]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/afs/write.c
powerpc/cacheinfo: Remove double free
[mirror_ubuntu-hirsute-kernel.git] / fs / afs / write.c
1 /* handling of writes to regular files and writing back to the server
2 *
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/backing-dev.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include "internal.h"
19
20 /*
21 * mark a page as having been made dirty and thus needing writeback
22 */
23 int afs_set_page_dirty(struct page *page)
24 {
25 _enter("");
26 return __set_page_dirty_nobuffers(page);
27 }
28
29 /*
30 * partly or wholly fill a page that's under preparation for writing
31 */
32 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
33 loff_t pos, unsigned int len, struct page *page)
34 {
35 struct afs_read *req;
36 size_t p;
37 void *data;
38 int ret;
39
40 _enter(",,%llu", (unsigned long long)pos);
41
42 if (pos >= vnode->vfs_inode.i_size) {
43 p = pos & ~PAGE_MASK;
44 ASSERTCMP(p + len, <=, PAGE_SIZE);
45 data = kmap(page);
46 memset(data + p, 0, len);
47 kunmap(page);
48 return 0;
49 }
50
51 req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
52 GFP_KERNEL);
53 if (!req)
54 return -ENOMEM;
55
56 refcount_set(&req->usage, 1);
57 req->pos = pos;
58 req->len = len;
59 req->nr_pages = 1;
60 req->pages = req->array;
61 req->pages[0] = page;
62 get_page(page);
63
64 ret = afs_fetch_data(vnode, key, req);
65 afs_put_read(req);
66 if (ret < 0) {
67 if (ret == -ENOENT) {
68 _debug("got NOENT from server"
69 " - marking file deleted and stale");
70 set_bit(AFS_VNODE_DELETED, &vnode->flags);
71 ret = -ESTALE;
72 }
73 }
74
75 _leave(" = %d", ret);
76 return ret;
77 }
78
79 /*
80 * prepare to perform part of a write to a page
81 */
82 int afs_write_begin(struct file *file, struct address_space *mapping,
83 loff_t pos, unsigned len, unsigned flags,
84 struct page **pagep, void **fsdata)
85 {
86 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
87 struct page *page;
88 struct key *key = afs_file_key(file);
89 unsigned long priv;
90 unsigned f, from = pos & (PAGE_SIZE - 1);
91 unsigned t, to = from + len;
92 pgoff_t index = pos >> PAGE_SHIFT;
93 int ret;
94
95 _enter("{%llx:%llu},{%lx},%u,%u",
96 vnode->fid.vid, vnode->fid.vnode, index, from, to);
97
98 /* We want to store information about how much of a page is altered in
99 * page->private.
100 */
101 BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
102
103 page = grab_cache_page_write_begin(mapping, index, flags);
104 if (!page)
105 return -ENOMEM;
106
107 if (!PageUptodate(page) && len != PAGE_SIZE) {
108 ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
109 if (ret < 0) {
110 unlock_page(page);
111 put_page(page);
112 _leave(" = %d [prep]", ret);
113 return ret;
114 }
115 SetPageUptodate(page);
116 }
117
118 /* page won't leak in error case: it eventually gets cleaned off LRU */
119 *pagep = page;
120
121 try_again:
122 /* See if this page is already partially written in a way that we can
123 * merge the new write with.
124 */
125 t = f = 0;
126 if (PagePrivate(page)) {
127 priv = page_private(page);
128 f = priv & AFS_PRIV_MAX;
129 t = priv >> AFS_PRIV_SHIFT;
130 ASSERTCMP(f, <=, t);
131 }
132
133 if (f != t) {
134 if (PageWriteback(page)) {
135 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
136 page->index, priv);
137 goto flush_conflicting_write;
138 }
139 /* If the file is being filled locally, allow inter-write
140 * spaces to be merged into writes. If it's not, only write
141 * back what the user gives us.
142 */
143 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
144 (to < f || from > t))
145 goto flush_conflicting_write;
146 if (from < f)
147 f = from;
148 if (to > t)
149 t = to;
150 } else {
151 f = from;
152 t = to;
153 }
154
155 priv = (unsigned long)t << AFS_PRIV_SHIFT;
156 priv |= f;
157 trace_afs_page_dirty(vnode, tracepoint_string("begin"),
158 page->index, priv);
159 SetPagePrivate(page);
160 set_page_private(page, priv);
161 _leave(" = 0");
162 return 0;
163
164 /* The previous write and this write aren't adjacent or overlapping, so
165 * flush the page out.
166 */
167 flush_conflicting_write:
168 _debug("flush conflict");
169 ret = write_one_page(page);
170 if (ret < 0) {
171 _leave(" = %d", ret);
172 return ret;
173 }
174
175 ret = lock_page_killable(page);
176 if (ret < 0) {
177 _leave(" = %d", ret);
178 return ret;
179 }
180 goto try_again;
181 }
182
183 /*
184 * finalise part of a write to a page
185 */
186 int afs_write_end(struct file *file, struct address_space *mapping,
187 loff_t pos, unsigned len, unsigned copied,
188 struct page *page, void *fsdata)
189 {
190 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
191 struct key *key = afs_file_key(file);
192 loff_t i_size, maybe_i_size;
193 int ret;
194
195 _enter("{%llx:%llu},{%lx}",
196 vnode->fid.vid, vnode->fid.vnode, page->index);
197
198 maybe_i_size = pos + copied;
199
200 i_size = i_size_read(&vnode->vfs_inode);
201 if (maybe_i_size > i_size) {
202 spin_lock(&vnode->wb_lock);
203 i_size = i_size_read(&vnode->vfs_inode);
204 if (maybe_i_size > i_size)
205 i_size_write(&vnode->vfs_inode, maybe_i_size);
206 spin_unlock(&vnode->wb_lock);
207 }
208
209 if (!PageUptodate(page)) {
210 if (copied < len) {
211 /* Try and load any missing data from the server. The
212 * unmarshalling routine will take care of clearing any
213 * bits that are beyond the EOF.
214 */
215 ret = afs_fill_page(vnode, key, pos + copied,
216 len - copied, page);
217 if (ret < 0)
218 goto out;
219 }
220 SetPageUptodate(page);
221 }
222
223 set_page_dirty(page);
224 if (PageDirty(page))
225 _debug("dirtied");
226 ret = copied;
227
228 out:
229 unlock_page(page);
230 put_page(page);
231 return ret;
232 }
233
234 /*
235 * kill all the pages in the given range
236 */
237 static void afs_kill_pages(struct address_space *mapping,
238 pgoff_t first, pgoff_t last)
239 {
240 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
241 struct pagevec pv;
242 unsigned count, loop;
243
244 _enter("{%llx:%llu},%lx-%lx",
245 vnode->fid.vid, vnode->fid.vnode, first, last);
246
247 pagevec_init(&pv);
248
249 do {
250 _debug("kill %lx-%lx", first, last);
251
252 count = last - first + 1;
253 if (count > PAGEVEC_SIZE)
254 count = PAGEVEC_SIZE;
255 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
256 ASSERTCMP(pv.nr, ==, count);
257
258 for (loop = 0; loop < count; loop++) {
259 struct page *page = pv.pages[loop];
260 ClearPageUptodate(page);
261 SetPageError(page);
262 end_page_writeback(page);
263 if (page->index >= first)
264 first = page->index + 1;
265 lock_page(page);
266 generic_error_remove_page(mapping, page);
267 unlock_page(page);
268 }
269
270 __pagevec_release(&pv);
271 } while (first <= last);
272
273 _leave("");
274 }
275
276 /*
277 * Redirty all the pages in a given range.
278 */
279 static void afs_redirty_pages(struct writeback_control *wbc,
280 struct address_space *mapping,
281 pgoff_t first, pgoff_t last)
282 {
283 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
284 struct pagevec pv;
285 unsigned count, loop;
286
287 _enter("{%llx:%llu},%lx-%lx",
288 vnode->fid.vid, vnode->fid.vnode, first, last);
289
290 pagevec_init(&pv);
291
292 do {
293 _debug("redirty %lx-%lx", first, last);
294
295 count = last - first + 1;
296 if (count > PAGEVEC_SIZE)
297 count = PAGEVEC_SIZE;
298 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
299 ASSERTCMP(pv.nr, ==, count);
300
301 for (loop = 0; loop < count; loop++) {
302 struct page *page = pv.pages[loop];
303
304 redirty_page_for_writepage(wbc, page);
305 end_page_writeback(page);
306 if (page->index >= first)
307 first = page->index + 1;
308 }
309
310 __pagevec_release(&pv);
311 } while (first <= last);
312
313 _leave("");
314 }
315
316 /*
317 * write to a file
318 */
319 static int afs_store_data(struct address_space *mapping,
320 pgoff_t first, pgoff_t last,
321 unsigned offset, unsigned to)
322 {
323 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
324 struct afs_fs_cursor fc;
325 struct afs_wb_key *wbk = NULL;
326 struct list_head *p;
327 int ret = -ENOKEY, ret2;
328
329 _enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
330 vnode->volume->name,
331 vnode->fid.vid,
332 vnode->fid.vnode,
333 vnode->fid.unique,
334 first, last, offset, to);
335
336 spin_lock(&vnode->wb_lock);
337 p = vnode->wb_keys.next;
338
339 /* Iterate through the list looking for a valid key to use. */
340 try_next_key:
341 while (p != &vnode->wb_keys) {
342 wbk = list_entry(p, struct afs_wb_key, vnode_link);
343 _debug("wbk %u", key_serial(wbk->key));
344 ret2 = key_validate(wbk->key);
345 if (ret2 == 0)
346 goto found_key;
347 if (ret == -ENOKEY)
348 ret = ret2;
349 p = p->next;
350 }
351
352 spin_unlock(&vnode->wb_lock);
353 afs_put_wb_key(wbk);
354 _leave(" = %d [no keys]", ret);
355 return ret;
356
357 found_key:
358 refcount_inc(&wbk->usage);
359 spin_unlock(&vnode->wb_lock);
360
361 _debug("USE WB KEY %u", key_serial(wbk->key));
362
363 ret = -ERESTARTSYS;
364 if (afs_begin_vnode_operation(&fc, vnode, wbk->key)) {
365 while (afs_select_fileserver(&fc)) {
366 fc.cb_break = afs_calc_vnode_cb_break(vnode);
367 afs_fs_store_data(&fc, mapping, first, last, offset, to);
368 }
369
370 afs_check_for_remote_deletion(&fc, fc.vnode);
371 afs_vnode_commit_status(&fc, vnode, fc.cb_break);
372 ret = afs_end_vnode_operation(&fc);
373 }
374
375 switch (ret) {
376 case 0:
377 afs_stat_v(vnode, n_stores);
378 atomic_long_add((last * PAGE_SIZE + to) -
379 (first * PAGE_SIZE + offset),
380 &afs_v2net(vnode)->n_store_bytes);
381 break;
382 case -EACCES:
383 case -EPERM:
384 case -ENOKEY:
385 case -EKEYEXPIRED:
386 case -EKEYREJECTED:
387 case -EKEYREVOKED:
388 _debug("next");
389 spin_lock(&vnode->wb_lock);
390 p = wbk->vnode_link.next;
391 afs_put_wb_key(wbk);
392 goto try_next_key;
393 }
394
395 afs_put_wb_key(wbk);
396 _leave(" = %d", ret);
397 return ret;
398 }
399
400 /*
401 * Synchronously write back the locked page and any subsequent non-locked dirty
402 * pages.
403 */
404 static int afs_write_back_from_locked_page(struct address_space *mapping,
405 struct writeback_control *wbc,
406 struct page *primary_page,
407 pgoff_t final_page)
408 {
409 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
410 struct page *pages[8], *page;
411 unsigned long count, priv;
412 unsigned n, offset, to, f, t;
413 pgoff_t start, first, last;
414 int loop, ret;
415
416 _enter(",%lx", primary_page->index);
417
418 count = 1;
419 if (test_set_page_writeback(primary_page))
420 BUG();
421
422 /* Find all consecutive lockable dirty pages that have contiguous
423 * written regions, stopping when we find a page that is not
424 * immediately lockable, is not dirty or is missing, or we reach the
425 * end of the range.
426 */
427 start = primary_page->index;
428 priv = page_private(primary_page);
429 offset = priv & AFS_PRIV_MAX;
430 to = priv >> AFS_PRIV_SHIFT;
431 trace_afs_page_dirty(vnode, tracepoint_string("store"),
432 primary_page->index, priv);
433
434 WARN_ON(offset == to);
435 if (offset == to)
436 trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
437 primary_page->index, priv);
438
439 if (start >= final_page ||
440 (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
441 goto no_more;
442
443 start++;
444 do {
445 _debug("more %lx [%lx]", start, count);
446 n = final_page - start + 1;
447 if (n > ARRAY_SIZE(pages))
448 n = ARRAY_SIZE(pages);
449 n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
450 _debug("fgpc %u", n);
451 if (n == 0)
452 goto no_more;
453 if (pages[0]->index != start) {
454 do {
455 put_page(pages[--n]);
456 } while (n > 0);
457 goto no_more;
458 }
459
460 for (loop = 0; loop < n; loop++) {
461 page = pages[loop];
462 if (to != PAGE_SIZE &&
463 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
464 break;
465 if (page->index > final_page)
466 break;
467 if (!trylock_page(page))
468 break;
469 if (!PageDirty(page) || PageWriteback(page)) {
470 unlock_page(page);
471 break;
472 }
473
474 priv = page_private(page);
475 f = priv & AFS_PRIV_MAX;
476 t = priv >> AFS_PRIV_SHIFT;
477 if (f != 0 &&
478 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
479 unlock_page(page);
480 break;
481 }
482 to = t;
483
484 trace_afs_page_dirty(vnode, tracepoint_string("store+"),
485 page->index, priv);
486
487 if (!clear_page_dirty_for_io(page))
488 BUG();
489 if (test_set_page_writeback(page))
490 BUG();
491 unlock_page(page);
492 put_page(page);
493 }
494 count += loop;
495 if (loop < n) {
496 for (; loop < n; loop++)
497 put_page(pages[loop]);
498 goto no_more;
499 }
500
501 start += loop;
502 } while (start <= final_page && count < 65536);
503
504 no_more:
505 /* We now have a contiguous set of dirty pages, each with writeback
506 * set; the first page is still locked at this point, but all the rest
507 * have been unlocked.
508 */
509 unlock_page(primary_page);
510
511 first = primary_page->index;
512 last = first + count - 1;
513
514 _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
515
516 ret = afs_store_data(mapping, first, last, offset, to);
517 switch (ret) {
518 case 0:
519 ret = count;
520 break;
521
522 default:
523 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
524 /* Fall through */
525 case -EACCES:
526 case -EPERM:
527 case -ENOKEY:
528 case -EKEYEXPIRED:
529 case -EKEYREJECTED:
530 case -EKEYREVOKED:
531 afs_redirty_pages(wbc, mapping, first, last);
532 mapping_set_error(mapping, ret);
533 break;
534
535 case -EDQUOT:
536 case -ENOSPC:
537 afs_redirty_pages(wbc, mapping, first, last);
538 mapping_set_error(mapping, -ENOSPC);
539 break;
540
541 case -EROFS:
542 case -EIO:
543 case -EREMOTEIO:
544 case -EFBIG:
545 case -ENOENT:
546 case -ENOMEDIUM:
547 case -ENXIO:
548 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
549 afs_kill_pages(mapping, first, last);
550 mapping_set_error(mapping, ret);
551 break;
552 }
553
554 _leave(" = %d", ret);
555 return ret;
556 }
557
558 /*
559 * write a page back to the server
560 * - the caller locked the page for us
561 */
562 int afs_writepage(struct page *page, struct writeback_control *wbc)
563 {
564 int ret;
565
566 _enter("{%lx},", page->index);
567
568 ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
569 wbc->range_end >> PAGE_SHIFT);
570 if (ret < 0) {
571 _leave(" = %d", ret);
572 return 0;
573 }
574
575 wbc->nr_to_write -= ret;
576
577 _leave(" = 0");
578 return 0;
579 }
580
581 /*
582 * write a region of pages back to the server
583 */
584 static int afs_writepages_region(struct address_space *mapping,
585 struct writeback_control *wbc,
586 pgoff_t index, pgoff_t end, pgoff_t *_next)
587 {
588 struct page *page;
589 int ret, n;
590
591 _enter(",,%lx,%lx,", index, end);
592
593 do {
594 n = find_get_pages_range_tag(mapping, &index, end,
595 PAGECACHE_TAG_DIRTY, 1, &page);
596 if (!n)
597 break;
598
599 _debug("wback %lx", page->index);
600
601 /*
602 * at this point we hold neither the i_pages lock nor the
603 * page lock: the page may be truncated or invalidated
604 * (changing page->mapping to NULL), or even swizzled
605 * back from swapper_space to tmpfs file mapping
606 */
607 ret = lock_page_killable(page);
608 if (ret < 0) {
609 put_page(page);
610 _leave(" = %d", ret);
611 return ret;
612 }
613
614 if (page->mapping != mapping || !PageDirty(page)) {
615 unlock_page(page);
616 put_page(page);
617 continue;
618 }
619
620 if (PageWriteback(page)) {
621 unlock_page(page);
622 if (wbc->sync_mode != WB_SYNC_NONE)
623 wait_on_page_writeback(page);
624 put_page(page);
625 continue;
626 }
627
628 if (!clear_page_dirty_for_io(page))
629 BUG();
630 ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
631 put_page(page);
632 if (ret < 0) {
633 _leave(" = %d", ret);
634 return ret;
635 }
636
637 wbc->nr_to_write -= ret;
638
639 cond_resched();
640 } while (index < end && wbc->nr_to_write > 0);
641
642 *_next = index;
643 _leave(" = 0 [%lx]", *_next);
644 return 0;
645 }
646
647 /*
648 * write some of the pending data back to the server
649 */
650 int afs_writepages(struct address_space *mapping,
651 struct writeback_control *wbc)
652 {
653 pgoff_t start, end, next;
654 int ret;
655
656 _enter("");
657
658 if (wbc->range_cyclic) {
659 start = mapping->writeback_index;
660 end = -1;
661 ret = afs_writepages_region(mapping, wbc, start, end, &next);
662 if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
663 ret = afs_writepages_region(mapping, wbc, 0, start,
664 &next);
665 mapping->writeback_index = next;
666 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
667 end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
668 ret = afs_writepages_region(mapping, wbc, 0, end, &next);
669 if (wbc->nr_to_write > 0)
670 mapping->writeback_index = next;
671 } else {
672 start = wbc->range_start >> PAGE_SHIFT;
673 end = wbc->range_end >> PAGE_SHIFT;
674 ret = afs_writepages_region(mapping, wbc, start, end, &next);
675 }
676
677 _leave(" = %d", ret);
678 return ret;
679 }
680
681 /*
682 * completion of write to server
683 */
684 void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
685 {
686 struct pagevec pv;
687 unsigned long priv;
688 unsigned count, loop;
689 pgoff_t first = call->first, last = call->last;
690
691 _enter("{%llx:%llu},{%lx-%lx}",
692 vnode->fid.vid, vnode->fid.vnode, first, last);
693
694 pagevec_init(&pv);
695
696 do {
697 _debug("done %lx-%lx", first, last);
698
699 count = last - first + 1;
700 if (count > PAGEVEC_SIZE)
701 count = PAGEVEC_SIZE;
702 pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
703 first, count, pv.pages);
704 ASSERTCMP(pv.nr, ==, count);
705
706 for (loop = 0; loop < count; loop++) {
707 priv = page_private(pv.pages[loop]);
708 trace_afs_page_dirty(vnode, tracepoint_string("clear"),
709 pv.pages[loop]->index, priv);
710 set_page_private(pv.pages[loop], 0);
711 end_page_writeback(pv.pages[loop]);
712 }
713 first += count;
714 __pagevec_release(&pv);
715 } while (first <= last);
716
717 afs_prune_wb_keys(vnode);
718 _leave("");
719 }
720
721 /*
722 * write to an AFS file
723 */
724 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
725 {
726 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
727 ssize_t result;
728 size_t count = iov_iter_count(from);
729
730 _enter("{%llx:%llu},{%zu},",
731 vnode->fid.vid, vnode->fid.vnode, count);
732
733 if (IS_SWAPFILE(&vnode->vfs_inode)) {
734 printk(KERN_INFO
735 "AFS: Attempt to write to active swap file!\n");
736 return -EBUSY;
737 }
738
739 if (!count)
740 return 0;
741
742 result = generic_file_write_iter(iocb, from);
743
744 _leave(" = %zd", result);
745 return result;
746 }
747
748 /*
749 * flush any dirty pages for this process, and check for write errors.
750 * - the return status from this call provides a reliable indication of
751 * whether any write errors occurred for this process.
752 */
753 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
754 {
755 struct inode *inode = file_inode(file);
756 struct afs_vnode *vnode = AFS_FS_I(inode);
757
758 _enter("{%llx:%llu},{n=%pD},%d",
759 vnode->fid.vid, vnode->fid.vnode, file,
760 datasync);
761
762 return file_write_and_wait_range(file, start, end);
763 }
764
765 /*
766 * notification that a previously read-only page is about to become writable
767 * - if it returns an error, the caller will deliver a bus error signal
768 */
769 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
770 {
771 struct file *file = vmf->vma->vm_file;
772 struct inode *inode = file_inode(file);
773 struct afs_vnode *vnode = AFS_FS_I(inode);
774 unsigned long priv;
775
776 _enter("{{%llx:%llu}},{%lx}",
777 vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
778
779 sb_start_pagefault(inode->i_sb);
780
781 /* Wait for the page to be written to the cache before we allow it to
782 * be modified. We then assume the entire page will need writing back.
783 */
784 #ifdef CONFIG_AFS_FSCACHE
785 fscache_wait_on_page_write(vnode->cache, vmf->page);
786 #endif
787
788 if (PageWriteback(vmf->page) &&
789 wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
790 return VM_FAULT_RETRY;
791
792 if (lock_page_killable(vmf->page) < 0)
793 return VM_FAULT_RETRY;
794
795 /* We mustn't change page->private until writeback is complete as that
796 * details the portion of the page we need to write back and we might
797 * need to redirty the page if there's a problem.
798 */
799 wait_on_page_writeback(vmf->page);
800
801 priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
802 priv |= 0; /* From */
803 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
804 vmf->page->index, priv);
805 SetPagePrivate(vmf->page);
806 set_page_private(vmf->page, priv);
807
808 sb_end_pagefault(inode->i_sb);
809 return VM_FAULT_LOCKED;
810 }
811
812 /*
813 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
814 */
815 void afs_prune_wb_keys(struct afs_vnode *vnode)
816 {
817 LIST_HEAD(graveyard);
818 struct afs_wb_key *wbk, *tmp;
819
820 /* Discard unused keys */
821 spin_lock(&vnode->wb_lock);
822
823 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
824 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
825 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
826 if (refcount_read(&wbk->usage) == 1)
827 list_move(&wbk->vnode_link, &graveyard);
828 }
829 }
830
831 spin_unlock(&vnode->wb_lock);
832
833 while (!list_empty(&graveyard)) {
834 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
835 list_del(&wbk->vnode_link);
836 afs_put_wb_key(wbk);
837 }
838 }
839
840 /*
841 * Clean up a page during invalidation.
842 */
843 int afs_launder_page(struct page *page)
844 {
845 struct address_space *mapping = page->mapping;
846 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
847 unsigned long priv;
848 unsigned int f, t;
849 int ret = 0;
850
851 _enter("{%lx}", page->index);
852
853 priv = page_private(page);
854 if (clear_page_dirty_for_io(page)) {
855 f = 0;
856 t = PAGE_SIZE;
857 if (PagePrivate(page)) {
858 f = priv & AFS_PRIV_MAX;
859 t = priv >> AFS_PRIV_SHIFT;
860 }
861
862 trace_afs_page_dirty(vnode, tracepoint_string("launder"),
863 page->index, priv);
864 ret = afs_store_data(mapping, page->index, page->index, t, f);
865 }
866
867 trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
868 page->index, priv);
869 set_page_private(page, 0);
870 ClearPagePrivate(page);
871
872 #ifdef CONFIG_AFS_FSCACHE
873 if (PageFsCache(page)) {
874 fscache_wait_on_page_write(vnode->cache, page);
875 fscache_uncache_page(vnode->cache, page);
876 }
877 #endif
878 return ret;
879 }