]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/afs/super.c
afs: Log more information for "kAFS: AFS vnode with undefined type\n"
[mirror_ubuntu-kernels.git] / fs / afs / super.c
1 /* AFS superblock handling
2 *
3 * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved.
4 *
5 * This software may be freely redistributed under the terms of the
6 * GNU General Public License.
7 *
8 * You should have received a copy of the GNU General Public License
9 * along with this program; if not, write to the Free Software
10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
11 *
12 * Authors: David Howells <dhowells@redhat.com>
13 * David Woodhouse <dwmw2@infradead.org>
14 *
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mount.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/fs_parser.h>
25 #include <linux/statfs.h>
26 #include <linux/sched.h>
27 #include <linux/nsproxy.h>
28 #include <linux/magic.h>
29 #include <net/net_namespace.h>
30 #include "internal.h"
31
32 static void afs_i_init_once(void *foo);
33 static void afs_kill_super(struct super_block *sb);
34 static struct inode *afs_alloc_inode(struct super_block *sb);
35 static void afs_destroy_inode(struct inode *inode);
36 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
37 static int afs_show_devname(struct seq_file *m, struct dentry *root);
38 static int afs_show_options(struct seq_file *m, struct dentry *root);
39 static int afs_init_fs_context(struct fs_context *fc);
40 static const struct fs_parameter_description afs_fs_parameters;
41
42 struct file_system_type afs_fs_type = {
43 .owner = THIS_MODULE,
44 .name = "afs",
45 .init_fs_context = afs_init_fs_context,
46 .parameters = &afs_fs_parameters,
47 .kill_sb = afs_kill_super,
48 .fs_flags = FS_RENAME_DOES_D_MOVE,
49 };
50 MODULE_ALIAS_FS("afs");
51
52 int afs_net_id;
53
54 static const struct super_operations afs_super_ops = {
55 .statfs = afs_statfs,
56 .alloc_inode = afs_alloc_inode,
57 .drop_inode = afs_drop_inode,
58 .destroy_inode = afs_destroy_inode,
59 .evict_inode = afs_evict_inode,
60 .show_devname = afs_show_devname,
61 .show_options = afs_show_options,
62 };
63
64 static struct kmem_cache *afs_inode_cachep;
65 static atomic_t afs_count_active_inodes;
66
67 enum afs_param {
68 Opt_autocell,
69 Opt_dyn,
70 Opt_flock,
71 Opt_source,
72 };
73
74 static const struct fs_parameter_spec afs_param_specs[] = {
75 fsparam_flag ("autocell", Opt_autocell),
76 fsparam_flag ("dyn", Opt_dyn),
77 fsparam_enum ("flock", Opt_flock),
78 fsparam_string("source", Opt_source),
79 {}
80 };
81
82 static const struct fs_parameter_enum afs_param_enums[] = {
83 { Opt_flock, "local", afs_flock_mode_local },
84 { Opt_flock, "openafs", afs_flock_mode_openafs },
85 { Opt_flock, "strict", afs_flock_mode_strict },
86 { Opt_flock, "write", afs_flock_mode_write },
87 {}
88 };
89
90 static const struct fs_parameter_description afs_fs_parameters = {
91 .name = "kAFS",
92 .specs = afs_param_specs,
93 .enums = afs_param_enums,
94 };
95
96 /*
97 * initialise the filesystem
98 */
99 int __init afs_fs_init(void)
100 {
101 int ret;
102
103 _enter("");
104
105 /* create ourselves an inode cache */
106 atomic_set(&afs_count_active_inodes, 0);
107
108 ret = -ENOMEM;
109 afs_inode_cachep = kmem_cache_create("afs_inode_cache",
110 sizeof(struct afs_vnode),
111 0,
112 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
113 afs_i_init_once);
114 if (!afs_inode_cachep) {
115 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
116 return ret;
117 }
118
119 /* now export our filesystem to lesser mortals */
120 ret = register_filesystem(&afs_fs_type);
121 if (ret < 0) {
122 kmem_cache_destroy(afs_inode_cachep);
123 _leave(" = %d", ret);
124 return ret;
125 }
126
127 _leave(" = 0");
128 return 0;
129 }
130
131 /*
132 * clean up the filesystem
133 */
134 void afs_fs_exit(void)
135 {
136 _enter("");
137
138 afs_mntpt_kill_timer();
139 unregister_filesystem(&afs_fs_type);
140
141 if (atomic_read(&afs_count_active_inodes) != 0) {
142 printk("kAFS: %d active inode objects still present\n",
143 atomic_read(&afs_count_active_inodes));
144 BUG();
145 }
146
147 /*
148 * Make sure all delayed rcu free inodes are flushed before we
149 * destroy cache.
150 */
151 rcu_barrier();
152 kmem_cache_destroy(afs_inode_cachep);
153 _leave("");
154 }
155
156 /*
157 * Display the mount device name in /proc/mounts.
158 */
159 static int afs_show_devname(struct seq_file *m, struct dentry *root)
160 {
161 struct afs_super_info *as = AFS_FS_S(root->d_sb);
162 struct afs_volume *volume = as->volume;
163 struct afs_cell *cell = as->cell;
164 const char *suf = "";
165 char pref = '%';
166
167 if (as->dyn_root) {
168 seq_puts(m, "none");
169 return 0;
170 }
171
172 switch (volume->type) {
173 case AFSVL_RWVOL:
174 break;
175 case AFSVL_ROVOL:
176 pref = '#';
177 if (volume->type_force)
178 suf = ".readonly";
179 break;
180 case AFSVL_BACKVOL:
181 pref = '#';
182 suf = ".backup";
183 break;
184 }
185
186 seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf);
187 return 0;
188 }
189
190 /*
191 * Display the mount options in /proc/mounts.
192 */
193 static int afs_show_options(struct seq_file *m, struct dentry *root)
194 {
195 struct afs_super_info *as = AFS_FS_S(root->d_sb);
196 const char *p = NULL;
197
198 if (as->dyn_root)
199 seq_puts(m, ",dyn");
200 if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
201 seq_puts(m, ",autocell");
202 switch (as->flock_mode) {
203 case afs_flock_mode_unset: break;
204 case afs_flock_mode_local: p = "local"; break;
205 case afs_flock_mode_openafs: p = "openafs"; break;
206 case afs_flock_mode_strict: p = "strict"; break;
207 case afs_flock_mode_write: p = "write"; break;
208 }
209 if (p)
210 seq_printf(m, ",flock=%s", p);
211
212 return 0;
213 }
214
215 /*
216 * Parse the source name to get cell name, volume name, volume type and R/W
217 * selector.
218 *
219 * This can be one of the following:
220 * "%[cell:]volume[.]" R/W volume
221 * "#[cell:]volume[.]" R/O or R/W volume (R/O parent),
222 * or R/W (R/W parent) volume
223 * "%[cell:]volume.readonly" R/O volume
224 * "#[cell:]volume.readonly" R/O volume
225 * "%[cell:]volume.backup" Backup volume
226 * "#[cell:]volume.backup" Backup volume
227 */
228 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param)
229 {
230 struct afs_fs_context *ctx = fc->fs_private;
231 struct afs_cell *cell;
232 const char *cellname, *suffix, *name = param->string;
233 int cellnamesz;
234
235 _enter(",%s", name);
236
237 if (!name) {
238 printk(KERN_ERR "kAFS: no volume name specified\n");
239 return -EINVAL;
240 }
241
242 if ((name[0] != '%' && name[0] != '#') || !name[1]) {
243 /* To use dynroot, we don't want to have to provide a source */
244 if (strcmp(name, "none") == 0) {
245 ctx->no_cell = true;
246 return 0;
247 }
248 printk(KERN_ERR "kAFS: unparsable volume name\n");
249 return -EINVAL;
250 }
251
252 /* determine the type of volume we're looking for */
253 if (name[0] == '%') {
254 ctx->type = AFSVL_RWVOL;
255 ctx->force = true;
256 }
257 name++;
258
259 /* split the cell name out if there is one */
260 ctx->volname = strchr(name, ':');
261 if (ctx->volname) {
262 cellname = name;
263 cellnamesz = ctx->volname - name;
264 ctx->volname++;
265 } else {
266 ctx->volname = name;
267 cellname = NULL;
268 cellnamesz = 0;
269 }
270
271 /* the volume type is further affected by a possible suffix */
272 suffix = strrchr(ctx->volname, '.');
273 if (suffix) {
274 if (strcmp(suffix, ".readonly") == 0) {
275 ctx->type = AFSVL_ROVOL;
276 ctx->force = true;
277 } else if (strcmp(suffix, ".backup") == 0) {
278 ctx->type = AFSVL_BACKVOL;
279 ctx->force = true;
280 } else if (suffix[1] == 0) {
281 } else {
282 suffix = NULL;
283 }
284 }
285
286 ctx->volnamesz = suffix ?
287 suffix - ctx->volname : strlen(ctx->volname);
288
289 _debug("cell %*.*s [%p]",
290 cellnamesz, cellnamesz, cellname ?: "", ctx->cell);
291
292 /* lookup the cell record */
293 if (cellname) {
294 cell = afs_lookup_cell(ctx->net, cellname, cellnamesz,
295 NULL, false);
296 if (IS_ERR(cell)) {
297 pr_err("kAFS: unable to lookup cell '%*.*s'\n",
298 cellnamesz, cellnamesz, cellname ?: "");
299 return PTR_ERR(cell);
300 }
301 afs_put_cell(ctx->net, ctx->cell);
302 ctx->cell = cell;
303 }
304
305 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
306 ctx->cell->name, ctx->cell,
307 ctx->volnamesz, ctx->volnamesz, ctx->volname,
308 suffix ?: "-", ctx->type, ctx->force ? " FORCE" : "");
309
310 fc->source = param->string;
311 param->string = NULL;
312 return 0;
313 }
314
315 /*
316 * Parse a single mount parameter.
317 */
318 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param)
319 {
320 struct fs_parse_result result;
321 struct afs_fs_context *ctx = fc->fs_private;
322 int opt;
323
324 opt = fs_parse(fc, &afs_fs_parameters, param, &result);
325 if (opt < 0)
326 return opt;
327
328 switch (opt) {
329 case Opt_source:
330 return afs_parse_source(fc, param);
331
332 case Opt_autocell:
333 ctx->autocell = true;
334 break;
335
336 case Opt_dyn:
337 ctx->dyn_root = true;
338 break;
339
340 case Opt_flock:
341 ctx->flock_mode = result.uint_32;
342 break;
343
344 default:
345 return -EINVAL;
346 }
347
348 _leave(" = 0");
349 return 0;
350 }
351
352 /*
353 * Validate the options, get the cell key and look up the volume.
354 */
355 static int afs_validate_fc(struct fs_context *fc)
356 {
357 struct afs_fs_context *ctx = fc->fs_private;
358 struct afs_volume *volume;
359 struct key *key;
360
361 if (!ctx->dyn_root) {
362 if (ctx->no_cell) {
363 pr_warn("kAFS: Can only specify source 'none' with -o dyn\n");
364 return -EINVAL;
365 }
366
367 if (!ctx->cell) {
368 pr_warn("kAFS: No cell specified\n");
369 return -EDESTADDRREQ;
370 }
371
372 /* We try to do the mount securely. */
373 key = afs_request_key(ctx->cell);
374 if (IS_ERR(key))
375 return PTR_ERR(key);
376
377 ctx->key = key;
378
379 if (ctx->volume) {
380 afs_put_volume(ctx->cell, ctx->volume);
381 ctx->volume = NULL;
382 }
383
384 volume = afs_create_volume(ctx);
385 if (IS_ERR(volume))
386 return PTR_ERR(volume);
387
388 ctx->volume = volume;
389 }
390
391 return 0;
392 }
393
394 /*
395 * check a superblock to see if it's the one we're looking for
396 */
397 static int afs_test_super(struct super_block *sb, struct fs_context *fc)
398 {
399 struct afs_fs_context *ctx = fc->fs_private;
400 struct afs_super_info *as = AFS_FS_S(sb);
401
402 return (as->net_ns == fc->net_ns &&
403 as->volume &&
404 as->volume->vid == ctx->volume->vid &&
405 !as->dyn_root);
406 }
407
408 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc)
409 {
410 struct afs_super_info *as = AFS_FS_S(sb);
411
412 return (as->net_ns == fc->net_ns &&
413 as->dyn_root);
414 }
415
416 static int afs_set_super(struct super_block *sb, struct fs_context *fc)
417 {
418 return set_anon_super(sb, NULL);
419 }
420
421 /*
422 * fill in the superblock
423 */
424 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx)
425 {
426 struct afs_super_info *as = AFS_FS_S(sb);
427 struct afs_fid fid;
428 struct inode *inode = NULL;
429 int ret;
430
431 _enter("");
432
433 /* fill in the superblock */
434 sb->s_blocksize = PAGE_SIZE;
435 sb->s_blocksize_bits = PAGE_SHIFT;
436 sb->s_magic = AFS_FS_MAGIC;
437 sb->s_op = &afs_super_ops;
438 if (!as->dyn_root)
439 sb->s_xattr = afs_xattr_handlers;
440 ret = super_setup_bdi(sb);
441 if (ret)
442 return ret;
443 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
444
445 /* allocate the root inode and dentry */
446 if (as->dyn_root) {
447 inode = afs_iget_pseudo_dir(sb, true);
448 sb->s_flags |= SB_RDONLY;
449 } else {
450 sprintf(sb->s_id, "%llu", as->volume->vid);
451 afs_activate_volume(as->volume);
452 fid.vid = as->volume->vid;
453 fid.vnode = 1;
454 fid.vnode_hi = 0;
455 fid.unique = 1;
456 inode = afs_iget(sb, ctx->key, &fid, NULL, NULL, NULL, NULL);
457 }
458
459 if (IS_ERR(inode))
460 return PTR_ERR(inode);
461
462 if (ctx->autocell || as->dyn_root)
463 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
464
465 ret = -ENOMEM;
466 sb->s_root = d_make_root(inode);
467 if (!sb->s_root)
468 goto error;
469
470 if (as->dyn_root) {
471 sb->s_d_op = &afs_dynroot_dentry_operations;
472 ret = afs_dynroot_populate(sb);
473 if (ret < 0)
474 goto error;
475 } else {
476 sb->s_d_op = &afs_fs_dentry_operations;
477 }
478
479 _leave(" = 0");
480 return 0;
481
482 error:
483 _leave(" = %d", ret);
484 return ret;
485 }
486
487 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc)
488 {
489 struct afs_fs_context *ctx = fc->fs_private;
490 struct afs_super_info *as;
491
492 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
493 if (as) {
494 as->net_ns = get_net(fc->net_ns);
495 as->flock_mode = ctx->flock_mode;
496 if (ctx->dyn_root) {
497 as->dyn_root = true;
498 } else {
499 as->cell = afs_get_cell(ctx->cell);
500 as->volume = __afs_get_volume(ctx->volume);
501 }
502 }
503 return as;
504 }
505
506 static void afs_destroy_sbi(struct afs_super_info *as)
507 {
508 if (as) {
509 afs_put_volume(as->cell, as->volume);
510 afs_put_cell(afs_net(as->net_ns), as->cell);
511 put_net(as->net_ns);
512 kfree(as);
513 }
514 }
515
516 static void afs_kill_super(struct super_block *sb)
517 {
518 struct afs_super_info *as = AFS_FS_S(sb);
519 struct afs_net *net = afs_net(as->net_ns);
520
521 if (as->dyn_root)
522 afs_dynroot_depopulate(sb);
523
524 /* Clear the callback interests (which will do ilookup5) before
525 * deactivating the superblock.
526 */
527 if (as->volume)
528 afs_clear_callback_interests(net, as->volume->servers);
529 kill_anon_super(sb);
530 if (as->volume)
531 afs_deactivate_volume(as->volume);
532 afs_destroy_sbi(as);
533 }
534
535 /*
536 * Get an AFS superblock and root directory.
537 */
538 static int afs_get_tree(struct fs_context *fc)
539 {
540 struct afs_fs_context *ctx = fc->fs_private;
541 struct super_block *sb;
542 struct afs_super_info *as;
543 int ret;
544
545 ret = afs_validate_fc(fc);
546 if (ret)
547 goto error;
548
549 _enter("");
550
551 /* allocate a superblock info record */
552 ret = -ENOMEM;
553 as = afs_alloc_sbi(fc);
554 if (!as)
555 goto error;
556 fc->s_fs_info = as;
557
558 /* allocate a deviceless superblock */
559 sb = sget_fc(fc,
560 as->dyn_root ? afs_dynroot_test_super : afs_test_super,
561 afs_set_super);
562 if (IS_ERR(sb)) {
563 ret = PTR_ERR(sb);
564 goto error;
565 }
566
567 if (!sb->s_root) {
568 /* initial superblock/root creation */
569 _debug("create");
570 ret = afs_fill_super(sb, ctx);
571 if (ret < 0)
572 goto error_sb;
573 sb->s_flags |= SB_ACTIVE;
574 } else {
575 _debug("reuse");
576 ASSERTCMP(sb->s_flags, &, SB_ACTIVE);
577 }
578
579 fc->root = dget(sb->s_root);
580 trace_afs_get_tree(as->cell, as->volume);
581 _leave(" = 0 [%p]", sb);
582 return 0;
583
584 error_sb:
585 deactivate_locked_super(sb);
586 error:
587 _leave(" = %d", ret);
588 return ret;
589 }
590
591 static void afs_free_fc(struct fs_context *fc)
592 {
593 struct afs_fs_context *ctx = fc->fs_private;
594
595 afs_destroy_sbi(fc->s_fs_info);
596 afs_put_volume(ctx->cell, ctx->volume);
597 afs_put_cell(ctx->net, ctx->cell);
598 key_put(ctx->key);
599 kfree(ctx);
600 }
601
602 static const struct fs_context_operations afs_context_ops = {
603 .free = afs_free_fc,
604 .parse_param = afs_parse_param,
605 .get_tree = afs_get_tree,
606 };
607
608 /*
609 * Set up the filesystem mount context.
610 */
611 static int afs_init_fs_context(struct fs_context *fc)
612 {
613 struct afs_fs_context *ctx;
614 struct afs_cell *cell;
615
616 ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL);
617 if (!ctx)
618 return -ENOMEM;
619
620 ctx->type = AFSVL_ROVOL;
621 ctx->net = afs_net(fc->net_ns);
622
623 /* Default to the workstation cell. */
624 rcu_read_lock();
625 cell = afs_lookup_cell_rcu(ctx->net, NULL, 0);
626 rcu_read_unlock();
627 if (IS_ERR(cell))
628 cell = NULL;
629 ctx->cell = cell;
630
631 fc->fs_private = ctx;
632 fc->ops = &afs_context_ops;
633 return 0;
634 }
635
636 /*
637 * Initialise an inode cache slab element prior to any use. Note that
638 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one
639 * inode to another.
640 */
641 static void afs_i_init_once(void *_vnode)
642 {
643 struct afs_vnode *vnode = _vnode;
644
645 memset(vnode, 0, sizeof(*vnode));
646 inode_init_once(&vnode->vfs_inode);
647 mutex_init(&vnode->io_lock);
648 init_rwsem(&vnode->validate_lock);
649 spin_lock_init(&vnode->wb_lock);
650 spin_lock_init(&vnode->lock);
651 INIT_LIST_HEAD(&vnode->wb_keys);
652 INIT_LIST_HEAD(&vnode->pending_locks);
653 INIT_LIST_HEAD(&vnode->granted_locks);
654 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
655 seqlock_init(&vnode->cb_lock);
656 }
657
658 /*
659 * allocate an AFS inode struct from our slab cache
660 */
661 static struct inode *afs_alloc_inode(struct super_block *sb)
662 {
663 struct afs_vnode *vnode;
664
665 vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
666 if (!vnode)
667 return NULL;
668
669 atomic_inc(&afs_count_active_inodes);
670
671 /* Reset anything that shouldn't leak from one inode to the next. */
672 memset(&vnode->fid, 0, sizeof(vnode->fid));
673 memset(&vnode->status, 0, sizeof(vnode->status));
674
675 vnode->volume = NULL;
676 vnode->lock_key = NULL;
677 vnode->permit_cache = NULL;
678 vnode->cb_interest = NULL;
679 #ifdef CONFIG_AFS_FSCACHE
680 vnode->cache = NULL;
681 #endif
682
683 vnode->flags = 1 << AFS_VNODE_UNSET;
684 vnode->cb_type = 0;
685 vnode->lock_state = AFS_VNODE_LOCK_NONE;
686
687 init_rwsem(&vnode->rmdir_lock);
688
689 _leave(" = %p", &vnode->vfs_inode);
690 return &vnode->vfs_inode;
691 }
692
693 static void afs_i_callback(struct rcu_head *head)
694 {
695 struct inode *inode = container_of(head, struct inode, i_rcu);
696 struct afs_vnode *vnode = AFS_FS_I(inode);
697 kmem_cache_free(afs_inode_cachep, vnode);
698 }
699
700 /*
701 * destroy an AFS inode struct
702 */
703 static void afs_destroy_inode(struct inode *inode)
704 {
705 struct afs_vnode *vnode = AFS_FS_I(inode);
706
707 _enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode);
708
709 _debug("DESTROY INODE %p", inode);
710
711 ASSERTCMP(vnode->cb_interest, ==, NULL);
712
713 call_rcu(&inode->i_rcu, afs_i_callback);
714 atomic_dec(&afs_count_active_inodes);
715 }
716
717 /*
718 * return information about an AFS volume
719 */
720 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
721 {
722 struct afs_super_info *as = AFS_FS_S(dentry->d_sb);
723 struct afs_fs_cursor fc;
724 struct afs_volume_status vs;
725 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
726 struct key *key;
727 int ret;
728
729 buf->f_type = dentry->d_sb->s_magic;
730 buf->f_bsize = AFS_BLOCK_SIZE;
731 buf->f_namelen = AFSNAMEMAX - 1;
732
733 if (as->dyn_root) {
734 buf->f_blocks = 1;
735 buf->f_bavail = 0;
736 buf->f_bfree = 0;
737 return 0;
738 }
739
740 key = afs_request_key(vnode->volume->cell);
741 if (IS_ERR(key))
742 return PTR_ERR(key);
743
744 ret = -ERESTARTSYS;
745 if (afs_begin_vnode_operation(&fc, vnode, key)) {
746 fc.flags |= AFS_FS_CURSOR_NO_VSLEEP;
747 while (afs_select_fileserver(&fc)) {
748 fc.cb_break = afs_calc_vnode_cb_break(vnode);
749 afs_fs_get_volume_status(&fc, &vs);
750 }
751
752 afs_check_for_remote_deletion(&fc, fc.vnode);
753 afs_vnode_commit_status(&fc, vnode, fc.cb_break);
754 ret = afs_end_vnode_operation(&fc);
755 }
756
757 key_put(key);
758
759 if (ret == 0) {
760 if (vs.max_quota == 0)
761 buf->f_blocks = vs.part_max_blocks;
762 else
763 buf->f_blocks = vs.max_quota;
764 buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
765 }
766
767 return ret;
768 }