]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/aio.c
scsi: hisi_sas: Fix the failure of recovering PHY from STP link timeout
[mirror_ubuntu-bionic-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx __rcu *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83 };
84
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct rcu_head free_rcu;
119 struct work_struct free_work; /* see free_ioctx() */
120
121 /*
122 * signals when all in-flight requests are done
123 */
124 struct ctx_rq_wait *rq_wait;
125
126 struct {
127 /*
128 * This counts the number of available slots in the ringbuffer,
129 * so we avoid overflowing it: it's decremented (if positive)
130 * when allocating a kiocb and incremented when the resulting
131 * io_event is pulled off the ringbuffer.
132 *
133 * We batch accesses to it with a percpu version.
134 */
135 atomic_t reqs_available;
136 } ____cacheline_aligned_in_smp;
137
138 struct {
139 spinlock_t ctx_lock;
140 struct list_head active_reqs; /* used for cancellation */
141 } ____cacheline_aligned_in_smp;
142
143 struct {
144 struct mutex ring_lock;
145 wait_queue_head_t wait;
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 unsigned tail;
150 unsigned completed_events;
151 spinlock_t completion_lock;
152 } ____cacheline_aligned_in_smp;
153
154 struct page *internal_pages[AIO_RING_PAGES];
155 struct file *aio_ring_file;
156
157 unsigned id;
158 };
159
160 /*
161 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
162 * cancelled or completed (this makes a certain amount of sense because
163 * successful cancellation - io_cancel() - does deliver the completion to
164 * userspace).
165 *
166 * And since most things don't implement kiocb cancellation and we'd really like
167 * kiocb completion to be lockless when possible, we use ki_cancel to
168 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
169 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170 */
171 #define KIOCB_CANCELLED ((void *) (~0ULL))
172
173 struct aio_kiocb {
174 struct kiocb common;
175
176 struct kioctx *ki_ctx;
177 kiocb_cancel_fn *ki_cancel;
178
179 struct iocb __user *ki_user_iocb; /* user's aiocb */
180 __u64 ki_user_data; /* user's data for completion */
181
182 struct list_head ki_list; /* the aio core uses this
183 * for cancellation */
184
185 /*
186 * If the aio_resfd field of the userspace iocb is not zero,
187 * this is the underlying eventfd context to deliver events to.
188 */
189 struct eventfd_ctx *ki_eventfd;
190 };
191
192 /*------ sysctl variables----*/
193 static DEFINE_SPINLOCK(aio_nr_lock);
194 unsigned long aio_nr; /* current system wide number of aio requests */
195 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
196 /*----end sysctl variables---*/
197
198 static struct kmem_cache *kiocb_cachep;
199 static struct kmem_cache *kioctx_cachep;
200
201 static struct vfsmount *aio_mnt;
202
203 static const struct file_operations aio_ring_fops;
204 static const struct address_space_operations aio_ctx_aops;
205
206 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
207 {
208 struct qstr this = QSTR_INIT("[aio]", 5);
209 struct file *file;
210 struct path path;
211 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
212 if (IS_ERR(inode))
213 return ERR_CAST(inode);
214
215 inode->i_mapping->a_ops = &aio_ctx_aops;
216 inode->i_mapping->private_data = ctx;
217 inode->i_size = PAGE_SIZE * nr_pages;
218
219 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
220 if (!path.dentry) {
221 iput(inode);
222 return ERR_PTR(-ENOMEM);
223 }
224 path.mnt = mntget(aio_mnt);
225
226 d_instantiate(path.dentry, inode);
227 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
228 if (IS_ERR(file)) {
229 path_put(&path);
230 return file;
231 }
232
233 file->f_flags = O_RDWR;
234 return file;
235 }
236
237 static struct dentry *aio_mount(struct file_system_type *fs_type,
238 int flags, const char *dev_name, void *data)
239 {
240 static const struct dentry_operations ops = {
241 .d_dname = simple_dname,
242 };
243 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
244 AIO_RING_MAGIC);
245
246 if (!IS_ERR(root))
247 root->d_sb->s_iflags |= SB_I_NOEXEC;
248 return root;
249 }
250
251 /* aio_setup
252 * Creates the slab caches used by the aio routines, panic on
253 * failure as this is done early during the boot sequence.
254 */
255 static int __init aio_setup(void)
256 {
257 static struct file_system_type aio_fs = {
258 .name = "aio",
259 .mount = aio_mount,
260 .kill_sb = kill_anon_super,
261 };
262 aio_mnt = kern_mount(&aio_fs);
263 if (IS_ERR(aio_mnt))
264 panic("Failed to create aio fs mount.");
265
266 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268
269 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
270
271 return 0;
272 }
273 __initcall(aio_setup);
274
275 static void put_aio_ring_file(struct kioctx *ctx)
276 {
277 struct file *aio_ring_file = ctx->aio_ring_file;
278 struct address_space *i_mapping;
279
280 if (aio_ring_file) {
281 truncate_setsize(file_inode(aio_ring_file), 0);
282
283 /* Prevent further access to the kioctx from migratepages */
284 i_mapping = aio_ring_file->f_mapping;
285 spin_lock(&i_mapping->private_lock);
286 i_mapping->private_data = NULL;
287 ctx->aio_ring_file = NULL;
288 spin_unlock(&i_mapping->private_lock);
289
290 fput(aio_ring_file);
291 }
292 }
293
294 static void aio_free_ring(struct kioctx *ctx)
295 {
296 int i;
297
298 /* Disconnect the kiotx from the ring file. This prevents future
299 * accesses to the kioctx from page migration.
300 */
301 put_aio_ring_file(ctx);
302
303 for (i = 0; i < ctx->nr_pages; i++) {
304 struct page *page;
305 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
306 page_count(ctx->ring_pages[i]));
307 page = ctx->ring_pages[i];
308 if (!page)
309 continue;
310 ctx->ring_pages[i] = NULL;
311 put_page(page);
312 }
313
314 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
315 kfree(ctx->ring_pages);
316 ctx->ring_pages = NULL;
317 }
318 }
319
320 static int aio_ring_mremap(struct vm_area_struct *vma)
321 {
322 struct file *file = vma->vm_file;
323 struct mm_struct *mm = vma->vm_mm;
324 struct kioctx_table *table;
325 int i, res = -EINVAL;
326
327 spin_lock(&mm->ioctx_lock);
328 rcu_read_lock();
329 table = rcu_dereference(mm->ioctx_table);
330 for (i = 0; i < table->nr; i++) {
331 struct kioctx *ctx;
332
333 ctx = rcu_dereference(table->table[i]);
334 if (ctx && ctx->aio_ring_file == file) {
335 if (!atomic_read(&ctx->dead)) {
336 ctx->user_id = ctx->mmap_base = vma->vm_start;
337 res = 0;
338 }
339 break;
340 }
341 }
342
343 rcu_read_unlock();
344 spin_unlock(&mm->ioctx_lock);
345 return res;
346 }
347
348 static const struct vm_operations_struct aio_ring_vm_ops = {
349 .mremap = aio_ring_mremap,
350 #if IS_ENABLED(CONFIG_MMU)
351 .fault = filemap_fault,
352 .map_pages = filemap_map_pages,
353 .page_mkwrite = filemap_page_mkwrite,
354 #endif
355 };
356
357 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
358 {
359 vma->vm_flags |= VM_DONTEXPAND;
360 vma->vm_ops = &aio_ring_vm_ops;
361 return 0;
362 }
363
364 static const struct file_operations aio_ring_fops = {
365 .mmap = aio_ring_mmap,
366 };
367
368 #if IS_ENABLED(CONFIG_MIGRATION)
369 static int aio_migratepage(struct address_space *mapping, struct page *new,
370 struct page *old, enum migrate_mode mode)
371 {
372 struct kioctx *ctx;
373 unsigned long flags;
374 pgoff_t idx;
375 int rc;
376
377 /*
378 * We cannot support the _NO_COPY case here, because copy needs to
379 * happen under the ctx->completion_lock. That does not work with the
380 * migration workflow of MIGRATE_SYNC_NO_COPY.
381 */
382 if (mode == MIGRATE_SYNC_NO_COPY)
383 return -EINVAL;
384
385 rc = 0;
386
387 /* mapping->private_lock here protects against the kioctx teardown. */
388 spin_lock(&mapping->private_lock);
389 ctx = mapping->private_data;
390 if (!ctx) {
391 rc = -EINVAL;
392 goto out;
393 }
394
395 /* The ring_lock mutex. The prevents aio_read_events() from writing
396 * to the ring's head, and prevents page migration from mucking in
397 * a partially initialized kiotx.
398 */
399 if (!mutex_trylock(&ctx->ring_lock)) {
400 rc = -EAGAIN;
401 goto out;
402 }
403
404 idx = old->index;
405 if (idx < (pgoff_t)ctx->nr_pages) {
406 /* Make sure the old page hasn't already been changed */
407 if (ctx->ring_pages[idx] != old)
408 rc = -EAGAIN;
409 } else
410 rc = -EINVAL;
411
412 if (rc != 0)
413 goto out_unlock;
414
415 /* Writeback must be complete */
416 BUG_ON(PageWriteback(old));
417 get_page(new);
418
419 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
420 if (rc != MIGRATEPAGE_SUCCESS) {
421 put_page(new);
422 goto out_unlock;
423 }
424
425 /* Take completion_lock to prevent other writes to the ring buffer
426 * while the old page is copied to the new. This prevents new
427 * events from being lost.
428 */
429 spin_lock_irqsave(&ctx->completion_lock, flags);
430 migrate_page_copy(new, old);
431 BUG_ON(ctx->ring_pages[idx] != old);
432 ctx->ring_pages[idx] = new;
433 spin_unlock_irqrestore(&ctx->completion_lock, flags);
434
435 /* The old page is no longer accessible. */
436 put_page(old);
437
438 out_unlock:
439 mutex_unlock(&ctx->ring_lock);
440 out:
441 spin_unlock(&mapping->private_lock);
442 return rc;
443 }
444 #endif
445
446 static const struct address_space_operations aio_ctx_aops = {
447 .set_page_dirty = __set_page_dirty_no_writeback,
448 #if IS_ENABLED(CONFIG_MIGRATION)
449 .migratepage = aio_migratepage,
450 #endif
451 };
452
453 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
454 {
455 struct aio_ring *ring;
456 struct mm_struct *mm = current->mm;
457 unsigned long size, unused;
458 int nr_pages;
459 int i;
460 struct file *file;
461
462 /* Compensate for the ring buffer's head/tail overlap entry */
463 nr_events += 2; /* 1 is required, 2 for good luck */
464
465 size = sizeof(struct aio_ring);
466 size += sizeof(struct io_event) * nr_events;
467
468 nr_pages = PFN_UP(size);
469 if (nr_pages < 0)
470 return -EINVAL;
471
472 file = aio_private_file(ctx, nr_pages);
473 if (IS_ERR(file)) {
474 ctx->aio_ring_file = NULL;
475 return -ENOMEM;
476 }
477
478 ctx->aio_ring_file = file;
479 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
480 / sizeof(struct io_event);
481
482 ctx->ring_pages = ctx->internal_pages;
483 if (nr_pages > AIO_RING_PAGES) {
484 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
485 GFP_KERNEL);
486 if (!ctx->ring_pages) {
487 put_aio_ring_file(ctx);
488 return -ENOMEM;
489 }
490 }
491
492 for (i = 0; i < nr_pages; i++) {
493 struct page *page;
494 page = find_or_create_page(file->f_mapping,
495 i, GFP_HIGHUSER | __GFP_ZERO);
496 if (!page)
497 break;
498 pr_debug("pid(%d) page[%d]->count=%d\n",
499 current->pid, i, page_count(page));
500 SetPageUptodate(page);
501 unlock_page(page);
502
503 ctx->ring_pages[i] = page;
504 }
505 ctx->nr_pages = i;
506
507 if (unlikely(i != nr_pages)) {
508 aio_free_ring(ctx);
509 return -ENOMEM;
510 }
511
512 ctx->mmap_size = nr_pages * PAGE_SIZE;
513 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
514
515 if (down_write_killable(&mm->mmap_sem)) {
516 ctx->mmap_size = 0;
517 aio_free_ring(ctx);
518 return -EINTR;
519 }
520
521 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
522 PROT_READ | PROT_WRITE,
523 MAP_SHARED, 0, &unused, NULL);
524 up_write(&mm->mmap_sem);
525 if (IS_ERR((void *)ctx->mmap_base)) {
526 ctx->mmap_size = 0;
527 aio_free_ring(ctx);
528 return -ENOMEM;
529 }
530
531 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
532
533 ctx->user_id = ctx->mmap_base;
534 ctx->nr_events = nr_events; /* trusted copy */
535
536 ring = kmap_atomic(ctx->ring_pages[0]);
537 ring->nr = nr_events; /* user copy */
538 ring->id = ~0U;
539 ring->head = ring->tail = 0;
540 ring->magic = AIO_RING_MAGIC;
541 ring->compat_features = AIO_RING_COMPAT_FEATURES;
542 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
543 ring->header_length = sizeof(struct aio_ring);
544 kunmap_atomic(ring);
545 flush_dcache_page(ctx->ring_pages[0]);
546
547 return 0;
548 }
549
550 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
551 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
552 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
553
554 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
555 {
556 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
557 struct kioctx *ctx = req->ki_ctx;
558 unsigned long flags;
559
560 spin_lock_irqsave(&ctx->ctx_lock, flags);
561
562 if (!req->ki_list.next)
563 list_add(&req->ki_list, &ctx->active_reqs);
564
565 req->ki_cancel = cancel;
566
567 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
568 }
569 EXPORT_SYMBOL(kiocb_set_cancel_fn);
570
571 static int kiocb_cancel(struct aio_kiocb *kiocb)
572 {
573 kiocb_cancel_fn *old, *cancel;
574
575 /*
576 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
577 * actually has a cancel function, hence the cmpxchg()
578 */
579
580 cancel = READ_ONCE(kiocb->ki_cancel);
581 do {
582 if (!cancel || cancel == KIOCB_CANCELLED)
583 return -EINVAL;
584
585 old = cancel;
586 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
587 } while (cancel != old);
588
589 return cancel(&kiocb->common);
590 }
591
592 /*
593 * free_ioctx() should be RCU delayed to synchronize against the RCU
594 * protected lookup_ioctx() and also needs process context to call
595 * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
596 * ->free_work.
597 */
598 static void free_ioctx(struct work_struct *work)
599 {
600 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
601
602 pr_debug("freeing %p\n", ctx);
603
604 aio_free_ring(ctx);
605 free_percpu(ctx->cpu);
606 percpu_ref_exit(&ctx->reqs);
607 percpu_ref_exit(&ctx->users);
608 kmem_cache_free(kioctx_cachep, ctx);
609 }
610
611 static void free_ioctx_rcufn(struct rcu_head *head)
612 {
613 struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
614
615 INIT_WORK(&ctx->free_work, free_ioctx);
616 schedule_work(&ctx->free_work);
617 }
618
619 static void free_ioctx_reqs(struct percpu_ref *ref)
620 {
621 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
622
623 /* At this point we know that there are no any in-flight requests */
624 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
625 complete(&ctx->rq_wait->comp);
626
627 /* Synchronize against RCU protected table->table[] dereferences */
628 call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
629 }
630
631 /*
632 * When this function runs, the kioctx has been removed from the "hash table"
633 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
634 * now it's safe to cancel any that need to be.
635 */
636 static void free_ioctx_users(struct percpu_ref *ref)
637 {
638 struct kioctx *ctx = container_of(ref, struct kioctx, users);
639 struct aio_kiocb *req;
640
641 spin_lock_irq(&ctx->ctx_lock);
642
643 while (!list_empty(&ctx->active_reqs)) {
644 req = list_first_entry(&ctx->active_reqs,
645 struct aio_kiocb, ki_list);
646 kiocb_cancel(req);
647 list_del_init(&req->ki_list);
648 }
649
650 spin_unlock_irq(&ctx->ctx_lock);
651
652 percpu_ref_kill(&ctx->reqs);
653 percpu_ref_put(&ctx->reqs);
654 }
655
656 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
657 {
658 unsigned i, new_nr;
659 struct kioctx_table *table, *old;
660 struct aio_ring *ring;
661
662 spin_lock(&mm->ioctx_lock);
663 table = rcu_dereference_raw(mm->ioctx_table);
664
665 while (1) {
666 if (table)
667 for (i = 0; i < table->nr; i++)
668 if (!rcu_access_pointer(table->table[i])) {
669 ctx->id = i;
670 rcu_assign_pointer(table->table[i], ctx);
671 spin_unlock(&mm->ioctx_lock);
672
673 /* While kioctx setup is in progress,
674 * we are protected from page migration
675 * changes ring_pages by ->ring_lock.
676 */
677 ring = kmap_atomic(ctx->ring_pages[0]);
678 ring->id = ctx->id;
679 kunmap_atomic(ring);
680 return 0;
681 }
682
683 new_nr = (table ? table->nr : 1) * 4;
684 spin_unlock(&mm->ioctx_lock);
685
686 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
687 new_nr, GFP_KERNEL);
688 if (!table)
689 return -ENOMEM;
690
691 table->nr = new_nr;
692
693 spin_lock(&mm->ioctx_lock);
694 old = rcu_dereference_raw(mm->ioctx_table);
695
696 if (!old) {
697 rcu_assign_pointer(mm->ioctx_table, table);
698 } else if (table->nr > old->nr) {
699 memcpy(table->table, old->table,
700 old->nr * sizeof(struct kioctx *));
701
702 rcu_assign_pointer(mm->ioctx_table, table);
703 kfree_rcu(old, rcu);
704 } else {
705 kfree(table);
706 table = old;
707 }
708 }
709 }
710
711 static void aio_nr_sub(unsigned nr)
712 {
713 spin_lock(&aio_nr_lock);
714 if (WARN_ON(aio_nr - nr > aio_nr))
715 aio_nr = 0;
716 else
717 aio_nr -= nr;
718 spin_unlock(&aio_nr_lock);
719 }
720
721 /* ioctx_alloc
722 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
723 */
724 static struct kioctx *ioctx_alloc(unsigned nr_events)
725 {
726 struct mm_struct *mm = current->mm;
727 struct kioctx *ctx;
728 int err = -ENOMEM;
729
730 /*
731 * Store the original nr_events -- what userspace passed to io_setup(),
732 * for counting against the global limit -- before it changes.
733 */
734 unsigned int max_reqs = nr_events;
735
736 /*
737 * We keep track of the number of available ringbuffer slots, to prevent
738 * overflow (reqs_available), and we also use percpu counters for this.
739 *
740 * So since up to half the slots might be on other cpu's percpu counters
741 * and unavailable, double nr_events so userspace sees what they
742 * expected: additionally, we move req_batch slots to/from percpu
743 * counters at a time, so make sure that isn't 0:
744 */
745 nr_events = max(nr_events, num_possible_cpus() * 4);
746 nr_events *= 2;
747
748 /* Prevent overflows */
749 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
750 pr_debug("ENOMEM: nr_events too high\n");
751 return ERR_PTR(-EINVAL);
752 }
753
754 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
755 return ERR_PTR(-EAGAIN);
756
757 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
758 if (!ctx)
759 return ERR_PTR(-ENOMEM);
760
761 ctx->max_reqs = max_reqs;
762
763 spin_lock_init(&ctx->ctx_lock);
764 spin_lock_init(&ctx->completion_lock);
765 mutex_init(&ctx->ring_lock);
766 /* Protect against page migration throughout kiotx setup by keeping
767 * the ring_lock mutex held until setup is complete. */
768 mutex_lock(&ctx->ring_lock);
769 init_waitqueue_head(&ctx->wait);
770
771 INIT_LIST_HEAD(&ctx->active_reqs);
772
773 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
774 goto err;
775
776 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
777 goto err;
778
779 ctx->cpu = alloc_percpu(struct kioctx_cpu);
780 if (!ctx->cpu)
781 goto err;
782
783 err = aio_setup_ring(ctx, nr_events);
784 if (err < 0)
785 goto err;
786
787 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
788 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
789 if (ctx->req_batch < 1)
790 ctx->req_batch = 1;
791
792 /* limit the number of system wide aios */
793 spin_lock(&aio_nr_lock);
794 if (aio_nr + ctx->max_reqs > aio_max_nr ||
795 aio_nr + ctx->max_reqs < aio_nr) {
796 spin_unlock(&aio_nr_lock);
797 err = -EAGAIN;
798 goto err_ctx;
799 }
800 aio_nr += ctx->max_reqs;
801 spin_unlock(&aio_nr_lock);
802
803 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
804 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
805
806 err = ioctx_add_table(ctx, mm);
807 if (err)
808 goto err_cleanup;
809
810 /* Release the ring_lock mutex now that all setup is complete. */
811 mutex_unlock(&ctx->ring_lock);
812
813 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
814 ctx, ctx->user_id, mm, ctx->nr_events);
815 return ctx;
816
817 err_cleanup:
818 aio_nr_sub(ctx->max_reqs);
819 err_ctx:
820 atomic_set(&ctx->dead, 1);
821 if (ctx->mmap_size)
822 vm_munmap(ctx->mmap_base, ctx->mmap_size);
823 aio_free_ring(ctx);
824 err:
825 mutex_unlock(&ctx->ring_lock);
826 free_percpu(ctx->cpu);
827 percpu_ref_exit(&ctx->reqs);
828 percpu_ref_exit(&ctx->users);
829 kmem_cache_free(kioctx_cachep, ctx);
830 pr_debug("error allocating ioctx %d\n", err);
831 return ERR_PTR(err);
832 }
833
834 /* kill_ioctx
835 * Cancels all outstanding aio requests on an aio context. Used
836 * when the processes owning a context have all exited to encourage
837 * the rapid destruction of the kioctx.
838 */
839 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
840 struct ctx_rq_wait *wait)
841 {
842 struct kioctx_table *table;
843
844 spin_lock(&mm->ioctx_lock);
845 if (atomic_xchg(&ctx->dead, 1)) {
846 spin_unlock(&mm->ioctx_lock);
847 return -EINVAL;
848 }
849
850 table = rcu_dereference_raw(mm->ioctx_table);
851 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
852 RCU_INIT_POINTER(table->table[ctx->id], NULL);
853 spin_unlock(&mm->ioctx_lock);
854
855 /* free_ioctx_reqs() will do the necessary RCU synchronization */
856 wake_up_all(&ctx->wait);
857
858 /*
859 * It'd be more correct to do this in free_ioctx(), after all
860 * the outstanding kiocbs have finished - but by then io_destroy
861 * has already returned, so io_setup() could potentially return
862 * -EAGAIN with no ioctxs actually in use (as far as userspace
863 * could tell).
864 */
865 aio_nr_sub(ctx->max_reqs);
866
867 if (ctx->mmap_size)
868 vm_munmap(ctx->mmap_base, ctx->mmap_size);
869
870 ctx->rq_wait = wait;
871 percpu_ref_kill(&ctx->users);
872 return 0;
873 }
874
875 /*
876 * exit_aio: called when the last user of mm goes away. At this point, there is
877 * no way for any new requests to be submited or any of the io_* syscalls to be
878 * called on the context.
879 *
880 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
881 * them.
882 */
883 void exit_aio(struct mm_struct *mm)
884 {
885 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
886 struct ctx_rq_wait wait;
887 int i, skipped;
888
889 if (!table)
890 return;
891
892 atomic_set(&wait.count, table->nr);
893 init_completion(&wait.comp);
894
895 skipped = 0;
896 for (i = 0; i < table->nr; ++i) {
897 struct kioctx *ctx =
898 rcu_dereference_protected(table->table[i], true);
899
900 if (!ctx) {
901 skipped++;
902 continue;
903 }
904
905 /*
906 * We don't need to bother with munmap() here - exit_mmap(mm)
907 * is coming and it'll unmap everything. And we simply can't,
908 * this is not necessarily our ->mm.
909 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
910 * that it needs to unmap the area, just set it to 0.
911 */
912 ctx->mmap_size = 0;
913 kill_ioctx(mm, ctx, &wait);
914 }
915
916 if (!atomic_sub_and_test(skipped, &wait.count)) {
917 /* Wait until all IO for the context are done. */
918 wait_for_completion(&wait.comp);
919 }
920
921 RCU_INIT_POINTER(mm->ioctx_table, NULL);
922 kfree(table);
923 }
924
925 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
926 {
927 struct kioctx_cpu *kcpu;
928 unsigned long flags;
929
930 local_irq_save(flags);
931 kcpu = this_cpu_ptr(ctx->cpu);
932 kcpu->reqs_available += nr;
933
934 while (kcpu->reqs_available >= ctx->req_batch * 2) {
935 kcpu->reqs_available -= ctx->req_batch;
936 atomic_add(ctx->req_batch, &ctx->reqs_available);
937 }
938
939 local_irq_restore(flags);
940 }
941
942 static bool get_reqs_available(struct kioctx *ctx)
943 {
944 struct kioctx_cpu *kcpu;
945 bool ret = false;
946 unsigned long flags;
947
948 local_irq_save(flags);
949 kcpu = this_cpu_ptr(ctx->cpu);
950 if (!kcpu->reqs_available) {
951 int old, avail = atomic_read(&ctx->reqs_available);
952
953 do {
954 if (avail < ctx->req_batch)
955 goto out;
956
957 old = avail;
958 avail = atomic_cmpxchg(&ctx->reqs_available,
959 avail, avail - ctx->req_batch);
960 } while (avail != old);
961
962 kcpu->reqs_available += ctx->req_batch;
963 }
964
965 ret = true;
966 kcpu->reqs_available--;
967 out:
968 local_irq_restore(flags);
969 return ret;
970 }
971
972 /* refill_reqs_available
973 * Updates the reqs_available reference counts used for tracking the
974 * number of free slots in the completion ring. This can be called
975 * from aio_complete() (to optimistically update reqs_available) or
976 * from aio_get_req() (the we're out of events case). It must be
977 * called holding ctx->completion_lock.
978 */
979 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
980 unsigned tail)
981 {
982 unsigned events_in_ring, completed;
983
984 /* Clamp head since userland can write to it. */
985 head %= ctx->nr_events;
986 if (head <= tail)
987 events_in_ring = tail - head;
988 else
989 events_in_ring = ctx->nr_events - (head - tail);
990
991 completed = ctx->completed_events;
992 if (events_in_ring < completed)
993 completed -= events_in_ring;
994 else
995 completed = 0;
996
997 if (!completed)
998 return;
999
1000 ctx->completed_events -= completed;
1001 put_reqs_available(ctx, completed);
1002 }
1003
1004 /* user_refill_reqs_available
1005 * Called to refill reqs_available when aio_get_req() encounters an
1006 * out of space in the completion ring.
1007 */
1008 static void user_refill_reqs_available(struct kioctx *ctx)
1009 {
1010 spin_lock_irq(&ctx->completion_lock);
1011 if (ctx->completed_events) {
1012 struct aio_ring *ring;
1013 unsigned head;
1014
1015 /* Access of ring->head may race with aio_read_events_ring()
1016 * here, but that's okay since whether we read the old version
1017 * or the new version, and either will be valid. The important
1018 * part is that head cannot pass tail since we prevent
1019 * aio_complete() from updating tail by holding
1020 * ctx->completion_lock. Even if head is invalid, the check
1021 * against ctx->completed_events below will make sure we do the
1022 * safe/right thing.
1023 */
1024 ring = kmap_atomic(ctx->ring_pages[0]);
1025 head = ring->head;
1026 kunmap_atomic(ring);
1027
1028 refill_reqs_available(ctx, head, ctx->tail);
1029 }
1030
1031 spin_unlock_irq(&ctx->completion_lock);
1032 }
1033
1034 /* aio_get_req
1035 * Allocate a slot for an aio request.
1036 * Returns NULL if no requests are free.
1037 */
1038 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1039 {
1040 struct aio_kiocb *req;
1041
1042 if (!get_reqs_available(ctx)) {
1043 user_refill_reqs_available(ctx);
1044 if (!get_reqs_available(ctx))
1045 return NULL;
1046 }
1047
1048 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1049 if (unlikely(!req))
1050 goto out_put;
1051
1052 percpu_ref_get(&ctx->reqs);
1053
1054 req->ki_ctx = ctx;
1055 return req;
1056 out_put:
1057 put_reqs_available(ctx, 1);
1058 return NULL;
1059 }
1060
1061 static void kiocb_free(struct aio_kiocb *req)
1062 {
1063 if (req->common.ki_filp)
1064 fput(req->common.ki_filp);
1065 if (req->ki_eventfd != NULL)
1066 eventfd_ctx_put(req->ki_eventfd);
1067 kmem_cache_free(kiocb_cachep, req);
1068 }
1069
1070 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1071 {
1072 struct aio_ring __user *ring = (void __user *)ctx_id;
1073 struct mm_struct *mm = current->mm;
1074 struct kioctx *ctx, *ret = NULL;
1075 struct kioctx_table *table;
1076 unsigned id;
1077
1078 if (get_user(id, &ring->id))
1079 return NULL;
1080
1081 rcu_read_lock();
1082 table = rcu_dereference(mm->ioctx_table);
1083
1084 if (!table || id >= table->nr)
1085 goto out;
1086
1087 ctx = rcu_dereference(table->table[id]);
1088 if (ctx && ctx->user_id == ctx_id) {
1089 if (percpu_ref_tryget_live(&ctx->users))
1090 ret = ctx;
1091 }
1092 out:
1093 rcu_read_unlock();
1094 return ret;
1095 }
1096
1097 /* aio_complete
1098 * Called when the io request on the given iocb is complete.
1099 */
1100 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1101 {
1102 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1103 struct kioctx *ctx = iocb->ki_ctx;
1104 struct aio_ring *ring;
1105 struct io_event *ev_page, *event;
1106 unsigned tail, pos, head;
1107 unsigned long flags;
1108
1109 if (kiocb->ki_flags & IOCB_WRITE) {
1110 struct file *file = kiocb->ki_filp;
1111
1112 /*
1113 * Tell lockdep we inherited freeze protection from submission
1114 * thread.
1115 */
1116 if (S_ISREG(file_inode(file)->i_mode))
1117 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1118 file_end_write(file);
1119 }
1120
1121 /*
1122 * Special case handling for sync iocbs:
1123 * - events go directly into the iocb for fast handling
1124 * - the sync task with the iocb in its stack holds the single iocb
1125 * ref, no other paths have a way to get another ref
1126 * - the sync task helpfully left a reference to itself in the iocb
1127 */
1128 BUG_ON(is_sync_kiocb(kiocb));
1129
1130 if (iocb->ki_list.next) {
1131 unsigned long flags;
1132
1133 spin_lock_irqsave(&ctx->ctx_lock, flags);
1134 list_del(&iocb->ki_list);
1135 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1136 }
1137
1138 /*
1139 * Add a completion event to the ring buffer. Must be done holding
1140 * ctx->completion_lock to prevent other code from messing with the tail
1141 * pointer since we might be called from irq context.
1142 */
1143 spin_lock_irqsave(&ctx->completion_lock, flags);
1144
1145 tail = ctx->tail;
1146 pos = tail + AIO_EVENTS_OFFSET;
1147
1148 if (++tail >= ctx->nr_events)
1149 tail = 0;
1150
1151 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1152 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1153
1154 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1155 event->data = iocb->ki_user_data;
1156 event->res = res;
1157 event->res2 = res2;
1158
1159 kunmap_atomic(ev_page);
1160 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1161
1162 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1163 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1164 res, res2);
1165
1166 /* after flagging the request as done, we
1167 * must never even look at it again
1168 */
1169 smp_wmb(); /* make event visible before updating tail */
1170
1171 ctx->tail = tail;
1172
1173 ring = kmap_atomic(ctx->ring_pages[0]);
1174 head = ring->head;
1175 ring->tail = tail;
1176 kunmap_atomic(ring);
1177 flush_dcache_page(ctx->ring_pages[0]);
1178
1179 ctx->completed_events++;
1180 if (ctx->completed_events > 1)
1181 refill_reqs_available(ctx, head, tail);
1182 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1183
1184 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1185
1186 /*
1187 * Check if the user asked us to deliver the result through an
1188 * eventfd. The eventfd_signal() function is safe to be called
1189 * from IRQ context.
1190 */
1191 if (iocb->ki_eventfd != NULL)
1192 eventfd_signal(iocb->ki_eventfd, 1);
1193
1194 /* everything turned out well, dispose of the aiocb. */
1195 kiocb_free(iocb);
1196
1197 /*
1198 * We have to order our ring_info tail store above and test
1199 * of the wait list below outside the wait lock. This is
1200 * like in wake_up_bit() where clearing a bit has to be
1201 * ordered with the unlocked test.
1202 */
1203 smp_mb();
1204
1205 if (waitqueue_active(&ctx->wait))
1206 wake_up(&ctx->wait);
1207
1208 percpu_ref_put(&ctx->reqs);
1209 }
1210
1211 /* aio_read_events_ring
1212 * Pull an event off of the ioctx's event ring. Returns the number of
1213 * events fetched
1214 */
1215 static long aio_read_events_ring(struct kioctx *ctx,
1216 struct io_event __user *event, long nr)
1217 {
1218 struct aio_ring *ring;
1219 unsigned head, tail, pos;
1220 long ret = 0;
1221 int copy_ret;
1222
1223 /*
1224 * The mutex can block and wake us up and that will cause
1225 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1226 * and repeat. This should be rare enough that it doesn't cause
1227 * peformance issues. See the comment in read_events() for more detail.
1228 */
1229 sched_annotate_sleep();
1230 mutex_lock(&ctx->ring_lock);
1231
1232 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1233 ring = kmap_atomic(ctx->ring_pages[0]);
1234 head = ring->head;
1235 tail = ring->tail;
1236 kunmap_atomic(ring);
1237
1238 /*
1239 * Ensure that once we've read the current tail pointer, that
1240 * we also see the events that were stored up to the tail.
1241 */
1242 smp_rmb();
1243
1244 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1245
1246 if (head == tail)
1247 goto out;
1248
1249 head %= ctx->nr_events;
1250 tail %= ctx->nr_events;
1251
1252 while (ret < nr) {
1253 long avail;
1254 struct io_event *ev;
1255 struct page *page;
1256
1257 avail = (head <= tail ? tail : ctx->nr_events) - head;
1258 if (head == tail)
1259 break;
1260
1261 avail = min(avail, nr - ret);
1262 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1263 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1264
1265 pos = head + AIO_EVENTS_OFFSET;
1266 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1267 pos %= AIO_EVENTS_PER_PAGE;
1268
1269 ev = kmap(page);
1270 copy_ret = copy_to_user(event + ret, ev + pos,
1271 sizeof(*ev) * avail);
1272 kunmap(page);
1273
1274 if (unlikely(copy_ret)) {
1275 ret = -EFAULT;
1276 goto out;
1277 }
1278
1279 ret += avail;
1280 head += avail;
1281 head %= ctx->nr_events;
1282 }
1283
1284 ring = kmap_atomic(ctx->ring_pages[0]);
1285 ring->head = head;
1286 kunmap_atomic(ring);
1287 flush_dcache_page(ctx->ring_pages[0]);
1288
1289 pr_debug("%li h%u t%u\n", ret, head, tail);
1290 out:
1291 mutex_unlock(&ctx->ring_lock);
1292
1293 return ret;
1294 }
1295
1296 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1297 struct io_event __user *event, long *i)
1298 {
1299 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1300
1301 if (ret > 0)
1302 *i += ret;
1303
1304 if (unlikely(atomic_read(&ctx->dead)))
1305 ret = -EINVAL;
1306
1307 if (!*i)
1308 *i = ret;
1309
1310 return ret < 0 || *i >= min_nr;
1311 }
1312
1313 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1314 struct io_event __user *event,
1315 ktime_t until)
1316 {
1317 long ret = 0;
1318
1319 /*
1320 * Note that aio_read_events() is being called as the conditional - i.e.
1321 * we're calling it after prepare_to_wait() has set task state to
1322 * TASK_INTERRUPTIBLE.
1323 *
1324 * But aio_read_events() can block, and if it blocks it's going to flip
1325 * the task state back to TASK_RUNNING.
1326 *
1327 * This should be ok, provided it doesn't flip the state back to
1328 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1329 * will only happen if the mutex_lock() call blocks, and we then find
1330 * the ringbuffer empty. So in practice we should be ok, but it's
1331 * something to be aware of when touching this code.
1332 */
1333 if (until == 0)
1334 aio_read_events(ctx, min_nr, nr, event, &ret);
1335 else
1336 wait_event_interruptible_hrtimeout(ctx->wait,
1337 aio_read_events(ctx, min_nr, nr, event, &ret),
1338 until);
1339
1340 if (!ret && signal_pending(current))
1341 ret = -EINTR;
1342
1343 return ret;
1344 }
1345
1346 /* sys_io_setup:
1347 * Create an aio_context capable of receiving at least nr_events.
1348 * ctxp must not point to an aio_context that already exists, and
1349 * must be initialized to 0 prior to the call. On successful
1350 * creation of the aio_context, *ctxp is filled in with the resulting
1351 * handle. May fail with -EINVAL if *ctxp is not initialized,
1352 * if the specified nr_events exceeds internal limits. May fail
1353 * with -EAGAIN if the specified nr_events exceeds the user's limit
1354 * of available events. May fail with -ENOMEM if insufficient kernel
1355 * resources are available. May fail with -EFAULT if an invalid
1356 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1357 * implemented.
1358 */
1359 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1360 {
1361 struct kioctx *ioctx = NULL;
1362 unsigned long ctx;
1363 long ret;
1364
1365 ret = get_user(ctx, ctxp);
1366 if (unlikely(ret))
1367 goto out;
1368
1369 ret = -EINVAL;
1370 if (unlikely(ctx || nr_events == 0)) {
1371 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1372 ctx, nr_events);
1373 goto out;
1374 }
1375
1376 ioctx = ioctx_alloc(nr_events);
1377 ret = PTR_ERR(ioctx);
1378 if (!IS_ERR(ioctx)) {
1379 ret = put_user(ioctx->user_id, ctxp);
1380 if (ret)
1381 kill_ioctx(current->mm, ioctx, NULL);
1382 percpu_ref_put(&ioctx->users);
1383 }
1384
1385 out:
1386 return ret;
1387 }
1388
1389 #ifdef CONFIG_COMPAT
1390 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1391 {
1392 struct kioctx *ioctx = NULL;
1393 unsigned long ctx;
1394 long ret;
1395
1396 ret = get_user(ctx, ctx32p);
1397 if (unlikely(ret))
1398 goto out;
1399
1400 ret = -EINVAL;
1401 if (unlikely(ctx || nr_events == 0)) {
1402 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1403 ctx, nr_events);
1404 goto out;
1405 }
1406
1407 ioctx = ioctx_alloc(nr_events);
1408 ret = PTR_ERR(ioctx);
1409 if (!IS_ERR(ioctx)) {
1410 /* truncating is ok because it's a user address */
1411 ret = put_user((u32)ioctx->user_id, ctx32p);
1412 if (ret)
1413 kill_ioctx(current->mm, ioctx, NULL);
1414 percpu_ref_put(&ioctx->users);
1415 }
1416
1417 out:
1418 return ret;
1419 }
1420 #endif
1421
1422 /* sys_io_destroy:
1423 * Destroy the aio_context specified. May cancel any outstanding
1424 * AIOs and block on completion. Will fail with -ENOSYS if not
1425 * implemented. May fail with -EINVAL if the context pointed to
1426 * is invalid.
1427 */
1428 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1429 {
1430 struct kioctx *ioctx = lookup_ioctx(ctx);
1431 if (likely(NULL != ioctx)) {
1432 struct ctx_rq_wait wait;
1433 int ret;
1434
1435 init_completion(&wait.comp);
1436 atomic_set(&wait.count, 1);
1437
1438 /* Pass requests_done to kill_ioctx() where it can be set
1439 * in a thread-safe way. If we try to set it here then we have
1440 * a race condition if two io_destroy() called simultaneously.
1441 */
1442 ret = kill_ioctx(current->mm, ioctx, &wait);
1443 percpu_ref_put(&ioctx->users);
1444
1445 /* Wait until all IO for the context are done. Otherwise kernel
1446 * keep using user-space buffers even if user thinks the context
1447 * is destroyed.
1448 */
1449 if (!ret)
1450 wait_for_completion(&wait.comp);
1451
1452 return ret;
1453 }
1454 pr_debug("EINVAL: invalid context id\n");
1455 return -EINVAL;
1456 }
1457
1458 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1459 bool vectored, bool compat, struct iov_iter *iter)
1460 {
1461 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1462 size_t len = iocb->aio_nbytes;
1463
1464 if (!vectored) {
1465 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1466 *iovec = NULL;
1467 return ret;
1468 }
1469 #ifdef CONFIG_COMPAT
1470 if (compat)
1471 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1472 iter);
1473 #endif
1474 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1475 }
1476
1477 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1478 {
1479 switch (ret) {
1480 case -EIOCBQUEUED:
1481 return ret;
1482 case -ERESTARTSYS:
1483 case -ERESTARTNOINTR:
1484 case -ERESTARTNOHAND:
1485 case -ERESTART_RESTARTBLOCK:
1486 /*
1487 * There's no easy way to restart the syscall since other AIO's
1488 * may be already running. Just fail this IO with EINTR.
1489 */
1490 ret = -EINTR;
1491 /*FALLTHRU*/
1492 default:
1493 aio_complete(req, ret, 0);
1494 return 0;
1495 }
1496 }
1497
1498 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1499 bool compat)
1500 {
1501 struct file *file = req->ki_filp;
1502 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1503 struct iov_iter iter;
1504 ssize_t ret;
1505
1506 if (unlikely(!(file->f_mode & FMODE_READ)))
1507 return -EBADF;
1508 if (unlikely(!file->f_op->read_iter))
1509 return -EINVAL;
1510
1511 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1512 if (ret)
1513 return ret;
1514 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1515 if (!ret)
1516 ret = aio_ret(req, call_read_iter(file, req, &iter));
1517 kfree(iovec);
1518 return ret;
1519 }
1520
1521 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1522 bool compat)
1523 {
1524 struct file *file = req->ki_filp;
1525 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1526 struct iov_iter iter;
1527 ssize_t ret;
1528
1529 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1530 return -EBADF;
1531 if (unlikely(!file->f_op->write_iter))
1532 return -EINVAL;
1533
1534 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1535 if (ret)
1536 return ret;
1537 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1538 if (!ret) {
1539 req->ki_flags |= IOCB_WRITE;
1540 file_start_write(file);
1541 ret = aio_ret(req, call_write_iter(file, req, &iter));
1542 /*
1543 * We release freeze protection in aio_complete(). Fool lockdep
1544 * by telling it the lock got released so that it doesn't
1545 * complain about held lock when we return to userspace.
1546 */
1547 if (S_ISREG(file_inode(file)->i_mode))
1548 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1549 }
1550 kfree(iovec);
1551 return ret;
1552 }
1553
1554 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1555 struct iocb *iocb, bool compat)
1556 {
1557 struct aio_kiocb *req;
1558 struct file *file;
1559 ssize_t ret;
1560
1561 /* enforce forwards compatibility on users */
1562 if (unlikely(iocb->aio_reserved2)) {
1563 pr_debug("EINVAL: reserve field set\n");
1564 return -EINVAL;
1565 }
1566
1567 /* prevent overflows */
1568 if (unlikely(
1569 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1570 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1571 ((ssize_t)iocb->aio_nbytes < 0)
1572 )) {
1573 pr_debug("EINVAL: overflow check\n");
1574 return -EINVAL;
1575 }
1576
1577 req = aio_get_req(ctx);
1578 if (unlikely(!req))
1579 return -EAGAIN;
1580
1581 req->common.ki_filp = file = fget(iocb->aio_fildes);
1582 if (unlikely(!req->common.ki_filp)) {
1583 ret = -EBADF;
1584 goto out_put_req;
1585 }
1586 req->common.ki_pos = iocb->aio_offset;
1587 req->common.ki_complete = aio_complete;
1588 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1589 req->common.ki_hint = file_write_hint(file);
1590
1591 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1592 /*
1593 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1594 * instance of the file* now. The file descriptor must be
1595 * an eventfd() fd, and will be signaled for each completed
1596 * event using the eventfd_signal() function.
1597 */
1598 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1599 if (IS_ERR(req->ki_eventfd)) {
1600 ret = PTR_ERR(req->ki_eventfd);
1601 req->ki_eventfd = NULL;
1602 goto out_put_req;
1603 }
1604
1605 req->common.ki_flags |= IOCB_EVENTFD;
1606 }
1607
1608 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1609 if (unlikely(ret)) {
1610 pr_debug("EINVAL: aio_rw_flags\n");
1611 goto out_put_req;
1612 }
1613
1614 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1615 if (unlikely(ret)) {
1616 pr_debug("EFAULT: aio_key\n");
1617 goto out_put_req;
1618 }
1619
1620 req->ki_user_iocb = user_iocb;
1621 req->ki_user_data = iocb->aio_data;
1622
1623 get_file(file);
1624 switch (iocb->aio_lio_opcode) {
1625 case IOCB_CMD_PREAD:
1626 ret = aio_read(&req->common, iocb, false, compat);
1627 break;
1628 case IOCB_CMD_PWRITE:
1629 ret = aio_write(&req->common, iocb, false, compat);
1630 break;
1631 case IOCB_CMD_PREADV:
1632 ret = aio_read(&req->common, iocb, true, compat);
1633 break;
1634 case IOCB_CMD_PWRITEV:
1635 ret = aio_write(&req->common, iocb, true, compat);
1636 break;
1637 default:
1638 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1639 ret = -EINVAL;
1640 break;
1641 }
1642 fput(file);
1643
1644 if (ret && ret != -EIOCBQUEUED)
1645 goto out_put_req;
1646 return 0;
1647 out_put_req:
1648 put_reqs_available(ctx, 1);
1649 percpu_ref_put(&ctx->reqs);
1650 kiocb_free(req);
1651 return ret;
1652 }
1653
1654 static long do_io_submit(aio_context_t ctx_id, long nr,
1655 struct iocb __user *__user *iocbpp, bool compat)
1656 {
1657 struct kioctx *ctx;
1658 long ret = 0;
1659 int i = 0;
1660 struct blk_plug plug;
1661
1662 if (unlikely(nr < 0))
1663 return -EINVAL;
1664
1665 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1666 nr = LONG_MAX/sizeof(*iocbpp);
1667
1668 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1669 return -EFAULT;
1670
1671 ctx = lookup_ioctx(ctx_id);
1672 if (unlikely(!ctx)) {
1673 pr_debug("EINVAL: invalid context id\n");
1674 return -EINVAL;
1675 }
1676
1677 blk_start_plug(&plug);
1678
1679 /*
1680 * AKPM: should this return a partial result if some of the IOs were
1681 * successfully submitted?
1682 */
1683 for (i=0; i<nr; i++) {
1684 struct iocb __user *user_iocb;
1685 struct iocb tmp;
1686
1687 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1688 ret = -EFAULT;
1689 break;
1690 }
1691
1692 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1693 ret = -EFAULT;
1694 break;
1695 }
1696
1697 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1698 if (ret)
1699 break;
1700 }
1701 blk_finish_plug(&plug);
1702
1703 percpu_ref_put(&ctx->users);
1704 return i ? i : ret;
1705 }
1706
1707 /* sys_io_submit:
1708 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1709 * the number of iocbs queued. May return -EINVAL if the aio_context
1710 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1711 * *iocbpp[0] is not properly initialized, if the operation specified
1712 * is invalid for the file descriptor in the iocb. May fail with
1713 * -EFAULT if any of the data structures point to invalid data. May
1714 * fail with -EBADF if the file descriptor specified in the first
1715 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1716 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1717 * fail with -ENOSYS if not implemented.
1718 */
1719 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1720 struct iocb __user * __user *, iocbpp)
1721 {
1722 return do_io_submit(ctx_id, nr, iocbpp, 0);
1723 }
1724
1725 #ifdef CONFIG_COMPAT
1726 static inline long
1727 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1728 {
1729 compat_uptr_t uptr;
1730 int i;
1731
1732 for (i = 0; i < nr; ++i) {
1733 if (get_user(uptr, ptr32 + i))
1734 return -EFAULT;
1735 if (put_user(compat_ptr(uptr), ptr64 + i))
1736 return -EFAULT;
1737 }
1738 return 0;
1739 }
1740
1741 #define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *))
1742
1743 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1744 int, nr, u32 __user *, iocb)
1745 {
1746 struct iocb __user * __user *iocb64;
1747 long ret;
1748
1749 if (unlikely(nr < 0))
1750 return -EINVAL;
1751
1752 if (nr > MAX_AIO_SUBMITS)
1753 nr = MAX_AIO_SUBMITS;
1754
1755 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1756 ret = copy_iocb(nr, iocb, iocb64);
1757 if (!ret)
1758 ret = do_io_submit(ctx_id, nr, iocb64, 1);
1759 return ret;
1760 }
1761 #endif
1762
1763 /* lookup_kiocb
1764 * Finds a given iocb for cancellation.
1765 */
1766 static struct aio_kiocb *
1767 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1768 {
1769 struct aio_kiocb *kiocb;
1770
1771 assert_spin_locked(&ctx->ctx_lock);
1772
1773 if (key != KIOCB_KEY)
1774 return NULL;
1775
1776 /* TODO: use a hash or array, this sucks. */
1777 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1778 if (kiocb->ki_user_iocb == iocb)
1779 return kiocb;
1780 }
1781 return NULL;
1782 }
1783
1784 /* sys_io_cancel:
1785 * Attempts to cancel an iocb previously passed to io_submit. If
1786 * the operation is successfully cancelled, the resulting event is
1787 * copied into the memory pointed to by result without being placed
1788 * into the completion queue and 0 is returned. May fail with
1789 * -EFAULT if any of the data structures pointed to are invalid.
1790 * May fail with -EINVAL if aio_context specified by ctx_id is
1791 * invalid. May fail with -EAGAIN if the iocb specified was not
1792 * cancelled. Will fail with -ENOSYS if not implemented.
1793 */
1794 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1795 struct io_event __user *, result)
1796 {
1797 struct kioctx *ctx;
1798 struct aio_kiocb *kiocb;
1799 u32 key;
1800 int ret;
1801
1802 ret = get_user(key, &iocb->aio_key);
1803 if (unlikely(ret))
1804 return -EFAULT;
1805
1806 ctx = lookup_ioctx(ctx_id);
1807 if (unlikely(!ctx))
1808 return -EINVAL;
1809
1810 spin_lock_irq(&ctx->ctx_lock);
1811
1812 kiocb = lookup_kiocb(ctx, iocb, key);
1813 if (kiocb)
1814 ret = kiocb_cancel(kiocb);
1815 else
1816 ret = -EINVAL;
1817
1818 spin_unlock_irq(&ctx->ctx_lock);
1819
1820 if (!ret) {
1821 /*
1822 * The result argument is no longer used - the io_event is
1823 * always delivered via the ring buffer. -EINPROGRESS indicates
1824 * cancellation is progress:
1825 */
1826 ret = -EINPROGRESS;
1827 }
1828
1829 percpu_ref_put(&ctx->users);
1830
1831 return ret;
1832 }
1833
1834 static long do_io_getevents(aio_context_t ctx_id,
1835 long min_nr,
1836 long nr,
1837 struct io_event __user *events,
1838 struct timespec64 *ts)
1839 {
1840 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1841 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1842 long ret = -EINVAL;
1843
1844 if (likely(ioctx)) {
1845 if (likely(min_nr <= nr && min_nr >= 0))
1846 ret = read_events(ioctx, min_nr, nr, events, until);
1847 percpu_ref_put(&ioctx->users);
1848 }
1849
1850 return ret;
1851 }
1852
1853 /* io_getevents:
1854 * Attempts to read at least min_nr events and up to nr events from
1855 * the completion queue for the aio_context specified by ctx_id. If
1856 * it succeeds, the number of read events is returned. May fail with
1857 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1858 * out of range, if timeout is out of range. May fail with -EFAULT
1859 * if any of the memory specified is invalid. May return 0 or
1860 * < min_nr if the timeout specified by timeout has elapsed
1861 * before sufficient events are available, where timeout == NULL
1862 * specifies an infinite timeout. Note that the timeout pointed to by
1863 * timeout is relative. Will fail with -ENOSYS if not implemented.
1864 */
1865 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1866 long, min_nr,
1867 long, nr,
1868 struct io_event __user *, events,
1869 struct timespec __user *, timeout)
1870 {
1871 struct timespec64 ts;
1872
1873 if (timeout) {
1874 if (unlikely(get_timespec64(&ts, timeout)))
1875 return -EFAULT;
1876 }
1877
1878 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1879 }
1880
1881 #ifdef CONFIG_COMPAT
1882 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1883 compat_long_t, min_nr,
1884 compat_long_t, nr,
1885 struct io_event __user *, events,
1886 struct compat_timespec __user *, timeout)
1887 {
1888 struct timespec64 t;
1889
1890 if (timeout) {
1891 if (compat_get_timespec64(&t, timeout))
1892 return -EFAULT;
1893
1894 }
1895
1896 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1897 }
1898 #endif