]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/aio.c
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
[mirror_ubuntu-jammy-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48
49 #include "internal.h"
50
51 #define KIOCB_KEY 0
52
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
56 struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
69 struct io_event io_events[];
70 }; /* 128 bytes + ring size */
71
72 /*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76 #define AIO_PLUG_THRESHOLD 2
77
78 #define AIO_RING_PAGES 8
79
80 struct kioctx_table {
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[];
84 };
85
86 struct kioctx_cpu {
87 unsigned reqs_available;
88 };
89
90 struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93 };
94
95 struct kioctx {
96 struct percpu_ref users;
97 atomic_t dead;
98
99 struct percpu_ref reqs;
100
101 unsigned long user_id;
102
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
114 * The real limit is nr_events - 1, which will be larger (see
115 * aio_setup_ring())
116 */
117 unsigned max_reqs;
118
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
121
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
128 struct rcu_work free_rwork; /* see free_ioctx() */
129
130 /*
131 * signals when all in-flight requests are done
132 */
133 struct ctx_rq_wait *rq_wait;
134
135 struct {
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
141 *
142 * We batch accesses to it with a percpu version.
143 */
144 atomic_t reqs_available;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
152 struct {
153 struct mutex ring_lock;
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
156
157 struct {
158 unsigned tail;
159 unsigned completed_events;
160 spinlock_t completion_lock;
161 } ____cacheline_aligned_in_smp;
162
163 struct page *internal_pages[AIO_RING_PAGES];
164 struct file *aio_ring_file;
165
166 unsigned id;
167 };
168
169 /*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
173 struct fsync_iocb {
174 struct file *file;
175 struct work_struct work;
176 bool datasync;
177 struct cred *creds;
178 };
179
180 struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
184 bool cancelled;
185 bool work_scheduled;
186 bool work_need_resched;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189 };
190
191 /*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
197 struct aio_kiocb {
198 union {
199 struct file *ki_filp;
200 struct kiocb rw;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
203 };
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
208 struct io_event ki_res;
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219 };
220
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 unsigned long aio_nr; /* current system wide number of aio requests */
224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226
227 static struct kmem_cache *kiocb_cachep;
228 static struct kmem_cache *kioctx_cachep;
229
230 static struct vfsmount *aio_mnt;
231
232 static const struct file_operations aio_ring_fops;
233 static const struct address_space_operations aio_ctx_aops;
234
235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236 {
237 struct file *file;
238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
239 if (IS_ERR(inode))
240 return ERR_CAST(inode);
241
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
245
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
248 if (IS_ERR(file))
249 iput(inode);
250 return file;
251 }
252
253 static int aio_init_fs_context(struct fs_context *fc)
254 {
255 if (!init_pseudo(fc, AIO_RING_MAGIC))
256 return -ENOMEM;
257 fc->s_iflags |= SB_I_NOEXEC;
258 return 0;
259 }
260
261 /* aio_setup
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
264 */
265 static int __init aio_setup(void)
266 {
267 static struct file_system_type aio_fs = {
268 .name = "aio",
269 .init_fs_context = aio_init_fs_context,
270 .kill_sb = kill_anon_super,
271 };
272 aio_mnt = kern_mount(&aio_fs);
273 if (IS_ERR(aio_mnt))
274 panic("Failed to create aio fs mount.");
275
276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 return 0;
279 }
280 __initcall(aio_setup);
281
282 static void put_aio_ring_file(struct kioctx *ctx)
283 {
284 struct file *aio_ring_file = ctx->aio_ring_file;
285 struct address_space *i_mapping;
286
287 if (aio_ring_file) {
288 truncate_setsize(file_inode(aio_ring_file), 0);
289
290 /* Prevent further access to the kioctx from migratepages */
291 i_mapping = aio_ring_file->f_mapping;
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
294 ctx->aio_ring_file = NULL;
295 spin_unlock(&i_mapping->private_lock);
296
297 fput(aio_ring_file);
298 }
299 }
300
301 static void aio_free_ring(struct kioctx *ctx)
302 {
303 int i;
304
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
307 */
308 put_aio_ring_file(ctx);
309
310 for (i = 0; i < ctx->nr_pages; i++) {
311 struct page *page;
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
314 page = ctx->ring_pages[i];
315 if (!page)
316 continue;
317 ctx->ring_pages[i] = NULL;
318 put_page(page);
319 }
320
321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 kfree(ctx->ring_pages);
323 ctx->ring_pages = NULL;
324 }
325 }
326
327 static int aio_ring_mremap(struct vm_area_struct *vma)
328 {
329 struct file *file = vma->vm_file;
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
332 int i, res = -EINVAL;
333
334 spin_lock(&mm->ioctx_lock);
335 rcu_read_lock();
336 table = rcu_dereference(mm->ioctx_table);
337 for (i = 0; i < table->nr; i++) {
338 struct kioctx *ctx;
339
340 ctx = rcu_dereference(table->table[i]);
341 if (ctx && ctx->aio_ring_file == file) {
342 if (!atomic_read(&ctx->dead)) {
343 ctx->user_id = ctx->mmap_base = vma->vm_start;
344 res = 0;
345 }
346 break;
347 }
348 }
349
350 rcu_read_unlock();
351 spin_unlock(&mm->ioctx_lock);
352 return res;
353 }
354
355 static const struct vm_operations_struct aio_ring_vm_ops = {
356 .mremap = aio_ring_mremap,
357 #if IS_ENABLED(CONFIG_MMU)
358 .fault = filemap_fault,
359 .map_pages = filemap_map_pages,
360 .page_mkwrite = filemap_page_mkwrite,
361 #endif
362 };
363
364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
365 {
366 vma->vm_flags |= VM_DONTEXPAND;
367 vma->vm_ops = &aio_ring_vm_ops;
368 return 0;
369 }
370
371 static const struct file_operations aio_ring_fops = {
372 .mmap = aio_ring_mmap,
373 };
374
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space *mapping, struct page *new,
377 struct page *old, enum migrate_mode mode)
378 {
379 struct kioctx *ctx;
380 unsigned long flags;
381 pgoff_t idx;
382 int rc;
383
384 /*
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
388 */
389 if (mode == MIGRATE_SYNC_NO_COPY)
390 return -EINVAL;
391
392 rc = 0;
393
394 /* mapping->private_lock here protects against the kioctx teardown. */
395 spin_lock(&mapping->private_lock);
396 ctx = mapping->private_data;
397 if (!ctx) {
398 rc = -EINVAL;
399 goto out;
400 }
401
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
405 */
406 if (!mutex_trylock(&ctx->ring_lock)) {
407 rc = -EAGAIN;
408 goto out;
409 }
410
411 idx = old->index;
412 if (idx < (pgoff_t)ctx->nr_pages) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx->ring_pages[idx] != old)
415 rc = -EAGAIN;
416 } else
417 rc = -EINVAL;
418
419 if (rc != 0)
420 goto out_unlock;
421
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old));
424 get_page(new);
425
426 rc = migrate_page_move_mapping(mapping, new, old, 1);
427 if (rc != MIGRATEPAGE_SUCCESS) {
428 put_page(new);
429 goto out_unlock;
430 }
431
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
435 */
436 spin_lock_irqsave(&ctx->completion_lock, flags);
437 migrate_page_copy(new, old);
438 BUG_ON(ctx->ring_pages[idx] != old);
439 ctx->ring_pages[idx] = new;
440 spin_unlock_irqrestore(&ctx->completion_lock, flags);
441
442 /* The old page is no longer accessible. */
443 put_page(old);
444
445 out_unlock:
446 mutex_unlock(&ctx->ring_lock);
447 out:
448 spin_unlock(&mapping->private_lock);
449 return rc;
450 }
451 #endif
452
453 static const struct address_space_operations aio_ctx_aops = {
454 .set_page_dirty = __set_page_dirty_no_writeback,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 .migratepage = aio_migratepage,
457 #endif
458 };
459
460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
461 {
462 struct aio_ring *ring;
463 struct mm_struct *mm = current->mm;
464 unsigned long size, unused;
465 int nr_pages;
466 int i;
467 struct file *file;
468
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events += 2; /* 1 is required, 2 for good luck */
471
472 size = sizeof(struct aio_ring);
473 size += sizeof(struct io_event) * nr_events;
474
475 nr_pages = PFN_UP(size);
476 if (nr_pages < 0)
477 return -EINVAL;
478
479 file = aio_private_file(ctx, nr_pages);
480 if (IS_ERR(file)) {
481 ctx->aio_ring_file = NULL;
482 return -ENOMEM;
483 }
484
485 ctx->aio_ring_file = file;
486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 / sizeof(struct io_event);
488
489 ctx->ring_pages = ctx->internal_pages;
490 if (nr_pages > AIO_RING_PAGES) {
491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 GFP_KERNEL);
493 if (!ctx->ring_pages) {
494 put_aio_ring_file(ctx);
495 return -ENOMEM;
496 }
497 }
498
499 for (i = 0; i < nr_pages; i++) {
500 struct page *page;
501 page = find_or_create_page(file->f_mapping,
502 i, GFP_HIGHUSER | __GFP_ZERO);
503 if (!page)
504 break;
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current->pid, i, page_count(page));
507 SetPageUptodate(page);
508 unlock_page(page);
509
510 ctx->ring_pages[i] = page;
511 }
512 ctx->nr_pages = i;
513
514 if (unlikely(i != nr_pages)) {
515 aio_free_ring(ctx);
516 return -ENOMEM;
517 }
518
519 ctx->mmap_size = nr_pages * PAGE_SIZE;
520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
521
522 if (mmap_write_lock_killable(mm)) {
523 ctx->mmap_size = 0;
524 aio_free_ring(ctx);
525 return -EINTR;
526 }
527
528 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
529 PROT_READ | PROT_WRITE,
530 MAP_SHARED, 0, &unused, NULL);
531 mmap_write_unlock(mm);
532 if (IS_ERR((void *)ctx->mmap_base)) {
533 ctx->mmap_size = 0;
534 aio_free_ring(ctx);
535 return -ENOMEM;
536 }
537
538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
539
540 ctx->user_id = ctx->mmap_base;
541 ctx->nr_events = nr_events; /* trusted copy */
542
543 ring = kmap_atomic(ctx->ring_pages[0]);
544 ring->nr = nr_events; /* user copy */
545 ring->id = ~0U;
546 ring->head = ring->tail = 0;
547 ring->magic = AIO_RING_MAGIC;
548 ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 ring->header_length = sizeof(struct aio_ring);
551 kunmap_atomic(ring);
552 flush_dcache_page(ctx->ring_pages[0]);
553
554 return 0;
555 }
556
557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
560
561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
562 {
563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 struct kioctx *ctx = req->ki_ctx;
565 unsigned long flags;
566
567 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 return;
569
570 spin_lock_irqsave(&ctx->ctx_lock, flags);
571 list_add_tail(&req->ki_list, &ctx->active_reqs);
572 req->ki_cancel = cancel;
573 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
574 }
575 EXPORT_SYMBOL(kiocb_set_cancel_fn);
576
577 /*
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
580 * aio_free_ring(). Use rcu_work.
581 */
582 static void free_ioctx(struct work_struct *work)
583 {
584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 free_rwork);
586 pr_debug("freeing %p\n", ctx);
587
588 aio_free_ring(ctx);
589 free_percpu(ctx->cpu);
590 percpu_ref_exit(&ctx->reqs);
591 percpu_ref_exit(&ctx->users);
592 kmem_cache_free(kioctx_cachep, ctx);
593 }
594
595 static void free_ioctx_reqs(struct percpu_ref *ref)
596 {
597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598
599 /* At this point we know that there are no any in-flight requests */
600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 complete(&ctx->rq_wait->comp);
602
603 /* Synchronize against RCU protected table->table[] dereferences */
604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 queue_rcu_work(system_wq, &ctx->free_rwork);
606 }
607
608 /*
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
612 */
613 static void free_ioctx_users(struct percpu_ref *ref)
614 {
615 struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 struct aio_kiocb *req;
617
618 spin_lock_irq(&ctx->ctx_lock);
619
620 while (!list_empty(&ctx->active_reqs)) {
621 req = list_first_entry(&ctx->active_reqs,
622 struct aio_kiocb, ki_list);
623 req->ki_cancel(&req->rw);
624 list_del_init(&req->ki_list);
625 }
626
627 spin_unlock_irq(&ctx->ctx_lock);
628
629 percpu_ref_kill(&ctx->reqs);
630 percpu_ref_put(&ctx->reqs);
631 }
632
633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634 {
635 unsigned i, new_nr;
636 struct kioctx_table *table, *old;
637 struct aio_ring *ring;
638
639 spin_lock(&mm->ioctx_lock);
640 table = rcu_dereference_raw(mm->ioctx_table);
641
642 while (1) {
643 if (table)
644 for (i = 0; i < table->nr; i++)
645 if (!rcu_access_pointer(table->table[i])) {
646 ctx->id = i;
647 rcu_assign_pointer(table->table[i], ctx);
648 spin_unlock(&mm->ioctx_lock);
649
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
653 */
654 ring = kmap_atomic(ctx->ring_pages[0]);
655 ring->id = ctx->id;
656 kunmap_atomic(ring);
657 return 0;
658 }
659
660 new_nr = (table ? table->nr : 1) * 4;
661 spin_unlock(&mm->ioctx_lock);
662
663 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
664 new_nr, GFP_KERNEL);
665 if (!table)
666 return -ENOMEM;
667
668 table->nr = new_nr;
669
670 spin_lock(&mm->ioctx_lock);
671 old = rcu_dereference_raw(mm->ioctx_table);
672
673 if (!old) {
674 rcu_assign_pointer(mm->ioctx_table, table);
675 } else if (table->nr > old->nr) {
676 memcpy(table->table, old->table,
677 old->nr * sizeof(struct kioctx *));
678
679 rcu_assign_pointer(mm->ioctx_table, table);
680 kfree_rcu(old, rcu);
681 } else {
682 kfree(table);
683 table = old;
684 }
685 }
686 }
687
688 static void aio_nr_sub(unsigned nr)
689 {
690 spin_lock(&aio_nr_lock);
691 if (WARN_ON(aio_nr - nr > aio_nr))
692 aio_nr = 0;
693 else
694 aio_nr -= nr;
695 spin_unlock(&aio_nr_lock);
696 }
697
698 /* ioctx_alloc
699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
700 */
701 static struct kioctx *ioctx_alloc(unsigned nr_events)
702 {
703 struct mm_struct *mm = current->mm;
704 struct kioctx *ctx;
705 int err = -ENOMEM;
706
707 /*
708 * Store the original nr_events -- what userspace passed to io_setup(),
709 * for counting against the global limit -- before it changes.
710 */
711 unsigned int max_reqs = nr_events;
712
713 /*
714 * We keep track of the number of available ringbuffer slots, to prevent
715 * overflow (reqs_available), and we also use percpu counters for this.
716 *
717 * So since up to half the slots might be on other cpu's percpu counters
718 * and unavailable, double nr_events so userspace sees what they
719 * expected: additionally, we move req_batch slots to/from percpu
720 * counters at a time, so make sure that isn't 0:
721 */
722 nr_events = max(nr_events, num_possible_cpus() * 4);
723 nr_events *= 2;
724
725 /* Prevent overflows */
726 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
727 pr_debug("ENOMEM: nr_events too high\n");
728 return ERR_PTR(-EINVAL);
729 }
730
731 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
732 return ERR_PTR(-EAGAIN);
733
734 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
735 if (!ctx)
736 return ERR_PTR(-ENOMEM);
737
738 ctx->max_reqs = max_reqs;
739
740 spin_lock_init(&ctx->ctx_lock);
741 spin_lock_init(&ctx->completion_lock);
742 mutex_init(&ctx->ring_lock);
743 /* Protect against page migration throughout kiotx setup by keeping
744 * the ring_lock mutex held until setup is complete. */
745 mutex_lock(&ctx->ring_lock);
746 init_waitqueue_head(&ctx->wait);
747
748 INIT_LIST_HEAD(&ctx->active_reqs);
749
750 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
751 goto err;
752
753 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
754 goto err;
755
756 ctx->cpu = alloc_percpu(struct kioctx_cpu);
757 if (!ctx->cpu)
758 goto err;
759
760 err = aio_setup_ring(ctx, nr_events);
761 if (err < 0)
762 goto err;
763
764 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
765 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
766 if (ctx->req_batch < 1)
767 ctx->req_batch = 1;
768
769 /* limit the number of system wide aios */
770 spin_lock(&aio_nr_lock);
771 if (aio_nr + ctx->max_reqs > aio_max_nr ||
772 aio_nr + ctx->max_reqs < aio_nr) {
773 spin_unlock(&aio_nr_lock);
774 err = -EAGAIN;
775 goto err_ctx;
776 }
777 aio_nr += ctx->max_reqs;
778 spin_unlock(&aio_nr_lock);
779
780 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
781 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
782
783 err = ioctx_add_table(ctx, mm);
784 if (err)
785 goto err_cleanup;
786
787 /* Release the ring_lock mutex now that all setup is complete. */
788 mutex_unlock(&ctx->ring_lock);
789
790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
791 ctx, ctx->user_id, mm, ctx->nr_events);
792 return ctx;
793
794 err_cleanup:
795 aio_nr_sub(ctx->max_reqs);
796 err_ctx:
797 atomic_set(&ctx->dead, 1);
798 if (ctx->mmap_size)
799 vm_munmap(ctx->mmap_base, ctx->mmap_size);
800 aio_free_ring(ctx);
801 err:
802 mutex_unlock(&ctx->ring_lock);
803 free_percpu(ctx->cpu);
804 percpu_ref_exit(&ctx->reqs);
805 percpu_ref_exit(&ctx->users);
806 kmem_cache_free(kioctx_cachep, ctx);
807 pr_debug("error allocating ioctx %d\n", err);
808 return ERR_PTR(err);
809 }
810
811 /* kill_ioctx
812 * Cancels all outstanding aio requests on an aio context. Used
813 * when the processes owning a context have all exited to encourage
814 * the rapid destruction of the kioctx.
815 */
816 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
817 struct ctx_rq_wait *wait)
818 {
819 struct kioctx_table *table;
820
821 spin_lock(&mm->ioctx_lock);
822 if (atomic_xchg(&ctx->dead, 1)) {
823 spin_unlock(&mm->ioctx_lock);
824 return -EINVAL;
825 }
826
827 table = rcu_dereference_raw(mm->ioctx_table);
828 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
829 RCU_INIT_POINTER(table->table[ctx->id], NULL);
830 spin_unlock(&mm->ioctx_lock);
831
832 /* free_ioctx_reqs() will do the necessary RCU synchronization */
833 wake_up_all(&ctx->wait);
834
835 /*
836 * It'd be more correct to do this in free_ioctx(), after all
837 * the outstanding kiocbs have finished - but by then io_destroy
838 * has already returned, so io_setup() could potentially return
839 * -EAGAIN with no ioctxs actually in use (as far as userspace
840 * could tell).
841 */
842 aio_nr_sub(ctx->max_reqs);
843
844 if (ctx->mmap_size)
845 vm_munmap(ctx->mmap_base, ctx->mmap_size);
846
847 ctx->rq_wait = wait;
848 percpu_ref_kill(&ctx->users);
849 return 0;
850 }
851
852 /*
853 * exit_aio: called when the last user of mm goes away. At this point, there is
854 * no way for any new requests to be submited or any of the io_* syscalls to be
855 * called on the context.
856 *
857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
858 * them.
859 */
860 void exit_aio(struct mm_struct *mm)
861 {
862 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
863 struct ctx_rq_wait wait;
864 int i, skipped;
865
866 if (!table)
867 return;
868
869 atomic_set(&wait.count, table->nr);
870 init_completion(&wait.comp);
871
872 skipped = 0;
873 for (i = 0; i < table->nr; ++i) {
874 struct kioctx *ctx =
875 rcu_dereference_protected(table->table[i], true);
876
877 if (!ctx) {
878 skipped++;
879 continue;
880 }
881
882 /*
883 * We don't need to bother with munmap() here - exit_mmap(mm)
884 * is coming and it'll unmap everything. And we simply can't,
885 * this is not necessarily our ->mm.
886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 * that it needs to unmap the area, just set it to 0.
888 */
889 ctx->mmap_size = 0;
890 kill_ioctx(mm, ctx, &wait);
891 }
892
893 if (!atomic_sub_and_test(skipped, &wait.count)) {
894 /* Wait until all IO for the context are done. */
895 wait_for_completion(&wait.comp);
896 }
897
898 RCU_INIT_POINTER(mm->ioctx_table, NULL);
899 kfree(table);
900 }
901
902 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
903 {
904 struct kioctx_cpu *kcpu;
905 unsigned long flags;
906
907 local_irq_save(flags);
908 kcpu = this_cpu_ptr(ctx->cpu);
909 kcpu->reqs_available += nr;
910
911 while (kcpu->reqs_available >= ctx->req_batch * 2) {
912 kcpu->reqs_available -= ctx->req_batch;
913 atomic_add(ctx->req_batch, &ctx->reqs_available);
914 }
915
916 local_irq_restore(flags);
917 }
918
919 static bool __get_reqs_available(struct kioctx *ctx)
920 {
921 struct kioctx_cpu *kcpu;
922 bool ret = false;
923 unsigned long flags;
924
925 local_irq_save(flags);
926 kcpu = this_cpu_ptr(ctx->cpu);
927 if (!kcpu->reqs_available) {
928 int old, avail = atomic_read(&ctx->reqs_available);
929
930 do {
931 if (avail < ctx->req_batch)
932 goto out;
933
934 old = avail;
935 avail = atomic_cmpxchg(&ctx->reqs_available,
936 avail, avail - ctx->req_batch);
937 } while (avail != old);
938
939 kcpu->reqs_available += ctx->req_batch;
940 }
941
942 ret = true;
943 kcpu->reqs_available--;
944 out:
945 local_irq_restore(flags);
946 return ret;
947 }
948
949 /* refill_reqs_available
950 * Updates the reqs_available reference counts used for tracking the
951 * number of free slots in the completion ring. This can be called
952 * from aio_complete() (to optimistically update reqs_available) or
953 * from aio_get_req() (the we're out of events case). It must be
954 * called holding ctx->completion_lock.
955 */
956 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
957 unsigned tail)
958 {
959 unsigned events_in_ring, completed;
960
961 /* Clamp head since userland can write to it. */
962 head %= ctx->nr_events;
963 if (head <= tail)
964 events_in_ring = tail - head;
965 else
966 events_in_ring = ctx->nr_events - (head - tail);
967
968 completed = ctx->completed_events;
969 if (events_in_ring < completed)
970 completed -= events_in_ring;
971 else
972 completed = 0;
973
974 if (!completed)
975 return;
976
977 ctx->completed_events -= completed;
978 put_reqs_available(ctx, completed);
979 }
980
981 /* user_refill_reqs_available
982 * Called to refill reqs_available when aio_get_req() encounters an
983 * out of space in the completion ring.
984 */
985 static void user_refill_reqs_available(struct kioctx *ctx)
986 {
987 spin_lock_irq(&ctx->completion_lock);
988 if (ctx->completed_events) {
989 struct aio_ring *ring;
990 unsigned head;
991
992 /* Access of ring->head may race with aio_read_events_ring()
993 * here, but that's okay since whether we read the old version
994 * or the new version, and either will be valid. The important
995 * part is that head cannot pass tail since we prevent
996 * aio_complete() from updating tail by holding
997 * ctx->completion_lock. Even if head is invalid, the check
998 * against ctx->completed_events below will make sure we do the
999 * safe/right thing.
1000 */
1001 ring = kmap_atomic(ctx->ring_pages[0]);
1002 head = ring->head;
1003 kunmap_atomic(ring);
1004
1005 refill_reqs_available(ctx, head, ctx->tail);
1006 }
1007
1008 spin_unlock_irq(&ctx->completion_lock);
1009 }
1010
1011 static bool get_reqs_available(struct kioctx *ctx)
1012 {
1013 if (__get_reqs_available(ctx))
1014 return true;
1015 user_refill_reqs_available(ctx);
1016 return __get_reqs_available(ctx);
1017 }
1018
1019 /* aio_get_req
1020 * Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
1022 *
1023 * The refcount is initialized to 2 - one for the async op completion,
1024 * one for the synchronous code that does this.
1025 */
1026 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027 {
1028 struct aio_kiocb *req;
1029
1030 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1031 if (unlikely(!req))
1032 return NULL;
1033
1034 if (unlikely(!get_reqs_available(ctx))) {
1035 kmem_cache_free(kiocb_cachep, req);
1036 return NULL;
1037 }
1038
1039 percpu_ref_get(&ctx->reqs);
1040 req->ki_ctx = ctx;
1041 INIT_LIST_HEAD(&req->ki_list);
1042 refcount_set(&req->ki_refcnt, 2);
1043 req->ki_eventfd = NULL;
1044 return req;
1045 }
1046
1047 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1048 {
1049 struct aio_ring __user *ring = (void __user *)ctx_id;
1050 struct mm_struct *mm = current->mm;
1051 struct kioctx *ctx, *ret = NULL;
1052 struct kioctx_table *table;
1053 unsigned id;
1054
1055 if (get_user(id, &ring->id))
1056 return NULL;
1057
1058 rcu_read_lock();
1059 table = rcu_dereference(mm->ioctx_table);
1060
1061 if (!table || id >= table->nr)
1062 goto out;
1063
1064 id = array_index_nospec(id, table->nr);
1065 ctx = rcu_dereference(table->table[id]);
1066 if (ctx && ctx->user_id == ctx_id) {
1067 if (percpu_ref_tryget_live(&ctx->users))
1068 ret = ctx;
1069 }
1070 out:
1071 rcu_read_unlock();
1072 return ret;
1073 }
1074
1075 static inline void iocb_destroy(struct aio_kiocb *iocb)
1076 {
1077 if (iocb->ki_eventfd)
1078 eventfd_ctx_put(iocb->ki_eventfd);
1079 if (iocb->ki_filp)
1080 fput(iocb->ki_filp);
1081 percpu_ref_put(&iocb->ki_ctx->reqs);
1082 kmem_cache_free(kiocb_cachep, iocb);
1083 }
1084
1085 /* aio_complete
1086 * Called when the io request on the given iocb is complete.
1087 */
1088 static void aio_complete(struct aio_kiocb *iocb)
1089 {
1090 struct kioctx *ctx = iocb->ki_ctx;
1091 struct aio_ring *ring;
1092 struct io_event *ev_page, *event;
1093 unsigned tail, pos, head;
1094 unsigned long flags;
1095
1096 /*
1097 * Add a completion event to the ring buffer. Must be done holding
1098 * ctx->completion_lock to prevent other code from messing with the tail
1099 * pointer since we might be called from irq context.
1100 */
1101 spin_lock_irqsave(&ctx->completion_lock, flags);
1102
1103 tail = ctx->tail;
1104 pos = tail + AIO_EVENTS_OFFSET;
1105
1106 if (++tail >= ctx->nr_events)
1107 tail = 0;
1108
1109 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1110 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1111
1112 *event = iocb->ki_res;
1113
1114 kunmap_atomic(ev_page);
1115 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1116
1117 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1118 (void __user *)(unsigned long)iocb->ki_res.obj,
1119 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1120
1121 /* after flagging the request as done, we
1122 * must never even look at it again
1123 */
1124 smp_wmb(); /* make event visible before updating tail */
1125
1126 ctx->tail = tail;
1127
1128 ring = kmap_atomic(ctx->ring_pages[0]);
1129 head = ring->head;
1130 ring->tail = tail;
1131 kunmap_atomic(ring);
1132 flush_dcache_page(ctx->ring_pages[0]);
1133
1134 ctx->completed_events++;
1135 if (ctx->completed_events > 1)
1136 refill_reqs_available(ctx, head, tail);
1137 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1138
1139 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1140
1141 /*
1142 * Check if the user asked us to deliver the result through an
1143 * eventfd. The eventfd_signal() function is safe to be called
1144 * from IRQ context.
1145 */
1146 if (iocb->ki_eventfd)
1147 eventfd_signal(iocb->ki_eventfd, 1);
1148
1149 /*
1150 * We have to order our ring_info tail store above and test
1151 * of the wait list below outside the wait lock. This is
1152 * like in wake_up_bit() where clearing a bit has to be
1153 * ordered with the unlocked test.
1154 */
1155 smp_mb();
1156
1157 if (waitqueue_active(&ctx->wait))
1158 wake_up(&ctx->wait);
1159 }
1160
1161 static inline void iocb_put(struct aio_kiocb *iocb)
1162 {
1163 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1164 aio_complete(iocb);
1165 iocb_destroy(iocb);
1166 }
1167 }
1168
1169 /* aio_read_events_ring
1170 * Pull an event off of the ioctx's event ring. Returns the number of
1171 * events fetched
1172 */
1173 static long aio_read_events_ring(struct kioctx *ctx,
1174 struct io_event __user *event, long nr)
1175 {
1176 struct aio_ring *ring;
1177 unsigned head, tail, pos;
1178 long ret = 0;
1179 int copy_ret;
1180
1181 /*
1182 * The mutex can block and wake us up and that will cause
1183 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184 * and repeat. This should be rare enough that it doesn't cause
1185 * peformance issues. See the comment in read_events() for more detail.
1186 */
1187 sched_annotate_sleep();
1188 mutex_lock(&ctx->ring_lock);
1189
1190 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1191 ring = kmap_atomic(ctx->ring_pages[0]);
1192 head = ring->head;
1193 tail = ring->tail;
1194 kunmap_atomic(ring);
1195
1196 /*
1197 * Ensure that once we've read the current tail pointer, that
1198 * we also see the events that were stored up to the tail.
1199 */
1200 smp_rmb();
1201
1202 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1203
1204 if (head == tail)
1205 goto out;
1206
1207 head %= ctx->nr_events;
1208 tail %= ctx->nr_events;
1209
1210 while (ret < nr) {
1211 long avail;
1212 struct io_event *ev;
1213 struct page *page;
1214
1215 avail = (head <= tail ? tail : ctx->nr_events) - head;
1216 if (head == tail)
1217 break;
1218
1219 pos = head + AIO_EVENTS_OFFSET;
1220 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1221 pos %= AIO_EVENTS_PER_PAGE;
1222
1223 avail = min(avail, nr - ret);
1224 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1225
1226 ev = kmap(page);
1227 copy_ret = copy_to_user(event + ret, ev + pos,
1228 sizeof(*ev) * avail);
1229 kunmap(page);
1230
1231 if (unlikely(copy_ret)) {
1232 ret = -EFAULT;
1233 goto out;
1234 }
1235
1236 ret += avail;
1237 head += avail;
1238 head %= ctx->nr_events;
1239 }
1240
1241 ring = kmap_atomic(ctx->ring_pages[0]);
1242 ring->head = head;
1243 kunmap_atomic(ring);
1244 flush_dcache_page(ctx->ring_pages[0]);
1245
1246 pr_debug("%li h%u t%u\n", ret, head, tail);
1247 out:
1248 mutex_unlock(&ctx->ring_lock);
1249
1250 return ret;
1251 }
1252
1253 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 struct io_event __user *event, long *i)
1255 {
1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1257
1258 if (ret > 0)
1259 *i += ret;
1260
1261 if (unlikely(atomic_read(&ctx->dead)))
1262 ret = -EINVAL;
1263
1264 if (!*i)
1265 *i = ret;
1266
1267 return ret < 0 || *i >= min_nr;
1268 }
1269
1270 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271 struct io_event __user *event,
1272 ktime_t until)
1273 {
1274 long ret = 0;
1275
1276 /*
1277 * Note that aio_read_events() is being called as the conditional - i.e.
1278 * we're calling it after prepare_to_wait() has set task state to
1279 * TASK_INTERRUPTIBLE.
1280 *
1281 * But aio_read_events() can block, and if it blocks it's going to flip
1282 * the task state back to TASK_RUNNING.
1283 *
1284 * This should be ok, provided it doesn't flip the state back to
1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 * will only happen if the mutex_lock() call blocks, and we then find
1287 * the ringbuffer empty. So in practice we should be ok, but it's
1288 * something to be aware of when touching this code.
1289 */
1290 if (until == 0)
1291 aio_read_events(ctx, min_nr, nr, event, &ret);
1292 else
1293 wait_event_interruptible_hrtimeout(ctx->wait,
1294 aio_read_events(ctx, min_nr, nr, event, &ret),
1295 until);
1296 return ret;
1297 }
1298
1299 /* sys_io_setup:
1300 * Create an aio_context capable of receiving at least nr_events.
1301 * ctxp must not point to an aio_context that already exists, and
1302 * must be initialized to 0 prior to the call. On successful
1303 * creation of the aio_context, *ctxp is filled in with the resulting
1304 * handle. May fail with -EINVAL if *ctxp is not initialized,
1305 * if the specified nr_events exceeds internal limits. May fail
1306 * with -EAGAIN if the specified nr_events exceeds the user's limit
1307 * of available events. May fail with -ENOMEM if insufficient kernel
1308 * resources are available. May fail with -EFAULT if an invalid
1309 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1310 * implemented.
1311 */
1312 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1313 {
1314 struct kioctx *ioctx = NULL;
1315 unsigned long ctx;
1316 long ret;
1317
1318 ret = get_user(ctx, ctxp);
1319 if (unlikely(ret))
1320 goto out;
1321
1322 ret = -EINVAL;
1323 if (unlikely(ctx || nr_events == 0)) {
1324 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1325 ctx, nr_events);
1326 goto out;
1327 }
1328
1329 ioctx = ioctx_alloc(nr_events);
1330 ret = PTR_ERR(ioctx);
1331 if (!IS_ERR(ioctx)) {
1332 ret = put_user(ioctx->user_id, ctxp);
1333 if (ret)
1334 kill_ioctx(current->mm, ioctx, NULL);
1335 percpu_ref_put(&ioctx->users);
1336 }
1337
1338 out:
1339 return ret;
1340 }
1341
1342 #ifdef CONFIG_COMPAT
1343 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344 {
1345 struct kioctx *ioctx = NULL;
1346 unsigned long ctx;
1347 long ret;
1348
1349 ret = get_user(ctx, ctx32p);
1350 if (unlikely(ret))
1351 goto out;
1352
1353 ret = -EINVAL;
1354 if (unlikely(ctx || nr_events == 0)) {
1355 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356 ctx, nr_events);
1357 goto out;
1358 }
1359
1360 ioctx = ioctx_alloc(nr_events);
1361 ret = PTR_ERR(ioctx);
1362 if (!IS_ERR(ioctx)) {
1363 /* truncating is ok because it's a user address */
1364 ret = put_user((u32)ioctx->user_id, ctx32p);
1365 if (ret)
1366 kill_ioctx(current->mm, ioctx, NULL);
1367 percpu_ref_put(&ioctx->users);
1368 }
1369
1370 out:
1371 return ret;
1372 }
1373 #endif
1374
1375 /* sys_io_destroy:
1376 * Destroy the aio_context specified. May cancel any outstanding
1377 * AIOs and block on completion. Will fail with -ENOSYS if not
1378 * implemented. May fail with -EINVAL if the context pointed to
1379 * is invalid.
1380 */
1381 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1382 {
1383 struct kioctx *ioctx = lookup_ioctx(ctx);
1384 if (likely(NULL != ioctx)) {
1385 struct ctx_rq_wait wait;
1386 int ret;
1387
1388 init_completion(&wait.comp);
1389 atomic_set(&wait.count, 1);
1390
1391 /* Pass requests_done to kill_ioctx() where it can be set
1392 * in a thread-safe way. If we try to set it here then we have
1393 * a race condition if two io_destroy() called simultaneously.
1394 */
1395 ret = kill_ioctx(current->mm, ioctx, &wait);
1396 percpu_ref_put(&ioctx->users);
1397
1398 /* Wait until all IO for the context are done. Otherwise kernel
1399 * keep using user-space buffers even if user thinks the context
1400 * is destroyed.
1401 */
1402 if (!ret)
1403 wait_for_completion(&wait.comp);
1404
1405 return ret;
1406 }
1407 pr_debug("EINVAL: invalid context id\n");
1408 return -EINVAL;
1409 }
1410
1411 static void aio_remove_iocb(struct aio_kiocb *iocb)
1412 {
1413 struct kioctx *ctx = iocb->ki_ctx;
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&ctx->ctx_lock, flags);
1417 list_del(&iocb->ki_list);
1418 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1419 }
1420
1421 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1422 {
1423 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424
1425 if (!list_empty_careful(&iocb->ki_list))
1426 aio_remove_iocb(iocb);
1427
1428 if (kiocb->ki_flags & IOCB_WRITE) {
1429 struct inode *inode = file_inode(kiocb->ki_filp);
1430
1431 /*
1432 * Tell lockdep we inherited freeze protection from submission
1433 * thread.
1434 */
1435 if (S_ISREG(inode->i_mode))
1436 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437 file_end_write(kiocb->ki_filp);
1438 }
1439
1440 iocb->ki_res.res = res;
1441 iocb->ki_res.res2 = res2;
1442 iocb_put(iocb);
1443 }
1444
1445 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1446 {
1447 int ret;
1448
1449 req->ki_complete = aio_complete_rw;
1450 req->private = NULL;
1451 req->ki_pos = iocb->aio_offset;
1452 req->ki_flags = iocb_flags(req->ki_filp);
1453 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1454 req->ki_flags |= IOCB_EVENTFD;
1455 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1456 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1457 /*
1458 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1459 * aio_reqprio is interpreted as an I/O scheduling
1460 * class and priority.
1461 */
1462 ret = ioprio_check_cap(iocb->aio_reqprio);
1463 if (ret) {
1464 pr_debug("aio ioprio check cap error: %d\n", ret);
1465 return ret;
1466 }
1467
1468 req->ki_ioprio = iocb->aio_reqprio;
1469 } else
1470 req->ki_ioprio = get_current_ioprio();
1471
1472 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1473 if (unlikely(ret))
1474 return ret;
1475
1476 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1477 return 0;
1478 }
1479
1480 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1481 struct iovec **iovec, bool vectored, bool compat,
1482 struct iov_iter *iter)
1483 {
1484 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1485 size_t len = iocb->aio_nbytes;
1486
1487 if (!vectored) {
1488 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1489 *iovec = NULL;
1490 return ret;
1491 }
1492
1493 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1494 }
1495
1496 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1497 {
1498 switch (ret) {
1499 case -EIOCBQUEUED:
1500 break;
1501 case -ERESTARTSYS:
1502 case -ERESTARTNOINTR:
1503 case -ERESTARTNOHAND:
1504 case -ERESTART_RESTARTBLOCK:
1505 /*
1506 * There's no easy way to restart the syscall since other AIO's
1507 * may be already running. Just fail this IO with EINTR.
1508 */
1509 ret = -EINTR;
1510 fallthrough;
1511 default:
1512 req->ki_complete(req, ret, 0);
1513 }
1514 }
1515
1516 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1517 bool vectored, bool compat)
1518 {
1519 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1520 struct iov_iter iter;
1521 struct file *file;
1522 int ret;
1523
1524 ret = aio_prep_rw(req, iocb);
1525 if (ret)
1526 return ret;
1527 file = req->ki_filp;
1528 if (unlikely(!(file->f_mode & FMODE_READ)))
1529 return -EBADF;
1530 ret = -EINVAL;
1531 if (unlikely(!file->f_op->read_iter))
1532 return -EINVAL;
1533
1534 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1535 if (ret < 0)
1536 return ret;
1537 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1538 if (!ret)
1539 aio_rw_done(req, call_read_iter(file, req, &iter));
1540 kfree(iovec);
1541 return ret;
1542 }
1543
1544 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1545 bool vectored, bool compat)
1546 {
1547 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1548 struct iov_iter iter;
1549 struct file *file;
1550 int ret;
1551
1552 ret = aio_prep_rw(req, iocb);
1553 if (ret)
1554 return ret;
1555 file = req->ki_filp;
1556
1557 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1558 return -EBADF;
1559 if (unlikely(!file->f_op->write_iter))
1560 return -EINVAL;
1561
1562 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1563 if (ret < 0)
1564 return ret;
1565 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1566 if (!ret) {
1567 /*
1568 * Open-code file_start_write here to grab freeze protection,
1569 * which will be released by another thread in
1570 * aio_complete_rw(). Fool lockdep by telling it the lock got
1571 * released so that it doesn't complain about the held lock when
1572 * we return to userspace.
1573 */
1574 if (S_ISREG(file_inode(file)->i_mode)) {
1575 sb_start_write(file_inode(file)->i_sb);
1576 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1577 }
1578 req->ki_flags |= IOCB_WRITE;
1579 aio_rw_done(req, call_write_iter(file, req, &iter));
1580 }
1581 kfree(iovec);
1582 return ret;
1583 }
1584
1585 static void aio_fsync_work(struct work_struct *work)
1586 {
1587 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1588 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1589
1590 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1591 revert_creds(old_cred);
1592 put_cred(iocb->fsync.creds);
1593 iocb_put(iocb);
1594 }
1595
1596 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1597 bool datasync)
1598 {
1599 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1600 iocb->aio_rw_flags))
1601 return -EINVAL;
1602
1603 if (unlikely(!req->file->f_op->fsync))
1604 return -EINVAL;
1605
1606 req->creds = prepare_creds();
1607 if (!req->creds)
1608 return -ENOMEM;
1609
1610 req->datasync = datasync;
1611 INIT_WORK(&req->work, aio_fsync_work);
1612 schedule_work(&req->work);
1613 return 0;
1614 }
1615
1616 static void aio_poll_put_work(struct work_struct *work)
1617 {
1618 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1619 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1620
1621 iocb_put(iocb);
1622 }
1623
1624 /*
1625 * Safely lock the waitqueue which the request is on, synchronizing with the
1626 * case where the ->poll() provider decides to free its waitqueue early.
1627 *
1628 * Returns true on success, meaning that req->head->lock was locked, req->wait
1629 * is on req->head, and an RCU read lock was taken. Returns false if the
1630 * request was already removed from its waitqueue (which might no longer exist).
1631 */
1632 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1633 {
1634 wait_queue_head_t *head;
1635
1636 /*
1637 * While we hold the waitqueue lock and the waitqueue is nonempty,
1638 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1639 * lock in the first place can race with the waitqueue being freed.
1640 *
1641 * We solve this as eventpoll does: by taking advantage of the fact that
1642 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1643 * we enter rcu_read_lock() and see that the pointer to the queue is
1644 * non-NULL, we can then lock it without the memory being freed out from
1645 * under us, then check whether the request is still on the queue.
1646 *
1647 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1648 * case the caller deletes the entry from the queue, leaving it empty.
1649 * In that case, only RCU prevents the queue memory from being freed.
1650 */
1651 rcu_read_lock();
1652 head = smp_load_acquire(&req->head);
1653 if (head) {
1654 spin_lock(&head->lock);
1655 if (!list_empty(&req->wait.entry))
1656 return true;
1657 spin_unlock(&head->lock);
1658 }
1659 rcu_read_unlock();
1660 return false;
1661 }
1662
1663 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1664 {
1665 spin_unlock(&req->head->lock);
1666 rcu_read_unlock();
1667 }
1668
1669 static void aio_poll_complete_work(struct work_struct *work)
1670 {
1671 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1672 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1673 struct poll_table_struct pt = { ._key = req->events };
1674 struct kioctx *ctx = iocb->ki_ctx;
1675 __poll_t mask = 0;
1676
1677 if (!READ_ONCE(req->cancelled))
1678 mask = vfs_poll(req->file, &pt) & req->events;
1679
1680 /*
1681 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1682 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1683 * synchronize with them. In the cancellation case the list_del_init
1684 * itself is not actually needed, but harmless so we keep it in to
1685 * avoid further branches in the fast path.
1686 */
1687 spin_lock_irq(&ctx->ctx_lock);
1688 if (poll_iocb_lock_wq(req)) {
1689 if (!mask && !READ_ONCE(req->cancelled)) {
1690 /*
1691 * The request isn't actually ready to be completed yet.
1692 * Reschedule completion if another wakeup came in.
1693 */
1694 if (req->work_need_resched) {
1695 schedule_work(&req->work);
1696 req->work_need_resched = false;
1697 } else {
1698 req->work_scheduled = false;
1699 }
1700 poll_iocb_unlock_wq(req);
1701 spin_unlock_irq(&ctx->ctx_lock);
1702 return;
1703 }
1704 list_del_init(&req->wait.entry);
1705 poll_iocb_unlock_wq(req);
1706 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1707 list_del_init(&iocb->ki_list);
1708 iocb->ki_res.res = mangle_poll(mask);
1709 spin_unlock_irq(&ctx->ctx_lock);
1710
1711 iocb_put(iocb);
1712 }
1713
1714 /* assumes we are called with irqs disabled */
1715 static int aio_poll_cancel(struct kiocb *iocb)
1716 {
1717 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1718 struct poll_iocb *req = &aiocb->poll;
1719
1720 if (poll_iocb_lock_wq(req)) {
1721 WRITE_ONCE(req->cancelled, true);
1722 if (!req->work_scheduled) {
1723 schedule_work(&aiocb->poll.work);
1724 req->work_scheduled = true;
1725 }
1726 poll_iocb_unlock_wq(req);
1727 } /* else, the request was force-cancelled by POLLFREE already */
1728
1729 return 0;
1730 }
1731
1732 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1733 void *key)
1734 {
1735 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1736 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1737 __poll_t mask = key_to_poll(key);
1738 unsigned long flags;
1739
1740 /* for instances that support it check for an event match first: */
1741 if (mask && !(mask & req->events))
1742 return 0;
1743
1744 /*
1745 * Complete the request inline if possible. This requires that three
1746 * conditions be met:
1747 * 1. An event mask must have been passed. If a plain wakeup was done
1748 * instead, then mask == 0 and we have to call vfs_poll() to get
1749 * the events, so inline completion isn't possible.
1750 * 2. The completion work must not have already been scheduled.
1751 * 3. ctx_lock must not be busy. We have to use trylock because we
1752 * already hold the waitqueue lock, so this inverts the normal
1753 * locking order. Use irqsave/irqrestore because not all
1754 * filesystems (e.g. fuse) call this function with IRQs disabled,
1755 * yet IRQs have to be disabled before ctx_lock is obtained.
1756 */
1757 if (mask && !req->work_scheduled &&
1758 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1759 struct kioctx *ctx = iocb->ki_ctx;
1760
1761 list_del_init(&req->wait.entry);
1762 list_del(&iocb->ki_list);
1763 iocb->ki_res.res = mangle_poll(mask);
1764 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1765 iocb = NULL;
1766 INIT_WORK(&req->work, aio_poll_put_work);
1767 schedule_work(&req->work);
1768 }
1769 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1770 if (iocb)
1771 iocb_put(iocb);
1772 } else {
1773 /*
1774 * Schedule the completion work if needed. If it was already
1775 * scheduled, record that another wakeup came in.
1776 *
1777 * Don't remove the request from the waitqueue here, as it might
1778 * not actually be complete yet (we won't know until vfs_poll()
1779 * is called), and we must not miss any wakeups. POLLFREE is an
1780 * exception to this; see below.
1781 */
1782 if (req->work_scheduled) {
1783 req->work_need_resched = true;
1784 } else {
1785 schedule_work(&req->work);
1786 req->work_scheduled = true;
1787 }
1788
1789 /*
1790 * If the waitqueue is being freed early but we can't complete
1791 * the request inline, we have to tear down the request as best
1792 * we can. That means immediately removing the request from its
1793 * waitqueue and preventing all further accesses to the
1794 * waitqueue via the request. We also need to schedule the
1795 * completion work (done above). Also mark the request as
1796 * cancelled, to potentially skip an unneeded call to ->poll().
1797 */
1798 if (mask & POLLFREE) {
1799 WRITE_ONCE(req->cancelled, true);
1800 list_del_init(&req->wait.entry);
1801
1802 /*
1803 * Careful: this *must* be the last step, since as soon
1804 * as req->head is NULL'ed out, the request can be
1805 * completed and freed, since aio_poll_complete_work()
1806 * will no longer need to take the waitqueue lock.
1807 */
1808 smp_store_release(&req->head, NULL);
1809 }
1810 }
1811 return 1;
1812 }
1813
1814 struct aio_poll_table {
1815 struct poll_table_struct pt;
1816 struct aio_kiocb *iocb;
1817 bool queued;
1818 int error;
1819 };
1820
1821 static void
1822 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1823 struct poll_table_struct *p)
1824 {
1825 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1826
1827 /* multiple wait queues per file are not supported */
1828 if (unlikely(pt->queued)) {
1829 pt->error = -EINVAL;
1830 return;
1831 }
1832
1833 pt->queued = true;
1834 pt->error = 0;
1835 pt->iocb->poll.head = head;
1836 add_wait_queue(head, &pt->iocb->poll.wait);
1837 }
1838
1839 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1840 {
1841 struct kioctx *ctx = aiocb->ki_ctx;
1842 struct poll_iocb *req = &aiocb->poll;
1843 struct aio_poll_table apt;
1844 bool cancel = false;
1845 __poll_t mask;
1846
1847 /* reject any unknown events outside the normal event mask. */
1848 if ((u16)iocb->aio_buf != iocb->aio_buf)
1849 return -EINVAL;
1850 /* reject fields that are not defined for poll */
1851 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1852 return -EINVAL;
1853
1854 INIT_WORK(&req->work, aio_poll_complete_work);
1855 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1856
1857 req->head = NULL;
1858 req->cancelled = false;
1859 req->work_scheduled = false;
1860 req->work_need_resched = false;
1861
1862 apt.pt._qproc = aio_poll_queue_proc;
1863 apt.pt._key = req->events;
1864 apt.iocb = aiocb;
1865 apt.queued = false;
1866 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1867
1868 /* initialized the list so that we can do list_empty checks */
1869 INIT_LIST_HEAD(&req->wait.entry);
1870 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1871
1872 mask = vfs_poll(req->file, &apt.pt) & req->events;
1873 spin_lock_irq(&ctx->ctx_lock);
1874 if (likely(apt.queued)) {
1875 bool on_queue = poll_iocb_lock_wq(req);
1876
1877 if (!on_queue || req->work_scheduled) {
1878 /*
1879 * aio_poll_wake() already either scheduled the async
1880 * completion work, or completed the request inline.
1881 */
1882 if (apt.error) /* unsupported case: multiple queues */
1883 cancel = true;
1884 apt.error = 0;
1885 mask = 0;
1886 }
1887 if (mask || apt.error) {
1888 /* Steal to complete synchronously. */
1889 list_del_init(&req->wait.entry);
1890 } else if (cancel) {
1891 /* Cancel if possible (may be too late though). */
1892 WRITE_ONCE(req->cancelled, true);
1893 } else if (on_queue) {
1894 /*
1895 * Actually waiting for an event, so add the request to
1896 * active_reqs so that it can be cancelled if needed.
1897 */
1898 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1899 aiocb->ki_cancel = aio_poll_cancel;
1900 }
1901 if (on_queue)
1902 poll_iocb_unlock_wq(req);
1903 }
1904 if (mask) { /* no async, we'd stolen it */
1905 aiocb->ki_res.res = mangle_poll(mask);
1906 apt.error = 0;
1907 }
1908 spin_unlock_irq(&ctx->ctx_lock);
1909 if (mask)
1910 iocb_put(aiocb);
1911 return apt.error;
1912 }
1913
1914 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1915 struct iocb __user *user_iocb, struct aio_kiocb *req,
1916 bool compat)
1917 {
1918 req->ki_filp = fget(iocb->aio_fildes);
1919 if (unlikely(!req->ki_filp))
1920 return -EBADF;
1921
1922 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1923 struct eventfd_ctx *eventfd;
1924 /*
1925 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1926 * instance of the file* now. The file descriptor must be
1927 * an eventfd() fd, and will be signaled for each completed
1928 * event using the eventfd_signal() function.
1929 */
1930 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1931 if (IS_ERR(eventfd))
1932 return PTR_ERR(eventfd);
1933
1934 req->ki_eventfd = eventfd;
1935 }
1936
1937 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1938 pr_debug("EFAULT: aio_key\n");
1939 return -EFAULT;
1940 }
1941
1942 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1943 req->ki_res.data = iocb->aio_data;
1944 req->ki_res.res = 0;
1945 req->ki_res.res2 = 0;
1946
1947 switch (iocb->aio_lio_opcode) {
1948 case IOCB_CMD_PREAD:
1949 return aio_read(&req->rw, iocb, false, compat);
1950 case IOCB_CMD_PWRITE:
1951 return aio_write(&req->rw, iocb, false, compat);
1952 case IOCB_CMD_PREADV:
1953 return aio_read(&req->rw, iocb, true, compat);
1954 case IOCB_CMD_PWRITEV:
1955 return aio_write(&req->rw, iocb, true, compat);
1956 case IOCB_CMD_FSYNC:
1957 return aio_fsync(&req->fsync, iocb, false);
1958 case IOCB_CMD_FDSYNC:
1959 return aio_fsync(&req->fsync, iocb, true);
1960 case IOCB_CMD_POLL:
1961 return aio_poll(req, iocb);
1962 default:
1963 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1964 return -EINVAL;
1965 }
1966 }
1967
1968 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1969 bool compat)
1970 {
1971 struct aio_kiocb *req;
1972 struct iocb iocb;
1973 int err;
1974
1975 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1976 return -EFAULT;
1977
1978 /* enforce forwards compatibility on users */
1979 if (unlikely(iocb.aio_reserved2)) {
1980 pr_debug("EINVAL: reserve field set\n");
1981 return -EINVAL;
1982 }
1983
1984 /* prevent overflows */
1985 if (unlikely(
1986 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1987 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1988 ((ssize_t)iocb.aio_nbytes < 0)
1989 )) {
1990 pr_debug("EINVAL: overflow check\n");
1991 return -EINVAL;
1992 }
1993
1994 req = aio_get_req(ctx);
1995 if (unlikely(!req))
1996 return -EAGAIN;
1997
1998 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1999
2000 /* Done with the synchronous reference */
2001 iocb_put(req);
2002
2003 /*
2004 * If err is 0, we'd either done aio_complete() ourselves or have
2005 * arranged for that to be done asynchronously. Anything non-zero
2006 * means that we need to destroy req ourselves.
2007 */
2008 if (unlikely(err)) {
2009 iocb_destroy(req);
2010 put_reqs_available(ctx, 1);
2011 }
2012 return err;
2013 }
2014
2015 /* sys_io_submit:
2016 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2017 * the number of iocbs queued. May return -EINVAL if the aio_context
2018 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2019 * *iocbpp[0] is not properly initialized, if the operation specified
2020 * is invalid for the file descriptor in the iocb. May fail with
2021 * -EFAULT if any of the data structures point to invalid data. May
2022 * fail with -EBADF if the file descriptor specified in the first
2023 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2024 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2025 * fail with -ENOSYS if not implemented.
2026 */
2027 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2028 struct iocb __user * __user *, iocbpp)
2029 {
2030 struct kioctx *ctx;
2031 long ret = 0;
2032 int i = 0;
2033 struct blk_plug plug;
2034
2035 if (unlikely(nr < 0))
2036 return -EINVAL;
2037
2038 ctx = lookup_ioctx(ctx_id);
2039 if (unlikely(!ctx)) {
2040 pr_debug("EINVAL: invalid context id\n");
2041 return -EINVAL;
2042 }
2043
2044 if (nr > ctx->nr_events)
2045 nr = ctx->nr_events;
2046
2047 if (nr > AIO_PLUG_THRESHOLD)
2048 blk_start_plug(&plug);
2049 for (i = 0; i < nr; i++) {
2050 struct iocb __user *user_iocb;
2051
2052 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2053 ret = -EFAULT;
2054 break;
2055 }
2056
2057 ret = io_submit_one(ctx, user_iocb, false);
2058 if (ret)
2059 break;
2060 }
2061 if (nr > AIO_PLUG_THRESHOLD)
2062 blk_finish_plug(&plug);
2063
2064 percpu_ref_put(&ctx->users);
2065 return i ? i : ret;
2066 }
2067
2068 #ifdef CONFIG_COMPAT
2069 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2070 int, nr, compat_uptr_t __user *, iocbpp)
2071 {
2072 struct kioctx *ctx;
2073 long ret = 0;
2074 int i = 0;
2075 struct blk_plug plug;
2076
2077 if (unlikely(nr < 0))
2078 return -EINVAL;
2079
2080 ctx = lookup_ioctx(ctx_id);
2081 if (unlikely(!ctx)) {
2082 pr_debug("EINVAL: invalid context id\n");
2083 return -EINVAL;
2084 }
2085
2086 if (nr > ctx->nr_events)
2087 nr = ctx->nr_events;
2088
2089 if (nr > AIO_PLUG_THRESHOLD)
2090 blk_start_plug(&plug);
2091 for (i = 0; i < nr; i++) {
2092 compat_uptr_t user_iocb;
2093
2094 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2095 ret = -EFAULT;
2096 break;
2097 }
2098
2099 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2100 if (ret)
2101 break;
2102 }
2103 if (nr > AIO_PLUG_THRESHOLD)
2104 blk_finish_plug(&plug);
2105
2106 percpu_ref_put(&ctx->users);
2107 return i ? i : ret;
2108 }
2109 #endif
2110
2111 /* sys_io_cancel:
2112 * Attempts to cancel an iocb previously passed to io_submit. If
2113 * the operation is successfully cancelled, the resulting event is
2114 * copied into the memory pointed to by result without being placed
2115 * into the completion queue and 0 is returned. May fail with
2116 * -EFAULT if any of the data structures pointed to are invalid.
2117 * May fail with -EINVAL if aio_context specified by ctx_id is
2118 * invalid. May fail with -EAGAIN if the iocb specified was not
2119 * cancelled. Will fail with -ENOSYS if not implemented.
2120 */
2121 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2122 struct io_event __user *, result)
2123 {
2124 struct kioctx *ctx;
2125 struct aio_kiocb *kiocb;
2126 int ret = -EINVAL;
2127 u32 key;
2128 u64 obj = (u64)(unsigned long)iocb;
2129
2130 if (unlikely(get_user(key, &iocb->aio_key)))
2131 return -EFAULT;
2132 if (unlikely(key != KIOCB_KEY))
2133 return -EINVAL;
2134
2135 ctx = lookup_ioctx(ctx_id);
2136 if (unlikely(!ctx))
2137 return -EINVAL;
2138
2139 spin_lock_irq(&ctx->ctx_lock);
2140 /* TODO: use a hash or array, this sucks. */
2141 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2142 if (kiocb->ki_res.obj == obj) {
2143 ret = kiocb->ki_cancel(&kiocb->rw);
2144 list_del_init(&kiocb->ki_list);
2145 break;
2146 }
2147 }
2148 spin_unlock_irq(&ctx->ctx_lock);
2149
2150 if (!ret) {
2151 /*
2152 * The result argument is no longer used - the io_event is
2153 * always delivered via the ring buffer. -EINPROGRESS indicates
2154 * cancellation is progress:
2155 */
2156 ret = -EINPROGRESS;
2157 }
2158
2159 percpu_ref_put(&ctx->users);
2160
2161 return ret;
2162 }
2163
2164 static long do_io_getevents(aio_context_t ctx_id,
2165 long min_nr,
2166 long nr,
2167 struct io_event __user *events,
2168 struct timespec64 *ts)
2169 {
2170 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2171 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2172 long ret = -EINVAL;
2173
2174 if (likely(ioctx)) {
2175 if (likely(min_nr <= nr && min_nr >= 0))
2176 ret = read_events(ioctx, min_nr, nr, events, until);
2177 percpu_ref_put(&ioctx->users);
2178 }
2179
2180 return ret;
2181 }
2182
2183 /* io_getevents:
2184 * Attempts to read at least min_nr events and up to nr events from
2185 * the completion queue for the aio_context specified by ctx_id. If
2186 * it succeeds, the number of read events is returned. May fail with
2187 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2188 * out of range, if timeout is out of range. May fail with -EFAULT
2189 * if any of the memory specified is invalid. May return 0 or
2190 * < min_nr if the timeout specified by timeout has elapsed
2191 * before sufficient events are available, where timeout == NULL
2192 * specifies an infinite timeout. Note that the timeout pointed to by
2193 * timeout is relative. Will fail with -ENOSYS if not implemented.
2194 */
2195 #ifdef CONFIG_64BIT
2196
2197 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2198 long, min_nr,
2199 long, nr,
2200 struct io_event __user *, events,
2201 struct __kernel_timespec __user *, timeout)
2202 {
2203 struct timespec64 ts;
2204 int ret;
2205
2206 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2207 return -EFAULT;
2208
2209 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2210 if (!ret && signal_pending(current))
2211 ret = -EINTR;
2212 return ret;
2213 }
2214
2215 #endif
2216
2217 struct __aio_sigset {
2218 const sigset_t __user *sigmask;
2219 size_t sigsetsize;
2220 };
2221
2222 SYSCALL_DEFINE6(io_pgetevents,
2223 aio_context_t, ctx_id,
2224 long, min_nr,
2225 long, nr,
2226 struct io_event __user *, events,
2227 struct __kernel_timespec __user *, timeout,
2228 const struct __aio_sigset __user *, usig)
2229 {
2230 struct __aio_sigset ksig = { NULL, };
2231 struct timespec64 ts;
2232 bool interrupted;
2233 int ret;
2234
2235 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2236 return -EFAULT;
2237
2238 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2239 return -EFAULT;
2240
2241 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2242 if (ret)
2243 return ret;
2244
2245 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2246
2247 interrupted = signal_pending(current);
2248 restore_saved_sigmask_unless(interrupted);
2249 if (interrupted && !ret)
2250 ret = -ERESTARTNOHAND;
2251
2252 return ret;
2253 }
2254
2255 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2256
2257 SYSCALL_DEFINE6(io_pgetevents_time32,
2258 aio_context_t, ctx_id,
2259 long, min_nr,
2260 long, nr,
2261 struct io_event __user *, events,
2262 struct old_timespec32 __user *, timeout,
2263 const struct __aio_sigset __user *, usig)
2264 {
2265 struct __aio_sigset ksig = { NULL, };
2266 struct timespec64 ts;
2267 bool interrupted;
2268 int ret;
2269
2270 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2271 return -EFAULT;
2272
2273 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2274 return -EFAULT;
2275
2276
2277 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2278 if (ret)
2279 return ret;
2280
2281 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2282
2283 interrupted = signal_pending(current);
2284 restore_saved_sigmask_unless(interrupted);
2285 if (interrupted && !ret)
2286 ret = -ERESTARTNOHAND;
2287
2288 return ret;
2289 }
2290
2291 #endif
2292
2293 #if defined(CONFIG_COMPAT_32BIT_TIME)
2294
2295 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2296 __s32, min_nr,
2297 __s32, nr,
2298 struct io_event __user *, events,
2299 struct old_timespec32 __user *, timeout)
2300 {
2301 struct timespec64 t;
2302 int ret;
2303
2304 if (timeout && get_old_timespec32(&t, timeout))
2305 return -EFAULT;
2306
2307 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2308 if (!ret && signal_pending(current))
2309 ret = -EINTR;
2310 return ret;
2311 }
2312
2313 #endif
2314
2315 #ifdef CONFIG_COMPAT
2316
2317 struct __compat_aio_sigset {
2318 compat_uptr_t sigmask;
2319 compat_size_t sigsetsize;
2320 };
2321
2322 #if defined(CONFIG_COMPAT_32BIT_TIME)
2323
2324 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2325 compat_aio_context_t, ctx_id,
2326 compat_long_t, min_nr,
2327 compat_long_t, nr,
2328 struct io_event __user *, events,
2329 struct old_timespec32 __user *, timeout,
2330 const struct __compat_aio_sigset __user *, usig)
2331 {
2332 struct __compat_aio_sigset ksig = { 0, };
2333 struct timespec64 t;
2334 bool interrupted;
2335 int ret;
2336
2337 if (timeout && get_old_timespec32(&t, timeout))
2338 return -EFAULT;
2339
2340 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2341 return -EFAULT;
2342
2343 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2344 if (ret)
2345 return ret;
2346
2347 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2348
2349 interrupted = signal_pending(current);
2350 restore_saved_sigmask_unless(interrupted);
2351 if (interrupted && !ret)
2352 ret = -ERESTARTNOHAND;
2353
2354 return ret;
2355 }
2356
2357 #endif
2358
2359 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2360 compat_aio_context_t, ctx_id,
2361 compat_long_t, min_nr,
2362 compat_long_t, nr,
2363 struct io_event __user *, events,
2364 struct __kernel_timespec __user *, timeout,
2365 const struct __compat_aio_sigset __user *, usig)
2366 {
2367 struct __compat_aio_sigset ksig = { 0, };
2368 struct timespec64 t;
2369 bool interrupted;
2370 int ret;
2371
2372 if (timeout && get_timespec64(&t, timeout))
2373 return -EFAULT;
2374
2375 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2376 return -EFAULT;
2377
2378 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2379 if (ret)
2380 return ret;
2381
2382 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2383
2384 interrupted = signal_pending(current);
2385 restore_saved_sigmask_unless(interrupted);
2386 if (interrupted && !ret)
2387 ret = -ERESTARTNOHAND;
2388
2389 return ret;
2390 }
2391 #endif