]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/aio.c
crypto: s390 - fix aes,des ctr mode concurrency finding.
[mirror_ubuntu-bionic-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head;
56 unsigned tail;
57
58 unsigned magic;
59 unsigned compat_features;
60 unsigned incompat_features;
61 unsigned header_length; /* size of aio_ring */
62
63
64 struct io_event io_events[0];
65 }; /* 128 bytes + ring size */
66
67 #define AIO_RING_PAGES 8
68
69 struct kioctx_table {
70 struct rcu_head rcu;
71 unsigned nr;
72 struct kioctx *table[];
73 };
74
75 struct kioctx_cpu {
76 unsigned reqs_available;
77 };
78
79 struct kioctx {
80 struct percpu_ref users;
81 atomic_t dead;
82
83 struct percpu_ref reqs;
84
85 unsigned long user_id;
86
87 struct __percpu kioctx_cpu *cpu;
88
89 /*
90 * For percpu reqs_available, number of slots we move to/from global
91 * counter at a time:
92 */
93 unsigned req_batch;
94 /*
95 * This is what userspace passed to io_setup(), it's not used for
96 * anything but counting against the global max_reqs quota.
97 *
98 * The real limit is nr_events - 1, which will be larger (see
99 * aio_setup_ring())
100 */
101 unsigned max_reqs;
102
103 /* Size of ringbuffer, in units of struct io_event */
104 unsigned nr_events;
105
106 unsigned long mmap_base;
107 unsigned long mmap_size;
108
109 struct page **ring_pages;
110 long nr_pages;
111
112 struct work_struct free_work;
113
114 struct {
115 /*
116 * This counts the number of available slots in the ringbuffer,
117 * so we avoid overflowing it: it's decremented (if positive)
118 * when allocating a kiocb and incremented when the resulting
119 * io_event is pulled off the ringbuffer.
120 *
121 * We batch accesses to it with a percpu version.
122 */
123 atomic_t reqs_available;
124 } ____cacheline_aligned_in_smp;
125
126 struct {
127 spinlock_t ctx_lock;
128 struct list_head active_reqs; /* used for cancellation */
129 } ____cacheline_aligned_in_smp;
130
131 struct {
132 struct mutex ring_lock;
133 wait_queue_head_t wait;
134 } ____cacheline_aligned_in_smp;
135
136 struct {
137 unsigned tail;
138 spinlock_t completion_lock;
139 } ____cacheline_aligned_in_smp;
140
141 struct page *internal_pages[AIO_RING_PAGES];
142 struct file *aio_ring_file;
143
144 unsigned id;
145 };
146
147 /*------ sysctl variables----*/
148 static DEFINE_SPINLOCK(aio_nr_lock);
149 unsigned long aio_nr; /* current system wide number of aio requests */
150 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
151 /*----end sysctl variables---*/
152
153 static struct kmem_cache *kiocb_cachep;
154 static struct kmem_cache *kioctx_cachep;
155
156 static struct vfsmount *aio_mnt;
157
158 static const struct file_operations aio_ring_fops;
159 static const struct address_space_operations aio_ctx_aops;
160
161 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
162 {
163 struct qstr this = QSTR_INIT("[aio]", 5);
164 struct file *file;
165 struct path path;
166 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
167 if (IS_ERR(inode))
168 return ERR_CAST(inode);
169
170 inode->i_mapping->a_ops = &aio_ctx_aops;
171 inode->i_mapping->private_data = ctx;
172 inode->i_size = PAGE_SIZE * nr_pages;
173
174 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
175 if (!path.dentry) {
176 iput(inode);
177 return ERR_PTR(-ENOMEM);
178 }
179 path.mnt = mntget(aio_mnt);
180
181 d_instantiate(path.dentry, inode);
182 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
183 if (IS_ERR(file)) {
184 path_put(&path);
185 return file;
186 }
187
188 file->f_flags = O_RDWR;
189 file->private_data = ctx;
190 return file;
191 }
192
193 static struct dentry *aio_mount(struct file_system_type *fs_type,
194 int flags, const char *dev_name, void *data)
195 {
196 static const struct dentry_operations ops = {
197 .d_dname = simple_dname,
198 };
199 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
200 }
201
202 /* aio_setup
203 * Creates the slab caches used by the aio routines, panic on
204 * failure as this is done early during the boot sequence.
205 */
206 static int __init aio_setup(void)
207 {
208 static struct file_system_type aio_fs = {
209 .name = "aio",
210 .mount = aio_mount,
211 .kill_sb = kill_anon_super,
212 };
213 aio_mnt = kern_mount(&aio_fs);
214 if (IS_ERR(aio_mnt))
215 panic("Failed to create aio fs mount.");
216
217 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
218 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
219
220 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
221
222 return 0;
223 }
224 __initcall(aio_setup);
225
226 static void put_aio_ring_file(struct kioctx *ctx)
227 {
228 struct file *aio_ring_file = ctx->aio_ring_file;
229 if (aio_ring_file) {
230 truncate_setsize(aio_ring_file->f_inode, 0);
231
232 /* Prevent further access to the kioctx from migratepages */
233 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
234 aio_ring_file->f_inode->i_mapping->private_data = NULL;
235 ctx->aio_ring_file = NULL;
236 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
237
238 fput(aio_ring_file);
239 }
240 }
241
242 static void aio_free_ring(struct kioctx *ctx)
243 {
244 int i;
245
246 for (i = 0; i < ctx->nr_pages; i++) {
247 struct page *page;
248 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
249 page_count(ctx->ring_pages[i]));
250 page = ctx->ring_pages[i];
251 if (!page)
252 continue;
253 ctx->ring_pages[i] = NULL;
254 put_page(page);
255 }
256
257 put_aio_ring_file(ctx);
258
259 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
260 kfree(ctx->ring_pages);
261 ctx->ring_pages = NULL;
262 }
263 }
264
265 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
266 {
267 vma->vm_ops = &generic_file_vm_ops;
268 return 0;
269 }
270
271 static const struct file_operations aio_ring_fops = {
272 .mmap = aio_ring_mmap,
273 };
274
275 static int aio_set_page_dirty(struct page *page)
276 {
277 return 0;
278 }
279
280 #if IS_ENABLED(CONFIG_MIGRATION)
281 static int aio_migratepage(struct address_space *mapping, struct page *new,
282 struct page *old, enum migrate_mode mode)
283 {
284 struct kioctx *ctx;
285 unsigned long flags;
286 int rc;
287
288 rc = 0;
289
290 /* Make sure the old page hasn't already been changed */
291 spin_lock(&mapping->private_lock);
292 ctx = mapping->private_data;
293 if (ctx) {
294 pgoff_t idx;
295 spin_lock_irqsave(&ctx->completion_lock, flags);
296 idx = old->index;
297 if (idx < (pgoff_t)ctx->nr_pages) {
298 if (ctx->ring_pages[idx] != old)
299 rc = -EAGAIN;
300 } else
301 rc = -EINVAL;
302 spin_unlock_irqrestore(&ctx->completion_lock, flags);
303 } else
304 rc = -EINVAL;
305 spin_unlock(&mapping->private_lock);
306
307 if (rc != 0)
308 return rc;
309
310 /* Writeback must be complete */
311 BUG_ON(PageWriteback(old));
312 get_page(new);
313
314 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
315 if (rc != MIGRATEPAGE_SUCCESS) {
316 put_page(new);
317 return rc;
318 }
319
320 /* We can potentially race against kioctx teardown here. Use the
321 * address_space's private data lock to protect the mapping's
322 * private_data.
323 */
324 spin_lock(&mapping->private_lock);
325 ctx = mapping->private_data;
326 if (ctx) {
327 pgoff_t idx;
328 spin_lock_irqsave(&ctx->completion_lock, flags);
329 migrate_page_copy(new, old);
330 idx = old->index;
331 if (idx < (pgoff_t)ctx->nr_pages) {
332 /* And only do the move if things haven't changed */
333 if (ctx->ring_pages[idx] == old)
334 ctx->ring_pages[idx] = new;
335 else
336 rc = -EAGAIN;
337 } else
338 rc = -EINVAL;
339 spin_unlock_irqrestore(&ctx->completion_lock, flags);
340 } else
341 rc = -EBUSY;
342 spin_unlock(&mapping->private_lock);
343
344 if (rc == MIGRATEPAGE_SUCCESS)
345 put_page(old);
346 else
347 put_page(new);
348
349 return rc;
350 }
351 #endif
352
353 static const struct address_space_operations aio_ctx_aops = {
354 .set_page_dirty = aio_set_page_dirty,
355 #if IS_ENABLED(CONFIG_MIGRATION)
356 .migratepage = aio_migratepage,
357 #endif
358 };
359
360 static int aio_setup_ring(struct kioctx *ctx)
361 {
362 struct aio_ring *ring;
363 unsigned nr_events = ctx->max_reqs;
364 struct mm_struct *mm = current->mm;
365 unsigned long size, unused;
366 int nr_pages;
367 int i;
368 struct file *file;
369
370 /* Compensate for the ring buffer's head/tail overlap entry */
371 nr_events += 2; /* 1 is required, 2 for good luck */
372
373 size = sizeof(struct aio_ring);
374 size += sizeof(struct io_event) * nr_events;
375
376 nr_pages = PFN_UP(size);
377 if (nr_pages < 0)
378 return -EINVAL;
379
380 file = aio_private_file(ctx, nr_pages);
381 if (IS_ERR(file)) {
382 ctx->aio_ring_file = NULL;
383 return -EAGAIN;
384 }
385
386 ctx->aio_ring_file = file;
387 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
388 / sizeof(struct io_event);
389
390 ctx->ring_pages = ctx->internal_pages;
391 if (nr_pages > AIO_RING_PAGES) {
392 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
393 GFP_KERNEL);
394 if (!ctx->ring_pages) {
395 put_aio_ring_file(ctx);
396 return -ENOMEM;
397 }
398 }
399
400 for (i = 0; i < nr_pages; i++) {
401 struct page *page;
402 page = find_or_create_page(file->f_inode->i_mapping,
403 i, GFP_HIGHUSER | __GFP_ZERO);
404 if (!page)
405 break;
406 pr_debug("pid(%d) page[%d]->count=%d\n",
407 current->pid, i, page_count(page));
408 SetPageUptodate(page);
409 SetPageDirty(page);
410 unlock_page(page);
411
412 ctx->ring_pages[i] = page;
413 }
414 ctx->nr_pages = i;
415
416 if (unlikely(i != nr_pages)) {
417 aio_free_ring(ctx);
418 return -EAGAIN;
419 }
420
421 ctx->mmap_size = nr_pages * PAGE_SIZE;
422 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
423
424 down_write(&mm->mmap_sem);
425 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
426 PROT_READ | PROT_WRITE,
427 MAP_SHARED, 0, &unused);
428 up_write(&mm->mmap_sem);
429 if (IS_ERR((void *)ctx->mmap_base)) {
430 ctx->mmap_size = 0;
431 aio_free_ring(ctx);
432 return -EAGAIN;
433 }
434
435 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
436
437 ctx->user_id = ctx->mmap_base;
438 ctx->nr_events = nr_events; /* trusted copy */
439
440 ring = kmap_atomic(ctx->ring_pages[0]);
441 ring->nr = nr_events; /* user copy */
442 ring->id = ~0U;
443 ring->head = ring->tail = 0;
444 ring->magic = AIO_RING_MAGIC;
445 ring->compat_features = AIO_RING_COMPAT_FEATURES;
446 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
447 ring->header_length = sizeof(struct aio_ring);
448 kunmap_atomic(ring);
449 flush_dcache_page(ctx->ring_pages[0]);
450
451 return 0;
452 }
453
454 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
455 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
456 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
457
458 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
459 {
460 struct kioctx *ctx = req->ki_ctx;
461 unsigned long flags;
462
463 spin_lock_irqsave(&ctx->ctx_lock, flags);
464
465 if (!req->ki_list.next)
466 list_add(&req->ki_list, &ctx->active_reqs);
467
468 req->ki_cancel = cancel;
469
470 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
471 }
472 EXPORT_SYMBOL(kiocb_set_cancel_fn);
473
474 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
475 {
476 kiocb_cancel_fn *old, *cancel;
477
478 /*
479 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
480 * actually has a cancel function, hence the cmpxchg()
481 */
482
483 cancel = ACCESS_ONCE(kiocb->ki_cancel);
484 do {
485 if (!cancel || cancel == KIOCB_CANCELLED)
486 return -EINVAL;
487
488 old = cancel;
489 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
490 } while (cancel != old);
491
492 return cancel(kiocb);
493 }
494
495 static void free_ioctx(struct work_struct *work)
496 {
497 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
498
499 pr_debug("freeing %p\n", ctx);
500
501 aio_free_ring(ctx);
502 free_percpu(ctx->cpu);
503 kmem_cache_free(kioctx_cachep, ctx);
504 }
505
506 static void free_ioctx_reqs(struct percpu_ref *ref)
507 {
508 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
509
510 INIT_WORK(&ctx->free_work, free_ioctx);
511 schedule_work(&ctx->free_work);
512 }
513
514 /*
515 * When this function runs, the kioctx has been removed from the "hash table"
516 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
517 * now it's safe to cancel any that need to be.
518 */
519 static void free_ioctx_users(struct percpu_ref *ref)
520 {
521 struct kioctx *ctx = container_of(ref, struct kioctx, users);
522 struct kiocb *req;
523
524 spin_lock_irq(&ctx->ctx_lock);
525
526 while (!list_empty(&ctx->active_reqs)) {
527 req = list_first_entry(&ctx->active_reqs,
528 struct kiocb, ki_list);
529
530 list_del_init(&req->ki_list);
531 kiocb_cancel(ctx, req);
532 }
533
534 spin_unlock_irq(&ctx->ctx_lock);
535
536 percpu_ref_kill(&ctx->reqs);
537 percpu_ref_put(&ctx->reqs);
538 }
539
540 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
541 {
542 unsigned i, new_nr;
543 struct kioctx_table *table, *old;
544 struct aio_ring *ring;
545
546 spin_lock(&mm->ioctx_lock);
547 rcu_read_lock();
548 table = rcu_dereference(mm->ioctx_table);
549
550 while (1) {
551 if (table)
552 for (i = 0; i < table->nr; i++)
553 if (!table->table[i]) {
554 ctx->id = i;
555 table->table[i] = ctx;
556 rcu_read_unlock();
557 spin_unlock(&mm->ioctx_lock);
558
559 ring = kmap_atomic(ctx->ring_pages[0]);
560 ring->id = ctx->id;
561 kunmap_atomic(ring);
562 return 0;
563 }
564
565 new_nr = (table ? table->nr : 1) * 4;
566
567 rcu_read_unlock();
568 spin_unlock(&mm->ioctx_lock);
569
570 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
571 new_nr, GFP_KERNEL);
572 if (!table)
573 return -ENOMEM;
574
575 table->nr = new_nr;
576
577 spin_lock(&mm->ioctx_lock);
578 rcu_read_lock();
579 old = rcu_dereference(mm->ioctx_table);
580
581 if (!old) {
582 rcu_assign_pointer(mm->ioctx_table, table);
583 } else if (table->nr > old->nr) {
584 memcpy(table->table, old->table,
585 old->nr * sizeof(struct kioctx *));
586
587 rcu_assign_pointer(mm->ioctx_table, table);
588 kfree_rcu(old, rcu);
589 } else {
590 kfree(table);
591 table = old;
592 }
593 }
594 }
595
596 static void aio_nr_sub(unsigned nr)
597 {
598 spin_lock(&aio_nr_lock);
599 if (WARN_ON(aio_nr - nr > aio_nr))
600 aio_nr = 0;
601 else
602 aio_nr -= nr;
603 spin_unlock(&aio_nr_lock);
604 }
605
606 /* ioctx_alloc
607 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
608 */
609 static struct kioctx *ioctx_alloc(unsigned nr_events)
610 {
611 struct mm_struct *mm = current->mm;
612 struct kioctx *ctx;
613 int err = -ENOMEM;
614
615 /*
616 * We keep track of the number of available ringbuffer slots, to prevent
617 * overflow (reqs_available), and we also use percpu counters for this.
618 *
619 * So since up to half the slots might be on other cpu's percpu counters
620 * and unavailable, double nr_events so userspace sees what they
621 * expected: additionally, we move req_batch slots to/from percpu
622 * counters at a time, so make sure that isn't 0:
623 */
624 nr_events = max(nr_events, num_possible_cpus() * 4);
625 nr_events *= 2;
626
627 /* Prevent overflows */
628 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
629 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
630 pr_debug("ENOMEM: nr_events too high\n");
631 return ERR_PTR(-EINVAL);
632 }
633
634 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
635 return ERR_PTR(-EAGAIN);
636
637 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
638 if (!ctx)
639 return ERR_PTR(-ENOMEM);
640
641 ctx->max_reqs = nr_events;
642
643 if (percpu_ref_init(&ctx->users, free_ioctx_users))
644 goto err;
645
646 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
647 goto err;
648
649 spin_lock_init(&ctx->ctx_lock);
650 spin_lock_init(&ctx->completion_lock);
651 mutex_init(&ctx->ring_lock);
652 init_waitqueue_head(&ctx->wait);
653
654 INIT_LIST_HEAD(&ctx->active_reqs);
655
656 ctx->cpu = alloc_percpu(struct kioctx_cpu);
657 if (!ctx->cpu)
658 goto err;
659
660 if (aio_setup_ring(ctx) < 0)
661 goto err;
662
663 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
664 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
665 if (ctx->req_batch < 1)
666 ctx->req_batch = 1;
667
668 /* limit the number of system wide aios */
669 spin_lock(&aio_nr_lock);
670 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
671 aio_nr + nr_events < aio_nr) {
672 spin_unlock(&aio_nr_lock);
673 err = -EAGAIN;
674 goto err_ctx;
675 }
676 aio_nr += ctx->max_reqs;
677 spin_unlock(&aio_nr_lock);
678
679 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
680 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
681
682 err = ioctx_add_table(ctx, mm);
683 if (err)
684 goto err_cleanup;
685
686 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
687 ctx, ctx->user_id, mm, ctx->nr_events);
688 return ctx;
689
690 err_cleanup:
691 aio_nr_sub(ctx->max_reqs);
692 err_ctx:
693 aio_free_ring(ctx);
694 err:
695 free_percpu(ctx->cpu);
696 free_percpu(ctx->reqs.pcpu_count);
697 free_percpu(ctx->users.pcpu_count);
698 kmem_cache_free(kioctx_cachep, ctx);
699 pr_debug("error allocating ioctx %d\n", err);
700 return ERR_PTR(err);
701 }
702
703 /* kill_ioctx
704 * Cancels all outstanding aio requests on an aio context. Used
705 * when the processes owning a context have all exited to encourage
706 * the rapid destruction of the kioctx.
707 */
708 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
709 {
710 if (!atomic_xchg(&ctx->dead, 1)) {
711 struct kioctx_table *table;
712
713 spin_lock(&mm->ioctx_lock);
714 rcu_read_lock();
715 table = rcu_dereference(mm->ioctx_table);
716
717 WARN_ON(ctx != table->table[ctx->id]);
718 table->table[ctx->id] = NULL;
719 rcu_read_unlock();
720 spin_unlock(&mm->ioctx_lock);
721
722 /* percpu_ref_kill() will do the necessary call_rcu() */
723 wake_up_all(&ctx->wait);
724
725 /*
726 * It'd be more correct to do this in free_ioctx(), after all
727 * the outstanding kiocbs have finished - but by then io_destroy
728 * has already returned, so io_setup() could potentially return
729 * -EAGAIN with no ioctxs actually in use (as far as userspace
730 * could tell).
731 */
732 aio_nr_sub(ctx->max_reqs);
733
734 if (ctx->mmap_size)
735 vm_munmap(ctx->mmap_base, ctx->mmap_size);
736
737 percpu_ref_kill(&ctx->users);
738 }
739 }
740
741 /* wait_on_sync_kiocb:
742 * Waits on the given sync kiocb to complete.
743 */
744 ssize_t wait_on_sync_kiocb(struct kiocb *req)
745 {
746 while (!req->ki_ctx) {
747 set_current_state(TASK_UNINTERRUPTIBLE);
748 if (req->ki_ctx)
749 break;
750 io_schedule();
751 }
752 __set_current_state(TASK_RUNNING);
753 return req->ki_user_data;
754 }
755 EXPORT_SYMBOL(wait_on_sync_kiocb);
756
757 /*
758 * exit_aio: called when the last user of mm goes away. At this point, there is
759 * no way for any new requests to be submited or any of the io_* syscalls to be
760 * called on the context.
761 *
762 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
763 * them.
764 */
765 void exit_aio(struct mm_struct *mm)
766 {
767 struct kioctx_table *table;
768 struct kioctx *ctx;
769 unsigned i = 0;
770
771 while (1) {
772 rcu_read_lock();
773 table = rcu_dereference(mm->ioctx_table);
774
775 do {
776 if (!table || i >= table->nr) {
777 rcu_read_unlock();
778 rcu_assign_pointer(mm->ioctx_table, NULL);
779 if (table)
780 kfree(table);
781 return;
782 }
783
784 ctx = table->table[i++];
785 } while (!ctx);
786
787 rcu_read_unlock();
788
789 /*
790 * We don't need to bother with munmap() here -
791 * exit_mmap(mm) is coming and it'll unmap everything.
792 * Since aio_free_ring() uses non-zero ->mmap_size
793 * as indicator that it needs to unmap the area,
794 * just set it to 0; aio_free_ring() is the only
795 * place that uses ->mmap_size, so it's safe.
796 */
797 ctx->mmap_size = 0;
798
799 kill_ioctx(mm, ctx);
800 }
801 }
802
803 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
804 {
805 struct kioctx_cpu *kcpu;
806
807 preempt_disable();
808 kcpu = this_cpu_ptr(ctx->cpu);
809
810 kcpu->reqs_available += nr;
811 while (kcpu->reqs_available >= ctx->req_batch * 2) {
812 kcpu->reqs_available -= ctx->req_batch;
813 atomic_add(ctx->req_batch, &ctx->reqs_available);
814 }
815
816 preempt_enable();
817 }
818
819 static bool get_reqs_available(struct kioctx *ctx)
820 {
821 struct kioctx_cpu *kcpu;
822 bool ret = false;
823
824 preempt_disable();
825 kcpu = this_cpu_ptr(ctx->cpu);
826
827 if (!kcpu->reqs_available) {
828 int old, avail = atomic_read(&ctx->reqs_available);
829
830 do {
831 if (avail < ctx->req_batch)
832 goto out;
833
834 old = avail;
835 avail = atomic_cmpxchg(&ctx->reqs_available,
836 avail, avail - ctx->req_batch);
837 } while (avail != old);
838
839 kcpu->reqs_available += ctx->req_batch;
840 }
841
842 ret = true;
843 kcpu->reqs_available--;
844 out:
845 preempt_enable();
846 return ret;
847 }
848
849 /* aio_get_req
850 * Allocate a slot for an aio request.
851 * Returns NULL if no requests are free.
852 */
853 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
854 {
855 struct kiocb *req;
856
857 if (!get_reqs_available(ctx))
858 return NULL;
859
860 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
861 if (unlikely(!req))
862 goto out_put;
863
864 percpu_ref_get(&ctx->reqs);
865
866 req->ki_ctx = ctx;
867 return req;
868 out_put:
869 put_reqs_available(ctx, 1);
870 return NULL;
871 }
872
873 static void kiocb_free(struct kiocb *req)
874 {
875 if (req->ki_filp)
876 fput(req->ki_filp);
877 if (req->ki_eventfd != NULL)
878 eventfd_ctx_put(req->ki_eventfd);
879 kmem_cache_free(kiocb_cachep, req);
880 }
881
882 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
883 {
884 struct aio_ring __user *ring = (void __user *)ctx_id;
885 struct mm_struct *mm = current->mm;
886 struct kioctx *ctx, *ret = NULL;
887 struct kioctx_table *table;
888 unsigned id;
889
890 if (get_user(id, &ring->id))
891 return NULL;
892
893 rcu_read_lock();
894 table = rcu_dereference(mm->ioctx_table);
895
896 if (!table || id >= table->nr)
897 goto out;
898
899 ctx = table->table[id];
900 if (ctx && ctx->user_id == ctx_id) {
901 percpu_ref_get(&ctx->users);
902 ret = ctx;
903 }
904 out:
905 rcu_read_unlock();
906 return ret;
907 }
908
909 /* aio_complete
910 * Called when the io request on the given iocb is complete.
911 */
912 void aio_complete(struct kiocb *iocb, long res, long res2)
913 {
914 struct kioctx *ctx = iocb->ki_ctx;
915 struct aio_ring *ring;
916 struct io_event *ev_page, *event;
917 unsigned long flags;
918 unsigned tail, pos;
919
920 /*
921 * Special case handling for sync iocbs:
922 * - events go directly into the iocb for fast handling
923 * - the sync task with the iocb in its stack holds the single iocb
924 * ref, no other paths have a way to get another ref
925 * - the sync task helpfully left a reference to itself in the iocb
926 */
927 if (is_sync_kiocb(iocb)) {
928 iocb->ki_user_data = res;
929 smp_wmb();
930 iocb->ki_ctx = ERR_PTR(-EXDEV);
931 wake_up_process(iocb->ki_obj.tsk);
932 return;
933 }
934
935 if (iocb->ki_list.next) {
936 unsigned long flags;
937
938 spin_lock_irqsave(&ctx->ctx_lock, flags);
939 list_del(&iocb->ki_list);
940 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
941 }
942
943 /*
944 * Add a completion event to the ring buffer. Must be done holding
945 * ctx->completion_lock to prevent other code from messing with the tail
946 * pointer since we might be called from irq context.
947 */
948 spin_lock_irqsave(&ctx->completion_lock, flags);
949
950 tail = ctx->tail;
951 pos = tail + AIO_EVENTS_OFFSET;
952
953 if (++tail >= ctx->nr_events)
954 tail = 0;
955
956 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
957 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
958
959 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
960 event->data = iocb->ki_user_data;
961 event->res = res;
962 event->res2 = res2;
963
964 kunmap_atomic(ev_page);
965 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
966
967 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
968 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
969 res, res2);
970
971 /* after flagging the request as done, we
972 * must never even look at it again
973 */
974 smp_wmb(); /* make event visible before updating tail */
975
976 ctx->tail = tail;
977
978 ring = kmap_atomic(ctx->ring_pages[0]);
979 ring->tail = tail;
980 kunmap_atomic(ring);
981 flush_dcache_page(ctx->ring_pages[0]);
982
983 spin_unlock_irqrestore(&ctx->completion_lock, flags);
984
985 pr_debug("added to ring %p at [%u]\n", iocb, tail);
986
987 /*
988 * Check if the user asked us to deliver the result through an
989 * eventfd. The eventfd_signal() function is safe to be called
990 * from IRQ context.
991 */
992 if (iocb->ki_eventfd != NULL)
993 eventfd_signal(iocb->ki_eventfd, 1);
994
995 /* everything turned out well, dispose of the aiocb. */
996 kiocb_free(iocb);
997
998 /*
999 * We have to order our ring_info tail store above and test
1000 * of the wait list below outside the wait lock. This is
1001 * like in wake_up_bit() where clearing a bit has to be
1002 * ordered with the unlocked test.
1003 */
1004 smp_mb();
1005
1006 if (waitqueue_active(&ctx->wait))
1007 wake_up(&ctx->wait);
1008
1009 percpu_ref_put(&ctx->reqs);
1010 }
1011 EXPORT_SYMBOL(aio_complete);
1012
1013 /* aio_read_events
1014 * Pull an event off of the ioctx's event ring. Returns the number of
1015 * events fetched
1016 */
1017 static long aio_read_events_ring(struct kioctx *ctx,
1018 struct io_event __user *event, long nr)
1019 {
1020 struct aio_ring *ring;
1021 unsigned head, tail, pos;
1022 long ret = 0;
1023 int copy_ret;
1024
1025 mutex_lock(&ctx->ring_lock);
1026
1027 ring = kmap_atomic(ctx->ring_pages[0]);
1028 head = ring->head;
1029 tail = ring->tail;
1030 kunmap_atomic(ring);
1031
1032 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1033
1034 if (head == tail)
1035 goto out;
1036
1037 while (ret < nr) {
1038 long avail;
1039 struct io_event *ev;
1040 struct page *page;
1041
1042 avail = (head <= tail ? tail : ctx->nr_events) - head;
1043 if (head == tail)
1044 break;
1045
1046 avail = min(avail, nr - ret);
1047 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1048 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1049
1050 pos = head + AIO_EVENTS_OFFSET;
1051 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1052 pos %= AIO_EVENTS_PER_PAGE;
1053
1054 ev = kmap(page);
1055 copy_ret = copy_to_user(event + ret, ev + pos,
1056 sizeof(*ev) * avail);
1057 kunmap(page);
1058
1059 if (unlikely(copy_ret)) {
1060 ret = -EFAULT;
1061 goto out;
1062 }
1063
1064 ret += avail;
1065 head += avail;
1066 head %= ctx->nr_events;
1067 }
1068
1069 ring = kmap_atomic(ctx->ring_pages[0]);
1070 ring->head = head;
1071 kunmap_atomic(ring);
1072 flush_dcache_page(ctx->ring_pages[0]);
1073
1074 pr_debug("%li h%u t%u\n", ret, head, tail);
1075
1076 put_reqs_available(ctx, ret);
1077 out:
1078 mutex_unlock(&ctx->ring_lock);
1079
1080 return ret;
1081 }
1082
1083 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1084 struct io_event __user *event, long *i)
1085 {
1086 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1087
1088 if (ret > 0)
1089 *i += ret;
1090
1091 if (unlikely(atomic_read(&ctx->dead)))
1092 ret = -EINVAL;
1093
1094 if (!*i)
1095 *i = ret;
1096
1097 return ret < 0 || *i >= min_nr;
1098 }
1099
1100 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1101 struct io_event __user *event,
1102 struct timespec __user *timeout)
1103 {
1104 ktime_t until = { .tv64 = KTIME_MAX };
1105 long ret = 0;
1106
1107 if (timeout) {
1108 struct timespec ts;
1109
1110 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1111 return -EFAULT;
1112
1113 until = timespec_to_ktime(ts);
1114 }
1115
1116 /*
1117 * Note that aio_read_events() is being called as the conditional - i.e.
1118 * we're calling it after prepare_to_wait() has set task state to
1119 * TASK_INTERRUPTIBLE.
1120 *
1121 * But aio_read_events() can block, and if it blocks it's going to flip
1122 * the task state back to TASK_RUNNING.
1123 *
1124 * This should be ok, provided it doesn't flip the state back to
1125 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1126 * will only happen if the mutex_lock() call blocks, and we then find
1127 * the ringbuffer empty. So in practice we should be ok, but it's
1128 * something to be aware of when touching this code.
1129 */
1130 wait_event_interruptible_hrtimeout(ctx->wait,
1131 aio_read_events(ctx, min_nr, nr, event, &ret), until);
1132
1133 if (!ret && signal_pending(current))
1134 ret = -EINTR;
1135
1136 return ret;
1137 }
1138
1139 /* sys_io_setup:
1140 * Create an aio_context capable of receiving at least nr_events.
1141 * ctxp must not point to an aio_context that already exists, and
1142 * must be initialized to 0 prior to the call. On successful
1143 * creation of the aio_context, *ctxp is filled in with the resulting
1144 * handle. May fail with -EINVAL if *ctxp is not initialized,
1145 * if the specified nr_events exceeds internal limits. May fail
1146 * with -EAGAIN if the specified nr_events exceeds the user's limit
1147 * of available events. May fail with -ENOMEM if insufficient kernel
1148 * resources are available. May fail with -EFAULT if an invalid
1149 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1150 * implemented.
1151 */
1152 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1153 {
1154 struct kioctx *ioctx = NULL;
1155 unsigned long ctx;
1156 long ret;
1157
1158 ret = get_user(ctx, ctxp);
1159 if (unlikely(ret))
1160 goto out;
1161
1162 ret = -EINVAL;
1163 if (unlikely(ctx || nr_events == 0)) {
1164 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1165 ctx, nr_events);
1166 goto out;
1167 }
1168
1169 ioctx = ioctx_alloc(nr_events);
1170 ret = PTR_ERR(ioctx);
1171 if (!IS_ERR(ioctx)) {
1172 ret = put_user(ioctx->user_id, ctxp);
1173 if (ret)
1174 kill_ioctx(current->mm, ioctx);
1175 percpu_ref_put(&ioctx->users);
1176 }
1177
1178 out:
1179 return ret;
1180 }
1181
1182 /* sys_io_destroy:
1183 * Destroy the aio_context specified. May cancel any outstanding
1184 * AIOs and block on completion. Will fail with -ENOSYS if not
1185 * implemented. May fail with -EINVAL if the context pointed to
1186 * is invalid.
1187 */
1188 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1189 {
1190 struct kioctx *ioctx = lookup_ioctx(ctx);
1191 if (likely(NULL != ioctx)) {
1192 kill_ioctx(current->mm, ioctx);
1193 percpu_ref_put(&ioctx->users);
1194 return 0;
1195 }
1196 pr_debug("EINVAL: io_destroy: invalid context id\n");
1197 return -EINVAL;
1198 }
1199
1200 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1201 unsigned long, loff_t);
1202
1203 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1204 int rw, char __user *buf,
1205 unsigned long *nr_segs,
1206 struct iovec **iovec,
1207 bool compat)
1208 {
1209 ssize_t ret;
1210
1211 *nr_segs = kiocb->ki_nbytes;
1212
1213 #ifdef CONFIG_COMPAT
1214 if (compat)
1215 ret = compat_rw_copy_check_uvector(rw,
1216 (struct compat_iovec __user *)buf,
1217 *nr_segs, 1, *iovec, iovec);
1218 else
1219 #endif
1220 ret = rw_copy_check_uvector(rw,
1221 (struct iovec __user *)buf,
1222 *nr_segs, 1, *iovec, iovec);
1223 if (ret < 0)
1224 return ret;
1225
1226 /* ki_nbytes now reflect bytes instead of segs */
1227 kiocb->ki_nbytes = ret;
1228 return 0;
1229 }
1230
1231 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1232 int rw, char __user *buf,
1233 unsigned long *nr_segs,
1234 struct iovec *iovec)
1235 {
1236 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1237 return -EFAULT;
1238
1239 iovec->iov_base = buf;
1240 iovec->iov_len = kiocb->ki_nbytes;
1241 *nr_segs = 1;
1242 return 0;
1243 }
1244
1245 /*
1246 * aio_setup_iocb:
1247 * Performs the initial checks and aio retry method
1248 * setup for the kiocb at the time of io submission.
1249 */
1250 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1251 char __user *buf, bool compat)
1252 {
1253 struct file *file = req->ki_filp;
1254 ssize_t ret;
1255 unsigned long nr_segs;
1256 int rw;
1257 fmode_t mode;
1258 aio_rw_op *rw_op;
1259 struct iovec inline_vec, *iovec = &inline_vec;
1260
1261 switch (opcode) {
1262 case IOCB_CMD_PREAD:
1263 case IOCB_CMD_PREADV:
1264 mode = FMODE_READ;
1265 rw = READ;
1266 rw_op = file->f_op->aio_read;
1267 goto rw_common;
1268
1269 case IOCB_CMD_PWRITE:
1270 case IOCB_CMD_PWRITEV:
1271 mode = FMODE_WRITE;
1272 rw = WRITE;
1273 rw_op = file->f_op->aio_write;
1274 goto rw_common;
1275 rw_common:
1276 if (unlikely(!(file->f_mode & mode)))
1277 return -EBADF;
1278
1279 if (!rw_op)
1280 return -EINVAL;
1281
1282 ret = (opcode == IOCB_CMD_PREADV ||
1283 opcode == IOCB_CMD_PWRITEV)
1284 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1285 &iovec, compat)
1286 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1287 iovec);
1288 if (ret)
1289 return ret;
1290
1291 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1292 if (ret < 0) {
1293 if (iovec != &inline_vec)
1294 kfree(iovec);
1295 return ret;
1296 }
1297
1298 req->ki_nbytes = ret;
1299
1300 /* XXX: move/kill - rw_verify_area()? */
1301 /* This matches the pread()/pwrite() logic */
1302 if (req->ki_pos < 0) {
1303 ret = -EINVAL;
1304 break;
1305 }
1306
1307 if (rw == WRITE)
1308 file_start_write(file);
1309
1310 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1311
1312 if (rw == WRITE)
1313 file_end_write(file);
1314 break;
1315
1316 case IOCB_CMD_FDSYNC:
1317 if (!file->f_op->aio_fsync)
1318 return -EINVAL;
1319
1320 ret = file->f_op->aio_fsync(req, 1);
1321 break;
1322
1323 case IOCB_CMD_FSYNC:
1324 if (!file->f_op->aio_fsync)
1325 return -EINVAL;
1326
1327 ret = file->f_op->aio_fsync(req, 0);
1328 break;
1329
1330 default:
1331 pr_debug("EINVAL: no operation provided\n");
1332 return -EINVAL;
1333 }
1334
1335 if (iovec != &inline_vec)
1336 kfree(iovec);
1337
1338 if (ret != -EIOCBQUEUED) {
1339 /*
1340 * There's no easy way to restart the syscall since other AIO's
1341 * may be already running. Just fail this IO with EINTR.
1342 */
1343 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1344 ret == -ERESTARTNOHAND ||
1345 ret == -ERESTART_RESTARTBLOCK))
1346 ret = -EINTR;
1347 aio_complete(req, ret, 0);
1348 }
1349
1350 return 0;
1351 }
1352
1353 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1354 struct iocb *iocb, bool compat)
1355 {
1356 struct kiocb *req;
1357 ssize_t ret;
1358
1359 /* enforce forwards compatibility on users */
1360 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1361 pr_debug("EINVAL: reserve field set\n");
1362 return -EINVAL;
1363 }
1364
1365 /* prevent overflows */
1366 if (unlikely(
1367 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1368 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1369 ((ssize_t)iocb->aio_nbytes < 0)
1370 )) {
1371 pr_debug("EINVAL: io_submit: overflow check\n");
1372 return -EINVAL;
1373 }
1374
1375 req = aio_get_req(ctx);
1376 if (unlikely(!req))
1377 return -EAGAIN;
1378
1379 req->ki_filp = fget(iocb->aio_fildes);
1380 if (unlikely(!req->ki_filp)) {
1381 ret = -EBADF;
1382 goto out_put_req;
1383 }
1384
1385 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1386 /*
1387 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1388 * instance of the file* now. The file descriptor must be
1389 * an eventfd() fd, and will be signaled for each completed
1390 * event using the eventfd_signal() function.
1391 */
1392 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1393 if (IS_ERR(req->ki_eventfd)) {
1394 ret = PTR_ERR(req->ki_eventfd);
1395 req->ki_eventfd = NULL;
1396 goto out_put_req;
1397 }
1398 }
1399
1400 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1401 if (unlikely(ret)) {
1402 pr_debug("EFAULT: aio_key\n");
1403 goto out_put_req;
1404 }
1405
1406 req->ki_obj.user = user_iocb;
1407 req->ki_user_data = iocb->aio_data;
1408 req->ki_pos = iocb->aio_offset;
1409 req->ki_nbytes = iocb->aio_nbytes;
1410
1411 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1412 (char __user *)(unsigned long)iocb->aio_buf,
1413 compat);
1414 if (ret)
1415 goto out_put_req;
1416
1417 return 0;
1418 out_put_req:
1419 put_reqs_available(ctx, 1);
1420 percpu_ref_put(&ctx->reqs);
1421 kiocb_free(req);
1422 return ret;
1423 }
1424
1425 long do_io_submit(aio_context_t ctx_id, long nr,
1426 struct iocb __user *__user *iocbpp, bool compat)
1427 {
1428 struct kioctx *ctx;
1429 long ret = 0;
1430 int i = 0;
1431 struct blk_plug plug;
1432
1433 if (unlikely(nr < 0))
1434 return -EINVAL;
1435
1436 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1437 nr = LONG_MAX/sizeof(*iocbpp);
1438
1439 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1440 return -EFAULT;
1441
1442 ctx = lookup_ioctx(ctx_id);
1443 if (unlikely(!ctx)) {
1444 pr_debug("EINVAL: invalid context id\n");
1445 return -EINVAL;
1446 }
1447
1448 blk_start_plug(&plug);
1449
1450 /*
1451 * AKPM: should this return a partial result if some of the IOs were
1452 * successfully submitted?
1453 */
1454 for (i=0; i<nr; i++) {
1455 struct iocb __user *user_iocb;
1456 struct iocb tmp;
1457
1458 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1459 ret = -EFAULT;
1460 break;
1461 }
1462
1463 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1464 ret = -EFAULT;
1465 break;
1466 }
1467
1468 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1469 if (ret)
1470 break;
1471 }
1472 blk_finish_plug(&plug);
1473
1474 percpu_ref_put(&ctx->users);
1475 return i ? i : ret;
1476 }
1477
1478 /* sys_io_submit:
1479 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1480 * the number of iocbs queued. May return -EINVAL if the aio_context
1481 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1482 * *iocbpp[0] is not properly initialized, if the operation specified
1483 * is invalid for the file descriptor in the iocb. May fail with
1484 * -EFAULT if any of the data structures point to invalid data. May
1485 * fail with -EBADF if the file descriptor specified in the first
1486 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1487 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1488 * fail with -ENOSYS if not implemented.
1489 */
1490 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1491 struct iocb __user * __user *, iocbpp)
1492 {
1493 return do_io_submit(ctx_id, nr, iocbpp, 0);
1494 }
1495
1496 /* lookup_kiocb
1497 * Finds a given iocb for cancellation.
1498 */
1499 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1500 u32 key)
1501 {
1502 struct list_head *pos;
1503
1504 assert_spin_locked(&ctx->ctx_lock);
1505
1506 if (key != KIOCB_KEY)
1507 return NULL;
1508
1509 /* TODO: use a hash or array, this sucks. */
1510 list_for_each(pos, &ctx->active_reqs) {
1511 struct kiocb *kiocb = list_kiocb(pos);
1512 if (kiocb->ki_obj.user == iocb)
1513 return kiocb;
1514 }
1515 return NULL;
1516 }
1517
1518 /* sys_io_cancel:
1519 * Attempts to cancel an iocb previously passed to io_submit. If
1520 * the operation is successfully cancelled, the resulting event is
1521 * copied into the memory pointed to by result without being placed
1522 * into the completion queue and 0 is returned. May fail with
1523 * -EFAULT if any of the data structures pointed to are invalid.
1524 * May fail with -EINVAL if aio_context specified by ctx_id is
1525 * invalid. May fail with -EAGAIN if the iocb specified was not
1526 * cancelled. Will fail with -ENOSYS if not implemented.
1527 */
1528 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1529 struct io_event __user *, result)
1530 {
1531 struct kioctx *ctx;
1532 struct kiocb *kiocb;
1533 u32 key;
1534 int ret;
1535
1536 ret = get_user(key, &iocb->aio_key);
1537 if (unlikely(ret))
1538 return -EFAULT;
1539
1540 ctx = lookup_ioctx(ctx_id);
1541 if (unlikely(!ctx))
1542 return -EINVAL;
1543
1544 spin_lock_irq(&ctx->ctx_lock);
1545
1546 kiocb = lookup_kiocb(ctx, iocb, key);
1547 if (kiocb)
1548 ret = kiocb_cancel(ctx, kiocb);
1549 else
1550 ret = -EINVAL;
1551
1552 spin_unlock_irq(&ctx->ctx_lock);
1553
1554 if (!ret) {
1555 /*
1556 * The result argument is no longer used - the io_event is
1557 * always delivered via the ring buffer. -EINPROGRESS indicates
1558 * cancellation is progress:
1559 */
1560 ret = -EINPROGRESS;
1561 }
1562
1563 percpu_ref_put(&ctx->users);
1564
1565 return ret;
1566 }
1567
1568 /* io_getevents:
1569 * Attempts to read at least min_nr events and up to nr events from
1570 * the completion queue for the aio_context specified by ctx_id. If
1571 * it succeeds, the number of read events is returned. May fail with
1572 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1573 * out of range, if timeout is out of range. May fail with -EFAULT
1574 * if any of the memory specified is invalid. May return 0 or
1575 * < min_nr if the timeout specified by timeout has elapsed
1576 * before sufficient events are available, where timeout == NULL
1577 * specifies an infinite timeout. Note that the timeout pointed to by
1578 * timeout is relative. Will fail with -ENOSYS if not implemented.
1579 */
1580 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1581 long, min_nr,
1582 long, nr,
1583 struct io_event __user *, events,
1584 struct timespec __user *, timeout)
1585 {
1586 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1587 long ret = -EINVAL;
1588
1589 if (likely(ioctx)) {
1590 if (likely(min_nr <= nr && min_nr >= 0))
1591 ret = read_events(ioctx, min_nr, nr, events, timeout);
1592 percpu_ref_put(&ioctx->users);
1593 }
1594 return ret;
1595 }