]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/afs/rxrpc.c
Merge tag 'asoc-fix-v5.7' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-jammy-kernel.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_delete_async_call(struct work_struct *);
22 static void afs_process_async_call(struct work_struct *);
23 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
25 static int afs_deliver_cm_op_id(struct afs_call *);
26
27 /* asynchronous incoming call initial processing */
28 static const struct afs_call_type afs_RXCMxxxx = {
29 .name = "CB.xxxx",
30 .deliver = afs_deliver_cm_op_id,
31 };
32
33 /*
34 * open an RxRPC socket and bind it to be a server for callback notifications
35 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
36 */
37 int afs_open_socket(struct afs_net *net)
38 {
39 struct sockaddr_rxrpc srx;
40 struct socket *socket;
41 unsigned int min_level;
42 int ret;
43
44 _enter("");
45
46 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
47 if (ret < 0)
48 goto error_1;
49
50 socket->sk->sk_allocation = GFP_NOFS;
51
52 /* bind the callback manager's address to make this a server socket */
53 memset(&srx, 0, sizeof(srx));
54 srx.srx_family = AF_RXRPC;
55 srx.srx_service = CM_SERVICE;
56 srx.transport_type = SOCK_DGRAM;
57 srx.transport_len = sizeof(srx.transport.sin6);
58 srx.transport.sin6.sin6_family = AF_INET6;
59 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
60
61 min_level = RXRPC_SECURITY_ENCRYPT;
62 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
63 (void *)&min_level, sizeof(min_level));
64 if (ret < 0)
65 goto error_2;
66
67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68 if (ret == -EADDRINUSE) {
69 srx.transport.sin6.sin6_port = 0;
70 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
71 }
72 if (ret < 0)
73 goto error_2;
74
75 srx.srx_service = YFS_CM_SERVICE;
76 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
77 if (ret < 0)
78 goto error_2;
79
80 /* Ideally, we'd turn on service upgrade here, but we can't because
81 * OpenAFS is buggy and leaks the userStatus field from packet to
82 * packet and between FS packets and CB packets - so if we try to do an
83 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
84 * it sends back to us.
85 */
86
87 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
88 afs_rx_discard_new_call);
89
90 ret = kernel_listen(socket, INT_MAX);
91 if (ret < 0)
92 goto error_2;
93
94 net->socket = socket;
95 afs_charge_preallocation(&net->charge_preallocation_work);
96 _leave(" = 0");
97 return 0;
98
99 error_2:
100 sock_release(socket);
101 error_1:
102 _leave(" = %d", ret);
103 return ret;
104 }
105
106 /*
107 * close the RxRPC socket AFS was using
108 */
109 void afs_close_socket(struct afs_net *net)
110 {
111 _enter("");
112
113 kernel_listen(net->socket, 0);
114 flush_workqueue(afs_async_calls);
115
116 if (net->spare_incoming_call) {
117 afs_put_call(net->spare_incoming_call);
118 net->spare_incoming_call = NULL;
119 }
120
121 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
122 wait_var_event(&net->nr_outstanding_calls,
123 !atomic_read(&net->nr_outstanding_calls));
124 _debug("no outstanding calls");
125
126 kernel_sock_shutdown(net->socket, SHUT_RDWR);
127 flush_workqueue(afs_async_calls);
128 sock_release(net->socket);
129
130 _debug("dework");
131 _leave("");
132 }
133
134 /*
135 * Allocate a call.
136 */
137 static struct afs_call *afs_alloc_call(struct afs_net *net,
138 const struct afs_call_type *type,
139 gfp_t gfp)
140 {
141 struct afs_call *call;
142 int o;
143
144 call = kzalloc(sizeof(*call), gfp);
145 if (!call)
146 return NULL;
147
148 call->type = type;
149 call->net = net;
150 call->debug_id = atomic_inc_return(&rxrpc_debug_id);
151 atomic_set(&call->usage, 1);
152 INIT_WORK(&call->async_work, afs_process_async_call);
153 init_waitqueue_head(&call->waitq);
154 spin_lock_init(&call->state_lock);
155 call->iter = &call->def_iter;
156
157 o = atomic_inc_return(&net->nr_outstanding_calls);
158 trace_afs_call(call, afs_call_trace_alloc, 1, o,
159 __builtin_return_address(0));
160 return call;
161 }
162
163 /*
164 * Dispose of a reference on a call.
165 */
166 void afs_put_call(struct afs_call *call)
167 {
168 struct afs_net *net = call->net;
169 int n = atomic_dec_return(&call->usage);
170 int o = atomic_read(&net->nr_outstanding_calls);
171
172 trace_afs_call(call, afs_call_trace_put, n + 1, o,
173 __builtin_return_address(0));
174
175 ASSERTCMP(n, >=, 0);
176 if (n == 0) {
177 ASSERT(!work_pending(&call->async_work));
178 ASSERT(call->type->name != NULL);
179
180 if (call->rxcall) {
181 rxrpc_kernel_end_call(net->socket, call->rxcall);
182 call->rxcall = NULL;
183 }
184 if (call->type->destructor)
185 call->type->destructor(call);
186
187 afs_put_server(call->net, call->server, afs_server_trace_put_call);
188 afs_put_cb_interest(call->net, call->cbi);
189 afs_put_addrlist(call->alist);
190 kfree(call->request);
191
192 trace_afs_call(call, afs_call_trace_free, 0, o,
193 __builtin_return_address(0));
194 kfree(call);
195
196 o = atomic_dec_return(&net->nr_outstanding_calls);
197 if (o == 0)
198 wake_up_var(&net->nr_outstanding_calls);
199 }
200 }
201
202 static struct afs_call *afs_get_call(struct afs_call *call,
203 enum afs_call_trace why)
204 {
205 int u = atomic_inc_return(&call->usage);
206
207 trace_afs_call(call, why, u,
208 atomic_read(&call->net->nr_outstanding_calls),
209 __builtin_return_address(0));
210 return call;
211 }
212
213 /*
214 * Queue the call for actual work.
215 */
216 static void afs_queue_call_work(struct afs_call *call)
217 {
218 if (call->type->work) {
219 INIT_WORK(&call->work, call->type->work);
220
221 afs_get_call(call, afs_call_trace_work);
222 if (!queue_work(afs_wq, &call->work))
223 afs_put_call(call);
224 }
225 }
226
227 /*
228 * allocate a call with flat request and reply buffers
229 */
230 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
231 const struct afs_call_type *type,
232 size_t request_size, size_t reply_max)
233 {
234 struct afs_call *call;
235
236 call = afs_alloc_call(net, type, GFP_NOFS);
237 if (!call)
238 goto nomem_call;
239
240 if (request_size) {
241 call->request_size = request_size;
242 call->request = kmalloc(request_size, GFP_NOFS);
243 if (!call->request)
244 goto nomem_free;
245 }
246
247 if (reply_max) {
248 call->reply_max = reply_max;
249 call->buffer = kmalloc(reply_max, GFP_NOFS);
250 if (!call->buffer)
251 goto nomem_free;
252 }
253
254 afs_extract_to_buf(call, call->reply_max);
255 call->operation_ID = type->op;
256 init_waitqueue_head(&call->waitq);
257 return call;
258
259 nomem_free:
260 afs_put_call(call);
261 nomem_call:
262 return NULL;
263 }
264
265 /*
266 * clean up a call with flat buffer
267 */
268 void afs_flat_call_destructor(struct afs_call *call)
269 {
270 _enter("");
271
272 kfree(call->request);
273 call->request = NULL;
274 kfree(call->buffer);
275 call->buffer = NULL;
276 }
277
278 #define AFS_BVEC_MAX 8
279
280 /*
281 * Load the given bvec with the next few pages.
282 */
283 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
284 struct bio_vec *bv, pgoff_t first, pgoff_t last,
285 unsigned offset)
286 {
287 struct page *pages[AFS_BVEC_MAX];
288 unsigned int nr, n, i, to, bytes = 0;
289
290 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
291 n = find_get_pages_contig(call->mapping, first, nr, pages);
292 ASSERTCMP(n, ==, nr);
293
294 msg->msg_flags |= MSG_MORE;
295 for (i = 0; i < nr; i++) {
296 to = PAGE_SIZE;
297 if (first + i >= last) {
298 to = call->last_to;
299 msg->msg_flags &= ~MSG_MORE;
300 }
301 bv[i].bv_page = pages[i];
302 bv[i].bv_len = to - offset;
303 bv[i].bv_offset = offset;
304 bytes += to - offset;
305 offset = 0;
306 }
307
308 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
309 }
310
311 /*
312 * Advance the AFS call state when the RxRPC call ends the transmit phase.
313 */
314 static void afs_notify_end_request_tx(struct sock *sock,
315 struct rxrpc_call *rxcall,
316 unsigned long call_user_ID)
317 {
318 struct afs_call *call = (struct afs_call *)call_user_ID;
319
320 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
321 }
322
323 /*
324 * attach the data from a bunch of pages on an inode to a call
325 */
326 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
327 {
328 struct bio_vec bv[AFS_BVEC_MAX];
329 unsigned int bytes, nr, loop, offset;
330 pgoff_t first = call->first, last = call->last;
331 int ret;
332
333 offset = call->first_offset;
334 call->first_offset = 0;
335
336 do {
337 afs_load_bvec(call, msg, bv, first, last, offset);
338 trace_afs_send_pages(call, msg, first, last, offset);
339
340 offset = 0;
341 bytes = msg->msg_iter.count;
342 nr = msg->msg_iter.nr_segs;
343
344 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
345 bytes, afs_notify_end_request_tx);
346 for (loop = 0; loop < nr; loop++)
347 put_page(bv[loop].bv_page);
348 if (ret < 0)
349 break;
350
351 first += nr;
352 } while (first <= last);
353
354 trace_afs_sent_pages(call, call->first, last, first, ret);
355 return ret;
356 }
357
358 /*
359 * Initiate a call and synchronously queue up the parameters for dispatch. Any
360 * error is stored into the call struct, which the caller must check for.
361 */
362 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
363 {
364 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
365 struct rxrpc_call *rxcall;
366 struct msghdr msg;
367 struct kvec iov[1];
368 s64 tx_total_len;
369 int ret;
370
371 _enter(",{%pISp},", &srx->transport);
372
373 ASSERT(call->type != NULL);
374 ASSERT(call->type->name != NULL);
375
376 _debug("____MAKE %p{%s,%x} [%d]____",
377 call, call->type->name, key_serial(call->key),
378 atomic_read(&call->net->nr_outstanding_calls));
379
380 call->addr_ix = ac->index;
381 call->alist = afs_get_addrlist(ac->alist);
382
383 /* Work out the length we're going to transmit. This is awkward for
384 * calls such as FS.StoreData where there's an extra injection of data
385 * after the initial fixed part.
386 */
387 tx_total_len = call->request_size;
388 if (call->send_pages) {
389 if (call->last == call->first) {
390 tx_total_len += call->last_to - call->first_offset;
391 } else {
392 /* It looks mathematically like you should be able to
393 * combine the following lines with the ones above, but
394 * unsigned arithmetic is fun when it wraps...
395 */
396 tx_total_len += PAGE_SIZE - call->first_offset;
397 tx_total_len += call->last_to;
398 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
399 }
400 }
401
402 /* If the call is going to be asynchronous, we need an extra ref for
403 * the call to hold itself so the caller need not hang on to its ref.
404 */
405 if (call->async)
406 afs_get_call(call, afs_call_trace_get);
407
408 /* create a call */
409 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
410 (unsigned long)call,
411 tx_total_len, gfp,
412 (call->async ?
413 afs_wake_up_async_call :
414 afs_wake_up_call_waiter),
415 call->upgrade,
416 call->intr,
417 call->debug_id);
418 if (IS_ERR(rxcall)) {
419 ret = PTR_ERR(rxcall);
420 call->error = ret;
421 goto error_kill_call;
422 }
423
424 call->rxcall = rxcall;
425
426 if (call->max_lifespan)
427 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
428 call->max_lifespan);
429
430 /* send the request */
431 iov[0].iov_base = call->request;
432 iov[0].iov_len = call->request_size;
433
434 msg.msg_name = NULL;
435 msg.msg_namelen = 0;
436 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
437 msg.msg_control = NULL;
438 msg.msg_controllen = 0;
439 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
440
441 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
442 &msg, call->request_size,
443 afs_notify_end_request_tx);
444 if (ret < 0)
445 goto error_do_abort;
446
447 if (call->send_pages) {
448 ret = afs_send_pages(call, &msg);
449 if (ret < 0)
450 goto error_do_abort;
451 }
452
453 /* Note that at this point, we may have received the reply or an abort
454 * - and an asynchronous call may already have completed.
455 *
456 * afs_wait_for_call_to_complete(call, ac)
457 * must be called to synchronously clean up.
458 */
459 return;
460
461 error_do_abort:
462 if (ret != -ECONNABORTED) {
463 rxrpc_kernel_abort_call(call->net->socket, rxcall,
464 RX_USER_ABORT, ret, "KSD");
465 } else {
466 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
467 rxrpc_kernel_recv_data(call->net->socket, rxcall,
468 &msg.msg_iter, false,
469 &call->abort_code, &call->service_id);
470 ac->abort_code = call->abort_code;
471 ac->responded = true;
472 }
473 call->error = ret;
474 trace_afs_call_done(call);
475 error_kill_call:
476 if (call->type->done)
477 call->type->done(call);
478
479 /* We need to dispose of the extra ref we grabbed for an async call.
480 * The call, however, might be queued on afs_async_calls and we need to
481 * make sure we don't get any more notifications that might requeue it.
482 */
483 if (call->rxcall) {
484 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
485 call->rxcall = NULL;
486 }
487 if (call->async) {
488 if (cancel_work_sync(&call->async_work))
489 afs_put_call(call);
490 afs_put_call(call);
491 }
492
493 ac->error = ret;
494 call->state = AFS_CALL_COMPLETE;
495 _leave(" = %d", ret);
496 }
497
498 /*
499 * deliver messages to a call
500 */
501 static void afs_deliver_to_call(struct afs_call *call)
502 {
503 enum afs_call_state state;
504 u32 abort_code, remote_abort = 0;
505 int ret;
506
507 _enter("%s", call->type->name);
508
509 while (state = READ_ONCE(call->state),
510 state == AFS_CALL_CL_AWAIT_REPLY ||
511 state == AFS_CALL_SV_AWAIT_OP_ID ||
512 state == AFS_CALL_SV_AWAIT_REQUEST ||
513 state == AFS_CALL_SV_AWAIT_ACK
514 ) {
515 if (state == AFS_CALL_SV_AWAIT_ACK) {
516 iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
517 ret = rxrpc_kernel_recv_data(call->net->socket,
518 call->rxcall, &call->def_iter,
519 false, &remote_abort,
520 &call->service_id);
521 trace_afs_receive_data(call, &call->def_iter, false, ret);
522
523 if (ret == -EINPROGRESS || ret == -EAGAIN)
524 return;
525 if (ret < 0 || ret == 1) {
526 if (ret == 1)
527 ret = 0;
528 goto call_complete;
529 }
530 return;
531 }
532
533 if (!call->have_reply_time &&
534 rxrpc_kernel_get_reply_time(call->net->socket,
535 call->rxcall,
536 &call->reply_time))
537 call->have_reply_time = true;
538
539 ret = call->type->deliver(call);
540 state = READ_ONCE(call->state);
541 switch (ret) {
542 case 0:
543 afs_queue_call_work(call);
544 if (state == AFS_CALL_CL_PROC_REPLY) {
545 if (call->cbi)
546 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
547 &call->cbi->server->flags);
548 goto call_complete;
549 }
550 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
551 goto done;
552 case -EINPROGRESS:
553 case -EAGAIN:
554 goto out;
555 case -ECONNABORTED:
556 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
557 goto done;
558 case -ENOTSUPP:
559 abort_code = RXGEN_OPCODE;
560 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
561 abort_code, ret, "KIV");
562 goto local_abort;
563 case -EIO:
564 pr_err("kAFS: Call %u in bad state %u\n",
565 call->debug_id, state);
566 /* Fall through */
567 case -ENODATA:
568 case -EBADMSG:
569 case -EMSGSIZE:
570 abort_code = RXGEN_CC_UNMARSHAL;
571 if (state != AFS_CALL_CL_AWAIT_REPLY)
572 abort_code = RXGEN_SS_UNMARSHAL;
573 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
574 abort_code, ret, "KUM");
575 goto local_abort;
576 default:
577 abort_code = RX_USER_ABORT;
578 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
579 abort_code, ret, "KER");
580 goto local_abort;
581 }
582 }
583
584 done:
585 if (call->type->done)
586 call->type->done(call);
587 if (state == AFS_CALL_COMPLETE && call->incoming)
588 afs_put_call(call);
589 out:
590 _leave("");
591 return;
592
593 local_abort:
594 abort_code = 0;
595 call_complete:
596 afs_set_call_complete(call, ret, remote_abort);
597 state = AFS_CALL_COMPLETE;
598 goto done;
599 }
600
601 /*
602 * Wait synchronously for a call to complete and clean up the call struct.
603 */
604 long afs_wait_for_call_to_complete(struct afs_call *call,
605 struct afs_addr_cursor *ac)
606 {
607 signed long rtt2, timeout;
608 long ret;
609 bool stalled = false;
610 u64 rtt;
611 u32 life, last_life;
612 bool rxrpc_complete = false;
613
614 DECLARE_WAITQUEUE(myself, current);
615
616 _enter("");
617
618 ret = call->error;
619 if (ret < 0)
620 goto out;
621
622 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
623 rtt2 = nsecs_to_jiffies64(rtt) * 2;
624 if (rtt2 < 2)
625 rtt2 = 2;
626
627 timeout = rtt2;
628 rxrpc_kernel_check_life(call->net->socket, call->rxcall, &last_life);
629
630 add_wait_queue(&call->waitq, &myself);
631 for (;;) {
632 set_current_state(TASK_UNINTERRUPTIBLE);
633
634 /* deliver any messages that are in the queue */
635 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
636 call->need_attention) {
637 call->need_attention = false;
638 __set_current_state(TASK_RUNNING);
639 afs_deliver_to_call(call);
640 timeout = rtt2;
641 continue;
642 }
643
644 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
645 break;
646
647 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall, &life)) {
648 /* rxrpc terminated the call. */
649 rxrpc_complete = true;
650 break;
651 }
652
653 if (call->intr && timeout == 0 &&
654 life == last_life && signal_pending(current)) {
655 if (stalled)
656 break;
657 __set_current_state(TASK_RUNNING);
658 rxrpc_kernel_probe_life(call->net->socket, call->rxcall);
659 timeout = rtt2;
660 stalled = true;
661 continue;
662 }
663
664 if (life != last_life) {
665 timeout = rtt2;
666 last_life = life;
667 stalled = false;
668 }
669
670 timeout = schedule_timeout(timeout);
671 }
672
673 remove_wait_queue(&call->waitq, &myself);
674 __set_current_state(TASK_RUNNING);
675
676 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
677 if (rxrpc_complete) {
678 afs_set_call_complete(call, call->error, call->abort_code);
679 } else {
680 /* Kill off the call if it's still live. */
681 _debug("call interrupted");
682 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
683 RX_USER_ABORT, -EINTR, "KWI"))
684 afs_set_call_complete(call, -EINTR, 0);
685 }
686 }
687
688 spin_lock_bh(&call->state_lock);
689 ac->abort_code = call->abort_code;
690 ac->error = call->error;
691 spin_unlock_bh(&call->state_lock);
692
693 ret = ac->error;
694 switch (ret) {
695 case 0:
696 ret = call->ret0;
697 call->ret0 = 0;
698
699 /* Fall through */
700 case -ECONNABORTED:
701 ac->responded = true;
702 break;
703 }
704
705 out:
706 _debug("call complete");
707 afs_put_call(call);
708 _leave(" = %p", (void *)ret);
709 return ret;
710 }
711
712 /*
713 * wake up a waiting call
714 */
715 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
716 unsigned long call_user_ID)
717 {
718 struct afs_call *call = (struct afs_call *)call_user_ID;
719
720 call->need_attention = true;
721 wake_up(&call->waitq);
722 }
723
724 /*
725 * wake up an asynchronous call
726 */
727 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
728 unsigned long call_user_ID)
729 {
730 struct afs_call *call = (struct afs_call *)call_user_ID;
731 int u;
732
733 trace_afs_notify_call(rxcall, call);
734 call->need_attention = true;
735
736 u = atomic_fetch_add_unless(&call->usage, 1, 0);
737 if (u != 0) {
738 trace_afs_call(call, afs_call_trace_wake, u,
739 atomic_read(&call->net->nr_outstanding_calls),
740 __builtin_return_address(0));
741
742 if (!queue_work(afs_async_calls, &call->async_work))
743 afs_put_call(call);
744 }
745 }
746
747 /*
748 * Delete an asynchronous call. The work item carries a ref to the call struct
749 * that we need to release.
750 */
751 static void afs_delete_async_call(struct work_struct *work)
752 {
753 struct afs_call *call = container_of(work, struct afs_call, async_work);
754
755 _enter("");
756
757 afs_put_call(call);
758
759 _leave("");
760 }
761
762 /*
763 * Perform I/O processing on an asynchronous call. The work item carries a ref
764 * to the call struct that we either need to release or to pass on.
765 */
766 static void afs_process_async_call(struct work_struct *work)
767 {
768 struct afs_call *call = container_of(work, struct afs_call, async_work);
769
770 _enter("");
771
772 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
773 call->need_attention = false;
774 afs_deliver_to_call(call);
775 }
776
777 if (call->state == AFS_CALL_COMPLETE) {
778 /* We have two refs to release - one from the alloc and one
779 * queued with the work item - and we can't just deallocate the
780 * call because the work item may be queued again.
781 */
782 call->async_work.func = afs_delete_async_call;
783 if (!queue_work(afs_async_calls, &call->async_work))
784 afs_put_call(call);
785 }
786
787 afs_put_call(call);
788 _leave("");
789 }
790
791 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
792 {
793 struct afs_call *call = (struct afs_call *)user_call_ID;
794
795 call->rxcall = rxcall;
796 }
797
798 /*
799 * Charge the incoming call preallocation.
800 */
801 void afs_charge_preallocation(struct work_struct *work)
802 {
803 struct afs_net *net =
804 container_of(work, struct afs_net, charge_preallocation_work);
805 struct afs_call *call = net->spare_incoming_call;
806
807 for (;;) {
808 if (!call) {
809 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
810 if (!call)
811 break;
812
813 call->async = true;
814 call->state = AFS_CALL_SV_AWAIT_OP_ID;
815 init_waitqueue_head(&call->waitq);
816 afs_extract_to_tmp(call);
817 }
818
819 if (rxrpc_kernel_charge_accept(net->socket,
820 afs_wake_up_async_call,
821 afs_rx_attach,
822 (unsigned long)call,
823 GFP_KERNEL,
824 call->debug_id) < 0)
825 break;
826 call = NULL;
827 }
828 net->spare_incoming_call = call;
829 }
830
831 /*
832 * Discard a preallocated call when a socket is shut down.
833 */
834 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
835 unsigned long user_call_ID)
836 {
837 struct afs_call *call = (struct afs_call *)user_call_ID;
838
839 call->rxcall = NULL;
840 afs_put_call(call);
841 }
842
843 /*
844 * Notification of an incoming call.
845 */
846 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
847 unsigned long user_call_ID)
848 {
849 struct afs_net *net = afs_sock2net(sk);
850
851 queue_work(afs_wq, &net->charge_preallocation_work);
852 }
853
854 /*
855 * Grab the operation ID from an incoming cache manager call. The socket
856 * buffer is discarded on error or if we don't yet have sufficient data.
857 */
858 static int afs_deliver_cm_op_id(struct afs_call *call)
859 {
860 int ret;
861
862 _enter("{%zu}", iov_iter_count(call->iter));
863
864 /* the operation ID forms the first four bytes of the request data */
865 ret = afs_extract_data(call, true);
866 if (ret < 0)
867 return ret;
868
869 call->operation_ID = ntohl(call->tmp);
870 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
871
872 /* ask the cache manager to route the call (it'll change the call type
873 * if successful) */
874 if (!afs_cm_incoming_call(call))
875 return -ENOTSUPP;
876
877 trace_afs_cb_call(call);
878
879 /* pass responsibility for the remainer of this message off to the
880 * cache manager op */
881 return call->type->deliver(call);
882 }
883
884 /*
885 * Advance the AFS call state when an RxRPC service call ends the transmit
886 * phase.
887 */
888 static void afs_notify_end_reply_tx(struct sock *sock,
889 struct rxrpc_call *rxcall,
890 unsigned long call_user_ID)
891 {
892 struct afs_call *call = (struct afs_call *)call_user_ID;
893
894 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
895 }
896
897 /*
898 * send an empty reply
899 */
900 void afs_send_empty_reply(struct afs_call *call)
901 {
902 struct afs_net *net = call->net;
903 struct msghdr msg;
904
905 _enter("");
906
907 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
908
909 msg.msg_name = NULL;
910 msg.msg_namelen = 0;
911 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
912 msg.msg_control = NULL;
913 msg.msg_controllen = 0;
914 msg.msg_flags = 0;
915
916 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
917 afs_notify_end_reply_tx)) {
918 case 0:
919 _leave(" [replied]");
920 return;
921
922 case -ENOMEM:
923 _debug("oom");
924 rxrpc_kernel_abort_call(net->socket, call->rxcall,
925 RX_USER_ABORT, -ENOMEM, "KOO");
926 /* Fall through */
927 default:
928 _leave(" [error]");
929 return;
930 }
931 }
932
933 /*
934 * send a simple reply
935 */
936 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
937 {
938 struct afs_net *net = call->net;
939 struct msghdr msg;
940 struct kvec iov[1];
941 int n;
942
943 _enter("");
944
945 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
946
947 iov[0].iov_base = (void *) buf;
948 iov[0].iov_len = len;
949 msg.msg_name = NULL;
950 msg.msg_namelen = 0;
951 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
952 msg.msg_control = NULL;
953 msg.msg_controllen = 0;
954 msg.msg_flags = 0;
955
956 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
957 afs_notify_end_reply_tx);
958 if (n >= 0) {
959 /* Success */
960 _leave(" [replied]");
961 return;
962 }
963
964 if (n == -ENOMEM) {
965 _debug("oom");
966 rxrpc_kernel_abort_call(net->socket, call->rxcall,
967 RX_USER_ABORT, -ENOMEM, "KOO");
968 }
969 _leave(" [error]");
970 }
971
972 /*
973 * Extract a piece of data from the received data socket buffers.
974 */
975 int afs_extract_data(struct afs_call *call, bool want_more)
976 {
977 struct afs_net *net = call->net;
978 struct iov_iter *iter = call->iter;
979 enum afs_call_state state;
980 u32 remote_abort = 0;
981 int ret;
982
983 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
984
985 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
986 want_more, &remote_abort,
987 &call->service_id);
988 if (ret == 0 || ret == -EAGAIN)
989 return ret;
990
991 state = READ_ONCE(call->state);
992 if (ret == 1) {
993 switch (state) {
994 case AFS_CALL_CL_AWAIT_REPLY:
995 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
996 break;
997 case AFS_CALL_SV_AWAIT_REQUEST:
998 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
999 break;
1000 case AFS_CALL_COMPLETE:
1001 kdebug("prem complete %d", call->error);
1002 return afs_io_error(call, afs_io_error_extract);
1003 default:
1004 break;
1005 }
1006 return 0;
1007 }
1008
1009 afs_set_call_complete(call, ret, remote_abort);
1010 return ret;
1011 }
1012
1013 /*
1014 * Log protocol error production.
1015 */
1016 noinline int afs_protocol_error(struct afs_call *call, int error,
1017 enum afs_eproto_cause cause)
1018 {
1019 trace_afs_protocol_error(call, error, cause);
1020 return error;
1021 }