]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/afs/rxrpc.c
afs: Set up the iov_iter before calling afs_extract_data()
[mirror_ubuntu-kernels.git] / fs / afs / rxrpc.c
1 /* Maintain an RxRPC server socket to do AFS communications through
2 *
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19
20 struct workqueue_struct *afs_async_calls;
21
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_process_async_call(struct work_struct *);
26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
28 static int afs_deliver_cm_op_id(struct afs_call *);
29
30 /* asynchronous incoming call initial processing */
31 static const struct afs_call_type afs_RXCMxxxx = {
32 .name = "CB.xxxx",
33 .deliver = afs_deliver_cm_op_id,
34 };
35
36 /*
37 * open an RxRPC socket and bind it to be a server for callback notifications
38 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
39 */
40 int afs_open_socket(struct afs_net *net)
41 {
42 struct sockaddr_rxrpc srx;
43 struct socket *socket;
44 unsigned int min_level;
45 int ret;
46
47 _enter("");
48
49 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
50 if (ret < 0)
51 goto error_1;
52
53 socket->sk->sk_allocation = GFP_NOFS;
54
55 /* bind the callback manager's address to make this a server socket */
56 memset(&srx, 0, sizeof(srx));
57 srx.srx_family = AF_RXRPC;
58 srx.srx_service = CM_SERVICE;
59 srx.transport_type = SOCK_DGRAM;
60 srx.transport_len = sizeof(srx.transport.sin6);
61 srx.transport.sin6.sin6_family = AF_INET6;
62 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
63
64 min_level = RXRPC_SECURITY_ENCRYPT;
65 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
66 (void *)&min_level, sizeof(min_level));
67 if (ret < 0)
68 goto error_2;
69
70 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
71 if (ret == -EADDRINUSE) {
72 srx.transport.sin6.sin6_port = 0;
73 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74 }
75 if (ret < 0)
76 goto error_2;
77
78 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
79 afs_rx_discard_new_call);
80
81 ret = kernel_listen(socket, INT_MAX);
82 if (ret < 0)
83 goto error_2;
84
85 net->socket = socket;
86 afs_charge_preallocation(&net->charge_preallocation_work);
87 _leave(" = 0");
88 return 0;
89
90 error_2:
91 sock_release(socket);
92 error_1:
93 _leave(" = %d", ret);
94 return ret;
95 }
96
97 /*
98 * close the RxRPC socket AFS was using
99 */
100 void afs_close_socket(struct afs_net *net)
101 {
102 _enter("");
103
104 kernel_listen(net->socket, 0);
105 flush_workqueue(afs_async_calls);
106
107 if (net->spare_incoming_call) {
108 afs_put_call(net->spare_incoming_call);
109 net->spare_incoming_call = NULL;
110 }
111
112 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
113 wait_var_event(&net->nr_outstanding_calls,
114 !atomic_read(&net->nr_outstanding_calls));
115 _debug("no outstanding calls");
116
117 kernel_sock_shutdown(net->socket, SHUT_RDWR);
118 flush_workqueue(afs_async_calls);
119 sock_release(net->socket);
120
121 _debug("dework");
122 _leave("");
123 }
124
125 /*
126 * Allocate a call.
127 */
128 static struct afs_call *afs_alloc_call(struct afs_net *net,
129 const struct afs_call_type *type,
130 gfp_t gfp)
131 {
132 struct afs_call *call;
133 int o;
134
135 call = kzalloc(sizeof(*call), gfp);
136 if (!call)
137 return NULL;
138
139 call->type = type;
140 call->net = net;
141 call->debug_id = atomic_inc_return(&rxrpc_debug_id);
142 atomic_set(&call->usage, 1);
143 INIT_WORK(&call->async_work, afs_process_async_call);
144 init_waitqueue_head(&call->waitq);
145 spin_lock_init(&call->state_lock);
146 call->_iter = &call->iter;
147
148 o = atomic_inc_return(&net->nr_outstanding_calls);
149 trace_afs_call(call, afs_call_trace_alloc, 1, o,
150 __builtin_return_address(0));
151 return call;
152 }
153
154 /*
155 * Dispose of a reference on a call.
156 */
157 void afs_put_call(struct afs_call *call)
158 {
159 struct afs_net *net = call->net;
160 int n = atomic_dec_return(&call->usage);
161 int o = atomic_read(&net->nr_outstanding_calls);
162
163 trace_afs_call(call, afs_call_trace_put, n + 1, o,
164 __builtin_return_address(0));
165
166 ASSERTCMP(n, >=, 0);
167 if (n == 0) {
168 ASSERT(!work_pending(&call->async_work));
169 ASSERT(call->type->name != NULL);
170
171 if (call->rxcall) {
172 rxrpc_kernel_end_call(net->socket, call->rxcall);
173 call->rxcall = NULL;
174 }
175 if (call->type->destructor)
176 call->type->destructor(call);
177
178 afs_put_server(call->net, call->cm_server);
179 afs_put_cb_interest(call->net, call->cbi);
180 kfree(call->request);
181
182 trace_afs_call(call, afs_call_trace_free, 0, o,
183 __builtin_return_address(0));
184 kfree(call);
185
186 o = atomic_dec_return(&net->nr_outstanding_calls);
187 if (o == 0)
188 wake_up_var(&net->nr_outstanding_calls);
189 }
190 }
191
192 /*
193 * Queue the call for actual work. Returns 0 unconditionally for convenience.
194 */
195 int afs_queue_call_work(struct afs_call *call)
196 {
197 int u = atomic_inc_return(&call->usage);
198
199 trace_afs_call(call, afs_call_trace_work, u,
200 atomic_read(&call->net->nr_outstanding_calls),
201 __builtin_return_address(0));
202
203 INIT_WORK(&call->work, call->type->work);
204
205 if (!queue_work(afs_wq, &call->work))
206 afs_put_call(call);
207 return 0;
208 }
209
210 /*
211 * allocate a call with flat request and reply buffers
212 */
213 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
214 const struct afs_call_type *type,
215 size_t request_size, size_t reply_max)
216 {
217 struct afs_call *call;
218
219 call = afs_alloc_call(net, type, GFP_NOFS);
220 if (!call)
221 goto nomem_call;
222
223 if (request_size) {
224 call->request_size = request_size;
225 call->request = kmalloc(request_size, GFP_NOFS);
226 if (!call->request)
227 goto nomem_free;
228 }
229
230 if (reply_max) {
231 call->reply_max = reply_max;
232 call->buffer = kmalloc(reply_max, GFP_NOFS);
233 if (!call->buffer)
234 goto nomem_free;
235 }
236
237 afs_extract_to_buf(call, call->reply_max);
238 call->operation_ID = type->op;
239 init_waitqueue_head(&call->waitq);
240 return call;
241
242 nomem_free:
243 afs_put_call(call);
244 nomem_call:
245 return NULL;
246 }
247
248 /*
249 * clean up a call with flat buffer
250 */
251 void afs_flat_call_destructor(struct afs_call *call)
252 {
253 _enter("");
254
255 kfree(call->request);
256 call->request = NULL;
257 kfree(call->buffer);
258 call->buffer = NULL;
259 }
260
261 #define AFS_BVEC_MAX 8
262
263 /*
264 * Load the given bvec with the next few pages.
265 */
266 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
267 struct bio_vec *bv, pgoff_t first, pgoff_t last,
268 unsigned offset)
269 {
270 struct page *pages[AFS_BVEC_MAX];
271 unsigned int nr, n, i, to, bytes = 0;
272
273 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
274 n = find_get_pages_contig(call->mapping, first, nr, pages);
275 ASSERTCMP(n, ==, nr);
276
277 msg->msg_flags |= MSG_MORE;
278 for (i = 0; i < nr; i++) {
279 to = PAGE_SIZE;
280 if (first + i >= last) {
281 to = call->last_to;
282 msg->msg_flags &= ~MSG_MORE;
283 }
284 bv[i].bv_page = pages[i];
285 bv[i].bv_len = to - offset;
286 bv[i].bv_offset = offset;
287 bytes += to - offset;
288 offset = 0;
289 }
290
291 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
292 }
293
294 /*
295 * Advance the AFS call state when the RxRPC call ends the transmit phase.
296 */
297 static void afs_notify_end_request_tx(struct sock *sock,
298 struct rxrpc_call *rxcall,
299 unsigned long call_user_ID)
300 {
301 struct afs_call *call = (struct afs_call *)call_user_ID;
302
303 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
304 }
305
306 /*
307 * attach the data from a bunch of pages on an inode to a call
308 */
309 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
310 {
311 struct bio_vec bv[AFS_BVEC_MAX];
312 unsigned int bytes, nr, loop, offset;
313 pgoff_t first = call->first, last = call->last;
314 int ret;
315
316 offset = call->first_offset;
317 call->first_offset = 0;
318
319 do {
320 afs_load_bvec(call, msg, bv, first, last, offset);
321 trace_afs_send_pages(call, msg, first, last, offset);
322
323 offset = 0;
324 bytes = msg->msg_iter.count;
325 nr = msg->msg_iter.nr_segs;
326
327 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
328 bytes, afs_notify_end_request_tx);
329 for (loop = 0; loop < nr; loop++)
330 put_page(bv[loop].bv_page);
331 if (ret < 0)
332 break;
333
334 first += nr;
335 } while (first <= last);
336
337 trace_afs_sent_pages(call, call->first, last, first, ret);
338 return ret;
339 }
340
341 /*
342 * initiate a call
343 */
344 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
345 gfp_t gfp, bool async)
346 {
347 struct sockaddr_rxrpc *srx = ac->addr;
348 struct rxrpc_call *rxcall;
349 struct msghdr msg;
350 struct kvec iov[1];
351 s64 tx_total_len;
352 int ret;
353
354 _enter(",{%pISp},", &srx->transport);
355
356 ASSERT(call->type != NULL);
357 ASSERT(call->type->name != NULL);
358
359 _debug("____MAKE %p{%s,%x} [%d]____",
360 call, call->type->name, key_serial(call->key),
361 atomic_read(&call->net->nr_outstanding_calls));
362
363 call->async = async;
364
365 /* Work out the length we're going to transmit. This is awkward for
366 * calls such as FS.StoreData where there's an extra injection of data
367 * after the initial fixed part.
368 */
369 tx_total_len = call->request_size;
370 if (call->send_pages) {
371 if (call->last == call->first) {
372 tx_total_len += call->last_to - call->first_offset;
373 } else {
374 /* It looks mathematically like you should be able to
375 * combine the following lines with the ones above, but
376 * unsigned arithmetic is fun when it wraps...
377 */
378 tx_total_len += PAGE_SIZE - call->first_offset;
379 tx_total_len += call->last_to;
380 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
381 }
382 }
383
384 /* create a call */
385 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
386 (unsigned long)call,
387 tx_total_len, gfp,
388 (async ?
389 afs_wake_up_async_call :
390 afs_wake_up_call_waiter),
391 call->upgrade,
392 call->debug_id);
393 if (IS_ERR(rxcall)) {
394 ret = PTR_ERR(rxcall);
395 goto error_kill_call;
396 }
397
398 call->rxcall = rxcall;
399
400 /* send the request */
401 iov[0].iov_base = call->request;
402 iov[0].iov_len = call->request_size;
403
404 msg.msg_name = NULL;
405 msg.msg_namelen = 0;
406 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
407 msg.msg_control = NULL;
408 msg.msg_controllen = 0;
409 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
410
411 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
412 &msg, call->request_size,
413 afs_notify_end_request_tx);
414 if (ret < 0)
415 goto error_do_abort;
416
417 if (call->send_pages) {
418 ret = afs_send_pages(call, &msg);
419 if (ret < 0)
420 goto error_do_abort;
421 }
422
423 /* at this point, an async call may no longer exist as it may have
424 * already completed */
425 if (call->async)
426 return -EINPROGRESS;
427
428 return afs_wait_for_call_to_complete(call, ac);
429
430 error_do_abort:
431 call->state = AFS_CALL_COMPLETE;
432 if (ret != -ECONNABORTED) {
433 rxrpc_kernel_abort_call(call->net->socket, rxcall,
434 RX_USER_ABORT, ret, "KSD");
435 } else {
436 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
437 rxrpc_kernel_recv_data(call->net->socket, rxcall,
438 &msg.msg_iter, false,
439 &call->abort_code, &call->service_id);
440 ac->abort_code = call->abort_code;
441 ac->responded = true;
442 }
443 call->error = ret;
444 trace_afs_call_done(call);
445 error_kill_call:
446 afs_put_call(call);
447 ac->error = ret;
448 _leave(" = %d", ret);
449 return ret;
450 }
451
452 /*
453 * deliver messages to a call
454 */
455 static void afs_deliver_to_call(struct afs_call *call)
456 {
457 enum afs_call_state state;
458 u32 abort_code, remote_abort = 0;
459 int ret;
460
461 _enter("%s", call->type->name);
462
463 while (state = READ_ONCE(call->state),
464 state == AFS_CALL_CL_AWAIT_REPLY ||
465 state == AFS_CALL_SV_AWAIT_OP_ID ||
466 state == AFS_CALL_SV_AWAIT_REQUEST ||
467 state == AFS_CALL_SV_AWAIT_ACK
468 ) {
469 if (state == AFS_CALL_SV_AWAIT_ACK) {
470 iov_iter_kvec(&call->iter, READ, NULL, 0, 0);
471 ret = rxrpc_kernel_recv_data(call->net->socket,
472 call->rxcall, &call->iter,
473 false, &remote_abort,
474 &call->service_id);
475 trace_afs_receive_data(call, &call->iter, false, ret);
476
477 if (ret == -EINPROGRESS || ret == -EAGAIN)
478 return;
479 if (ret < 0 || ret == 1) {
480 if (ret == 1)
481 ret = 0;
482 goto call_complete;
483 }
484 return;
485 }
486
487 ret = call->type->deliver(call);
488 state = READ_ONCE(call->state);
489 switch (ret) {
490 case 0:
491 if (state == AFS_CALL_CL_PROC_REPLY) {
492 if (call->cbi)
493 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
494 &call->cbi->server->flags);
495 goto call_complete;
496 }
497 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
498 goto done;
499 case -EINPROGRESS:
500 case -EAGAIN:
501 goto out;
502 case -EIO:
503 case -ECONNABORTED:
504 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
505 goto done;
506 case -ENOTSUPP:
507 abort_code = RXGEN_OPCODE;
508 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
509 abort_code, ret, "KIV");
510 goto local_abort;
511 case -ENODATA:
512 case -EBADMSG:
513 case -EMSGSIZE:
514 default:
515 abort_code = RXGEN_CC_UNMARSHAL;
516 if (state != AFS_CALL_CL_AWAIT_REPLY)
517 abort_code = RXGEN_SS_UNMARSHAL;
518 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
519 abort_code, ret, "KUM");
520 goto local_abort;
521 }
522 }
523
524 done:
525 if (state == AFS_CALL_COMPLETE && call->incoming)
526 afs_put_call(call);
527 out:
528 _leave("");
529 return;
530
531 local_abort:
532 abort_code = 0;
533 call_complete:
534 afs_set_call_complete(call, ret, remote_abort);
535 state = AFS_CALL_COMPLETE;
536 goto done;
537 }
538
539 /*
540 * wait synchronously for a call to complete
541 */
542 static long afs_wait_for_call_to_complete(struct afs_call *call,
543 struct afs_addr_cursor *ac)
544 {
545 signed long rtt2, timeout;
546 long ret;
547 u64 rtt;
548 u32 life, last_life;
549
550 DECLARE_WAITQUEUE(myself, current);
551
552 _enter("");
553
554 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
555 rtt2 = nsecs_to_jiffies64(rtt) * 2;
556 if (rtt2 < 2)
557 rtt2 = 2;
558
559 timeout = rtt2;
560 last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
561
562 add_wait_queue(&call->waitq, &myself);
563 for (;;) {
564 set_current_state(TASK_UNINTERRUPTIBLE);
565
566 /* deliver any messages that are in the queue */
567 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
568 call->need_attention) {
569 call->need_attention = false;
570 __set_current_state(TASK_RUNNING);
571 afs_deliver_to_call(call);
572 continue;
573 }
574
575 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
576 break;
577
578 life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
579 if (timeout == 0 &&
580 life == last_life && signal_pending(current))
581 break;
582
583 if (life != last_life) {
584 timeout = rtt2;
585 last_life = life;
586 }
587
588 timeout = schedule_timeout(timeout);
589 }
590
591 remove_wait_queue(&call->waitq, &myself);
592 __set_current_state(TASK_RUNNING);
593
594 /* Kill off the call if it's still live. */
595 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
596 _debug("call interrupted");
597 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
598 RX_USER_ABORT, -EINTR, "KWI"))
599 afs_set_call_complete(call, -EINTR, 0);
600 }
601
602 spin_lock_bh(&call->state_lock);
603 ac->abort_code = call->abort_code;
604 ac->error = call->error;
605 spin_unlock_bh(&call->state_lock);
606
607 ret = ac->error;
608 switch (ret) {
609 case 0:
610 if (call->ret_reply0) {
611 ret = (long)call->reply[0];
612 call->reply[0] = NULL;
613 }
614 /* Fall through */
615 case -ECONNABORTED:
616 ac->responded = true;
617 break;
618 }
619
620 _debug("call complete");
621 afs_put_call(call);
622 _leave(" = %p", (void *)ret);
623 return ret;
624 }
625
626 /*
627 * wake up a waiting call
628 */
629 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
630 unsigned long call_user_ID)
631 {
632 struct afs_call *call = (struct afs_call *)call_user_ID;
633
634 call->need_attention = true;
635 wake_up(&call->waitq);
636 }
637
638 /*
639 * wake up an asynchronous call
640 */
641 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
642 unsigned long call_user_ID)
643 {
644 struct afs_call *call = (struct afs_call *)call_user_ID;
645 int u;
646
647 trace_afs_notify_call(rxcall, call);
648 call->need_attention = true;
649
650 u = atomic_fetch_add_unless(&call->usage, 1, 0);
651 if (u != 0) {
652 trace_afs_call(call, afs_call_trace_wake, u,
653 atomic_read(&call->net->nr_outstanding_calls),
654 __builtin_return_address(0));
655
656 if (!queue_work(afs_async_calls, &call->async_work))
657 afs_put_call(call);
658 }
659 }
660
661 /*
662 * Delete an asynchronous call. The work item carries a ref to the call struct
663 * that we need to release.
664 */
665 static void afs_delete_async_call(struct work_struct *work)
666 {
667 struct afs_call *call = container_of(work, struct afs_call, async_work);
668
669 _enter("");
670
671 afs_put_call(call);
672
673 _leave("");
674 }
675
676 /*
677 * Perform I/O processing on an asynchronous call. The work item carries a ref
678 * to the call struct that we either need to release or to pass on.
679 */
680 static void afs_process_async_call(struct work_struct *work)
681 {
682 struct afs_call *call = container_of(work, struct afs_call, async_work);
683
684 _enter("");
685
686 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
687 call->need_attention = false;
688 afs_deliver_to_call(call);
689 }
690
691 if (call->state == AFS_CALL_COMPLETE) {
692 /* We have two refs to release - one from the alloc and one
693 * queued with the work item - and we can't just deallocate the
694 * call because the work item may be queued again.
695 */
696 call->async_work.func = afs_delete_async_call;
697 if (!queue_work(afs_async_calls, &call->async_work))
698 afs_put_call(call);
699 }
700
701 afs_put_call(call);
702 _leave("");
703 }
704
705 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
706 {
707 struct afs_call *call = (struct afs_call *)user_call_ID;
708
709 call->rxcall = rxcall;
710 }
711
712 /*
713 * Charge the incoming call preallocation.
714 */
715 void afs_charge_preallocation(struct work_struct *work)
716 {
717 struct afs_net *net =
718 container_of(work, struct afs_net, charge_preallocation_work);
719 struct afs_call *call = net->spare_incoming_call;
720
721 for (;;) {
722 if (!call) {
723 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
724 if (!call)
725 break;
726
727 call->async = true;
728 call->state = AFS_CALL_SV_AWAIT_OP_ID;
729 init_waitqueue_head(&call->waitq);
730 afs_extract_to_tmp(call);
731 }
732
733 if (rxrpc_kernel_charge_accept(net->socket,
734 afs_wake_up_async_call,
735 afs_rx_attach,
736 (unsigned long)call,
737 GFP_KERNEL,
738 call->debug_id) < 0)
739 break;
740 call = NULL;
741 }
742 net->spare_incoming_call = call;
743 }
744
745 /*
746 * Discard a preallocated call when a socket is shut down.
747 */
748 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
749 unsigned long user_call_ID)
750 {
751 struct afs_call *call = (struct afs_call *)user_call_ID;
752
753 call->rxcall = NULL;
754 afs_put_call(call);
755 }
756
757 /*
758 * Notification of an incoming call.
759 */
760 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
761 unsigned long user_call_ID)
762 {
763 struct afs_net *net = afs_sock2net(sk);
764
765 queue_work(afs_wq, &net->charge_preallocation_work);
766 }
767
768 /*
769 * Grab the operation ID from an incoming cache manager call. The socket
770 * buffer is discarded on error or if we don't yet have sufficient data.
771 */
772 static int afs_deliver_cm_op_id(struct afs_call *call)
773 {
774 int ret;
775
776 _enter("{%zu}", iov_iter_count(call->_iter));
777
778 /* the operation ID forms the first four bytes of the request data */
779 ret = afs_extract_data(call, true);
780 if (ret < 0)
781 return ret;
782
783 call->operation_ID = ntohl(call->tmp);
784 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
785
786 /* ask the cache manager to route the call (it'll change the call type
787 * if successful) */
788 if (!afs_cm_incoming_call(call))
789 return -ENOTSUPP;
790
791 trace_afs_cb_call(call);
792
793 /* pass responsibility for the remainer of this message off to the
794 * cache manager op */
795 return call->type->deliver(call);
796 }
797
798 /*
799 * Advance the AFS call state when an RxRPC service call ends the transmit
800 * phase.
801 */
802 static void afs_notify_end_reply_tx(struct sock *sock,
803 struct rxrpc_call *rxcall,
804 unsigned long call_user_ID)
805 {
806 struct afs_call *call = (struct afs_call *)call_user_ID;
807
808 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
809 }
810
811 /*
812 * send an empty reply
813 */
814 void afs_send_empty_reply(struct afs_call *call)
815 {
816 struct afs_net *net = call->net;
817 struct msghdr msg;
818
819 _enter("");
820
821 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
822
823 msg.msg_name = NULL;
824 msg.msg_namelen = 0;
825 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
826 msg.msg_control = NULL;
827 msg.msg_controllen = 0;
828 msg.msg_flags = 0;
829
830 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
831 afs_notify_end_reply_tx)) {
832 case 0:
833 _leave(" [replied]");
834 return;
835
836 case -ENOMEM:
837 _debug("oom");
838 rxrpc_kernel_abort_call(net->socket, call->rxcall,
839 RX_USER_ABORT, -ENOMEM, "KOO");
840 default:
841 _leave(" [error]");
842 return;
843 }
844 }
845
846 /*
847 * send a simple reply
848 */
849 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
850 {
851 struct afs_net *net = call->net;
852 struct msghdr msg;
853 struct kvec iov[1];
854 int n;
855
856 _enter("");
857
858 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
859
860 iov[0].iov_base = (void *) buf;
861 iov[0].iov_len = len;
862 msg.msg_name = NULL;
863 msg.msg_namelen = 0;
864 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
865 msg.msg_control = NULL;
866 msg.msg_controllen = 0;
867 msg.msg_flags = 0;
868
869 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
870 afs_notify_end_reply_tx);
871 if (n >= 0) {
872 /* Success */
873 _leave(" [replied]");
874 return;
875 }
876
877 if (n == -ENOMEM) {
878 _debug("oom");
879 rxrpc_kernel_abort_call(net->socket, call->rxcall,
880 RX_USER_ABORT, -ENOMEM, "KOO");
881 }
882 _leave(" [error]");
883 }
884
885 /*
886 * Extract a piece of data from the received data socket buffers.
887 */
888 int afs_extract_data(struct afs_call *call, bool want_more)
889 {
890 struct afs_net *net = call->net;
891 struct iov_iter *iter = call->_iter;
892 enum afs_call_state state;
893 u32 remote_abort = 0;
894 int ret;
895
896 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
897
898 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
899 want_more, &remote_abort,
900 &call->service_id);
901 if (ret == 0 || ret == -EAGAIN)
902 return ret;
903
904 state = READ_ONCE(call->state);
905 if (ret == 1) {
906 switch (state) {
907 case AFS_CALL_CL_AWAIT_REPLY:
908 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
909 break;
910 case AFS_CALL_SV_AWAIT_REQUEST:
911 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
912 break;
913 case AFS_CALL_COMPLETE:
914 kdebug("prem complete %d", call->error);
915 return -EIO;
916 default:
917 break;
918 }
919 return 0;
920 }
921
922 afs_set_call_complete(call, ret, remote_abort);
923 return ret;
924 }
925
926 /*
927 * Log protocol error production.
928 */
929 noinline int afs_protocol_error(struct afs_call *call, int error,
930 enum afs_eproto_cause cause)
931 {
932 trace_afs_protocol_error(call, error, cause);
933 return error;
934 }