_padsz;
1020 }
1021
1022 *bp++ = htonl(new_dvp->fid.vid);
1023 *bp++ = htonl(new_dvp->fid.vnode);
1024 *bp++ = htonl(new_dvp->fid.unique);
1025 *bp++ = htonl(n_namesz);
1026 memcpy(bp, new_name->name, n_namesz);
1027 bp = (void *) bp + n_namesz;
1028 if (n_padsz > 0) {
1029 memset(bp, 0, n_padsz);
1030 bp = (void *) bp + n_padsz;
1031 }
1032
1033 trace_afs_make_fs_call2(call, &orig_dvp->fid, orig_name, new_name);
1034 afs_make_op_call(op, call, GFP_NOFS);
1035 }
1036
1037 /*
1038 * Deliver reply data to FS.StoreData or FS.StoreStatus
1039 */
1040 static int afs_deliver_fs_store_data(struct afs_call *call)
1041 {
1042 struct afs_operation *op = call->op;
1043 struct afs_vnode_param *vp = &op->file[0];
1044 const __be32 *bp;
1045 int ret;
1046
1047 _enter("");
1048
1049 ret = afs_transfer_reply(call);
1050 if (ret < 0)
1051 return ret;
1052
1053 /* unmarshall the reply once we've received all of it */
1054 bp = call->buffer;
1055 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
1056 xdr_decode_AFSVolSync(&bp, &op->volsync);
1057
1058 _leave(" = 0 [done]");
1059 return 0;
1060 }
1061
1062 /*
1063 * FS.StoreData operation type
1064 */
1065 static const struct afs_call_type afs_RXFSStoreData = {
1066 .name = "FS.StoreData",
1067 .op = afs_FS_StoreData,
1068 .deliver = afs_deliver_fs_store_data,
1069 .destructor = afs_flat_call_destructor,
1070 };
1071
1072 static const struct afs_call_type afs_RXFSStoreData64 = {
1073 .name = "FS.StoreData64",
1074 .op = afs_FS_StoreData64,
1075 .deliver = afs_deliver_fs_store_data,
1076 .destructor = afs_flat_call_destructor,
1077 };
1078
1079 /*
1080 * store a set of pages to a very large file
1081 */
1082 static void afs_fs_store_data64(struct afs_operation *op,
1083 loff_t pos, loff_t size, loff_t i_size)
1084 {
1085 struct afs_vnode_param *vp = &op->file[0];
1086 struct afs_call *call;
1087 __be32 *bp;
1088
1089 _enter(",%x,{%llx:%llu},,",
1090 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1091
1092 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData64,
1093 (4 + 6 + 3 * 2) * 4,
1094 (21 + 6) * 4);
1095 if (!call)
1096 return afs_op_nomem(op);
1097
1098 call->send_pages = true;
1099
1100 /* marshall the parameters */
1101 bp = call->request;
1102 *bp++ = htonl(FSSTOREDATA64);
1103 *bp++ = htonl(vp->fid.vid);
1104 *bp++ = htonl(vp->fid.vnode);
1105 *bp++ = htonl(vp->fid.unique);
1106
1107 *bp++ = htonl(AFS_SET_MTIME); /* mask */
1108 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
1109 *bp++ = 0; /* owner */
1110 *bp++ = 0; /* group */
1111 *bp++ = 0; /* unix mode */
1112 *bp++ = 0; /* segment size */
1113
1114 *bp++ = htonl(upper_32_bits(pos));
1115 *bp++ = htonl(lower_32_bits(pos));
1116 *bp++ = htonl(upper_32_bits(size));
1117 *bp++ = htonl(lower_32_bits(size));
1118 *bp++ = htonl(upper_32_bits(i_size));
1119 *bp++ = htonl(lower_32_bits(i_size));
1120
1121 trace_afs_make_fs_call(call, &vp->fid);
1122 afs_make_op_call(op, call, GFP_NOFS);
1123 }
1124
1125 /*
1126 * store a set of pages
1127 */
1128 void afs_fs_store_data(struct afs_operation *op)
1129 {
1130 struct afs_vnode_param *vp = &op->file[0];
1131 struct afs_call *call;
1132 loff_t size, pos, i_size;
1133 __be32 *bp;
1134
1135 _enter(",%x,{%llx:%llu},,",
1136 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1137
1138 size = (loff_t)op->store.last_to - (loff_t)op->store.first_offset;
1139 if (op->store.first != op->store.last)
1140 size += (loff_t)(op->store.last - op->store.first) << PAGE_SHIFT;
1141 pos = (loff_t)op->store.first << PAGE_SHIFT;
1142 pos += op->store.first_offset;
1143
1144 i_size = i_size_read(&vp->vnode->vfs_inode);
1145 if (pos + size > i_size)
1146 i_size = size + pos;
1147
1148 _debug("size %llx, at %llx, i_size %llx",
1149 (unsigned long long) size, (unsigned long long) pos,
1150 (unsigned long long) i_size);
1151
1152 if (upper_32_bits(pos) || upper_32_bits(i_size) || upper_32_bits(size) ||
1153 upper_32_bits(pos + size))
1154 return afs_fs_store_data64(op, pos, size, i_size);
1155
1156 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData,
1157 (4 + 6 + 3) * 4,
1158 (21 + 6) * 4);
1159 if (!call)
1160 return afs_op_nomem(op);
1161
1162 call->send_pages = true;
1163
1164 /* marshall the parameters */
1165 bp = call->request;
1166 *bp++ = htonl(FSSTOREDATA);
1167 *bp++ = htonl(vp->fid.vid);
1168 *bp++ = htonl(vp->fid.vnode);
1169 *bp++ = htonl(vp->fid.unique);
1170
1171 *bp++ = htonl(AFS_SET_MTIME); /* mask */
1172 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
1173 *bp++ = 0; /* owner */
1174 *bp++ = 0; /* group */
1175 *bp++ = 0; /* unix mode */
1176 *bp++ = 0; /* segment size */
1177
1178 *bp++ = htonl(lower_32_bits(pos));
1179 *bp++ = htonl(lower_32_bits(size));
1180 *bp++ = htonl(lower_32_bits(i_size));
1181
1182 trace_afs_make_fs_call(call, &vp->fid);
1183 afs_make_op_call(op, call, GFP_NOFS);
1184 }
1185
1186 /*
1187 * FS.StoreStatus operation type
1188 */
1189 static const struct afs_call_type afs_RXFSStoreStatus = {
1190 .name = "FS.StoreStatus",
1191 .op = afs_FS_StoreStatus,
1192 .deliver = afs_deliver_fs_store_data,
1193 .destructor = afs_flat_call_destructor,
1194 };
1195
1196 static const struct afs_call_type afs_RXFSStoreData_as_Status = {
1197 .name = "FS.StoreData",
1198 .op = afs_FS_StoreData,
1199 .deliver = afs_deliver_fs_store_data,
1200 .destructor = afs_flat_call_destructor,
1201 };
1202
1203 static const struct afs_call_type afs_RXFSStoreData64_as_Status = {
1204 .name = "FS.StoreData64",
1205 .op = afs_FS_StoreData64,
1206 .deliver = afs_deliver_fs_store_data,
1207 .destructor = afs_flat_call_destructor,
1208 };
1209
1210 /*
1211 * set the attributes on a very large file, using FS.StoreData rather than
1212 * FS.StoreStatus so as to alter the file size also
1213 */
1214 static void afs_fs_setattr_size64(struct afs_operation *op)
1215 {
1216 struct afs_vnode_param *vp = &op->file[0];
1217 struct afs_call *call;
1218 struct iattr *attr = op->setattr.attr;
1219 __be32 *bp;
1220
1221 _enter(",%x,{%llx:%llu},,",
1222 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1223
1224 ASSERT(attr->ia_valid & ATTR_SIZE);
1225
1226 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData64_as_Status,
1227 (4 + 6 + 3 * 2) * 4,
1228 (21 + 6) * 4);
1229 if (!call)
1230 return afs_op_nomem(op);
1231
1232 /* marshall the parameters */
1233 bp = call->request;
1234 *bp++ = htonl(FSSTOREDATA64);
1235 *bp++ = htonl(vp->fid.vid);
1236 *bp++ = htonl(vp->fid.vnode);
1237 *bp++ = htonl(vp->fid.unique);
1238
1239 xdr_encode_AFS_StoreStatus(&bp, attr);
1240
1241 *bp++ = htonl(upper_32_bits(attr->ia_size)); /* position of start of write */
1242 *bp++ = htonl(lower_32_bits(attr->ia_size));
1243 *bp++ = 0; /* size of write */
1244 *bp++ = 0;
1245 *bp++ = htonl(upper_32_bits(attr->ia_size)); /* new file length */
1246 *bp++ = htonl(lower_32_bits(attr->ia_size));
1247
1248 trace_afs_make_fs_call(call, &vp->fid);
1249 afs_make_op_call(op, call, GFP_NOFS);
1250 }
1251
1252 /*
1253 * set the attributes on a file, using FS.StoreData rather than FS.StoreStatus
1254 * so as to alter the file size also
1255 */
1256 static void afs_fs_setattr_size(struct afs_operation *op)
1257 {
1258 struct afs_vnode_param *vp = &op->file[0];
1259 struct afs_call *call;
1260 struct iattr *attr = op->setattr.attr;
1261 __be32 *bp;
1262
1263 _enter(",%x,{%llx:%llu},,",
1264 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1265
1266 ASSERT(attr->ia_valid & ATTR_SIZE);
1267 if (upper_32_bits(attr->ia_size))
1268 return afs_fs_setattr_size64(op);
1269
1270 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData_as_Status,
1271 (4 + 6 + 3) * 4,
1272 (21 + 6) * 4);
1273 if (!call)
1274 return afs_op_nomem(op);
1275
1276 /* marshall the parameters */
1277 bp = call->request;
1278 *bp++ = htonl(FSSTOREDATA);
1279 *bp++ = htonl(vp->fid.vid);
1280 *bp++ = htonl(vp->fid.vnode);
1281 *bp++ = htonl(vp->fid.unique);
1282
1283 xdr_encode_AFS_StoreStatus(&bp, attr);
1284
1285 *bp++ = htonl(attr->ia_size); /* position of start of write */
1286 *bp++ = 0; /* size of write */
1287 *bp++ = htonl(attr->ia_size); /* new file length */
1288
1289 trace_afs_make_fs_call(call, &vp->fid);
1290 afs_make_op_call(op, call, GFP_NOFS);
1291 }
1292
1293 /*
1294 * set the attributes on a file, using FS.StoreData if there's a change in file
1295 * size, and FS.StoreStatus otherwise
1296 */
1297 void afs_fs_setattr(struct afs_operation *op)
1298 {
1299 struct afs_vnode_param *vp = &op->file[0];
1300 struct afs_call *call;
1301 struct iattr *attr = op->setattr.attr;
1302 __be32 *bp;
1303
1304 if (attr->ia_valid & ATTR_SIZE)
1305 return afs_fs_setattr_size(op);
1306
1307 _enter(",%x,{%llx:%llu},,",
1308 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1309
1310 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreStatus,
1311 (4 + 6) * 4,
1312 (21 + 6) * 4);
1313 if (!call)
1314 return afs_op_nomem(op);
1315
1316 /* marshall the parameters */
1317 bp = call->request;
1318 *bp++ = htonl(FSSTORESTATUS);
1319 *bp++ = htonl(vp->fid.vid);
1320 *bp++ = htonl(vp->fid.vnode);
1321 *bp++ = htonl(vp->fid.unique);
1322
1323 xdr_encode_AFS_StoreStatus(&bp, op->setattr.attr);
1324
1325 trace_afs_make_fs_call(call, &vp->fid);
1326 afs_make_op_call(op, call, GFP_NOFS);
1327 }
1328
1329 /*
1330 * deliver reply data to an FS.GetVolumeStatus
1331 */
1332 static int afs_deliver_fs_get_volume_status(struct afs_call *call)
1333 {
1334 struct afs_operation *op = call->op;
1335 const __be32 *bp;
1336 char *p;
1337 u32 size;
1338 int ret;
1339
1340 _enter("{%u}", call->unmarshall);
1341
1342 switch (call->unmarshall) {
1343 case 0:
1344 call->unmarshall++;
1345 afs_extract_to_buf(call, 12 * 4);
1346 fallthrough;
1347
1348 /* extract the returned status record */
1349 case 1:
1350 _debug("extract status");
1351 ret = afs_extract_data(call, true);
1352 if (ret < 0)
1353 return ret;
1354
1355 bp = call->buffer;
1356 xdr_decode_AFSFetchVolumeStatus(&bp, &op->volstatus.vs);
1357 call->unmarshall++;
1358 afs_extract_to_tmp(call);
1359 fallthrough;
1360
1361 /* extract the volume name length */
1362 case 2:
1363 ret = afs_extract_data(call, true);
1364 if (ret < 0)
1365 return ret;
1366
1367 call->count = ntohl(call->tmp);
1368 _debug("volname length: %u", call->count);
1369 if (call->count >= AFSNAMEMAX)
1370 return afs_protocol_error(call, afs_eproto_volname_len);
1371 size = (call->count + 3) & ~3; /* It's padded */
1372 afs_extract_to_buf(call, size);
1373 call->unmarshall++;
1374 fallthrough;
1375
1376 /* extract the volume name */
1377 case 3:
1378 _debug("extract volname");
1379 ret = afs_extract_data(call, true);
1380 if (ret < 0)
1381 return ret;
1382
1383 p = call->buffer;
1384 p[call->count] = 0;
1385 _debug("volname '%s'", p);
1386 afs_extract_to_tmp(call);
1387 call->unmarshall++;
1388 fallthrough;
1389
1390 /* extract the offline message length */
1391 case 4:
1392 ret = afs_extract_data(call, true);
1393 if (ret < 0)
1394 return ret;
1395
1396 call->count = ntohl(call->tmp);
1397 _debug("offline msg length: %u", call->count);
1398 if (call->count >= AFSNAMEMAX)
1399 return afs_protocol_error(call, afs_eproto_offline_msg_len);
1400 size = (call->count + 3) & ~3; /* It's padded */
1401 afs_extract_to_buf(call, size);
1402 call->unmarshall++;
1403 fallthrough;
1404
1405 /* extract the offline message */
1406 case 5:
1407 _debug("extract offline");
1408 ret = afs_extract_data(call, true);
1409 if (ret < 0)
1410 return ret;
1411
1412 p = call->buffer;
1413 p[call->count] = 0;
1414 _debug("offline '%s'", p);
1415
1416 afs_extract_to_tmp(call);
1417 call->unmarshall++;
1418 fallthrough;
1419
1420 /* extract the message of the day length */
1421 case 6:
1422 ret = afs_extract_data(call, true);
1423 if (ret < 0)
1424 return ret;
1425
1426 call->count = ntohl(call->tmp);
1427 _debug("motd length: %u", call->count);
1428 if (call->count >= AFSNAMEMAX)
1429 return afs_protocol_error(call, afs_eproto_motd_len);
1430 size = (call->count + 3) & ~3; /* It's padded */
1431 afs_extract_to_buf(call, size);
1432 call->unmarshall++;
1433 fallthrough;
1434
1435 /* extract the message of the day */
1436 case 7:
1437 _debug("extract motd");
1438 ret = afs_extract_data(call, false);
1439 if (ret < 0)
1440 return ret;
1441
1442 p = call->buffer;
1443 p[call->count] = 0;
1444 _debug("motd '%s'", p);
1445
1446 call->unmarshall++;
1447
1448 case 8:
1449 break;
1450 }
1451
1452 _leave(" = 0 [done]");
1453 return 0;
1454 }
1455
1456 /*
1457 * FS.GetVolumeStatus operation type
1458 */
1459 static const struct afs_call_type afs_RXFSGetVolumeStatus = {
1460 .name = "FS.GetVolumeStatus",
1461 .op = afs_FS_GetVolumeStatus,
1462 .deliver = afs_deliver_fs_get_volume_status,
1463 .destructor = afs_flat_call_destructor,
1464 };
1465
1466 /*
1467 * fetch the status of a volume
1468 */
1469 void afs_fs_get_volume_status(struct afs_operation *op)
1470 {
1471 struct afs_vnode_param *vp = &op->file[0];
1472 struct afs_call *call;
1473 __be32 *bp;
1474
1475 _enter("");
1476
1477 call = afs_alloc_flat_call(op->net, &afs_RXFSGetVolumeStatus, 2 * 4,
1478 max(12 * 4, AFSOPAQUEMAX + 1));
1479 if (!call)
1480 return afs_op_nomem(op);
1481
1482 /* marshall the parameters */
1483 bp = call->request;
1484 bp[0] = htonl(FSGETVOLUMESTATUS);
1485 bp[1] = htonl(vp->fid.vid);
1486
1487 trace_afs_make_fs_call(call, &vp->fid);
1488 afs_make_op_call(op, call, GFP_NOFS);
1489 }
1490
1491 /*
1492 * deliver reply data to an FS.SetLock, FS.ExtendLock or FS.ReleaseLock
1493 */
1494 static int afs_deliver_fs_xxxx_lock(struct afs_call *call)
1495 {
1496 struct afs_operation *op = call->op;
1497 const __be32 *bp;
1498 int ret;
1499
1500 _enter("{%u}", call->unmarshall);
1501
1502 ret = afs_transfer_reply(call);
1503 if (ret < 0)
1504 return ret;
1505
1506 /* unmarshall the reply once we've received all of it */
1507 bp = call->buffer;
1508 xdr_decode_AFSVolSync(&bp, &op->volsync);
1509
1510 _leave(" = 0 [done]");
1511 return 0;
1512 }
1513
1514 /*
1515 * FS.SetLock operation type
1516 */
1517 static const struct afs_call_type afs_RXFSSetLock = {
1518 .name = "FS.SetLock",
1519 .op = afs_FS_SetLock,
1520 .deliver = afs_deliver_fs_xxxx_lock,
1521 .done = afs_lock_op_done,
1522 .destructor = afs_flat_call_destructor,
1523 };
1524
1525 /*
1526 * FS.ExtendLock operation type
1527 */
1528 static const struct afs_call_type afs_RXFSExtendLock = {
1529 .name = "FS.ExtendLock",
1530 .op = afs_FS_ExtendLock,
1531 .deliver = afs_deliver_fs_xxxx_lock,
1532 .done = afs_lock_op_done,
1533 .destructor = afs_flat_call_destructor,
1534 };
1535
1536 /*
1537 * FS.ReleaseLock operation type
1538 */
1539 static const struct afs_call_type afs_RXFSReleaseLock = {
1540 .name = "FS.ReleaseLock",
1541 .op = afs_FS_ReleaseLock,
1542 .deliver = afs_deliver_fs_xxxx_lock,
1543 .destructor = afs_flat_call_destructor,
1544 };
1545
1546 /*
1547 * Set a lock on a file
1548 */
1549 void afs_fs_set_lock(struct afs_operation *op)
1550 {
1551 struct afs_vnode_param *vp = &op->file[0];
1552 struct afs_call *call;
1553 __be32 *bp;
1554
1555 _enter("");
1556
1557 call = afs_alloc_flat_call(op->net, &afs_RXFSSetLock, 5 * 4, 6 * 4);
1558 if (!call)
1559 return afs_op_nomem(op);
1560
1561 /* marshall the parameters */
1562 bp = call->request;
1563 *bp++ = htonl(FSSETLOCK);
1564 *bp++ = htonl(vp->fid.vid);
1565 *bp++ = htonl(vp->fid.vnode);
1566 *bp++ = htonl(vp->fid.unique);
1567 *bp++ = htonl(op->lock.type);
1568
1569 trace_afs_make_fs_calli(call, &vp->fid, op->lock.type);
1570 afs_make_op_call(op, call, GFP_NOFS);
1571 }
1572
1573 /*
1574 * extend a lock on a file
1575 */
1576 void afs_fs_extend_lock(struct afs_operation *op)
1577 {
1578 struct afs_vnode_param *vp = &op->file[0];
1579 struct afs_call *call;
1580 __be32 *bp;
1581
1582 _enter("");
1583
1584 call = afs_alloc_flat_call(op->net, &afs_RXFSExtendLock, 4 * 4, 6 * 4);
1585 if (!call)
1586 return afs_op_nomem(op);
1587
1588 /* marshall the parameters */
1589 bp = call->request;
1590 *bp++ = htonl(FSEXTENDLOCK);
1591 *bp++ = htonl(vp->fid.vid);
1592 *bp++ = htonl(vp->fid.vnode);
1593 *bp++ = htonl(vp->fid.unique);
1594
1595 trace_afs_make_fs_call(call, &vp->fid);
1596 afs_make_op_call(op, call, GFP_NOFS);
1597 }
1598
1599 /*
1600 * release a lock on a file
1601 */
1602 void afs_fs_release_lock(struct afs_operation *op)
1603 {
1604 struct afs_vnode_param *vp = &op->file[0];
1605 struct afs_call *call;
1606 __be32 *bp;
1607
1608 _enter("");
1609
1610 call = afs_alloc_flat_call(op->net, &afs_RXFSReleaseLock, 4 * 4, 6 * 4);
1611 if (!call)
1612 return afs_op_nomem(op);
1613
1614 /* marshall the parameters */
1615 bp = call->request;
1616 *bp++ = htonl(FSRELEASELOCK);
1617 *bp++ = htonl(vp->fid.vid);
1618 *bp++ = htonl(vp->fid.vnode);
1619 *bp++ = htonl(vp->fid.unique);
1620
1621 trace_afs_make_fs_call(call, &vp->fid);
1622 afs_make_op_call(op, call, GFP_NOFS);
1623 }
1624
1625 /*
1626 * Deliver reply data to an FS.GiveUpAllCallBacks operation.
1627 */
1628 static int afs_deliver_fs_give_up_all_callbacks(struct afs_call *call)
1629 {
1630 return afs_transfer_reply(call);
1631 }
1632
1633 /*
1634 * FS.GiveUpAllCallBacks operation type
1635 */
1636 static const struct afs_call_type afs_RXFSGiveUpAllCallBacks = {
1637 .name = "FS.GiveUpAllCallBacks",
1638 .op = afs_FS_GiveUpAllCallBacks,
1639 .deliver = afs_deliver_fs_give_up_all_callbacks,
1640 .destructor = afs_flat_call_destructor,
1641 };
1642
1643 /*
1644 * Flush all the callbacks we have on a server.
1645 */
1646 int afs_fs_give_up_all_callbacks(struct afs_net *net,
1647 struct afs_server *server,
1648 struct afs_addr_cursor *ac,
1649 struct key *key)
1650 {
1651 struct afs_call *call;
1652 __be32 *bp;
1653
1654 _enter("");
1655
1656 call = afs_alloc_flat_call(net, &afs_RXFSGiveUpAllCallBacks, 1 * 4, 0);
1657 if (!call)
1658 return -ENOMEM;
1659
1660 call->key = key;
1661
1662 /* marshall the parameters */
1663 bp = call->request;
1664 *bp++ = htonl(FSGIVEUPALLCALLBACKS);
1665
1666 call->server = afs_use_server(server, afs_server_trace_give_up_cb);
1667 afs_make_call(ac, call, GFP_NOFS);
1668 return afs_wait_for_call_to_complete(call, ac);
1669 }
1670
1671 /*
1672 * Deliver reply data to an FS.GetCapabilities operation.
1673 */
1674 static int afs_deliver_fs_get_capabilities(struct afs_call *call)
1675 {
1676 u32 count;
1677 int ret;
1678
1679 _enter("{%u,%zu}", call->unmarshall, iov_iter_count(call->iter));
1680
1681 switch (call->unmarshall) {
1682 case 0:
1683 afs_extract_to_tmp(call);
1684 call->unmarshall++;
1685 fallthrough;
1686
1687 /* Extract the capabilities word count */
1688 case 1:
1689 ret = afs_extract_data(call, true);
1690 if (ret < 0)
1691 return ret;
1692
1693 count = ntohl(call->tmp);
1694
1695 call->count = count;
1696 call->count2 = count;
1697 afs_extract_discard(call, count * sizeof(__be32));
1698 call->unmarshall++;
1699 fallthrough;
1700
1701 /* Extract capabilities words */
1702 case 2:
1703 ret = afs_extract_data(call, false);
1704 if (ret < 0)
1705 return ret;
1706
1707 /* TODO: Examine capabilities */
1708
1709 call->unmarshall++;
1710 break;
1711 }
1712
1713 _leave(" = 0 [done]");
1714 return 0;
1715 }
1716
1717 /*
1718 * FS.GetCapabilities operation type
1719 */
1720 static const struct afs_call_type afs_RXFSGetCapabilities = {
1721 .name = "FS.GetCapabilities",
1722 .op = afs_FS_GetCapabilities,
1723 .deliver = afs_deliver_fs_get_capabilities,
1724 .done = afs_fileserver_probe_result,
1725 .destructor = afs_flat_call_destructor,
1726 };
1727
1728 /*
1729 * Probe a fileserver for the capabilities that it supports. This RPC can
1730 * reply with up to 196 words. The operation is asynchronous and if we managed
1731 * to allocate a call, true is returned the result is delivered through the
1732 * ->done() - otherwise we return false to indicate we didn't even try.
1733 */
1734 bool afs_fs_get_capabilities(struct afs_net *net, struct afs_server *server,
1735 struct afs_addr_cursor *ac, struct key *key)
1736 {
1737 struct afs_call *call;
1738 __be32 *bp;
1739
1740 _enter("");
1741
1742 call = afs_alloc_flat_call(net, &afs_RXFSGetCapabilities, 1 * 4, 16 * 4);
1743 if (!call)
1744 return false;
1745
1746 call->key = key;
1747 call->server = afs_use_server(server, afs_server_trace_get_caps);
1748 call->upgrade = true;
1749 call->async = true;
1750 call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
1751
1752 /* marshall the parameters */
1753 bp = call->request;
1754 *bp++ = htonl(FSGETCAPABILITIES);
1755
1756 trace_afs_make_fs_call(call, NULL);
1757 afs_make_call(ac, call, GFP_NOFS);
1758 afs_put_call(call);
1759 return true;
1760 }
1761
1762 /*
1763 * Deliver reply data to an FS.InlineBulkStatus call
1764 */
1765 static int afs_deliver_fs_inline_bulk_status(struct afs_call *call)
1766 {
1767 struct afs_operation *op = call->op;
1768 struct afs_status_cb *scb;
1769 const __be32 *bp;
1770 u32 tmp;
1771 int ret;
1772
1773 _enter("{%u}", call->unmarshall);
1774
1775 switch (call->unmarshall) {
1776 case 0:
1777 afs_extract_to_tmp(call);
1778 call->unmarshall++;
1779 fallthrough;
1780
1781 /* Extract the file status count and array in two steps */
1782 case 1:
1783 _debug("extract status count");
1784 ret = afs_extract_data(call, true);
1785 if (ret < 0)
1786 return ret;
1787
1788 tmp = ntohl(call->tmp);
1789 _debug("status count: %u/%u", tmp, op->nr_files);
1790 if (tmp != op->nr_files)
1791 return afs_protocol_error(call, afs_eproto_ibulkst_count);
1792
1793 call->count = 0;
1794 call->unmarshall++;
1795 more_counts:
1796 afs_extract_to_buf(call, 21 * sizeof(__be32));
1797 fallthrough;
1798
1799 case 2:
1800 _debug("extract status array %u", call->count);
1801 ret = afs_extract_data(call, true);
1802 if (ret < 0)
1803 return ret;
1804
1805 switch (call->count) {
1806 case 0:
1807 scb = &op->file[0].scb;
1808 break;
1809 case 1:
1810 scb = &op->file[1].scb;
1811 break;
1812 default:
1813 scb = &op->more_files[call->count - 2].scb;
1814 break;
1815 }
1816
1817 bp = call->buffer;
1818 xdr_decode_AFSFetchStatus(&bp, call, scb);
1819
1820 call->count++;
1821 if (call->count < op->nr_files)
1822 goto more_counts;
1823
1824 call->count = 0;
1825 call->unmarshall++;
1826 afs_extract_to_tmp(call);
1827 fallthrough;
1828
1829 /* Extract the callback count and array in two steps */
1830 case 3:
1831 _debug("extract CB count");
1832 ret = afs_extract_data(call, true);
1833 if (ret < 0)
1834 return ret;
1835
1836 tmp = ntohl(call->tmp);
1837 _debug("CB count: %u", tmp);
1838 if (tmp != op->nr_files)
1839 return afs_protocol_error(call, afs_eproto_ibulkst_cb_count);
1840 call->count = 0;
1841 call->unmarshall++;
1842 more_cbs:
1843 afs_extract_to_buf(call, 3 * sizeof(__be32));
1844 fallthrough;
1845
1846 case 4:
1847 _debug("extract CB array");
1848 ret = afs_extract_data(call, true);
1849 if (ret < 0)
1850 return ret;
1851
1852 _debug("unmarshall CB array");
1853 switch (call->count) {
1854 case 0:
1855 scb = &op->file[0].scb;
1856 break;
1857 case 1:
1858 scb = &op->file[1].scb;
1859 break;
1860 default:
1861 scb = &op->more_files[call->count - 2].scb;
1862 break;
1863 }
1864
1865 bp = call->buffer;
1866 xdr_decode_AFSCallBack(&bp, call, scb);
1867 call->count++;
1868 if (call->count < op->nr_files)
1869 goto more_cbs;
1870
1871 afs_extract_to_buf(call, 6 * sizeof(__be32));
1872 call->unmarshall++;
1873 fallthrough;
1874
1875 case 5:
1876 ret = afs_extract_data(call, false);
1877 if (ret < 0)
1878 return ret;
1879
1880 bp = call->buffer;
1881 xdr_decode_AFSVolSync(&bp, &op->volsync);
1882
1883 call->unmarshall++;
1884
1885 case 6:
1886 break;
1887 }
1888
1889 _leave(" = 0 [done]");
1890 return 0;
1891 }
1892
1893 static void afs_done_fs_inline_bulk_status(struct afs_call *call)
1894 {
1895 if (call->error == -ECONNABORTED &&
1896 call->abort_code == RX_INVALID_OPERATION) {
1897 set_bit(AFS_SERVER_FL_NO_IBULK, &call->server->flags);
1898 if (call->op)
1899 set_bit(AFS_VOLUME_MAYBE_NO_IBULK, &call->op->volume->flags);
1900 }
1901 }
1902
1903 /*
1904 * FS.InlineBulkStatus operation type
1905 */
1906 static const struct afs_call_type afs_RXFSInlineBulkStatus = {
1907 .name = "FS.InlineBulkStatus",
1908 .op = afs_FS_InlineBulkStatus,
1909 .deliver = afs_deliver_fs_inline_bulk_status,
1910 .done = afs_done_fs_inline_bulk_status,
1911 .destructor = afs_flat_call_destructor,
1912 };
1913
1914 /*
1915 * Fetch the status information for up to 50 files
1916 */
1917 void afs_fs_inline_bulk_status(struct afs_operation *op)
1918 {
1919 struct afs_vnode_param *dvp = &op->file[0];
1920 struct afs_vnode_param *vp = &op->file[1];
1921 struct afs_call *call;
1922 __be32 *bp;
1923 int i;
1924
1925 if (test_bit(AFS_SERVER_FL_NO_IBULK, &op->server->flags)) {
1926 op->error = -ENOTSUPP;
1927 return;
1928 }
1929
1930 _enter(",%x,{%llx:%llu},%u",
1931 key_serial(op->key), vp->fid.vid, vp->fid.vnode, op->nr_files);
1932
1933 call = afs_alloc_flat_call(op->net, &afs_RXFSInlineBulkStatus,
1934 (2 + op->nr_files * 3) * 4,
1935 21 * 4);
1936 if (!call)
1937 return afs_op_nomem(op);
1938
1939 /* marshall the parameters */
1940 bp = call->request;
1941 *bp++ = htonl(FSINLINEBULKSTATUS);
1942 *bp++ = htonl(op->nr_files);
1943 *bp++ = htonl(dvp->fid.vid);
1944 *bp++ = htonl(dvp->fid.vnode);
1945 *bp++ = htonl(dvp->fid.unique);
1946 *bp++ = htonl(vp->fid.vid);
1947 *bp++ = htonl(vp->fid.vnode);
1948 *bp++ = htonl(vp->fid.unique);
1949 for (i = 0; i < op->nr_files - 2; i++) {
1950 *bp++ = htonl(op->more_files[i].fid.vid);
1951 *bp++ = htonl(op->more_files[i].fid.vnode);
1952 *bp++ = htonl(op->more_files[i].fid.unique);
1953 }
1954
1955 trace_afs_make_fs_call(call, &vp->fid);
1956 afs_make_op_call(op, call, GFP_NOFS);
1957 }
1958
1959 /*
1960 * deliver reply data to an FS.FetchACL
1961 */
1962 static int afs_deliver_fs_fetch_acl(struct afs_call *call)
1963 {
1964 struct afs_operation *op = call->op;
1965 struct afs_vnode_param *vp = &op->file[0];
1966 struct afs_acl *acl;
1967 const __be32 *bp;
1968 unsigned int size;
1969 int ret;
1970
1971 _enter("{%u}", call->unmarshall);
1972
1973 switch (call->unmarshall) {
1974 case 0:
1975 afs_extract_to_tmp(call);
1976 call->unmarshall++;
1977 fallthrough;
1978
1979 /* extract the returned data length */
1980 case 1:
1981 ret = afs_extract_data(call, true);
1982 if (ret < 0)
1983 return ret;
1984
1985 size = call->count2 = ntohl(call->tmp);
1986 size = round_up(size, 4);
1987
1988 acl = kmalloc(struct_size(acl, data, size), GFP_KERNEL);
1989 if (!acl)
1990 return -ENOMEM;
1991 op->acl = acl;
1992 acl->size = call->count2;
1993 afs_extract_begin(call, acl->data, size);
1994 call->unmarshall++;
1995 fallthrough;
1996
1997 /* extract the returned data */
1998 case 2:
1999 ret = afs_extract_data(call, true);
2000 if (ret < 0)
2001 return ret;
2002
2003 afs_extract_to_buf(call, (21 + 6) * 4);
2004 call->unmarshall++;
2005 fallthrough;
2006
2007 /* extract the metadata */
2008 case 3:
2009 ret = afs_extract_data(call, false);
2010 if (ret < 0)
2011 return ret;
2012
2013 bp = call->buffer;
2014 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
2015 xdr_decode_AFSVolSync(&bp, &op->volsync);
2016
2017 call->unmarshall++;
2018
2019 case 4:
2020 break;
2021 }
2022
2023 _leave(" = 0 [done]");
2024 return 0;
2025 }
2026
2027 /*
2028 * FS.FetchACL operation type
2029 */
2030 static const struct afs_call_type afs_RXFSFetchACL = {
2031 .name = "FS.FetchACL",
2032 .op = afs_FS_FetchACL,
2033 .deliver = afs_deliver_fs_fetch_acl,
2034 };
2035
2036 /*
2037 * Fetch the ACL for a file.
2038 */
2039 void afs_fs_fetch_acl(struct afs_operation *op)
2040 {
2041 struct afs_vnode_param *vp = &op->file[0];
2042 struct afs_call *call;
2043 __be32 *bp;
2044
2045 _enter(",%x,{%llx:%llu},,",
2046 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
2047
2048 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchACL, 16, (21 + 6) * 4);
2049 if (!call)
2050 return afs_op_nomem(op);
2051
2052 /* marshall the parameters */
2053 bp = call->request;
2054 bp[0] = htonl(FSFETCHACL);
2055 bp[1] = htonl(vp->fid.vid);
2056 bp[2] = htonl(vp->fid.vnode);
2057 bp[3] = htonl(vp->fid.unique);
2058
2059 trace_afs_make_fs_call(call, &vp->fid);
2060 afs_make_op_call(op, call, GFP_KERNEL);
2061 }
2062
2063 /*
2064 * FS.StoreACL operation type
2065 */
2066 static const struct afs_call_type afs_RXFSStoreACL = {
2067 .name = "FS.StoreACL",
2068 .op = afs_FS_StoreACL,
2069 .deliver = afs_deliver_fs_file_status_and_vol,
2070 .destructor = afs_flat_call_destructor,
2071 };
2072
2073 /*
2074 * Fetch the ACL for a file.
2075 */
2076 void afs_fs_store_acl(struct afs_operation *op)
2077 {
2078 struct afs_vnode_param *vp = &op->file[0];
2079 struct afs_call *call;
2080 const struct afs_acl *acl = op->acl;
2081 size_t size;
2082 __be32 *bp;
2083
2084 _enter(",%x,{%llx:%llu},,",
2085 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
2086
2087 size = round_up(acl->size, 4);
2088 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreACL,
2089 5 * 4 + size, (21 + 6) * 4);
2090 if (!call)
2091 return afs_op_nomem(op);
2092
2093 /* marshall the parameters */
2094 bp = call->request;
2095 bp[0] = htonl(FSSTOREACL);
2096 bp[1] = htonl(vp->fid.vid);
2097 bp[2] = htonl(vp->fid.vnode);
2098 bp[3] = htonl(vp->fid.unique);
2099 bp[4] = htonl(acl->size);
2100 memcpy(&bp[5], acl->data, acl->size);
2101 if (acl->size != size)
2102 memset((void *)&bp[5] + acl->size, 0, size - acl->size);
2103
2104 trace_afs_make_fs_call(call, &vp->fid);
2105 afs_make_op_call(op, call, GFP_KERNEL);
2106 }