]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/afs/write.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / fs / afs / write.c
1 /* handling of writes to regular files and writing back to the server
2 *
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/backing-dev.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include "internal.h"
19
20 /*
21 * mark a page as having been made dirty and thus needing writeback
22 */
23 int afs_set_page_dirty(struct page *page)
24 {
25 _enter("");
26 return __set_page_dirty_nobuffers(page);
27 }
28
29 /*
30 * partly or wholly fill a page that's under preparation for writing
31 */
32 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
33 loff_t pos, unsigned int len, struct page *page)
34 {
35 struct afs_read *req;
36 size_t p;
37 void *data;
38 int ret;
39
40 _enter(",,%llu", (unsigned long long)pos);
41
42 if (pos >= vnode->vfs_inode.i_size) {
43 p = pos & ~PAGE_MASK;
44 ASSERTCMP(p + len, <=, PAGE_SIZE);
45 data = kmap(page);
46 memset(data + p, 0, len);
47 kunmap(page);
48 return 0;
49 }
50
51 req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
52 GFP_KERNEL);
53 if (!req)
54 return -ENOMEM;
55
56 refcount_set(&req->usage, 1);
57 req->pos = pos;
58 req->len = len;
59 req->nr_pages = 1;
60 req->pages = req->array;
61 req->pages[0] = page;
62 get_page(page);
63
64 ret = afs_fetch_data(vnode, key, req);
65 afs_put_read(req);
66 if (ret < 0) {
67 if (ret == -ENOENT) {
68 _debug("got NOENT from server"
69 " - marking file deleted and stale");
70 set_bit(AFS_VNODE_DELETED, &vnode->flags);
71 ret = -ESTALE;
72 }
73 }
74
75 _leave(" = %d", ret);
76 return ret;
77 }
78
79 /*
80 * prepare to perform part of a write to a page
81 */
82 int afs_write_begin(struct file *file, struct address_space *mapping,
83 loff_t pos, unsigned len, unsigned flags,
84 struct page **pagep, void **fsdata)
85 {
86 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
87 struct page *page;
88 struct key *key = afs_file_key(file);
89 unsigned long priv;
90 unsigned f, from = pos & (PAGE_SIZE - 1);
91 unsigned t, to = from + len;
92 pgoff_t index = pos >> PAGE_SHIFT;
93 int ret;
94
95 _enter("{%llx:%llu},{%lx},%u,%u",
96 vnode->fid.vid, vnode->fid.vnode, index, from, to);
97
98 /* We want to store information about how much of a page is altered in
99 * page->private.
100 */
101 BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
102
103 page = grab_cache_page_write_begin(mapping, index, flags);
104 if (!page)
105 return -ENOMEM;
106
107 if (!PageUptodate(page) && len != PAGE_SIZE) {
108 ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
109 if (ret < 0) {
110 unlock_page(page);
111 put_page(page);
112 _leave(" = %d [prep]", ret);
113 return ret;
114 }
115 SetPageUptodate(page);
116 }
117
118 /* page won't leak in error case: it eventually gets cleaned off LRU */
119 *pagep = page;
120
121 try_again:
122 /* See if this page is already partially written in a way that we can
123 * merge the new write with.
124 */
125 t = f = 0;
126 if (PagePrivate(page)) {
127 priv = page_private(page);
128 f = priv & AFS_PRIV_MAX;
129 t = priv >> AFS_PRIV_SHIFT;
130 ASSERTCMP(f, <=, t);
131 }
132
133 if (f != t) {
134 if (PageWriteback(page)) {
135 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
136 page->index, priv);
137 goto flush_conflicting_write;
138 }
139 /* If the file is being filled locally, allow inter-write
140 * spaces to be merged into writes. If it's not, only write
141 * back what the user gives us.
142 */
143 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
144 (to < f || from > t))
145 goto flush_conflicting_write;
146 if (from < f)
147 f = from;
148 if (to > t)
149 t = to;
150 } else {
151 f = from;
152 t = to;
153 }
154
155 priv = (unsigned long)t << AFS_PRIV_SHIFT;
156 priv |= f;
157 trace_afs_page_dirty(vnode, tracepoint_string("begin"),
158 page->index, priv);
159 SetPagePrivate(page);
160 set_page_private(page, priv);
161 _leave(" = 0");
162 return 0;
163
164 /* The previous write and this write aren't adjacent or overlapping, so
165 * flush the page out.
166 */
167 flush_conflicting_write:
168 _debug("flush conflict");
169 ret = write_one_page(page);
170 if (ret < 0) {
171 _leave(" = %d", ret);
172 return ret;
173 }
174
175 ret = lock_page_killable(page);
176 if (ret < 0) {
177 _leave(" = %d", ret);
178 return ret;
179 }
180 goto try_again;
181 }
182
183 /*
184 * finalise part of a write to a page
185 */
186 int afs_write_end(struct file *file, struct address_space *mapping,
187 loff_t pos, unsigned len, unsigned copied,
188 struct page *page, void *fsdata)
189 {
190 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
191 struct key *key = afs_file_key(file);
192 loff_t i_size, maybe_i_size;
193 int ret;
194
195 _enter("{%llx:%llu},{%lx}",
196 vnode->fid.vid, vnode->fid.vnode, page->index);
197
198 maybe_i_size = pos + copied;
199
200 i_size = i_size_read(&vnode->vfs_inode);
201 if (maybe_i_size > i_size) {
202 spin_lock(&vnode->wb_lock);
203 i_size = i_size_read(&vnode->vfs_inode);
204 if (maybe_i_size > i_size)
205 i_size_write(&vnode->vfs_inode, maybe_i_size);
206 spin_unlock(&vnode->wb_lock);
207 }
208
209 if (!PageUptodate(page)) {
210 if (copied < len) {
211 /* Try and load any missing data from the server. The
212 * unmarshalling routine will take care of clearing any
213 * bits that are beyond the EOF.
214 */
215 ret = afs_fill_page(vnode, key, pos + copied,
216 len - copied, page);
217 if (ret < 0)
218 goto out;
219 }
220 SetPageUptodate(page);
221 }
222
223 set_page_dirty(page);
224 if (PageDirty(page))
225 _debug("dirtied");
226 ret = copied;
227
228 out:
229 unlock_page(page);
230 put_page(page);
231 return ret;
232 }
233
234 /*
235 * kill all the pages in the given range
236 */
237 static void afs_kill_pages(struct address_space *mapping,
238 pgoff_t first, pgoff_t last)
239 {
240 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
241 struct pagevec pv;
242 unsigned count, loop;
243
244 _enter("{%llx:%llu},%lx-%lx",
245 vnode->fid.vid, vnode->fid.vnode, first, last);
246
247 pagevec_init(&pv);
248
249 do {
250 _debug("kill %lx-%lx", first, last);
251
252 count = last - first + 1;
253 if (count > PAGEVEC_SIZE)
254 count = PAGEVEC_SIZE;
255 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
256 ASSERTCMP(pv.nr, ==, count);
257
258 for (loop = 0; loop < count; loop++) {
259 struct page *page = pv.pages[loop];
260 ClearPageUptodate(page);
261 SetPageError(page);
262 end_page_writeback(page);
263 if (page->index >= first)
264 first = page->index + 1;
265 lock_page(page);
266 generic_error_remove_page(mapping, page);
267 unlock_page(page);
268 }
269
270 __pagevec_release(&pv);
271 } while (first <= last);
272
273 _leave("");
274 }
275
276 /*
277 * Redirty all the pages in a given range.
278 */
279 static void afs_redirty_pages(struct writeback_control *wbc,
280 struct address_space *mapping,
281 pgoff_t first, pgoff_t last)
282 {
283 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
284 struct pagevec pv;
285 unsigned count, loop;
286
287 _enter("{%llx:%llu},%lx-%lx",
288 vnode->fid.vid, vnode->fid.vnode, first, last);
289
290 pagevec_init(&pv);
291
292 do {
293 _debug("redirty %lx-%lx", first, last);
294
295 count = last - first + 1;
296 if (count > PAGEVEC_SIZE)
297 count = PAGEVEC_SIZE;
298 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
299 ASSERTCMP(pv.nr, ==, count);
300
301 for (loop = 0; loop < count; loop++) {
302 struct page *page = pv.pages[loop];
303
304 redirty_page_for_writepage(wbc, page);
305 end_page_writeback(page);
306 if (page->index >= first)
307 first = page->index + 1;
308 }
309
310 __pagevec_release(&pv);
311 } while (first <= last);
312
313 _leave("");
314 }
315
316 /*
317 * completion of write to server
318 */
319 static void afs_pages_written_back(struct afs_vnode *vnode,
320 pgoff_t first, pgoff_t last)
321 {
322 struct pagevec pv;
323 unsigned long priv;
324 unsigned count, loop;
325
326 _enter("{%llx:%llu},{%lx-%lx}",
327 vnode->fid.vid, vnode->fid.vnode, first, last);
328
329 pagevec_init(&pv);
330
331 do {
332 _debug("done %lx-%lx", first, last);
333
334 count = last - first + 1;
335 if (count > PAGEVEC_SIZE)
336 count = PAGEVEC_SIZE;
337 pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
338 first, count, pv.pages);
339 ASSERTCMP(pv.nr, ==, count);
340
341 for (loop = 0; loop < count; loop++) {
342 priv = page_private(pv.pages[loop]);
343 trace_afs_page_dirty(vnode, tracepoint_string("clear"),
344 pv.pages[loop]->index, priv);
345 set_page_private(pv.pages[loop], 0);
346 end_page_writeback(pv.pages[loop]);
347 }
348 first += count;
349 __pagevec_release(&pv);
350 } while (first <= last);
351
352 afs_prune_wb_keys(vnode);
353 _leave("");
354 }
355
356 /*
357 * write to a file
358 */
359 static int afs_store_data(struct address_space *mapping,
360 pgoff_t first, pgoff_t last,
361 unsigned offset, unsigned to)
362 {
363 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
364 struct afs_fs_cursor fc;
365 struct afs_status_cb *scb;
366 struct afs_wb_key *wbk = NULL;
367 struct list_head *p;
368 int ret = -ENOKEY, ret2;
369
370 _enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
371 vnode->volume->name,
372 vnode->fid.vid,
373 vnode->fid.vnode,
374 vnode->fid.unique,
375 first, last, offset, to);
376
377 scb = kzalloc(sizeof(struct afs_status_cb), GFP_NOFS);
378 if (!scb)
379 return -ENOMEM;
380
381 spin_lock(&vnode->wb_lock);
382 p = vnode->wb_keys.next;
383
384 /* Iterate through the list looking for a valid key to use. */
385 try_next_key:
386 while (p != &vnode->wb_keys) {
387 wbk = list_entry(p, struct afs_wb_key, vnode_link);
388 _debug("wbk %u", key_serial(wbk->key));
389 ret2 = key_validate(wbk->key);
390 if (ret2 == 0)
391 goto found_key;
392 if (ret == -ENOKEY)
393 ret = ret2;
394 p = p->next;
395 }
396
397 spin_unlock(&vnode->wb_lock);
398 afs_put_wb_key(wbk);
399 kfree(scb);
400 _leave(" = %d [no keys]", ret);
401 return ret;
402
403 found_key:
404 refcount_inc(&wbk->usage);
405 spin_unlock(&vnode->wb_lock);
406
407 _debug("USE WB KEY %u", key_serial(wbk->key));
408
409 ret = -ERESTARTSYS;
410 if (afs_begin_vnode_operation(&fc, vnode, wbk->key, false)) {
411 afs_dataversion_t data_version = vnode->status.data_version + 1;
412
413 while (afs_select_fileserver(&fc)) {
414 fc.cb_break = afs_calc_vnode_cb_break(vnode);
415 afs_fs_store_data(&fc, mapping, first, last, offset, to, scb);
416 }
417
418 afs_check_for_remote_deletion(&fc, vnode);
419 afs_vnode_commit_status(&fc, vnode, fc.cb_break,
420 &data_version, scb);
421 if (fc.ac.error == 0)
422 afs_pages_written_back(vnode, first, last);
423 ret = afs_end_vnode_operation(&fc);
424 }
425
426 switch (ret) {
427 case 0:
428 afs_stat_v(vnode, n_stores);
429 atomic_long_add((last * PAGE_SIZE + to) -
430 (first * PAGE_SIZE + offset),
431 &afs_v2net(vnode)->n_store_bytes);
432 break;
433 case -EACCES:
434 case -EPERM:
435 case -ENOKEY:
436 case -EKEYEXPIRED:
437 case -EKEYREJECTED:
438 case -EKEYREVOKED:
439 _debug("next");
440 spin_lock(&vnode->wb_lock);
441 p = wbk->vnode_link.next;
442 afs_put_wb_key(wbk);
443 goto try_next_key;
444 }
445
446 afs_put_wb_key(wbk);
447 kfree(scb);
448 _leave(" = %d", ret);
449 return ret;
450 }
451
452 /*
453 * Synchronously write back the locked page and any subsequent non-locked dirty
454 * pages.
455 */
456 static int afs_write_back_from_locked_page(struct address_space *mapping,
457 struct writeback_control *wbc,
458 struct page *primary_page,
459 pgoff_t final_page)
460 {
461 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
462 struct page *pages[8], *page;
463 unsigned long count, priv;
464 unsigned n, offset, to, f, t;
465 pgoff_t start, first, last;
466 int loop, ret;
467
468 _enter(",%lx", primary_page->index);
469
470 count = 1;
471 if (test_set_page_writeback(primary_page))
472 BUG();
473
474 /* Find all consecutive lockable dirty pages that have contiguous
475 * written regions, stopping when we find a page that is not
476 * immediately lockable, is not dirty or is missing, or we reach the
477 * end of the range.
478 */
479 start = primary_page->index;
480 priv = page_private(primary_page);
481 offset = priv & AFS_PRIV_MAX;
482 to = priv >> AFS_PRIV_SHIFT;
483 trace_afs_page_dirty(vnode, tracepoint_string("store"),
484 primary_page->index, priv);
485
486 WARN_ON(offset == to);
487 if (offset == to)
488 trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
489 primary_page->index, priv);
490
491 if (start >= final_page ||
492 (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
493 goto no_more;
494
495 start++;
496 do {
497 _debug("more %lx [%lx]", start, count);
498 n = final_page - start + 1;
499 if (n > ARRAY_SIZE(pages))
500 n = ARRAY_SIZE(pages);
501 n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
502 _debug("fgpc %u", n);
503 if (n == 0)
504 goto no_more;
505 if (pages[0]->index != start) {
506 do {
507 put_page(pages[--n]);
508 } while (n > 0);
509 goto no_more;
510 }
511
512 for (loop = 0; loop < n; loop++) {
513 page = pages[loop];
514 if (to != PAGE_SIZE &&
515 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
516 break;
517 if (page->index > final_page)
518 break;
519 if (!trylock_page(page))
520 break;
521 if (!PageDirty(page) || PageWriteback(page)) {
522 unlock_page(page);
523 break;
524 }
525
526 priv = page_private(page);
527 f = priv & AFS_PRIV_MAX;
528 t = priv >> AFS_PRIV_SHIFT;
529 if (f != 0 &&
530 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
531 unlock_page(page);
532 break;
533 }
534 to = t;
535
536 trace_afs_page_dirty(vnode, tracepoint_string("store+"),
537 page->index, priv);
538
539 if (!clear_page_dirty_for_io(page))
540 BUG();
541 if (test_set_page_writeback(page))
542 BUG();
543 unlock_page(page);
544 put_page(page);
545 }
546 count += loop;
547 if (loop < n) {
548 for (; loop < n; loop++)
549 put_page(pages[loop]);
550 goto no_more;
551 }
552
553 start += loop;
554 } while (start <= final_page && count < 65536);
555
556 no_more:
557 /* We now have a contiguous set of dirty pages, each with writeback
558 * set; the first page is still locked at this point, but all the rest
559 * have been unlocked.
560 */
561 unlock_page(primary_page);
562
563 first = primary_page->index;
564 last = first + count - 1;
565
566 _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
567
568 ret = afs_store_data(mapping, first, last, offset, to);
569 switch (ret) {
570 case 0:
571 ret = count;
572 break;
573
574 default:
575 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
576 /* Fall through */
577 case -EACCES:
578 case -EPERM:
579 case -ENOKEY:
580 case -EKEYEXPIRED:
581 case -EKEYREJECTED:
582 case -EKEYREVOKED:
583 afs_redirty_pages(wbc, mapping, first, last);
584 mapping_set_error(mapping, ret);
585 break;
586
587 case -EDQUOT:
588 case -ENOSPC:
589 afs_redirty_pages(wbc, mapping, first, last);
590 mapping_set_error(mapping, -ENOSPC);
591 break;
592
593 case -EROFS:
594 case -EIO:
595 case -EREMOTEIO:
596 case -EFBIG:
597 case -ENOENT:
598 case -ENOMEDIUM:
599 case -ENXIO:
600 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
601 afs_kill_pages(mapping, first, last);
602 mapping_set_error(mapping, ret);
603 break;
604 }
605
606 _leave(" = %d", ret);
607 return ret;
608 }
609
610 /*
611 * write a page back to the server
612 * - the caller locked the page for us
613 */
614 int afs_writepage(struct page *page, struct writeback_control *wbc)
615 {
616 int ret;
617
618 _enter("{%lx},", page->index);
619
620 ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
621 wbc->range_end >> PAGE_SHIFT);
622 if (ret < 0) {
623 _leave(" = %d", ret);
624 return 0;
625 }
626
627 wbc->nr_to_write -= ret;
628
629 _leave(" = 0");
630 return 0;
631 }
632
633 /*
634 * write a region of pages back to the server
635 */
636 static int afs_writepages_region(struct address_space *mapping,
637 struct writeback_control *wbc,
638 pgoff_t index, pgoff_t end, pgoff_t *_next)
639 {
640 struct page *page;
641 int ret, n;
642
643 _enter(",,%lx,%lx,", index, end);
644
645 do {
646 n = find_get_pages_range_tag(mapping, &index, end,
647 PAGECACHE_TAG_DIRTY, 1, &page);
648 if (!n)
649 break;
650
651 _debug("wback %lx", page->index);
652
653 /*
654 * at this point we hold neither the i_pages lock nor the
655 * page lock: the page may be truncated or invalidated
656 * (changing page->mapping to NULL), or even swizzled
657 * back from swapper_space to tmpfs file mapping
658 */
659 ret = lock_page_killable(page);
660 if (ret < 0) {
661 put_page(page);
662 _leave(" = %d", ret);
663 return ret;
664 }
665
666 if (page->mapping != mapping || !PageDirty(page)) {
667 unlock_page(page);
668 put_page(page);
669 continue;
670 }
671
672 if (PageWriteback(page)) {
673 unlock_page(page);
674 if (wbc->sync_mode != WB_SYNC_NONE)
675 wait_on_page_writeback(page);
676 put_page(page);
677 continue;
678 }
679
680 if (!clear_page_dirty_for_io(page))
681 BUG();
682 ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
683 put_page(page);
684 if (ret < 0) {
685 _leave(" = %d", ret);
686 return ret;
687 }
688
689 wbc->nr_to_write -= ret;
690
691 cond_resched();
692 } while (index < end && wbc->nr_to_write > 0);
693
694 *_next = index;
695 _leave(" = 0 [%lx]", *_next);
696 return 0;
697 }
698
699 /*
700 * write some of the pending data back to the server
701 */
702 int afs_writepages(struct address_space *mapping,
703 struct writeback_control *wbc)
704 {
705 pgoff_t start, end, next;
706 int ret;
707
708 _enter("");
709
710 if (wbc->range_cyclic) {
711 start = mapping->writeback_index;
712 end = -1;
713 ret = afs_writepages_region(mapping, wbc, start, end, &next);
714 if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
715 ret = afs_writepages_region(mapping, wbc, 0, start,
716 &next);
717 mapping->writeback_index = next;
718 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
719 end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
720 ret = afs_writepages_region(mapping, wbc, 0, end, &next);
721 if (wbc->nr_to_write > 0)
722 mapping->writeback_index = next;
723 } else {
724 start = wbc->range_start >> PAGE_SHIFT;
725 end = wbc->range_end >> PAGE_SHIFT;
726 ret = afs_writepages_region(mapping, wbc, start, end, &next);
727 }
728
729 _leave(" = %d", ret);
730 return ret;
731 }
732
733 /*
734 * write to an AFS file
735 */
736 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
737 {
738 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
739 ssize_t result;
740 size_t count = iov_iter_count(from);
741
742 _enter("{%llx:%llu},{%zu},",
743 vnode->fid.vid, vnode->fid.vnode, count);
744
745 if (IS_SWAPFILE(&vnode->vfs_inode)) {
746 printk(KERN_INFO
747 "AFS: Attempt to write to active swap file!\n");
748 return -EBUSY;
749 }
750
751 if (!count)
752 return 0;
753
754 result = generic_file_write_iter(iocb, from);
755
756 _leave(" = %zd", result);
757 return result;
758 }
759
760 /*
761 * flush any dirty pages for this process, and check for write errors.
762 * - the return status from this call provides a reliable indication of
763 * whether any write errors occurred for this process.
764 */
765 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
766 {
767 struct inode *inode = file_inode(file);
768 struct afs_vnode *vnode = AFS_FS_I(inode);
769
770 _enter("{%llx:%llu},{n=%pD},%d",
771 vnode->fid.vid, vnode->fid.vnode, file,
772 datasync);
773
774 return file_write_and_wait_range(file, start, end);
775 }
776
777 /*
778 * notification that a previously read-only page is about to become writable
779 * - if it returns an error, the caller will deliver a bus error signal
780 */
781 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
782 {
783 struct file *file = vmf->vma->vm_file;
784 struct inode *inode = file_inode(file);
785 struct afs_vnode *vnode = AFS_FS_I(inode);
786 unsigned long priv;
787
788 _enter("{{%llx:%llu}},{%lx}",
789 vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
790
791 sb_start_pagefault(inode->i_sb);
792
793 /* Wait for the page to be written to the cache before we allow it to
794 * be modified. We then assume the entire page will need writing back.
795 */
796 #ifdef CONFIG_AFS_FSCACHE
797 fscache_wait_on_page_write(vnode->cache, vmf->page);
798 #endif
799
800 if (PageWriteback(vmf->page) &&
801 wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
802 return VM_FAULT_RETRY;
803
804 if (lock_page_killable(vmf->page) < 0)
805 return VM_FAULT_RETRY;
806
807 /* We mustn't change page->private until writeback is complete as that
808 * details the portion of the page we need to write back and we might
809 * need to redirty the page if there's a problem.
810 */
811 wait_on_page_writeback(vmf->page);
812
813 priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
814 priv |= 0; /* From */
815 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
816 vmf->page->index, priv);
817 SetPagePrivate(vmf->page);
818 set_page_private(vmf->page, priv);
819
820 sb_end_pagefault(inode->i_sb);
821 return VM_FAULT_LOCKED;
822 }
823
824 /*
825 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
826 */
827 void afs_prune_wb_keys(struct afs_vnode *vnode)
828 {
829 LIST_HEAD(graveyard);
830 struct afs_wb_key *wbk, *tmp;
831
832 /* Discard unused keys */
833 spin_lock(&vnode->wb_lock);
834
835 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
836 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
837 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
838 if (refcount_read(&wbk->usage) == 1)
839 list_move(&wbk->vnode_link, &graveyard);
840 }
841 }
842
843 spin_unlock(&vnode->wb_lock);
844
845 while (!list_empty(&graveyard)) {
846 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
847 list_del(&wbk->vnode_link);
848 afs_put_wb_key(wbk);
849 }
850 }
851
852 /*
853 * Clean up a page during invalidation.
854 */
855 int afs_launder_page(struct page *page)
856 {
857 struct address_space *mapping = page->mapping;
858 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
859 unsigned long priv;
860 unsigned int f, t;
861 int ret = 0;
862
863 _enter("{%lx}", page->index);
864
865 priv = page_private(page);
866 if (clear_page_dirty_for_io(page)) {
867 f = 0;
868 t = PAGE_SIZE;
869 if (PagePrivate(page)) {
870 f = priv & AFS_PRIV_MAX;
871 t = priv >> AFS_PRIV_SHIFT;
872 }
873
874 trace_afs_page_dirty(vnode, tracepoint_string("launder"),
875 page->index, priv);
876 ret = afs_store_data(mapping, page->index, page->index, t, f);
877 }
878
879 trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
880 page->index, priv);
881 set_page_private(page, 0);
882 ClearPagePrivate(page);
883
884 #ifdef CONFIG_AFS_FSCACHE
885 if (PageFsCache(page)) {
886 fscache_wait_on_page_write(vnode->cache, page);
887 fscache_uncache_page(vnode->cache, page);
888 }
889 #endif
890 return ret;
891 }