]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/afs/super.c
afs: Note the cell in the superblock info also
[mirror_ubuntu-bionic-kernel.git] / fs / afs / super.c
1 /* AFS superblock handling
2 *
3 * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
4 *
5 * This software may be freely redistributed under the terms of the
6 * GNU General Public License.
7 *
8 * You should have received a copy of the GNU General Public License
9 * along with this program; if not, write to the Free Software
10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
11 *
12 * Authors: David Howells <dhowells@redhat.com>
13 * David Woodhouse <dwmw2@infradead.org>
14 *
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mount.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/parser.h>
25 #include <linux/statfs.h>
26 #include <linux/sched.h>
27 #include <linux/nsproxy.h>
28 #include <linux/magic.h>
29 #include <net/net_namespace.h>
30 #include "internal.h"
31
32 static void afs_i_init_once(void *foo);
33 static struct dentry *afs_mount(struct file_system_type *fs_type,
34 int flags, const char *dev_name, void *data);
35 static void afs_kill_super(struct super_block *sb);
36 static struct inode *afs_alloc_inode(struct super_block *sb);
37 static void afs_destroy_inode(struct inode *inode);
38 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
39 static int afs_show_devname(struct seq_file *m, struct dentry *root);
40 static int afs_show_options(struct seq_file *m, struct dentry *root);
41
42 struct file_system_type afs_fs_type = {
43 .owner = THIS_MODULE,
44 .name = "afs",
45 .mount = afs_mount,
46 .kill_sb = afs_kill_super,
47 .fs_flags = 0,
48 };
49 MODULE_ALIAS_FS("afs");
50
51 static const struct super_operations afs_super_ops = {
52 .statfs = afs_statfs,
53 .alloc_inode = afs_alloc_inode,
54 .drop_inode = afs_drop_inode,
55 .destroy_inode = afs_destroy_inode,
56 .evict_inode = afs_evict_inode,
57 .show_devname = afs_show_devname,
58 .show_options = afs_show_options,
59 };
60
61 static struct kmem_cache *afs_inode_cachep;
62 static atomic_t afs_count_active_inodes;
63
64 enum {
65 afs_no_opt,
66 afs_opt_cell,
67 afs_opt_rwpath,
68 afs_opt_vol,
69 afs_opt_autocell,
70 };
71
72 static const match_table_t afs_options_list = {
73 { afs_opt_cell, "cell=%s" },
74 { afs_opt_rwpath, "rwpath" },
75 { afs_opt_vol, "vol=%s" },
76 { afs_opt_autocell, "autocell" },
77 { afs_no_opt, NULL },
78 };
79
80 /*
81 * initialise the filesystem
82 */
83 int __init afs_fs_init(void)
84 {
85 int ret;
86
87 _enter("");
88
89 /* create ourselves an inode cache */
90 atomic_set(&afs_count_active_inodes, 0);
91
92 ret = -ENOMEM;
93 afs_inode_cachep = kmem_cache_create("afs_inode_cache",
94 sizeof(struct afs_vnode),
95 0,
96 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
97 afs_i_init_once);
98 if (!afs_inode_cachep) {
99 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
100 return ret;
101 }
102
103 /* now export our filesystem to lesser mortals */
104 ret = register_filesystem(&afs_fs_type);
105 if (ret < 0) {
106 kmem_cache_destroy(afs_inode_cachep);
107 _leave(" = %d", ret);
108 return ret;
109 }
110
111 _leave(" = 0");
112 return 0;
113 }
114
115 /*
116 * clean up the filesystem
117 */
118 void __exit afs_fs_exit(void)
119 {
120 _enter("");
121
122 afs_mntpt_kill_timer();
123 unregister_filesystem(&afs_fs_type);
124
125 if (atomic_read(&afs_count_active_inodes) != 0) {
126 printk("kAFS: %d active inode objects still present\n",
127 atomic_read(&afs_count_active_inodes));
128 BUG();
129 }
130
131 /*
132 * Make sure all delayed rcu free inodes are flushed before we
133 * destroy cache.
134 */
135 rcu_barrier();
136 kmem_cache_destroy(afs_inode_cachep);
137 _leave("");
138 }
139
140 /*
141 * Display the mount device name in /proc/mounts.
142 */
143 static int afs_show_devname(struct seq_file *m, struct dentry *root)
144 {
145 struct afs_super_info *as = root->d_sb->s_fs_info;
146 struct afs_volume *volume = as->volume;
147 struct afs_cell *cell = volume->cell;
148 const char *suf = "";
149 char pref = '%';
150
151 switch (volume->type) {
152 case AFSVL_RWVOL:
153 break;
154 case AFSVL_ROVOL:
155 pref = '#';
156 if (volume->type_force)
157 suf = ".readonly";
158 break;
159 case AFSVL_BACKVOL:
160 pref = '#';
161 suf = ".backup";
162 break;
163 }
164
165 seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->vlocation->vldb.name, suf);
166 return 0;
167 }
168
169 /*
170 * Display the mount options in /proc/mounts.
171 */
172 static int afs_show_options(struct seq_file *m, struct dentry *root)
173 {
174 if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
175 seq_puts(m, "autocell");
176 return 0;
177 }
178
179 /*
180 * parse the mount options
181 * - this function has been shamelessly adapted from the ext3 fs which
182 * shamelessly adapted it from the msdos fs
183 */
184 static int afs_parse_options(struct afs_mount_params *params,
185 char *options, const char **devname)
186 {
187 struct afs_cell *cell;
188 substring_t args[MAX_OPT_ARGS];
189 char *p;
190 int token;
191
192 _enter("%s", options);
193
194 options[PAGE_SIZE - 1] = 0;
195
196 while ((p = strsep(&options, ","))) {
197 if (!*p)
198 continue;
199
200 token = match_token(p, afs_options_list, args);
201 switch (token) {
202 case afs_opt_cell:
203 cell = afs_cell_lookup(params->net,
204 args[0].from,
205 args[0].to - args[0].from,
206 false);
207 if (IS_ERR(cell))
208 return PTR_ERR(cell);
209 afs_put_cell(params->cell);
210 params->cell = cell;
211 break;
212
213 case afs_opt_rwpath:
214 params->rwpath = 1;
215 break;
216
217 case afs_opt_vol:
218 *devname = args[0].from;
219 break;
220
221 case afs_opt_autocell:
222 params->autocell = 1;
223 break;
224
225 default:
226 printk(KERN_ERR "kAFS:"
227 " Unknown or invalid mount option: '%s'\n", p);
228 return -EINVAL;
229 }
230 }
231
232 _leave(" = 0");
233 return 0;
234 }
235
236 /*
237 * parse a device name to get cell name, volume name, volume type and R/W
238 * selector
239 * - this can be one of the following:
240 * "%[cell:]volume[.]" R/W volume
241 * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0),
242 * or R/W (rwpath=1) volume
243 * "%[cell:]volume.readonly" R/O volume
244 * "#[cell:]volume.readonly" R/O volume
245 * "%[cell:]volume.backup" Backup volume
246 * "#[cell:]volume.backup" Backup volume
247 */
248 static int afs_parse_device_name(struct afs_mount_params *params,
249 const char *name)
250 {
251 struct afs_cell *cell;
252 const char *cellname, *suffix;
253 int cellnamesz;
254
255 _enter(",%s", name);
256
257 if (!name) {
258 printk(KERN_ERR "kAFS: no volume name specified\n");
259 return -EINVAL;
260 }
261
262 if ((name[0] != '%' && name[0] != '#') || !name[1]) {
263 printk(KERN_ERR "kAFS: unparsable volume name\n");
264 return -EINVAL;
265 }
266
267 /* determine the type of volume we're looking for */
268 params->type = AFSVL_ROVOL;
269 params->force = false;
270 if (params->rwpath || name[0] == '%') {
271 params->type = AFSVL_RWVOL;
272 params->force = true;
273 }
274 name++;
275
276 /* split the cell name out if there is one */
277 params->volname = strchr(name, ':');
278 if (params->volname) {
279 cellname = name;
280 cellnamesz = params->volname - name;
281 params->volname++;
282 } else {
283 params->volname = name;
284 cellname = NULL;
285 cellnamesz = 0;
286 }
287
288 /* the volume type is further affected by a possible suffix */
289 suffix = strrchr(params->volname, '.');
290 if (suffix) {
291 if (strcmp(suffix, ".readonly") == 0) {
292 params->type = AFSVL_ROVOL;
293 params->force = true;
294 } else if (strcmp(suffix, ".backup") == 0) {
295 params->type = AFSVL_BACKVOL;
296 params->force = true;
297 } else if (suffix[1] == 0) {
298 } else {
299 suffix = NULL;
300 }
301 }
302
303 params->volnamesz = suffix ?
304 suffix - params->volname : strlen(params->volname);
305
306 _debug("cell %*.*s [%p]",
307 cellnamesz, cellnamesz, cellname ?: "", params->cell);
308
309 /* lookup the cell record */
310 if (cellname || !params->cell) {
311 cell = afs_cell_lookup(params->net, cellname, cellnamesz, true);
312 if (IS_ERR(cell)) {
313 printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
314 cellnamesz, cellnamesz, cellname ?: "");
315 return PTR_ERR(cell);
316 }
317 afs_put_cell(params->cell);
318 params->cell = cell;
319 }
320
321 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
322 params->cell->name, params->cell,
323 params->volnamesz, params->volnamesz, params->volname,
324 suffix ?: "-", params->type, params->force ? " FORCE" : "");
325
326 return 0;
327 }
328
329 /*
330 * check a superblock to see if it's the one we're looking for
331 */
332 static int afs_test_super(struct super_block *sb, void *data)
333 {
334 struct afs_super_info *as1 = data;
335 struct afs_super_info *as = sb->s_fs_info;
336
337 return as->net == as1->net && as->volume == as1->volume;
338 }
339
340 static int afs_set_super(struct super_block *sb, void *data)
341 {
342 sb->s_fs_info = data;
343 return set_anon_super(sb, NULL);
344 }
345
346 /*
347 * fill in the superblock
348 */
349 static int afs_fill_super(struct super_block *sb,
350 struct afs_mount_params *params)
351 {
352 struct afs_super_info *as = sb->s_fs_info;
353 struct afs_fid fid;
354 struct inode *inode = NULL;
355 int ret;
356
357 _enter("");
358
359 /* fill in the superblock */
360 sb->s_blocksize = PAGE_SIZE;
361 sb->s_blocksize_bits = PAGE_SHIFT;
362 sb->s_magic = AFS_FS_MAGIC;
363 sb->s_op = &afs_super_ops;
364 sb->s_xattr = afs_xattr_handlers;
365 ret = super_setup_bdi(sb);
366 if (ret)
367 return ret;
368 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
369 strlcpy(sb->s_id, as->volume->vlocation->vldb.name, sizeof(sb->s_id));
370
371 /* allocate the root inode and dentry */
372 fid.vid = as->volume->vid;
373 fid.vnode = 1;
374 fid.unique = 1;
375 inode = afs_iget(sb, params->key, &fid, NULL, NULL);
376 if (IS_ERR(inode))
377 return PTR_ERR(inode);
378
379 if (params->autocell)
380 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
381
382 ret = -ENOMEM;
383 sb->s_root = d_make_root(inode);
384 if (!sb->s_root)
385 goto error;
386
387 sb->s_d_op = &afs_fs_dentry_operations;
388
389 _leave(" = 0");
390 return 0;
391
392 error:
393 _leave(" = %d", ret);
394 return ret;
395 }
396
397 static struct afs_super_info *afs_alloc_sbi(struct afs_mount_params *params)
398 {
399 struct afs_super_info *as;
400
401 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
402 if (as) {
403 as->net = afs_get_net(params->net);
404 as->cell = afs_get_cell(params->cell);
405 }
406 return as;
407 }
408
409 static void afs_destroy_sbi(struct afs_super_info *as)
410 {
411 if (as) {
412 afs_put_volume(as->net, as->volume);
413 afs_put_cell(as->cell);
414 afs_put_net(as->net);
415 kfree(as);
416 }
417 }
418
419 /*
420 * get an AFS superblock
421 */
422 static struct dentry *afs_mount(struct file_system_type *fs_type,
423 int flags, const char *dev_name, void *options)
424 {
425 struct afs_mount_params params;
426 struct super_block *sb;
427 struct afs_volume *vol;
428 struct key *key;
429 struct afs_super_info *as;
430 int ret;
431
432 _enter(",,%s,%p", dev_name, options);
433
434 memset(&params, 0, sizeof(params));
435 params.net = &__afs_net;
436
437 ret = -EINVAL;
438 if (current->nsproxy->net_ns != &init_net)
439 goto error;
440
441 /* parse the options and device name */
442 if (options) {
443 ret = afs_parse_options(&params, options, &dev_name);
444 if (ret < 0)
445 goto error;
446 }
447
448 ret = afs_parse_device_name(&params, dev_name);
449 if (ret < 0)
450 goto error;
451
452 /* try and do the mount securely */
453 key = afs_request_key(params.cell);
454 if (IS_ERR(key)) {
455 _leave(" = %ld [key]", PTR_ERR(key));
456 ret = PTR_ERR(key);
457 goto error;
458 }
459 params.key = key;
460
461 /* allocate a superblock info record */
462 ret = -ENOMEM;
463 as = afs_alloc_sbi(&params);
464 if (!as)
465 goto error;
466
467 /* parse the device name */
468 vol = afs_volume_lookup(&params);
469 if (IS_ERR(vol)) {
470 ret = PTR_ERR(vol);
471 goto error;
472 }
473 as->volume = vol;
474
475 /* allocate a deviceless superblock */
476 sb = sget(fs_type, afs_test_super, afs_set_super, flags, as);
477 if (IS_ERR(sb)) {
478 ret = PTR_ERR(sb);
479 goto error_as;
480 }
481
482 if (!sb->s_root) {
483 /* initial superblock/root creation */
484 _debug("create");
485 ret = afs_fill_super(sb, &params);
486 if (ret < 0)
487 goto error_sb;
488 as = NULL;
489 sb->s_flags |= MS_ACTIVE;
490 } else {
491 _debug("reuse");
492 ASSERTCMP(sb->s_flags, &, MS_ACTIVE);
493 afs_destroy_sbi(as);
494 as = NULL;
495 }
496
497 afs_put_cell(params.cell);
498 key_put(params.key);
499 _leave(" = 0 [%p]", sb);
500 return dget(sb->s_root);
501
502 error_sb:
503 deactivate_locked_super(sb);
504 error_as:
505 afs_destroy_sbi(as);
506 error:
507 afs_put_cell(params.cell);
508 key_put(params.key);
509 _leave(" = %d", ret);
510 return ERR_PTR(ret);
511 }
512
513 static void afs_kill_super(struct super_block *sb)
514 {
515 struct afs_super_info *as = sb->s_fs_info;
516
517 kill_anon_super(sb);
518 afs_destroy_sbi(as);
519 }
520
521 /*
522 * initialise an inode cache slab element prior to any use
523 */
524 static void afs_i_init_once(void *_vnode)
525 {
526 struct afs_vnode *vnode = _vnode;
527
528 memset(vnode, 0, sizeof(*vnode));
529 inode_init_once(&vnode->vfs_inode);
530 init_waitqueue_head(&vnode->update_waitq);
531 mutex_init(&vnode->permits_lock);
532 mutex_init(&vnode->validate_lock);
533 spin_lock_init(&vnode->writeback_lock);
534 spin_lock_init(&vnode->lock);
535 INIT_LIST_HEAD(&vnode->writebacks);
536 INIT_LIST_HEAD(&vnode->pending_locks);
537 INIT_LIST_HEAD(&vnode->granted_locks);
538 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
539 INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work);
540 }
541
542 /*
543 * allocate an AFS inode struct from our slab cache
544 */
545 static struct inode *afs_alloc_inode(struct super_block *sb)
546 {
547 struct afs_vnode *vnode;
548
549 vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
550 if (!vnode)
551 return NULL;
552
553 atomic_inc(&afs_count_active_inodes);
554
555 memset(&vnode->fid, 0, sizeof(vnode->fid));
556 memset(&vnode->status, 0, sizeof(vnode->status));
557
558 vnode->volume = NULL;
559 vnode->update_cnt = 0;
560 vnode->flags = 1 << AFS_VNODE_UNSET;
561 vnode->cb_promised = false;
562
563 _leave(" = %p", &vnode->vfs_inode);
564 return &vnode->vfs_inode;
565 }
566
567 static void afs_i_callback(struct rcu_head *head)
568 {
569 struct inode *inode = container_of(head, struct inode, i_rcu);
570 struct afs_vnode *vnode = AFS_FS_I(inode);
571 kmem_cache_free(afs_inode_cachep, vnode);
572 }
573
574 /*
575 * destroy an AFS inode struct
576 */
577 static void afs_destroy_inode(struct inode *inode)
578 {
579 struct afs_vnode *vnode = AFS_FS_I(inode);
580
581 _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
582
583 _debug("DESTROY INODE %p", inode);
584
585 ASSERTCMP(vnode->server, ==, NULL);
586
587 call_rcu(&inode->i_rcu, afs_i_callback);
588 atomic_dec(&afs_count_active_inodes);
589 }
590
591 /*
592 * return information about an AFS volume
593 */
594 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
595 {
596 struct afs_volume_status vs;
597 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
598 struct key *key;
599 int ret;
600
601 key = afs_request_key(vnode->volume->cell);
602 if (IS_ERR(key))
603 return PTR_ERR(key);
604
605 ret = afs_vnode_get_volume_status(vnode, key, &vs);
606 key_put(key);
607 if (ret < 0) {
608 _leave(" = %d", ret);
609 return ret;
610 }
611
612 buf->f_type = dentry->d_sb->s_magic;
613 buf->f_bsize = AFS_BLOCK_SIZE;
614 buf->f_namelen = AFSNAMEMAX - 1;
615
616 if (vs.max_quota == 0)
617 buf->f_blocks = vs.part_max_blocks;
618 else
619 buf->f_blocks = vs.max_quota;
620 buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
621 return 0;
622 }