]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/afs/rxrpc.c
afs: Trace the sending of pages
[mirror_ubuntu-jammy-kernel.git] / fs / afs / rxrpc.c
1 /* Maintain an RxRPC server socket to do AFS communications through
2 *
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19
20 struct workqueue_struct *afs_async_calls;
21
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_process_async_call(struct work_struct *);
26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
28 static int afs_deliver_cm_op_id(struct afs_call *);
29
30 /* asynchronous incoming call initial processing */
31 static const struct afs_call_type afs_RXCMxxxx = {
32 .name = "CB.xxxx",
33 .deliver = afs_deliver_cm_op_id,
34 };
35
36 /*
37 * open an RxRPC socket and bind it to be a server for callback notifications
38 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
39 */
40 int afs_open_socket(struct afs_net *net)
41 {
42 struct sockaddr_rxrpc srx;
43 struct socket *socket;
44 int ret;
45
46 _enter("");
47
48 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
49 if (ret < 0)
50 goto error_1;
51
52 socket->sk->sk_allocation = GFP_NOFS;
53
54 /* bind the callback manager's address to make this a server socket */
55 memset(&srx, 0, sizeof(srx));
56 srx.srx_family = AF_RXRPC;
57 srx.srx_service = CM_SERVICE;
58 srx.transport_type = SOCK_DGRAM;
59 srx.transport_len = sizeof(srx.transport.sin6);
60 srx.transport.sin6.sin6_family = AF_INET6;
61 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
62
63 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
64 if (ret < 0)
65 goto error_2;
66
67 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
68 afs_rx_discard_new_call);
69
70 ret = kernel_listen(socket, INT_MAX);
71 if (ret < 0)
72 goto error_2;
73
74 net->socket = socket;
75 afs_charge_preallocation(&net->charge_preallocation_work);
76 _leave(" = 0");
77 return 0;
78
79 error_2:
80 sock_release(socket);
81 error_1:
82 _leave(" = %d", ret);
83 return ret;
84 }
85
86 /*
87 * close the RxRPC socket AFS was using
88 */
89 void afs_close_socket(struct afs_net *net)
90 {
91 _enter("");
92
93 kernel_listen(net->socket, 0);
94 flush_workqueue(afs_async_calls);
95
96 if (net->spare_incoming_call) {
97 afs_put_call(net->spare_incoming_call);
98 net->spare_incoming_call = NULL;
99 }
100
101 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
102 wait_on_atomic_t(&net->nr_outstanding_calls, atomic_t_wait,
103 TASK_UNINTERRUPTIBLE);
104 _debug("no outstanding calls");
105
106 kernel_sock_shutdown(net->socket, SHUT_RDWR);
107 flush_workqueue(afs_async_calls);
108 sock_release(net->socket);
109
110 _debug("dework");
111 _leave("");
112 }
113
114 /*
115 * Allocate a call.
116 */
117 static struct afs_call *afs_alloc_call(struct afs_net *net,
118 const struct afs_call_type *type,
119 gfp_t gfp)
120 {
121 struct afs_call *call;
122 int o;
123
124 call = kzalloc(sizeof(*call), gfp);
125 if (!call)
126 return NULL;
127
128 call->type = type;
129 call->net = net;
130 atomic_set(&call->usage, 1);
131 INIT_WORK(&call->async_work, afs_process_async_call);
132 init_waitqueue_head(&call->waitq);
133
134 o = atomic_inc_return(&net->nr_outstanding_calls);
135 trace_afs_call(call, afs_call_trace_alloc, 1, o,
136 __builtin_return_address(0));
137 return call;
138 }
139
140 /*
141 * Dispose of a reference on a call.
142 */
143 void afs_put_call(struct afs_call *call)
144 {
145 struct afs_net *net = call->net;
146 int n = atomic_dec_return(&call->usage);
147 int o = atomic_read(&net->nr_outstanding_calls);
148
149 trace_afs_call(call, afs_call_trace_put, n + 1, o,
150 __builtin_return_address(0));
151
152 ASSERTCMP(n, >=, 0);
153 if (n == 0) {
154 ASSERT(!work_pending(&call->async_work));
155 ASSERT(call->type->name != NULL);
156
157 if (call->rxcall) {
158 rxrpc_kernel_end_call(net->socket, call->rxcall);
159 call->rxcall = NULL;
160 }
161 if (call->type->destructor)
162 call->type->destructor(call);
163
164 afs_put_server(call->net, call->cm_server);
165 afs_put_cb_interest(call->net, call->cbi);
166 kfree(call->request);
167 kfree(call);
168
169 o = atomic_dec_return(&net->nr_outstanding_calls);
170 trace_afs_call(call, afs_call_trace_free, 0, o,
171 __builtin_return_address(0));
172 if (o == 0)
173 wake_up_atomic_t(&net->nr_outstanding_calls);
174 }
175 }
176
177 /*
178 * Queue the call for actual work. Returns 0 unconditionally for convenience.
179 */
180 int afs_queue_call_work(struct afs_call *call)
181 {
182 int u = atomic_inc_return(&call->usage);
183
184 trace_afs_call(call, afs_call_trace_work, u,
185 atomic_read(&call->net->nr_outstanding_calls),
186 __builtin_return_address(0));
187
188 INIT_WORK(&call->work, call->type->work);
189
190 if (!queue_work(afs_wq, &call->work))
191 afs_put_call(call);
192 return 0;
193 }
194
195 /*
196 * allocate a call with flat request and reply buffers
197 */
198 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
199 const struct afs_call_type *type,
200 size_t request_size, size_t reply_max)
201 {
202 struct afs_call *call;
203
204 call = afs_alloc_call(net, type, GFP_NOFS);
205 if (!call)
206 goto nomem_call;
207
208 if (request_size) {
209 call->request_size = request_size;
210 call->request = kmalloc(request_size, GFP_NOFS);
211 if (!call->request)
212 goto nomem_free;
213 }
214
215 if (reply_max) {
216 call->reply_max = reply_max;
217 call->buffer = kmalloc(reply_max, GFP_NOFS);
218 if (!call->buffer)
219 goto nomem_free;
220 }
221
222 call->operation_ID = type->op;
223 init_waitqueue_head(&call->waitq);
224 return call;
225
226 nomem_free:
227 afs_put_call(call);
228 nomem_call:
229 return NULL;
230 }
231
232 /*
233 * clean up a call with flat buffer
234 */
235 void afs_flat_call_destructor(struct afs_call *call)
236 {
237 _enter("");
238
239 kfree(call->request);
240 call->request = NULL;
241 kfree(call->buffer);
242 call->buffer = NULL;
243 }
244
245 #define AFS_BVEC_MAX 8
246
247 /*
248 * Load the given bvec with the next few pages.
249 */
250 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
251 struct bio_vec *bv, pgoff_t first, pgoff_t last,
252 unsigned offset)
253 {
254 struct page *pages[AFS_BVEC_MAX];
255 unsigned int nr, n, i, to, bytes = 0;
256
257 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
258 n = find_get_pages_contig(call->mapping, first, nr, pages);
259 ASSERTCMP(n, ==, nr);
260
261 msg->msg_flags |= MSG_MORE;
262 for (i = 0; i < nr; i++) {
263 to = PAGE_SIZE;
264 if (first + i >= last) {
265 to = call->last_to;
266 msg->msg_flags &= ~MSG_MORE;
267 }
268 bv[i].bv_page = pages[i];
269 bv[i].bv_len = to - offset;
270 bv[i].bv_offset = offset;
271 bytes += to - offset;
272 offset = 0;
273 }
274
275 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
276 }
277
278 /*
279 * Advance the AFS call state when the RxRPC call ends the transmit phase.
280 */
281 static void afs_notify_end_request_tx(struct sock *sock,
282 struct rxrpc_call *rxcall,
283 unsigned long call_user_ID)
284 {
285 struct afs_call *call = (struct afs_call *)call_user_ID;
286
287 if (call->state == AFS_CALL_REQUESTING)
288 call->state = AFS_CALL_AWAIT_REPLY;
289 }
290
291 /*
292 * attach the data from a bunch of pages on an inode to a call
293 */
294 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
295 {
296 struct bio_vec bv[AFS_BVEC_MAX];
297 unsigned int bytes, nr, loop, offset;
298 pgoff_t first = call->first, last = call->last;
299 int ret;
300
301 offset = call->first_offset;
302 call->first_offset = 0;
303
304 do {
305 afs_load_bvec(call, msg, bv, first, last, offset);
306 trace_afs_send_pages(call, msg, first, last, offset);
307
308 offset = 0;
309 bytes = msg->msg_iter.count;
310 nr = msg->msg_iter.nr_segs;
311
312 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
313 bytes, afs_notify_end_request_tx);
314 for (loop = 0; loop < nr; loop++)
315 put_page(bv[loop].bv_page);
316 if (ret < 0)
317 break;
318
319 first += nr;
320 } while (first <= last);
321
322 trace_afs_sent_pages(call, call->first, last, first, ret);
323 return ret;
324 }
325
326 /*
327 * initiate a call
328 */
329 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
330 gfp_t gfp, bool async)
331 {
332 struct sockaddr_rxrpc *srx = ac->addr;
333 struct rxrpc_call *rxcall;
334 struct msghdr msg;
335 struct kvec iov[1];
336 size_t offset;
337 s64 tx_total_len;
338 int ret;
339
340 _enter(",{%pISp},", &srx->transport);
341
342 ASSERT(call->type != NULL);
343 ASSERT(call->type->name != NULL);
344
345 _debug("____MAKE %p{%s,%x} [%d]____",
346 call, call->type->name, key_serial(call->key),
347 atomic_read(&call->net->nr_outstanding_calls));
348
349 call->async = async;
350
351 /* Work out the length we're going to transmit. This is awkward for
352 * calls such as FS.StoreData where there's an extra injection of data
353 * after the initial fixed part.
354 */
355 tx_total_len = call->request_size;
356 if (call->send_pages) {
357 if (call->last == call->first) {
358 tx_total_len += call->last_to - call->first_offset;
359 } else {
360 /* It looks mathematically like you should be able to
361 * combine the following lines with the ones above, but
362 * unsigned arithmetic is fun when it wraps...
363 */
364 tx_total_len += PAGE_SIZE - call->first_offset;
365 tx_total_len += call->last_to;
366 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
367 }
368 }
369
370 /* create a call */
371 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
372 (unsigned long)call,
373 tx_total_len, gfp,
374 (async ?
375 afs_wake_up_async_call :
376 afs_wake_up_call_waiter),
377 call->upgrade);
378 if (IS_ERR(rxcall)) {
379 ret = PTR_ERR(rxcall);
380 goto error_kill_call;
381 }
382
383 call->rxcall = rxcall;
384
385 /* send the request */
386 iov[0].iov_base = call->request;
387 iov[0].iov_len = call->request_size;
388
389 msg.msg_name = NULL;
390 msg.msg_namelen = 0;
391 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
392 call->request_size);
393 msg.msg_control = NULL;
394 msg.msg_controllen = 0;
395 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
396
397 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
398 &msg, call->request_size,
399 afs_notify_end_request_tx);
400 if (ret < 0)
401 goto error_do_abort;
402
403 if (call->send_pages) {
404 ret = afs_send_pages(call, &msg);
405 if (ret < 0)
406 goto error_do_abort;
407 }
408
409 /* at this point, an async call may no longer exist as it may have
410 * already completed */
411 if (call->async)
412 return -EINPROGRESS;
413
414 return afs_wait_for_call_to_complete(call, ac);
415
416 error_do_abort:
417 call->state = AFS_CALL_COMPLETE;
418 if (ret != -ECONNABORTED) {
419 rxrpc_kernel_abort_call(call->net->socket, rxcall,
420 RX_USER_ABORT, ret, "KSD");
421 } else {
422 offset = 0;
423 rxrpc_kernel_recv_data(call->net->socket, rxcall, NULL,
424 0, &offset, false, &call->abort_code,
425 &call->service_id);
426 ac->abort_code = call->abort_code;
427 ac->responded = true;
428 }
429 call->error = ret;
430 trace_afs_call_done(call);
431 error_kill_call:
432 afs_put_call(call);
433 ac->error = ret;
434 _leave(" = %d", ret);
435 return ret;
436 }
437
438 /*
439 * deliver messages to a call
440 */
441 static void afs_deliver_to_call(struct afs_call *call)
442 {
443 u32 abort_code;
444 int ret;
445
446 _enter("%s", call->type->name);
447
448 while (call->state == AFS_CALL_AWAIT_REPLY ||
449 call->state == AFS_CALL_AWAIT_OP_ID ||
450 call->state == AFS_CALL_AWAIT_REQUEST ||
451 call->state == AFS_CALL_AWAIT_ACK
452 ) {
453 if (call->state == AFS_CALL_AWAIT_ACK) {
454 size_t offset = 0;
455 ret = rxrpc_kernel_recv_data(call->net->socket,
456 call->rxcall,
457 NULL, 0, &offset, false,
458 &call->abort_code,
459 &call->service_id);
460 trace_afs_recv_data(call, 0, offset, false, ret);
461
462 if (ret == -EINPROGRESS || ret == -EAGAIN)
463 return;
464 if (ret < 0)
465 call->error = ret;
466 if (ret < 0 || ret == 1)
467 goto call_complete;
468 return;
469 }
470
471 ret = call->type->deliver(call);
472 switch (ret) {
473 case 0:
474 if (call->state == AFS_CALL_AWAIT_REPLY)
475 goto call_complete;
476 goto done;
477 case -EINPROGRESS:
478 case -EAGAIN:
479 goto out;
480 case -ECONNABORTED:
481 goto save_error;
482 case -ENOTCONN:
483 abort_code = RX_CALL_DEAD;
484 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
485 abort_code, ret, "KNC");
486 goto save_error;
487 case -ENOTSUPP:
488 abort_code = RXGEN_OPCODE;
489 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
490 abort_code, ret, "KIV");
491 goto save_error;
492 case -ENODATA:
493 case -EBADMSG:
494 case -EMSGSIZE:
495 default:
496 abort_code = RXGEN_CC_UNMARSHAL;
497 if (call->state != AFS_CALL_AWAIT_REPLY)
498 abort_code = RXGEN_SS_UNMARSHAL;
499 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
500 abort_code, -EBADMSG, "KUM");
501 goto save_error;
502 }
503 }
504
505 done:
506 if (call->state == AFS_CALL_COMPLETE && call->incoming)
507 afs_put_call(call);
508 out:
509 _leave("");
510 return;
511
512 save_error:
513 call->error = ret;
514 call_complete:
515 if (call->state != AFS_CALL_COMPLETE) {
516 call->state = AFS_CALL_COMPLETE;
517 trace_afs_call_done(call);
518 }
519 goto done;
520 }
521
522 /*
523 * wait synchronously for a call to complete
524 */
525 static long afs_wait_for_call_to_complete(struct afs_call *call,
526 struct afs_addr_cursor *ac)
527 {
528 signed long rtt2, timeout;
529 long ret;
530 u64 rtt;
531 u32 life, last_life;
532
533 DECLARE_WAITQUEUE(myself, current);
534
535 _enter("");
536
537 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
538 rtt2 = nsecs_to_jiffies64(rtt) * 2;
539 if (rtt2 < 2)
540 rtt2 = 2;
541
542 timeout = rtt2;
543 last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
544
545 add_wait_queue(&call->waitq, &myself);
546 for (;;) {
547 set_current_state(TASK_UNINTERRUPTIBLE);
548
549 /* deliver any messages that are in the queue */
550 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
551 call->need_attention = false;
552 __set_current_state(TASK_RUNNING);
553 afs_deliver_to_call(call);
554 continue;
555 }
556
557 if (call->state == AFS_CALL_COMPLETE)
558 break;
559
560 life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
561 if (timeout == 0 &&
562 life == last_life && signal_pending(current))
563 break;
564
565 if (life != last_life) {
566 timeout = rtt2;
567 last_life = life;
568 }
569
570 timeout = schedule_timeout(timeout);
571 }
572
573 remove_wait_queue(&call->waitq, &myself);
574 __set_current_state(TASK_RUNNING);
575
576 /* Kill off the call if it's still live. */
577 if (call->state < AFS_CALL_COMPLETE) {
578 _debug("call interrupted");
579 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
580 RX_USER_ABORT, -EINTR, "KWI")) {
581 call->error = -ERESTARTSYS;
582 trace_afs_call_done(call);
583 }
584 }
585
586 ac->abort_code = call->abort_code;
587 ac->error = call->error;
588
589 ret = ac->error;
590 switch (ret) {
591 case 0:
592 if (call->ret_reply0) {
593 ret = (long)call->reply[0];
594 call->reply[0] = NULL;
595 }
596 /* Fall through */
597 case -ECONNABORTED:
598 ac->responded = true;
599 break;
600 }
601
602 _debug("call complete");
603 afs_put_call(call);
604 _leave(" = %p", (void *)ret);
605 return ret;
606 }
607
608 /*
609 * wake up a waiting call
610 */
611 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
612 unsigned long call_user_ID)
613 {
614 struct afs_call *call = (struct afs_call *)call_user_ID;
615
616 call->need_attention = true;
617 wake_up(&call->waitq);
618 }
619
620 /*
621 * wake up an asynchronous call
622 */
623 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
624 unsigned long call_user_ID)
625 {
626 struct afs_call *call = (struct afs_call *)call_user_ID;
627 int u;
628
629 trace_afs_notify_call(rxcall, call);
630 call->need_attention = true;
631
632 u = __atomic_add_unless(&call->usage, 1, 0);
633 if (u != 0) {
634 trace_afs_call(call, afs_call_trace_wake, u,
635 atomic_read(&call->net->nr_outstanding_calls),
636 __builtin_return_address(0));
637
638 if (!queue_work(afs_async_calls, &call->async_work))
639 afs_put_call(call);
640 }
641 }
642
643 /*
644 * Delete an asynchronous call. The work item carries a ref to the call struct
645 * that we need to release.
646 */
647 static void afs_delete_async_call(struct work_struct *work)
648 {
649 struct afs_call *call = container_of(work, struct afs_call, async_work);
650
651 _enter("");
652
653 afs_put_call(call);
654
655 _leave("");
656 }
657
658 /*
659 * Perform I/O processing on an asynchronous call. The work item carries a ref
660 * to the call struct that we either need to release or to pass on.
661 */
662 static void afs_process_async_call(struct work_struct *work)
663 {
664 struct afs_call *call = container_of(work, struct afs_call, async_work);
665
666 _enter("");
667
668 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
669 call->need_attention = false;
670 afs_deliver_to_call(call);
671 }
672
673 if (call->state == AFS_CALL_COMPLETE) {
674 call->reply[0] = NULL;
675
676 /* We have two refs to release - one from the alloc and one
677 * queued with the work item - and we can't just deallocate the
678 * call because the work item may be queued again.
679 */
680 call->async_work.func = afs_delete_async_call;
681 if (!queue_work(afs_async_calls, &call->async_work))
682 afs_put_call(call);
683 }
684
685 afs_put_call(call);
686 _leave("");
687 }
688
689 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
690 {
691 struct afs_call *call = (struct afs_call *)user_call_ID;
692
693 call->rxcall = rxcall;
694 }
695
696 /*
697 * Charge the incoming call preallocation.
698 */
699 void afs_charge_preallocation(struct work_struct *work)
700 {
701 struct afs_net *net =
702 container_of(work, struct afs_net, charge_preallocation_work);
703 struct afs_call *call = net->spare_incoming_call;
704
705 for (;;) {
706 if (!call) {
707 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
708 if (!call)
709 break;
710
711 call->async = true;
712 call->state = AFS_CALL_AWAIT_OP_ID;
713 init_waitqueue_head(&call->waitq);
714 }
715
716 if (rxrpc_kernel_charge_accept(net->socket,
717 afs_wake_up_async_call,
718 afs_rx_attach,
719 (unsigned long)call,
720 GFP_KERNEL) < 0)
721 break;
722 call = NULL;
723 }
724 net->spare_incoming_call = call;
725 }
726
727 /*
728 * Discard a preallocated call when a socket is shut down.
729 */
730 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
731 unsigned long user_call_ID)
732 {
733 struct afs_call *call = (struct afs_call *)user_call_ID;
734
735 call->rxcall = NULL;
736 afs_put_call(call);
737 }
738
739 /*
740 * Notification of an incoming call.
741 */
742 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
743 unsigned long user_call_ID)
744 {
745 struct afs_net *net = afs_sock2net(sk);
746
747 queue_work(afs_wq, &net->charge_preallocation_work);
748 }
749
750 /*
751 * Grab the operation ID from an incoming cache manager call. The socket
752 * buffer is discarded on error or if we don't yet have sufficient data.
753 */
754 static int afs_deliver_cm_op_id(struct afs_call *call)
755 {
756 int ret;
757
758 _enter("{%zu}", call->offset);
759
760 ASSERTCMP(call->offset, <, 4);
761
762 /* the operation ID forms the first four bytes of the request data */
763 ret = afs_extract_data(call, &call->tmp, 4, true);
764 if (ret < 0)
765 return ret;
766
767 call->operation_ID = ntohl(call->tmp);
768 call->state = AFS_CALL_AWAIT_REQUEST;
769 call->offset = 0;
770
771 /* ask the cache manager to route the call (it'll change the call type
772 * if successful) */
773 if (!afs_cm_incoming_call(call))
774 return -ENOTSUPP;
775
776 trace_afs_cb_call(call);
777
778 /* pass responsibility for the remainer of this message off to the
779 * cache manager op */
780 return call->type->deliver(call);
781 }
782
783 /*
784 * Advance the AFS call state when an RxRPC service call ends the transmit
785 * phase.
786 */
787 static void afs_notify_end_reply_tx(struct sock *sock,
788 struct rxrpc_call *rxcall,
789 unsigned long call_user_ID)
790 {
791 struct afs_call *call = (struct afs_call *)call_user_ID;
792
793 if (call->state == AFS_CALL_REPLYING)
794 call->state = AFS_CALL_AWAIT_ACK;
795 }
796
797 /*
798 * send an empty reply
799 */
800 void afs_send_empty_reply(struct afs_call *call)
801 {
802 struct afs_net *net = call->net;
803 struct msghdr msg;
804
805 _enter("");
806
807 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
808
809 msg.msg_name = NULL;
810 msg.msg_namelen = 0;
811 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
812 msg.msg_control = NULL;
813 msg.msg_controllen = 0;
814 msg.msg_flags = 0;
815
816 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
817 afs_notify_end_reply_tx)) {
818 case 0:
819 _leave(" [replied]");
820 return;
821
822 case -ENOMEM:
823 _debug("oom");
824 rxrpc_kernel_abort_call(net->socket, call->rxcall,
825 RX_USER_ABORT, -ENOMEM, "KOO");
826 default:
827 _leave(" [error]");
828 return;
829 }
830 }
831
832 /*
833 * send a simple reply
834 */
835 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
836 {
837 struct afs_net *net = call->net;
838 struct msghdr msg;
839 struct kvec iov[1];
840 int n;
841
842 _enter("");
843
844 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
845
846 iov[0].iov_base = (void *) buf;
847 iov[0].iov_len = len;
848 msg.msg_name = NULL;
849 msg.msg_namelen = 0;
850 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
851 msg.msg_control = NULL;
852 msg.msg_controllen = 0;
853 msg.msg_flags = 0;
854
855 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
856 afs_notify_end_reply_tx);
857 if (n >= 0) {
858 /* Success */
859 _leave(" [replied]");
860 return;
861 }
862
863 if (n == -ENOMEM) {
864 _debug("oom");
865 rxrpc_kernel_abort_call(net->socket, call->rxcall,
866 RX_USER_ABORT, -ENOMEM, "KOO");
867 }
868 _leave(" [error]");
869 }
870
871 /*
872 * Extract a piece of data from the received data socket buffers.
873 */
874 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
875 bool want_more)
876 {
877 struct afs_net *net = call->net;
878 int ret;
879
880 _enter("{%s,%zu},,%zu,%d",
881 call->type->name, call->offset, count, want_more);
882
883 ASSERTCMP(call->offset, <=, count);
884
885 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall,
886 buf, count, &call->offset,
887 want_more, &call->abort_code,
888 &call->service_id);
889 trace_afs_recv_data(call, count, call->offset, want_more, ret);
890 if (ret == 0 || ret == -EAGAIN)
891 return ret;
892
893 if (ret == 1) {
894 switch (call->state) {
895 case AFS_CALL_AWAIT_REPLY:
896 call->state = AFS_CALL_COMPLETE;
897 trace_afs_call_done(call);
898 break;
899 case AFS_CALL_AWAIT_REQUEST:
900 call->state = AFS_CALL_REPLYING;
901 break;
902 default:
903 break;
904 }
905 return 0;
906 }
907
908 call->error = ret;
909 call->state = AFS_CALL_COMPLETE;
910 trace_afs_call_done(call);
911 return ret;
912 }