]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/aio.c
fs: dcache: Use READ_ONCE when accessing i_dir_seq
[mirror_ubuntu-bionic-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx __rcu *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83 };
84
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct rcu_head free_rcu;
119 struct work_struct free_work; /* see free_ioctx() */
120
121 /*
122 * signals when all in-flight requests are done
123 */
124 struct ctx_rq_wait *rq_wait;
125
126 struct {
127 /*
128 * This counts the number of available slots in the ringbuffer,
129 * so we avoid overflowing it: it's decremented (if positive)
130 * when allocating a kiocb and incremented when the resulting
131 * io_event is pulled off the ringbuffer.
132 *
133 * We batch accesses to it with a percpu version.
134 */
135 atomic_t reqs_available;
136 } ____cacheline_aligned_in_smp;
137
138 struct {
139 spinlock_t ctx_lock;
140 struct list_head active_reqs; /* used for cancellation */
141 } ____cacheline_aligned_in_smp;
142
143 struct {
144 struct mutex ring_lock;
145 wait_queue_head_t wait;
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 unsigned tail;
150 unsigned completed_events;
151 spinlock_t completion_lock;
152 } ____cacheline_aligned_in_smp;
153
154 struct page *internal_pages[AIO_RING_PAGES];
155 struct file *aio_ring_file;
156
157 unsigned id;
158 };
159
160 /*
161 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
162 * cancelled or completed (this makes a certain amount of sense because
163 * successful cancellation - io_cancel() - does deliver the completion to
164 * userspace).
165 *
166 * And since most things don't implement kiocb cancellation and we'd really like
167 * kiocb completion to be lockless when possible, we use ki_cancel to
168 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
169 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170 */
171 #define KIOCB_CANCELLED ((void *) (~0ULL))
172
173 struct aio_kiocb {
174 struct kiocb common;
175
176 struct kioctx *ki_ctx;
177 kiocb_cancel_fn *ki_cancel;
178
179 struct iocb __user *ki_user_iocb; /* user's aiocb */
180 __u64 ki_user_data; /* user's data for completion */
181
182 struct list_head ki_list; /* the aio core uses this
183 * for cancellation */
184
185 /*
186 * If the aio_resfd field of the userspace iocb is not zero,
187 * this is the underlying eventfd context to deliver events to.
188 */
189 struct eventfd_ctx *ki_eventfd;
190 };
191
192 /*------ sysctl variables----*/
193 static DEFINE_SPINLOCK(aio_nr_lock);
194 unsigned long aio_nr; /* current system wide number of aio requests */
195 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
196 /*----end sysctl variables---*/
197
198 static struct kmem_cache *kiocb_cachep;
199 static struct kmem_cache *kioctx_cachep;
200
201 static struct vfsmount *aio_mnt;
202
203 static const struct file_operations aio_ring_fops;
204 static const struct address_space_operations aio_ctx_aops;
205
206 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
207 {
208 struct qstr this = QSTR_INIT("[aio]", 5);
209 struct file *file;
210 struct path path;
211 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
212 if (IS_ERR(inode))
213 return ERR_CAST(inode);
214
215 inode->i_mapping->a_ops = &aio_ctx_aops;
216 inode->i_mapping->private_data = ctx;
217 inode->i_size = PAGE_SIZE * nr_pages;
218
219 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
220 if (!path.dentry) {
221 iput(inode);
222 return ERR_PTR(-ENOMEM);
223 }
224 path.mnt = mntget(aio_mnt);
225
226 d_instantiate(path.dentry, inode);
227 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
228 if (IS_ERR(file)) {
229 path_put(&path);
230 return file;
231 }
232
233 file->f_flags = O_RDWR;
234 return file;
235 }
236
237 static struct dentry *aio_mount(struct file_system_type *fs_type,
238 int flags, const char *dev_name, void *data)
239 {
240 static const struct dentry_operations ops = {
241 .d_dname = simple_dname,
242 };
243 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
244 AIO_RING_MAGIC);
245
246 if (!IS_ERR(root))
247 root->d_sb->s_iflags |= SB_I_NOEXEC;
248 return root;
249 }
250
251 /* aio_setup
252 * Creates the slab caches used by the aio routines, panic on
253 * failure as this is done early during the boot sequence.
254 */
255 static int __init aio_setup(void)
256 {
257 static struct file_system_type aio_fs = {
258 .name = "aio",
259 .mount = aio_mount,
260 .kill_sb = kill_anon_super,
261 };
262 aio_mnt = kern_mount(&aio_fs);
263 if (IS_ERR(aio_mnt))
264 panic("Failed to create aio fs mount.");
265
266 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268
269 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
270
271 return 0;
272 }
273 __initcall(aio_setup);
274
275 static void put_aio_ring_file(struct kioctx *ctx)
276 {
277 struct file *aio_ring_file = ctx->aio_ring_file;
278 struct address_space *i_mapping;
279
280 if (aio_ring_file) {
281 truncate_setsize(file_inode(aio_ring_file), 0);
282
283 /* Prevent further access to the kioctx from migratepages */
284 i_mapping = aio_ring_file->f_mapping;
285 spin_lock(&i_mapping->private_lock);
286 i_mapping->private_data = NULL;
287 ctx->aio_ring_file = NULL;
288 spin_unlock(&i_mapping->private_lock);
289
290 fput(aio_ring_file);
291 }
292 }
293
294 static void aio_free_ring(struct kioctx *ctx)
295 {
296 int i;
297
298 /* Disconnect the kiotx from the ring file. This prevents future
299 * accesses to the kioctx from page migration.
300 */
301 put_aio_ring_file(ctx);
302
303 for (i = 0; i < ctx->nr_pages; i++) {
304 struct page *page;
305 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
306 page_count(ctx->ring_pages[i]));
307 page = ctx->ring_pages[i];
308 if (!page)
309 continue;
310 ctx->ring_pages[i] = NULL;
311 put_page(page);
312 }
313
314 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
315 kfree(ctx->ring_pages);
316 ctx->ring_pages = NULL;
317 }
318 }
319
320 static int aio_ring_mremap(struct vm_area_struct *vma)
321 {
322 struct file *file = vma->vm_file;
323 struct mm_struct *mm = vma->vm_mm;
324 struct kioctx_table *table;
325 int i, res = -EINVAL;
326
327 spin_lock(&mm->ioctx_lock);
328 rcu_read_lock();
329 table = rcu_dereference(mm->ioctx_table);
330 for (i = 0; i < table->nr; i++) {
331 struct kioctx *ctx;
332
333 ctx = rcu_dereference(table->table[i]);
334 if (ctx && ctx->aio_ring_file == file) {
335 if (!atomic_read(&ctx->dead)) {
336 ctx->user_id = ctx->mmap_base = vma->vm_start;
337 res = 0;
338 }
339 break;
340 }
341 }
342
343 rcu_read_unlock();
344 spin_unlock(&mm->ioctx_lock);
345 return res;
346 }
347
348 static const struct vm_operations_struct aio_ring_vm_ops = {
349 .mremap = aio_ring_mremap,
350 #if IS_ENABLED(CONFIG_MMU)
351 .fault = filemap_fault,
352 .map_pages = filemap_map_pages,
353 .page_mkwrite = filemap_page_mkwrite,
354 #endif
355 };
356
357 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
358 {
359 vma->vm_flags |= VM_DONTEXPAND;
360 vma->vm_ops = &aio_ring_vm_ops;
361 return 0;
362 }
363
364 static const struct file_operations aio_ring_fops = {
365 .mmap = aio_ring_mmap,
366 };
367
368 #if IS_ENABLED(CONFIG_MIGRATION)
369 static int aio_migratepage(struct address_space *mapping, struct page *new,
370 struct page *old, enum migrate_mode mode)
371 {
372 struct kioctx *ctx;
373 unsigned long flags;
374 pgoff_t idx;
375 int rc;
376
377 /*
378 * We cannot support the _NO_COPY case here, because copy needs to
379 * happen under the ctx->completion_lock. That does not work with the
380 * migration workflow of MIGRATE_SYNC_NO_COPY.
381 */
382 if (mode == MIGRATE_SYNC_NO_COPY)
383 return -EINVAL;
384
385 rc = 0;
386
387 /* mapping->private_lock here protects against the kioctx teardown. */
388 spin_lock(&mapping->private_lock);
389 ctx = mapping->private_data;
390 if (!ctx) {
391 rc = -EINVAL;
392 goto out;
393 }
394
395 /* The ring_lock mutex. The prevents aio_read_events() from writing
396 * to the ring's head, and prevents page migration from mucking in
397 * a partially initialized kiotx.
398 */
399 if (!mutex_trylock(&ctx->ring_lock)) {
400 rc = -EAGAIN;
401 goto out;
402 }
403
404 idx = old->index;
405 if (idx < (pgoff_t)ctx->nr_pages) {
406 /* Make sure the old page hasn't already been changed */
407 if (ctx->ring_pages[idx] != old)
408 rc = -EAGAIN;
409 } else
410 rc = -EINVAL;
411
412 if (rc != 0)
413 goto out_unlock;
414
415 /* Writeback must be complete */
416 BUG_ON(PageWriteback(old));
417 get_page(new);
418
419 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
420 if (rc != MIGRATEPAGE_SUCCESS) {
421 put_page(new);
422 goto out_unlock;
423 }
424
425 /* Take completion_lock to prevent other writes to the ring buffer
426 * while the old page is copied to the new. This prevents new
427 * events from being lost.
428 */
429 spin_lock_irqsave(&ctx->completion_lock, flags);
430 migrate_page_copy(new, old);
431 BUG_ON(ctx->ring_pages[idx] != old);
432 ctx->ring_pages[idx] = new;
433 spin_unlock_irqrestore(&ctx->completion_lock, flags);
434
435 /* The old page is no longer accessible. */
436 put_page(old);
437
438 out_unlock:
439 mutex_unlock(&ctx->ring_lock);
440 out:
441 spin_unlock(&mapping->private_lock);
442 return rc;
443 }
444 #endif
445
446 static const struct address_space_operations aio_ctx_aops = {
447 .set_page_dirty = __set_page_dirty_no_writeback,
448 #if IS_ENABLED(CONFIG_MIGRATION)
449 .migratepage = aio_migratepage,
450 #endif
451 };
452
453 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
454 {
455 struct aio_ring *ring;
456 struct mm_struct *mm = current->mm;
457 unsigned long size, unused;
458 int nr_pages;
459 int i;
460 struct file *file;
461
462 /* Compensate for the ring buffer's head/tail overlap entry */
463 nr_events += 2; /* 1 is required, 2 for good luck */
464
465 size = sizeof(struct aio_ring);
466 size += sizeof(struct io_event) * nr_events;
467
468 nr_pages = PFN_UP(size);
469 if (nr_pages < 0)
470 return -EINVAL;
471
472 file = aio_private_file(ctx, nr_pages);
473 if (IS_ERR(file)) {
474 ctx->aio_ring_file = NULL;
475 return -ENOMEM;
476 }
477
478 ctx->aio_ring_file = file;
479 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
480 / sizeof(struct io_event);
481
482 ctx->ring_pages = ctx->internal_pages;
483 if (nr_pages > AIO_RING_PAGES) {
484 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
485 GFP_KERNEL);
486 if (!ctx->ring_pages) {
487 put_aio_ring_file(ctx);
488 return -ENOMEM;
489 }
490 }
491
492 for (i = 0; i < nr_pages; i++) {
493 struct page *page;
494 page = find_or_create_page(file->f_mapping,
495 i, GFP_HIGHUSER | __GFP_ZERO);
496 if (!page)
497 break;
498 pr_debug("pid(%d) page[%d]->count=%d\n",
499 current->pid, i, page_count(page));
500 SetPageUptodate(page);
501 unlock_page(page);
502
503 ctx->ring_pages[i] = page;
504 }
505 ctx->nr_pages = i;
506
507 if (unlikely(i != nr_pages)) {
508 aio_free_ring(ctx);
509 return -ENOMEM;
510 }
511
512 ctx->mmap_size = nr_pages * PAGE_SIZE;
513 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
514
515 if (down_write_killable(&mm->mmap_sem)) {
516 ctx->mmap_size = 0;
517 aio_free_ring(ctx);
518 return -EINTR;
519 }
520
521 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
522 PROT_READ | PROT_WRITE,
523 MAP_SHARED, 0, &unused, NULL);
524 up_write(&mm->mmap_sem);
525 if (IS_ERR((void *)ctx->mmap_base)) {
526 ctx->mmap_size = 0;
527 aio_free_ring(ctx);
528 return -ENOMEM;
529 }
530
531 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
532
533 ctx->user_id = ctx->mmap_base;
534 ctx->nr_events = nr_events; /* trusted copy */
535
536 ring = kmap_atomic(ctx->ring_pages[0]);
537 ring->nr = nr_events; /* user copy */
538 ring->id = ~0U;
539 ring->head = ring->tail = 0;
540 ring->magic = AIO_RING_MAGIC;
541 ring->compat_features = AIO_RING_COMPAT_FEATURES;
542 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
543 ring->header_length = sizeof(struct aio_ring);
544 kunmap_atomic(ring);
545 flush_dcache_page(ctx->ring_pages[0]);
546
547 return 0;
548 }
549
550 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
551 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
552 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
553
554 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
555 {
556 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
557 struct kioctx *ctx = req->ki_ctx;
558 unsigned long flags;
559
560 spin_lock_irqsave(&ctx->ctx_lock, flags);
561
562 if (!req->ki_list.next)
563 list_add(&req->ki_list, &ctx->active_reqs);
564
565 req->ki_cancel = cancel;
566
567 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
568 }
569 EXPORT_SYMBOL(kiocb_set_cancel_fn);
570
571 static int kiocb_cancel(struct aio_kiocb *kiocb)
572 {
573 kiocb_cancel_fn *old, *cancel;
574
575 /*
576 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
577 * actually has a cancel function, hence the cmpxchg()
578 */
579
580 cancel = READ_ONCE(kiocb->ki_cancel);
581 do {
582 if (!cancel || cancel == KIOCB_CANCELLED)
583 return -EINVAL;
584
585 old = cancel;
586 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
587 } while (cancel != old);
588
589 return cancel(&kiocb->common);
590 }
591
592 /*
593 * free_ioctx() should be RCU delayed to synchronize against the RCU
594 * protected lookup_ioctx() and also needs process context to call
595 * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
596 * ->free_work.
597 */
598 static void free_ioctx(struct work_struct *work)
599 {
600 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
601
602 pr_debug("freeing %p\n", ctx);
603
604 aio_free_ring(ctx);
605 free_percpu(ctx->cpu);
606 percpu_ref_exit(&ctx->reqs);
607 percpu_ref_exit(&ctx->users);
608 kmem_cache_free(kioctx_cachep, ctx);
609 }
610
611 static void free_ioctx_rcufn(struct rcu_head *head)
612 {
613 struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
614
615 INIT_WORK(&ctx->free_work, free_ioctx);
616 schedule_work(&ctx->free_work);
617 }
618
619 static void free_ioctx_reqs(struct percpu_ref *ref)
620 {
621 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
622
623 /* At this point we know that there are no any in-flight requests */
624 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
625 complete(&ctx->rq_wait->comp);
626
627 /* Synchronize against RCU protected table->table[] dereferences */
628 call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
629 }
630
631 /*
632 * When this function runs, the kioctx has been removed from the "hash table"
633 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
634 * now it's safe to cancel any that need to be.
635 */
636 static void free_ioctx_users(struct percpu_ref *ref)
637 {
638 struct kioctx *ctx = container_of(ref, struct kioctx, users);
639 struct aio_kiocb *req;
640
641 spin_lock_irq(&ctx->ctx_lock);
642
643 while (!list_empty(&ctx->active_reqs)) {
644 req = list_first_entry(&ctx->active_reqs,
645 struct aio_kiocb, ki_list);
646
647 list_del_init(&req->ki_list);
648 kiocb_cancel(req);
649 }
650
651 spin_unlock_irq(&ctx->ctx_lock);
652
653 percpu_ref_kill(&ctx->reqs);
654 percpu_ref_put(&ctx->reqs);
655 }
656
657 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
658 {
659 unsigned i, new_nr;
660 struct kioctx_table *table, *old;
661 struct aio_ring *ring;
662
663 spin_lock(&mm->ioctx_lock);
664 table = rcu_dereference_raw(mm->ioctx_table);
665
666 while (1) {
667 if (table)
668 for (i = 0; i < table->nr; i++)
669 if (!rcu_access_pointer(table->table[i])) {
670 ctx->id = i;
671 rcu_assign_pointer(table->table[i], ctx);
672 spin_unlock(&mm->ioctx_lock);
673
674 /* While kioctx setup is in progress,
675 * we are protected from page migration
676 * changes ring_pages by ->ring_lock.
677 */
678 ring = kmap_atomic(ctx->ring_pages[0]);
679 ring->id = ctx->id;
680 kunmap_atomic(ring);
681 return 0;
682 }
683
684 new_nr = (table ? table->nr : 1) * 4;
685 spin_unlock(&mm->ioctx_lock);
686
687 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
688 new_nr, GFP_KERNEL);
689 if (!table)
690 return -ENOMEM;
691
692 table->nr = new_nr;
693
694 spin_lock(&mm->ioctx_lock);
695 old = rcu_dereference_raw(mm->ioctx_table);
696
697 if (!old) {
698 rcu_assign_pointer(mm->ioctx_table, table);
699 } else if (table->nr > old->nr) {
700 memcpy(table->table, old->table,
701 old->nr * sizeof(struct kioctx *));
702
703 rcu_assign_pointer(mm->ioctx_table, table);
704 kfree_rcu(old, rcu);
705 } else {
706 kfree(table);
707 table = old;
708 }
709 }
710 }
711
712 static void aio_nr_sub(unsigned nr)
713 {
714 spin_lock(&aio_nr_lock);
715 if (WARN_ON(aio_nr - nr > aio_nr))
716 aio_nr = 0;
717 else
718 aio_nr -= nr;
719 spin_unlock(&aio_nr_lock);
720 }
721
722 /* ioctx_alloc
723 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
724 */
725 static struct kioctx *ioctx_alloc(unsigned nr_events)
726 {
727 struct mm_struct *mm = current->mm;
728 struct kioctx *ctx;
729 int err = -ENOMEM;
730
731 /*
732 * Store the original nr_events -- what userspace passed to io_setup(),
733 * for counting against the global limit -- before it changes.
734 */
735 unsigned int max_reqs = nr_events;
736
737 /*
738 * We keep track of the number of available ringbuffer slots, to prevent
739 * overflow (reqs_available), and we also use percpu counters for this.
740 *
741 * So since up to half the slots might be on other cpu's percpu counters
742 * and unavailable, double nr_events so userspace sees what they
743 * expected: additionally, we move req_batch slots to/from percpu
744 * counters at a time, so make sure that isn't 0:
745 */
746 nr_events = max(nr_events, num_possible_cpus() * 4);
747 nr_events *= 2;
748
749 /* Prevent overflows */
750 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
751 pr_debug("ENOMEM: nr_events too high\n");
752 return ERR_PTR(-EINVAL);
753 }
754
755 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
756 return ERR_PTR(-EAGAIN);
757
758 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
759 if (!ctx)
760 return ERR_PTR(-ENOMEM);
761
762 ctx->max_reqs = max_reqs;
763
764 spin_lock_init(&ctx->ctx_lock);
765 spin_lock_init(&ctx->completion_lock);
766 mutex_init(&ctx->ring_lock);
767 /* Protect against page migration throughout kiotx setup by keeping
768 * the ring_lock mutex held until setup is complete. */
769 mutex_lock(&ctx->ring_lock);
770 init_waitqueue_head(&ctx->wait);
771
772 INIT_LIST_HEAD(&ctx->active_reqs);
773
774 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
775 goto err;
776
777 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
778 goto err;
779
780 ctx->cpu = alloc_percpu(struct kioctx_cpu);
781 if (!ctx->cpu)
782 goto err;
783
784 err = aio_setup_ring(ctx, nr_events);
785 if (err < 0)
786 goto err;
787
788 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
789 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
790 if (ctx->req_batch < 1)
791 ctx->req_batch = 1;
792
793 /* limit the number of system wide aios */
794 spin_lock(&aio_nr_lock);
795 if (aio_nr + ctx->max_reqs > aio_max_nr ||
796 aio_nr + ctx->max_reqs < aio_nr) {
797 spin_unlock(&aio_nr_lock);
798 err = -EAGAIN;
799 goto err_ctx;
800 }
801 aio_nr += ctx->max_reqs;
802 spin_unlock(&aio_nr_lock);
803
804 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
805 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
806
807 err = ioctx_add_table(ctx, mm);
808 if (err)
809 goto err_cleanup;
810
811 /* Release the ring_lock mutex now that all setup is complete. */
812 mutex_unlock(&ctx->ring_lock);
813
814 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
815 ctx, ctx->user_id, mm, ctx->nr_events);
816 return ctx;
817
818 err_cleanup:
819 aio_nr_sub(ctx->max_reqs);
820 err_ctx:
821 atomic_set(&ctx->dead, 1);
822 if (ctx->mmap_size)
823 vm_munmap(ctx->mmap_base, ctx->mmap_size);
824 aio_free_ring(ctx);
825 err:
826 mutex_unlock(&ctx->ring_lock);
827 free_percpu(ctx->cpu);
828 percpu_ref_exit(&ctx->reqs);
829 percpu_ref_exit(&ctx->users);
830 kmem_cache_free(kioctx_cachep, ctx);
831 pr_debug("error allocating ioctx %d\n", err);
832 return ERR_PTR(err);
833 }
834
835 /* kill_ioctx
836 * Cancels all outstanding aio requests on an aio context. Used
837 * when the processes owning a context have all exited to encourage
838 * the rapid destruction of the kioctx.
839 */
840 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
841 struct ctx_rq_wait *wait)
842 {
843 struct kioctx_table *table;
844
845 spin_lock(&mm->ioctx_lock);
846 if (atomic_xchg(&ctx->dead, 1)) {
847 spin_unlock(&mm->ioctx_lock);
848 return -EINVAL;
849 }
850
851 table = rcu_dereference_raw(mm->ioctx_table);
852 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
853 RCU_INIT_POINTER(table->table[ctx->id], NULL);
854 spin_unlock(&mm->ioctx_lock);
855
856 /* free_ioctx_reqs() will do the necessary RCU synchronization */
857 wake_up_all(&ctx->wait);
858
859 /*
860 * It'd be more correct to do this in free_ioctx(), after all
861 * the outstanding kiocbs have finished - but by then io_destroy
862 * has already returned, so io_setup() could potentially return
863 * -EAGAIN with no ioctxs actually in use (as far as userspace
864 * could tell).
865 */
866 aio_nr_sub(ctx->max_reqs);
867
868 if (ctx->mmap_size)
869 vm_munmap(ctx->mmap_base, ctx->mmap_size);
870
871 ctx->rq_wait = wait;
872 percpu_ref_kill(&ctx->users);
873 return 0;
874 }
875
876 /*
877 * exit_aio: called when the last user of mm goes away. At this point, there is
878 * no way for any new requests to be submited or any of the io_* syscalls to be
879 * called on the context.
880 *
881 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
882 * them.
883 */
884 void exit_aio(struct mm_struct *mm)
885 {
886 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
887 struct ctx_rq_wait wait;
888 int i, skipped;
889
890 if (!table)
891 return;
892
893 atomic_set(&wait.count, table->nr);
894 init_completion(&wait.comp);
895
896 skipped = 0;
897 for (i = 0; i < table->nr; ++i) {
898 struct kioctx *ctx =
899 rcu_dereference_protected(table->table[i], true);
900
901 if (!ctx) {
902 skipped++;
903 continue;
904 }
905
906 /*
907 * We don't need to bother with munmap() here - exit_mmap(mm)
908 * is coming and it'll unmap everything. And we simply can't,
909 * this is not necessarily our ->mm.
910 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
911 * that it needs to unmap the area, just set it to 0.
912 */
913 ctx->mmap_size = 0;
914 kill_ioctx(mm, ctx, &wait);
915 }
916
917 if (!atomic_sub_and_test(skipped, &wait.count)) {
918 /* Wait until all IO for the context are done. */
919 wait_for_completion(&wait.comp);
920 }
921
922 RCU_INIT_POINTER(mm->ioctx_table, NULL);
923 kfree(table);
924 }
925
926 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
927 {
928 struct kioctx_cpu *kcpu;
929 unsigned long flags;
930
931 local_irq_save(flags);
932 kcpu = this_cpu_ptr(ctx->cpu);
933 kcpu->reqs_available += nr;
934
935 while (kcpu->reqs_available >= ctx->req_batch * 2) {
936 kcpu->reqs_available -= ctx->req_batch;
937 atomic_add(ctx->req_batch, &ctx->reqs_available);
938 }
939
940 local_irq_restore(flags);
941 }
942
943 static bool get_reqs_available(struct kioctx *ctx)
944 {
945 struct kioctx_cpu *kcpu;
946 bool ret = false;
947 unsigned long flags;
948
949 local_irq_save(flags);
950 kcpu = this_cpu_ptr(ctx->cpu);
951 if (!kcpu->reqs_available) {
952 int old, avail = atomic_read(&ctx->reqs_available);
953
954 do {
955 if (avail < ctx->req_batch)
956 goto out;
957
958 old = avail;
959 avail = atomic_cmpxchg(&ctx->reqs_available,
960 avail, avail - ctx->req_batch);
961 } while (avail != old);
962
963 kcpu->reqs_available += ctx->req_batch;
964 }
965
966 ret = true;
967 kcpu->reqs_available--;
968 out:
969 local_irq_restore(flags);
970 return ret;
971 }
972
973 /* refill_reqs_available
974 * Updates the reqs_available reference counts used for tracking the
975 * number of free slots in the completion ring. This can be called
976 * from aio_complete() (to optimistically update reqs_available) or
977 * from aio_get_req() (the we're out of events case). It must be
978 * called holding ctx->completion_lock.
979 */
980 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
981 unsigned tail)
982 {
983 unsigned events_in_ring, completed;
984
985 /* Clamp head since userland can write to it. */
986 head %= ctx->nr_events;
987 if (head <= tail)
988 events_in_ring = tail - head;
989 else
990 events_in_ring = ctx->nr_events - (head - tail);
991
992 completed = ctx->completed_events;
993 if (events_in_ring < completed)
994 completed -= events_in_ring;
995 else
996 completed = 0;
997
998 if (!completed)
999 return;
1000
1001 ctx->completed_events -= completed;
1002 put_reqs_available(ctx, completed);
1003 }
1004
1005 /* user_refill_reqs_available
1006 * Called to refill reqs_available when aio_get_req() encounters an
1007 * out of space in the completion ring.
1008 */
1009 static void user_refill_reqs_available(struct kioctx *ctx)
1010 {
1011 spin_lock_irq(&ctx->completion_lock);
1012 if (ctx->completed_events) {
1013 struct aio_ring *ring;
1014 unsigned head;
1015
1016 /* Access of ring->head may race with aio_read_events_ring()
1017 * here, but that's okay since whether we read the old version
1018 * or the new version, and either will be valid. The important
1019 * part is that head cannot pass tail since we prevent
1020 * aio_complete() from updating tail by holding
1021 * ctx->completion_lock. Even if head is invalid, the check
1022 * against ctx->completed_events below will make sure we do the
1023 * safe/right thing.
1024 */
1025 ring = kmap_atomic(ctx->ring_pages[0]);
1026 head = ring->head;
1027 kunmap_atomic(ring);
1028
1029 refill_reqs_available(ctx, head, ctx->tail);
1030 }
1031
1032 spin_unlock_irq(&ctx->completion_lock);
1033 }
1034
1035 /* aio_get_req
1036 * Allocate a slot for an aio request.
1037 * Returns NULL if no requests are free.
1038 */
1039 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1040 {
1041 struct aio_kiocb *req;
1042
1043 if (!get_reqs_available(ctx)) {
1044 user_refill_reqs_available(ctx);
1045 if (!get_reqs_available(ctx))
1046 return NULL;
1047 }
1048
1049 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1050 if (unlikely(!req))
1051 goto out_put;
1052
1053 percpu_ref_get(&ctx->reqs);
1054
1055 req->ki_ctx = ctx;
1056 return req;
1057 out_put:
1058 put_reqs_available(ctx, 1);
1059 return NULL;
1060 }
1061
1062 static void kiocb_free(struct aio_kiocb *req)
1063 {
1064 if (req->common.ki_filp)
1065 fput(req->common.ki_filp);
1066 if (req->ki_eventfd != NULL)
1067 eventfd_ctx_put(req->ki_eventfd);
1068 kmem_cache_free(kiocb_cachep, req);
1069 }
1070
1071 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1072 {
1073 struct aio_ring __user *ring = (void __user *)ctx_id;
1074 struct mm_struct *mm = current->mm;
1075 struct kioctx *ctx, *ret = NULL;
1076 struct kioctx_table *table;
1077 unsigned id;
1078
1079 if (get_user(id, &ring->id))
1080 return NULL;
1081
1082 rcu_read_lock();
1083 table = rcu_dereference(mm->ioctx_table);
1084
1085 if (!table || id >= table->nr)
1086 goto out;
1087
1088 ctx = rcu_dereference(table->table[id]);
1089 if (ctx && ctx->user_id == ctx_id) {
1090 if (percpu_ref_tryget_live(&ctx->users))
1091 ret = ctx;
1092 }
1093 out:
1094 rcu_read_unlock();
1095 return ret;
1096 }
1097
1098 /* aio_complete
1099 * Called when the io request on the given iocb is complete.
1100 */
1101 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1102 {
1103 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1104 struct kioctx *ctx = iocb->ki_ctx;
1105 struct aio_ring *ring;
1106 struct io_event *ev_page, *event;
1107 unsigned tail, pos, head;
1108 unsigned long flags;
1109
1110 if (kiocb->ki_flags & IOCB_WRITE) {
1111 struct file *file = kiocb->ki_filp;
1112
1113 /*
1114 * Tell lockdep we inherited freeze protection from submission
1115 * thread.
1116 */
1117 if (S_ISREG(file_inode(file)->i_mode))
1118 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1119 file_end_write(file);
1120 }
1121
1122 /*
1123 * Special case handling for sync iocbs:
1124 * - events go directly into the iocb for fast handling
1125 * - the sync task with the iocb in its stack holds the single iocb
1126 * ref, no other paths have a way to get another ref
1127 * - the sync task helpfully left a reference to itself in the iocb
1128 */
1129 BUG_ON(is_sync_kiocb(kiocb));
1130
1131 if (iocb->ki_list.next) {
1132 unsigned long flags;
1133
1134 spin_lock_irqsave(&ctx->ctx_lock, flags);
1135 list_del(&iocb->ki_list);
1136 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1137 }
1138
1139 /*
1140 * Add a completion event to the ring buffer. Must be done holding
1141 * ctx->completion_lock to prevent other code from messing with the tail
1142 * pointer since we might be called from irq context.
1143 */
1144 spin_lock_irqsave(&ctx->completion_lock, flags);
1145
1146 tail = ctx->tail;
1147 pos = tail + AIO_EVENTS_OFFSET;
1148
1149 if (++tail >= ctx->nr_events)
1150 tail = 0;
1151
1152 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1153 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1154
1155 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1156 event->data = iocb->ki_user_data;
1157 event->res = res;
1158 event->res2 = res2;
1159
1160 kunmap_atomic(ev_page);
1161 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1162
1163 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1164 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1165 res, res2);
1166
1167 /* after flagging the request as done, we
1168 * must never even look at it again
1169 */
1170 smp_wmb(); /* make event visible before updating tail */
1171
1172 ctx->tail = tail;
1173
1174 ring = kmap_atomic(ctx->ring_pages[0]);
1175 head = ring->head;
1176 ring->tail = tail;
1177 kunmap_atomic(ring);
1178 flush_dcache_page(ctx->ring_pages[0]);
1179
1180 ctx->completed_events++;
1181 if (ctx->completed_events > 1)
1182 refill_reqs_available(ctx, head, tail);
1183 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1184
1185 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1186
1187 /*
1188 * Check if the user asked us to deliver the result through an
1189 * eventfd. The eventfd_signal() function is safe to be called
1190 * from IRQ context.
1191 */
1192 if (iocb->ki_eventfd != NULL)
1193 eventfd_signal(iocb->ki_eventfd, 1);
1194
1195 /* everything turned out well, dispose of the aiocb. */
1196 kiocb_free(iocb);
1197
1198 /*
1199 * We have to order our ring_info tail store above and test
1200 * of the wait list below outside the wait lock. This is
1201 * like in wake_up_bit() where clearing a bit has to be
1202 * ordered with the unlocked test.
1203 */
1204 smp_mb();
1205
1206 if (waitqueue_active(&ctx->wait))
1207 wake_up(&ctx->wait);
1208
1209 percpu_ref_put(&ctx->reqs);
1210 }
1211
1212 /* aio_read_events_ring
1213 * Pull an event off of the ioctx's event ring. Returns the number of
1214 * events fetched
1215 */
1216 static long aio_read_events_ring(struct kioctx *ctx,
1217 struct io_event __user *event, long nr)
1218 {
1219 struct aio_ring *ring;
1220 unsigned head, tail, pos;
1221 long ret = 0;
1222 int copy_ret;
1223
1224 /*
1225 * The mutex can block and wake us up and that will cause
1226 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1227 * and repeat. This should be rare enough that it doesn't cause
1228 * peformance issues. See the comment in read_events() for more detail.
1229 */
1230 sched_annotate_sleep();
1231 mutex_lock(&ctx->ring_lock);
1232
1233 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1234 ring = kmap_atomic(ctx->ring_pages[0]);
1235 head = ring->head;
1236 tail = ring->tail;
1237 kunmap_atomic(ring);
1238
1239 /*
1240 * Ensure that once we've read the current tail pointer, that
1241 * we also see the events that were stored up to the tail.
1242 */
1243 smp_rmb();
1244
1245 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1246
1247 if (head == tail)
1248 goto out;
1249
1250 head %= ctx->nr_events;
1251 tail %= ctx->nr_events;
1252
1253 while (ret < nr) {
1254 long avail;
1255 struct io_event *ev;
1256 struct page *page;
1257
1258 avail = (head <= tail ? tail : ctx->nr_events) - head;
1259 if (head == tail)
1260 break;
1261
1262 avail = min(avail, nr - ret);
1263 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1264 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1265
1266 pos = head + AIO_EVENTS_OFFSET;
1267 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1268 pos %= AIO_EVENTS_PER_PAGE;
1269
1270 ev = kmap(page);
1271 copy_ret = copy_to_user(event + ret, ev + pos,
1272 sizeof(*ev) * avail);
1273 kunmap(page);
1274
1275 if (unlikely(copy_ret)) {
1276 ret = -EFAULT;
1277 goto out;
1278 }
1279
1280 ret += avail;
1281 head += avail;
1282 head %= ctx->nr_events;
1283 }
1284
1285 ring = kmap_atomic(ctx->ring_pages[0]);
1286 ring->head = head;
1287 kunmap_atomic(ring);
1288 flush_dcache_page(ctx->ring_pages[0]);
1289
1290 pr_debug("%li h%u t%u\n", ret, head, tail);
1291 out:
1292 mutex_unlock(&ctx->ring_lock);
1293
1294 return ret;
1295 }
1296
1297 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1298 struct io_event __user *event, long *i)
1299 {
1300 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1301
1302 if (ret > 0)
1303 *i += ret;
1304
1305 if (unlikely(atomic_read(&ctx->dead)))
1306 ret = -EINVAL;
1307
1308 if (!*i)
1309 *i = ret;
1310
1311 return ret < 0 || *i >= min_nr;
1312 }
1313
1314 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1315 struct io_event __user *event,
1316 ktime_t until)
1317 {
1318 long ret = 0;
1319
1320 /*
1321 * Note that aio_read_events() is being called as the conditional - i.e.
1322 * we're calling it after prepare_to_wait() has set task state to
1323 * TASK_INTERRUPTIBLE.
1324 *
1325 * But aio_read_events() can block, and if it blocks it's going to flip
1326 * the task state back to TASK_RUNNING.
1327 *
1328 * This should be ok, provided it doesn't flip the state back to
1329 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1330 * will only happen if the mutex_lock() call blocks, and we then find
1331 * the ringbuffer empty. So in practice we should be ok, but it's
1332 * something to be aware of when touching this code.
1333 */
1334 if (until == 0)
1335 aio_read_events(ctx, min_nr, nr, event, &ret);
1336 else
1337 wait_event_interruptible_hrtimeout(ctx->wait,
1338 aio_read_events(ctx, min_nr, nr, event, &ret),
1339 until);
1340
1341 if (!ret && signal_pending(current))
1342 ret = -EINTR;
1343
1344 return ret;
1345 }
1346
1347 /* sys_io_setup:
1348 * Create an aio_context capable of receiving at least nr_events.
1349 * ctxp must not point to an aio_context that already exists, and
1350 * must be initialized to 0 prior to the call. On successful
1351 * creation of the aio_context, *ctxp is filled in with the resulting
1352 * handle. May fail with -EINVAL if *ctxp is not initialized,
1353 * if the specified nr_events exceeds internal limits. May fail
1354 * with -EAGAIN if the specified nr_events exceeds the user's limit
1355 * of available events. May fail with -ENOMEM if insufficient kernel
1356 * resources are available. May fail with -EFAULT if an invalid
1357 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1358 * implemented.
1359 */
1360 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1361 {
1362 struct kioctx *ioctx = NULL;
1363 unsigned long ctx;
1364 long ret;
1365
1366 ret = get_user(ctx, ctxp);
1367 if (unlikely(ret))
1368 goto out;
1369
1370 ret = -EINVAL;
1371 if (unlikely(ctx || nr_events == 0)) {
1372 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1373 ctx, nr_events);
1374 goto out;
1375 }
1376
1377 ioctx = ioctx_alloc(nr_events);
1378 ret = PTR_ERR(ioctx);
1379 if (!IS_ERR(ioctx)) {
1380 ret = put_user(ioctx->user_id, ctxp);
1381 if (ret)
1382 kill_ioctx(current->mm, ioctx, NULL);
1383 percpu_ref_put(&ioctx->users);
1384 }
1385
1386 out:
1387 return ret;
1388 }
1389
1390 #ifdef CONFIG_COMPAT
1391 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1392 {
1393 struct kioctx *ioctx = NULL;
1394 unsigned long ctx;
1395 long ret;
1396
1397 ret = get_user(ctx, ctx32p);
1398 if (unlikely(ret))
1399 goto out;
1400
1401 ret = -EINVAL;
1402 if (unlikely(ctx || nr_events == 0)) {
1403 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1404 ctx, nr_events);
1405 goto out;
1406 }
1407
1408 ioctx = ioctx_alloc(nr_events);
1409 ret = PTR_ERR(ioctx);
1410 if (!IS_ERR(ioctx)) {
1411 /* truncating is ok because it's a user address */
1412 ret = put_user((u32)ioctx->user_id, ctx32p);
1413 if (ret)
1414 kill_ioctx(current->mm, ioctx, NULL);
1415 percpu_ref_put(&ioctx->users);
1416 }
1417
1418 out:
1419 return ret;
1420 }
1421 #endif
1422
1423 /* sys_io_destroy:
1424 * Destroy the aio_context specified. May cancel any outstanding
1425 * AIOs and block on completion. Will fail with -ENOSYS if not
1426 * implemented. May fail with -EINVAL if the context pointed to
1427 * is invalid.
1428 */
1429 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1430 {
1431 struct kioctx *ioctx = lookup_ioctx(ctx);
1432 if (likely(NULL != ioctx)) {
1433 struct ctx_rq_wait wait;
1434 int ret;
1435
1436 init_completion(&wait.comp);
1437 atomic_set(&wait.count, 1);
1438
1439 /* Pass requests_done to kill_ioctx() where it can be set
1440 * in a thread-safe way. If we try to set it here then we have
1441 * a race condition if two io_destroy() called simultaneously.
1442 */
1443 ret = kill_ioctx(current->mm, ioctx, &wait);
1444 percpu_ref_put(&ioctx->users);
1445
1446 /* Wait until all IO for the context are done. Otherwise kernel
1447 * keep using user-space buffers even if user thinks the context
1448 * is destroyed.
1449 */
1450 if (!ret)
1451 wait_for_completion(&wait.comp);
1452
1453 return ret;
1454 }
1455 pr_debug("EINVAL: invalid context id\n");
1456 return -EINVAL;
1457 }
1458
1459 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1460 bool vectored, bool compat, struct iov_iter *iter)
1461 {
1462 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1463 size_t len = iocb->aio_nbytes;
1464
1465 if (!vectored) {
1466 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1467 *iovec = NULL;
1468 return ret;
1469 }
1470 #ifdef CONFIG_COMPAT
1471 if (compat)
1472 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1473 iter);
1474 #endif
1475 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1476 }
1477
1478 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1479 {
1480 switch (ret) {
1481 case -EIOCBQUEUED:
1482 return ret;
1483 case -ERESTARTSYS:
1484 case -ERESTARTNOINTR:
1485 case -ERESTARTNOHAND:
1486 case -ERESTART_RESTARTBLOCK:
1487 /*
1488 * There's no easy way to restart the syscall since other AIO's
1489 * may be already running. Just fail this IO with EINTR.
1490 */
1491 ret = -EINTR;
1492 /*FALLTHRU*/
1493 default:
1494 aio_complete(req, ret, 0);
1495 return 0;
1496 }
1497 }
1498
1499 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1500 bool compat)
1501 {
1502 struct file *file = req->ki_filp;
1503 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1504 struct iov_iter iter;
1505 ssize_t ret;
1506
1507 if (unlikely(!(file->f_mode & FMODE_READ)))
1508 return -EBADF;
1509 if (unlikely(!file->f_op->read_iter))
1510 return -EINVAL;
1511
1512 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1513 if (ret)
1514 return ret;
1515 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1516 if (!ret)
1517 ret = aio_ret(req, call_read_iter(file, req, &iter));
1518 kfree(iovec);
1519 return ret;
1520 }
1521
1522 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1523 bool compat)
1524 {
1525 struct file *file = req->ki_filp;
1526 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1527 struct iov_iter iter;
1528 ssize_t ret;
1529
1530 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1531 return -EBADF;
1532 if (unlikely(!file->f_op->write_iter))
1533 return -EINVAL;
1534
1535 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1536 if (ret)
1537 return ret;
1538 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1539 if (!ret) {
1540 req->ki_flags |= IOCB_WRITE;
1541 file_start_write(file);
1542 ret = aio_ret(req, call_write_iter(file, req, &iter));
1543 /*
1544 * We release freeze protection in aio_complete(). Fool lockdep
1545 * by telling it the lock got released so that it doesn't
1546 * complain about held lock when we return to userspace.
1547 */
1548 if (S_ISREG(file_inode(file)->i_mode))
1549 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1550 }
1551 kfree(iovec);
1552 return ret;
1553 }
1554
1555 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1556 struct iocb *iocb, bool compat)
1557 {
1558 struct aio_kiocb *req;
1559 struct file *file;
1560 ssize_t ret;
1561
1562 /* enforce forwards compatibility on users */
1563 if (unlikely(iocb->aio_reserved2)) {
1564 pr_debug("EINVAL: reserve field set\n");
1565 return -EINVAL;
1566 }
1567
1568 /* prevent overflows */
1569 if (unlikely(
1570 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1571 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1572 ((ssize_t)iocb->aio_nbytes < 0)
1573 )) {
1574 pr_debug("EINVAL: overflow check\n");
1575 return -EINVAL;
1576 }
1577
1578 req = aio_get_req(ctx);
1579 if (unlikely(!req))
1580 return -EAGAIN;
1581
1582 req->common.ki_filp = file = fget(iocb->aio_fildes);
1583 if (unlikely(!req->common.ki_filp)) {
1584 ret = -EBADF;
1585 goto out_put_req;
1586 }
1587 req->common.ki_pos = iocb->aio_offset;
1588 req->common.ki_complete = aio_complete;
1589 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1590 req->common.ki_hint = file_write_hint(file);
1591
1592 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1593 /*
1594 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1595 * instance of the file* now. The file descriptor must be
1596 * an eventfd() fd, and will be signaled for each completed
1597 * event using the eventfd_signal() function.
1598 */
1599 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1600 if (IS_ERR(req->ki_eventfd)) {
1601 ret = PTR_ERR(req->ki_eventfd);
1602 req->ki_eventfd = NULL;
1603 goto out_put_req;
1604 }
1605
1606 req->common.ki_flags |= IOCB_EVENTFD;
1607 }
1608
1609 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1610 if (unlikely(ret)) {
1611 pr_debug("EINVAL: aio_rw_flags\n");
1612 goto out_put_req;
1613 }
1614
1615 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1616 if (unlikely(ret)) {
1617 pr_debug("EFAULT: aio_key\n");
1618 goto out_put_req;
1619 }
1620
1621 req->ki_user_iocb = user_iocb;
1622 req->ki_user_data = iocb->aio_data;
1623
1624 get_file(file);
1625 switch (iocb->aio_lio_opcode) {
1626 case IOCB_CMD_PREAD:
1627 ret = aio_read(&req->common, iocb, false, compat);
1628 break;
1629 case IOCB_CMD_PWRITE:
1630 ret = aio_write(&req->common, iocb, false, compat);
1631 break;
1632 case IOCB_CMD_PREADV:
1633 ret = aio_read(&req->common, iocb, true, compat);
1634 break;
1635 case IOCB_CMD_PWRITEV:
1636 ret = aio_write(&req->common, iocb, true, compat);
1637 break;
1638 default:
1639 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1640 ret = -EINVAL;
1641 break;
1642 }
1643 fput(file);
1644
1645 if (ret && ret != -EIOCBQUEUED)
1646 goto out_put_req;
1647 return 0;
1648 out_put_req:
1649 put_reqs_available(ctx, 1);
1650 percpu_ref_put(&ctx->reqs);
1651 kiocb_free(req);
1652 return ret;
1653 }
1654
1655 static long do_io_submit(aio_context_t ctx_id, long nr,
1656 struct iocb __user *__user *iocbpp, bool compat)
1657 {
1658 struct kioctx *ctx;
1659 long ret = 0;
1660 int i = 0;
1661 struct blk_plug plug;
1662
1663 if (unlikely(nr < 0))
1664 return -EINVAL;
1665
1666 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1667 nr = LONG_MAX/sizeof(*iocbpp);
1668
1669 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1670 return -EFAULT;
1671
1672 ctx = lookup_ioctx(ctx_id);
1673 if (unlikely(!ctx)) {
1674 pr_debug("EINVAL: invalid context id\n");
1675 return -EINVAL;
1676 }
1677
1678 blk_start_plug(&plug);
1679
1680 /*
1681 * AKPM: should this return a partial result if some of the IOs were
1682 * successfully submitted?
1683 */
1684 for (i=0; i<nr; i++) {
1685 struct iocb __user *user_iocb;
1686 struct iocb tmp;
1687
1688 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1689 ret = -EFAULT;
1690 break;
1691 }
1692
1693 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1694 ret = -EFAULT;
1695 break;
1696 }
1697
1698 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1699 if (ret)
1700 break;
1701 }
1702 blk_finish_plug(&plug);
1703
1704 percpu_ref_put(&ctx->users);
1705 return i ? i : ret;
1706 }
1707
1708 /* sys_io_submit:
1709 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1710 * the number of iocbs queued. May return -EINVAL if the aio_context
1711 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1712 * *iocbpp[0] is not properly initialized, if the operation specified
1713 * is invalid for the file descriptor in the iocb. May fail with
1714 * -EFAULT if any of the data structures point to invalid data. May
1715 * fail with -EBADF if the file descriptor specified in the first
1716 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1717 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1718 * fail with -ENOSYS if not implemented.
1719 */
1720 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1721 struct iocb __user * __user *, iocbpp)
1722 {
1723 return do_io_submit(ctx_id, nr, iocbpp, 0);
1724 }
1725
1726 #ifdef CONFIG_COMPAT
1727 static inline long
1728 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1729 {
1730 compat_uptr_t uptr;
1731 int i;
1732
1733 for (i = 0; i < nr; ++i) {
1734 if (get_user(uptr, ptr32 + i))
1735 return -EFAULT;
1736 if (put_user(compat_ptr(uptr), ptr64 + i))
1737 return -EFAULT;
1738 }
1739 return 0;
1740 }
1741
1742 #define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *))
1743
1744 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1745 int, nr, u32 __user *, iocb)
1746 {
1747 struct iocb __user * __user *iocb64;
1748 long ret;
1749
1750 if (unlikely(nr < 0))
1751 return -EINVAL;
1752
1753 if (nr > MAX_AIO_SUBMITS)
1754 nr = MAX_AIO_SUBMITS;
1755
1756 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1757 ret = copy_iocb(nr, iocb, iocb64);
1758 if (!ret)
1759 ret = do_io_submit(ctx_id, nr, iocb64, 1);
1760 return ret;
1761 }
1762 #endif
1763
1764 /* lookup_kiocb
1765 * Finds a given iocb for cancellation.
1766 */
1767 static struct aio_kiocb *
1768 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1769 {
1770 struct aio_kiocb *kiocb;
1771
1772 assert_spin_locked(&ctx->ctx_lock);
1773
1774 if (key != KIOCB_KEY)
1775 return NULL;
1776
1777 /* TODO: use a hash or array, this sucks. */
1778 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1779 if (kiocb->ki_user_iocb == iocb)
1780 return kiocb;
1781 }
1782 return NULL;
1783 }
1784
1785 /* sys_io_cancel:
1786 * Attempts to cancel an iocb previously passed to io_submit. If
1787 * the operation is successfully cancelled, the resulting event is
1788 * copied into the memory pointed to by result without being placed
1789 * into the completion queue and 0 is returned. May fail with
1790 * -EFAULT if any of the data structures pointed to are invalid.
1791 * May fail with -EINVAL if aio_context specified by ctx_id is
1792 * invalid. May fail with -EAGAIN if the iocb specified was not
1793 * cancelled. Will fail with -ENOSYS if not implemented.
1794 */
1795 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1796 struct io_event __user *, result)
1797 {
1798 struct kioctx *ctx;
1799 struct aio_kiocb *kiocb;
1800 u32 key;
1801 int ret;
1802
1803 ret = get_user(key, &iocb->aio_key);
1804 if (unlikely(ret))
1805 return -EFAULT;
1806
1807 ctx = lookup_ioctx(ctx_id);
1808 if (unlikely(!ctx))
1809 return -EINVAL;
1810
1811 spin_lock_irq(&ctx->ctx_lock);
1812
1813 kiocb = lookup_kiocb(ctx, iocb, key);
1814 if (kiocb)
1815 ret = kiocb_cancel(kiocb);
1816 else
1817 ret = -EINVAL;
1818
1819 spin_unlock_irq(&ctx->ctx_lock);
1820
1821 if (!ret) {
1822 /*
1823 * The result argument is no longer used - the io_event is
1824 * always delivered via the ring buffer. -EINPROGRESS indicates
1825 * cancellation is progress:
1826 */
1827 ret = -EINPROGRESS;
1828 }
1829
1830 percpu_ref_put(&ctx->users);
1831
1832 return ret;
1833 }
1834
1835 static long do_io_getevents(aio_context_t ctx_id,
1836 long min_nr,
1837 long nr,
1838 struct io_event __user *events,
1839 struct timespec64 *ts)
1840 {
1841 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1842 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1843 long ret = -EINVAL;
1844
1845 if (likely(ioctx)) {
1846 if (likely(min_nr <= nr && min_nr >= 0))
1847 ret = read_events(ioctx, min_nr, nr, events, until);
1848 percpu_ref_put(&ioctx->users);
1849 }
1850
1851 return ret;
1852 }
1853
1854 /* io_getevents:
1855 * Attempts to read at least min_nr events and up to nr events from
1856 * the completion queue for the aio_context specified by ctx_id. If
1857 * it succeeds, the number of read events is returned. May fail with
1858 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1859 * out of range, if timeout is out of range. May fail with -EFAULT
1860 * if any of the memory specified is invalid. May return 0 or
1861 * < min_nr if the timeout specified by timeout has elapsed
1862 * before sufficient events are available, where timeout == NULL
1863 * specifies an infinite timeout. Note that the timeout pointed to by
1864 * timeout is relative. Will fail with -ENOSYS if not implemented.
1865 */
1866 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1867 long, min_nr,
1868 long, nr,
1869 struct io_event __user *, events,
1870 struct timespec __user *, timeout)
1871 {
1872 struct timespec64 ts;
1873
1874 if (timeout) {
1875 if (unlikely(get_timespec64(&ts, timeout)))
1876 return -EFAULT;
1877 }
1878
1879 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1880 }
1881
1882 #ifdef CONFIG_COMPAT
1883 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1884 compat_long_t, min_nr,
1885 compat_long_t, nr,
1886 struct io_event __user *, events,
1887 struct compat_timespec __user *, timeout)
1888 {
1889 struct timespec64 t;
1890
1891 if (timeout) {
1892 if (compat_get_timespec64(&t, timeout))
1893 return -EFAULT;
1894
1895 }
1896
1897 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1898 }
1899 #endif