]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/aio.c
UBI: check max_beb_per1024 value in ubi_attach_mtd_dev
[mirror_ubuntu-bionic-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/export.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20
21 #define DEBUG 0
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41
42 #if DEBUG > 1
43 #define dprintk printk
44 #else
45 #define dprintk(x...) do { ; } while (0)
46 #endif
47
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr; /* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
53
54 static struct kmem_cache *kiocb_cachep;
55 static struct kmem_cache *kioctx_cachep;
56
57 static struct workqueue_struct *aio_wq;
58
59 static void aio_kick_handler(struct work_struct *);
60 static void aio_queue_work(struct kioctx *);
61
62 /* aio_setup
63 * Creates the slab caches used by the aio routines, panic on
64 * failure as this is done early during the boot sequence.
65 */
66 static int __init aio_setup(void)
67 {
68 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
69 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
70
71 aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
72 BUG_ON(!aio_wq);
73
74 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
75
76 return 0;
77 }
78 __initcall(aio_setup);
79
80 static void aio_free_ring(struct kioctx *ctx)
81 {
82 struct aio_ring_info *info = &ctx->ring_info;
83 long i;
84
85 for (i=0; i<info->nr_pages; i++)
86 put_page(info->ring_pages[i]);
87
88 if (info->mmap_size) {
89 BUG_ON(ctx->mm != current->mm);
90 vm_munmap(info->mmap_base, info->mmap_size);
91 }
92
93 if (info->ring_pages && info->ring_pages != info->internal_pages)
94 kfree(info->ring_pages);
95 info->ring_pages = NULL;
96 info->nr = 0;
97 }
98
99 static int aio_setup_ring(struct kioctx *ctx)
100 {
101 struct aio_ring *ring;
102 struct aio_ring_info *info = &ctx->ring_info;
103 unsigned nr_events = ctx->max_reqs;
104 unsigned long size;
105 int nr_pages;
106
107 /* Compensate for the ring buffer's head/tail overlap entry */
108 nr_events += 2; /* 1 is required, 2 for good luck */
109
110 size = sizeof(struct aio_ring);
111 size += sizeof(struct io_event) * nr_events;
112 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
113
114 if (nr_pages < 0)
115 return -EINVAL;
116
117 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
118
119 info->nr = 0;
120 info->ring_pages = info->internal_pages;
121 if (nr_pages > AIO_RING_PAGES) {
122 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
123 if (!info->ring_pages)
124 return -ENOMEM;
125 }
126
127 info->mmap_size = nr_pages * PAGE_SIZE;
128 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
129 down_write(&ctx->mm->mmap_sem);
130 info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size,
131 PROT_READ|PROT_WRITE,
132 MAP_ANONYMOUS|MAP_PRIVATE, 0);
133 if (IS_ERR((void *)info->mmap_base)) {
134 up_write(&ctx->mm->mmap_sem);
135 info->mmap_size = 0;
136 aio_free_ring(ctx);
137 return -EAGAIN;
138 }
139
140 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
141 info->nr_pages = get_user_pages(current, ctx->mm,
142 info->mmap_base, nr_pages,
143 1, 0, info->ring_pages, NULL);
144 up_write(&ctx->mm->mmap_sem);
145
146 if (unlikely(info->nr_pages != nr_pages)) {
147 aio_free_ring(ctx);
148 return -EAGAIN;
149 }
150
151 ctx->user_id = info->mmap_base;
152
153 info->nr = nr_events; /* trusted copy */
154
155 ring = kmap_atomic(info->ring_pages[0]);
156 ring->nr = nr_events; /* user copy */
157 ring->id = ctx->user_id;
158 ring->head = ring->tail = 0;
159 ring->magic = AIO_RING_MAGIC;
160 ring->compat_features = AIO_RING_COMPAT_FEATURES;
161 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
162 ring->header_length = sizeof(struct aio_ring);
163 kunmap_atomic(ring);
164
165 return 0;
166 }
167
168
169 /* aio_ring_event: returns a pointer to the event at the given index from
170 * kmap_atomic(). Release the pointer with put_aio_ring_event();
171 */
172 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
173 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
174 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
175
176 #define aio_ring_event(info, nr) ({ \
177 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
178 struct io_event *__event; \
179 __event = kmap_atomic( \
180 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
181 __event += pos % AIO_EVENTS_PER_PAGE; \
182 __event; \
183 })
184
185 #define put_aio_ring_event(event) do { \
186 struct io_event *__event = (event); \
187 (void)__event; \
188 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
189 } while(0)
190
191 static void ctx_rcu_free(struct rcu_head *head)
192 {
193 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
194 kmem_cache_free(kioctx_cachep, ctx);
195 }
196
197 /* __put_ioctx
198 * Called when the last user of an aio context has gone away,
199 * and the struct needs to be freed.
200 */
201 static void __put_ioctx(struct kioctx *ctx)
202 {
203 unsigned nr_events = ctx->max_reqs;
204 BUG_ON(ctx->reqs_active);
205
206 cancel_delayed_work_sync(&ctx->wq);
207 aio_free_ring(ctx);
208 mmdrop(ctx->mm);
209 ctx->mm = NULL;
210 if (nr_events) {
211 spin_lock(&aio_nr_lock);
212 BUG_ON(aio_nr - nr_events > aio_nr);
213 aio_nr -= nr_events;
214 spin_unlock(&aio_nr_lock);
215 }
216 pr_debug("__put_ioctx: freeing %p\n", ctx);
217 call_rcu(&ctx->rcu_head, ctx_rcu_free);
218 }
219
220 static inline int try_get_ioctx(struct kioctx *kioctx)
221 {
222 return atomic_inc_not_zero(&kioctx->users);
223 }
224
225 static inline void put_ioctx(struct kioctx *kioctx)
226 {
227 BUG_ON(atomic_read(&kioctx->users) <= 0);
228 if (unlikely(atomic_dec_and_test(&kioctx->users)))
229 __put_ioctx(kioctx);
230 }
231
232 /* ioctx_alloc
233 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
234 */
235 static struct kioctx *ioctx_alloc(unsigned nr_events)
236 {
237 struct mm_struct *mm;
238 struct kioctx *ctx;
239 int err = -ENOMEM;
240
241 /* Prevent overflows */
242 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
243 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
244 pr_debug("ENOMEM: nr_events too high\n");
245 return ERR_PTR(-EINVAL);
246 }
247
248 if (!nr_events || (unsigned long)nr_events > aio_max_nr)
249 return ERR_PTR(-EAGAIN);
250
251 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
252 if (!ctx)
253 return ERR_PTR(-ENOMEM);
254
255 ctx->max_reqs = nr_events;
256 mm = ctx->mm = current->mm;
257 atomic_inc(&mm->mm_count);
258
259 atomic_set(&ctx->users, 2);
260 spin_lock_init(&ctx->ctx_lock);
261 spin_lock_init(&ctx->ring_info.ring_lock);
262 init_waitqueue_head(&ctx->wait);
263
264 INIT_LIST_HEAD(&ctx->active_reqs);
265 INIT_LIST_HEAD(&ctx->run_list);
266 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
267
268 if (aio_setup_ring(ctx) < 0)
269 goto out_freectx;
270
271 /* limit the number of system wide aios */
272 spin_lock(&aio_nr_lock);
273 if (aio_nr + nr_events > aio_max_nr ||
274 aio_nr + nr_events < aio_nr) {
275 spin_unlock(&aio_nr_lock);
276 goto out_cleanup;
277 }
278 aio_nr += ctx->max_reqs;
279 spin_unlock(&aio_nr_lock);
280
281 /* now link into global list. */
282 spin_lock(&mm->ioctx_lock);
283 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
284 spin_unlock(&mm->ioctx_lock);
285
286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
288 return ctx;
289
290 out_cleanup:
291 err = -EAGAIN;
292 aio_free_ring(ctx);
293 out_freectx:
294 mmdrop(mm);
295 kmem_cache_free(kioctx_cachep, ctx);
296 dprintk("aio: error allocating ioctx %d\n", err);
297 return ERR_PTR(err);
298 }
299
300 /* kill_ctx
301 * Cancels all outstanding aio requests on an aio context. Used
302 * when the processes owning a context have all exited to encourage
303 * the rapid destruction of the kioctx.
304 */
305 static void kill_ctx(struct kioctx *ctx)
306 {
307 int (*cancel)(struct kiocb *, struct io_event *);
308 struct task_struct *tsk = current;
309 DECLARE_WAITQUEUE(wait, tsk);
310 struct io_event res;
311
312 spin_lock_irq(&ctx->ctx_lock);
313 ctx->dead = 1;
314 while (!list_empty(&ctx->active_reqs)) {
315 struct list_head *pos = ctx->active_reqs.next;
316 struct kiocb *iocb = list_kiocb(pos);
317 list_del_init(&iocb->ki_list);
318 cancel = iocb->ki_cancel;
319 kiocbSetCancelled(iocb);
320 if (cancel) {
321 iocb->ki_users++;
322 spin_unlock_irq(&ctx->ctx_lock);
323 cancel(iocb, &res);
324 spin_lock_irq(&ctx->ctx_lock);
325 }
326 }
327
328 if (!ctx->reqs_active)
329 goto out;
330
331 add_wait_queue(&ctx->wait, &wait);
332 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
333 while (ctx->reqs_active) {
334 spin_unlock_irq(&ctx->ctx_lock);
335 io_schedule();
336 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
337 spin_lock_irq(&ctx->ctx_lock);
338 }
339 __set_task_state(tsk, TASK_RUNNING);
340 remove_wait_queue(&ctx->wait, &wait);
341
342 out:
343 spin_unlock_irq(&ctx->ctx_lock);
344 }
345
346 /* wait_on_sync_kiocb:
347 * Waits on the given sync kiocb to complete.
348 */
349 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
350 {
351 while (iocb->ki_users) {
352 set_current_state(TASK_UNINTERRUPTIBLE);
353 if (!iocb->ki_users)
354 break;
355 io_schedule();
356 }
357 __set_current_state(TASK_RUNNING);
358 return iocb->ki_user_data;
359 }
360 EXPORT_SYMBOL(wait_on_sync_kiocb);
361
362 /* exit_aio: called when the last user of mm goes away. At this point,
363 * there is no way for any new requests to be submited or any of the
364 * io_* syscalls to be called on the context. However, there may be
365 * outstanding requests which hold references to the context; as they
366 * go away, they will call put_ioctx and release any pinned memory
367 * associated with the request (held via struct page * references).
368 */
369 void exit_aio(struct mm_struct *mm)
370 {
371 struct kioctx *ctx;
372
373 while (!hlist_empty(&mm->ioctx_list)) {
374 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
375 hlist_del_rcu(&ctx->list);
376
377 kill_ctx(ctx);
378
379 if (1 != atomic_read(&ctx->users))
380 printk(KERN_DEBUG
381 "exit_aio:ioctx still alive: %d %d %d\n",
382 atomic_read(&ctx->users), ctx->dead,
383 ctx->reqs_active);
384 /*
385 * We don't need to bother with munmap() here -
386 * exit_mmap(mm) is coming and it'll unmap everything.
387 * Since aio_free_ring() uses non-zero ->mmap_size
388 * as indicator that it needs to unmap the area,
389 * just set it to 0; aio_free_ring() is the only
390 * place that uses ->mmap_size, so it's safe.
391 * That way we get all munmap done to current->mm -
392 * all other callers have ctx->mm == current->mm.
393 */
394 ctx->ring_info.mmap_size = 0;
395 put_ioctx(ctx);
396 }
397 }
398
399 /* aio_get_req
400 * Allocate a slot for an aio request. Increments the users count
401 * of the kioctx so that the kioctx stays around until all requests are
402 * complete. Returns NULL if no requests are free.
403 *
404 * Returns with kiocb->users set to 2. The io submit code path holds
405 * an extra reference while submitting the i/o.
406 * This prevents races between the aio code path referencing the
407 * req (after submitting it) and aio_complete() freeing the req.
408 */
409 static struct kiocb *__aio_get_req(struct kioctx *ctx)
410 {
411 struct kiocb *req = NULL;
412
413 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
414 if (unlikely(!req))
415 return NULL;
416
417 req->ki_flags = 0;
418 req->ki_users = 2;
419 req->ki_key = 0;
420 req->ki_ctx = ctx;
421 req->ki_cancel = NULL;
422 req->ki_retry = NULL;
423 req->ki_dtor = NULL;
424 req->private = NULL;
425 req->ki_iovec = NULL;
426 INIT_LIST_HEAD(&req->ki_run_list);
427 req->ki_eventfd = NULL;
428
429 return req;
430 }
431
432 /*
433 * struct kiocb's are allocated in batches to reduce the number of
434 * times the ctx lock is acquired and released.
435 */
436 #define KIOCB_BATCH_SIZE 32L
437 struct kiocb_batch {
438 struct list_head head;
439 long count; /* number of requests left to allocate */
440 };
441
442 static void kiocb_batch_init(struct kiocb_batch *batch, long total)
443 {
444 INIT_LIST_HEAD(&batch->head);
445 batch->count = total;
446 }
447
448 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
449 {
450 struct kiocb *req, *n;
451
452 if (list_empty(&batch->head))
453 return;
454
455 spin_lock_irq(&ctx->ctx_lock);
456 list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
457 list_del(&req->ki_batch);
458 list_del(&req->ki_list);
459 kmem_cache_free(kiocb_cachep, req);
460 ctx->reqs_active--;
461 }
462 if (unlikely(!ctx->reqs_active && ctx->dead))
463 wake_up_all(&ctx->wait);
464 spin_unlock_irq(&ctx->ctx_lock);
465 }
466
467 /*
468 * Allocate a batch of kiocbs. This avoids taking and dropping the
469 * context lock a lot during setup.
470 */
471 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
472 {
473 unsigned short allocated, to_alloc;
474 long avail;
475 struct kiocb *req, *n;
476 struct aio_ring *ring;
477
478 to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
479 for (allocated = 0; allocated < to_alloc; allocated++) {
480 req = __aio_get_req(ctx);
481 if (!req)
482 /* allocation failed, go with what we've got */
483 break;
484 list_add(&req->ki_batch, &batch->head);
485 }
486
487 if (allocated == 0)
488 goto out;
489
490 spin_lock_irq(&ctx->ctx_lock);
491 ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
492
493 avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
494 BUG_ON(avail < 0);
495 if (avail < allocated) {
496 /* Trim back the number of requests. */
497 list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
498 list_del(&req->ki_batch);
499 kmem_cache_free(kiocb_cachep, req);
500 if (--allocated <= avail)
501 break;
502 }
503 }
504
505 batch->count -= allocated;
506 list_for_each_entry(req, &batch->head, ki_batch) {
507 list_add(&req->ki_list, &ctx->active_reqs);
508 ctx->reqs_active++;
509 }
510
511 kunmap_atomic(ring);
512 spin_unlock_irq(&ctx->ctx_lock);
513
514 out:
515 return allocated;
516 }
517
518 static inline struct kiocb *aio_get_req(struct kioctx *ctx,
519 struct kiocb_batch *batch)
520 {
521 struct kiocb *req;
522
523 if (list_empty(&batch->head))
524 if (kiocb_batch_refill(ctx, batch) == 0)
525 return NULL;
526 req = list_first_entry(&batch->head, struct kiocb, ki_batch);
527 list_del(&req->ki_batch);
528 return req;
529 }
530
531 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
532 {
533 assert_spin_locked(&ctx->ctx_lock);
534
535 if (req->ki_eventfd != NULL)
536 eventfd_ctx_put(req->ki_eventfd);
537 if (req->ki_dtor)
538 req->ki_dtor(req);
539 if (req->ki_iovec != &req->ki_inline_vec)
540 kfree(req->ki_iovec);
541 kmem_cache_free(kiocb_cachep, req);
542 ctx->reqs_active--;
543
544 if (unlikely(!ctx->reqs_active && ctx->dead))
545 wake_up_all(&ctx->wait);
546 }
547
548 /* __aio_put_req
549 * Returns true if this put was the last user of the request.
550 */
551 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
552 {
553 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
554 req, atomic_long_read(&req->ki_filp->f_count));
555
556 assert_spin_locked(&ctx->ctx_lock);
557
558 req->ki_users--;
559 BUG_ON(req->ki_users < 0);
560 if (likely(req->ki_users))
561 return 0;
562 list_del(&req->ki_list); /* remove from active_reqs */
563 req->ki_cancel = NULL;
564 req->ki_retry = NULL;
565
566 fput(req->ki_filp);
567 req->ki_filp = NULL;
568 really_put_req(ctx, req);
569 return 1;
570 }
571
572 /* aio_put_req
573 * Returns true if this put was the last user of the kiocb,
574 * false if the request is still in use.
575 */
576 int aio_put_req(struct kiocb *req)
577 {
578 struct kioctx *ctx = req->ki_ctx;
579 int ret;
580 spin_lock_irq(&ctx->ctx_lock);
581 ret = __aio_put_req(ctx, req);
582 spin_unlock_irq(&ctx->ctx_lock);
583 return ret;
584 }
585 EXPORT_SYMBOL(aio_put_req);
586
587 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
588 {
589 struct mm_struct *mm = current->mm;
590 struct kioctx *ctx, *ret = NULL;
591 struct hlist_node *n;
592
593 rcu_read_lock();
594
595 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
596 /*
597 * RCU protects us against accessing freed memory but
598 * we have to be careful not to get a reference when the
599 * reference count already dropped to 0 (ctx->dead test
600 * is unreliable because of races).
601 */
602 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
603 ret = ctx;
604 break;
605 }
606 }
607
608 rcu_read_unlock();
609 return ret;
610 }
611
612 /*
613 * Queue up a kiocb to be retried. Assumes that the kiocb
614 * has already been marked as kicked, and places it on
615 * the retry run list for the corresponding ioctx, if it
616 * isn't already queued. Returns 1 if it actually queued
617 * the kiocb (to tell the caller to activate the work
618 * queue to process it), or 0, if it found that it was
619 * already queued.
620 */
621 static inline int __queue_kicked_iocb(struct kiocb *iocb)
622 {
623 struct kioctx *ctx = iocb->ki_ctx;
624
625 assert_spin_locked(&ctx->ctx_lock);
626
627 if (list_empty(&iocb->ki_run_list)) {
628 list_add_tail(&iocb->ki_run_list,
629 &ctx->run_list);
630 return 1;
631 }
632 return 0;
633 }
634
635 /* aio_run_iocb
636 * This is the core aio execution routine. It is
637 * invoked both for initial i/o submission and
638 * subsequent retries via the aio_kick_handler.
639 * Expects to be invoked with iocb->ki_ctx->lock
640 * already held. The lock is released and reacquired
641 * as needed during processing.
642 *
643 * Calls the iocb retry method (already setup for the
644 * iocb on initial submission) for operation specific
645 * handling, but takes care of most of common retry
646 * execution details for a given iocb. The retry method
647 * needs to be non-blocking as far as possible, to avoid
648 * holding up other iocbs waiting to be serviced by the
649 * retry kernel thread.
650 *
651 * The trickier parts in this code have to do with
652 * ensuring that only one retry instance is in progress
653 * for a given iocb at any time. Providing that guarantee
654 * simplifies the coding of individual aio operations as
655 * it avoids various potential races.
656 */
657 static ssize_t aio_run_iocb(struct kiocb *iocb)
658 {
659 struct kioctx *ctx = iocb->ki_ctx;
660 ssize_t (*retry)(struct kiocb *);
661 ssize_t ret;
662
663 if (!(retry = iocb->ki_retry)) {
664 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
665 return 0;
666 }
667
668 /*
669 * We don't want the next retry iteration for this
670 * operation to start until this one has returned and
671 * updated the iocb state. However, wait_queue functions
672 * can trigger a kick_iocb from interrupt context in the
673 * meantime, indicating that data is available for the next
674 * iteration. We want to remember that and enable the
675 * next retry iteration _after_ we are through with
676 * this one.
677 *
678 * So, in order to be able to register a "kick", but
679 * prevent it from being queued now, we clear the kick
680 * flag, but make the kick code *think* that the iocb is
681 * still on the run list until we are actually done.
682 * When we are done with this iteration, we check if
683 * the iocb was kicked in the meantime and if so, queue
684 * it up afresh.
685 */
686
687 kiocbClearKicked(iocb);
688
689 /*
690 * This is so that aio_complete knows it doesn't need to
691 * pull the iocb off the run list (We can't just call
692 * INIT_LIST_HEAD because we don't want a kick_iocb to
693 * queue this on the run list yet)
694 */
695 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
696 spin_unlock_irq(&ctx->ctx_lock);
697
698 /* Quit retrying if the i/o has been cancelled */
699 if (kiocbIsCancelled(iocb)) {
700 ret = -EINTR;
701 aio_complete(iocb, ret, 0);
702 /* must not access the iocb after this */
703 goto out;
704 }
705
706 /*
707 * Now we are all set to call the retry method in async
708 * context.
709 */
710 ret = retry(iocb);
711
712 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
713 /*
714 * There's no easy way to restart the syscall since other AIO's
715 * may be already running. Just fail this IO with EINTR.
716 */
717 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
718 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
719 ret = -EINTR;
720 aio_complete(iocb, ret, 0);
721 }
722 out:
723 spin_lock_irq(&ctx->ctx_lock);
724
725 if (-EIOCBRETRY == ret) {
726 /*
727 * OK, now that we are done with this iteration
728 * and know that there is more left to go,
729 * this is where we let go so that a subsequent
730 * "kick" can start the next iteration
731 */
732
733 /* will make __queue_kicked_iocb succeed from here on */
734 INIT_LIST_HEAD(&iocb->ki_run_list);
735 /* we must queue the next iteration ourselves, if it
736 * has already been kicked */
737 if (kiocbIsKicked(iocb)) {
738 __queue_kicked_iocb(iocb);
739
740 /*
741 * __queue_kicked_iocb will always return 1 here, because
742 * iocb->ki_run_list is empty at this point so it should
743 * be safe to unconditionally queue the context into the
744 * work queue.
745 */
746 aio_queue_work(ctx);
747 }
748 }
749 return ret;
750 }
751
752 /*
753 * __aio_run_iocbs:
754 * Process all pending retries queued on the ioctx
755 * run list.
756 * Assumes it is operating within the aio issuer's mm
757 * context.
758 */
759 static int __aio_run_iocbs(struct kioctx *ctx)
760 {
761 struct kiocb *iocb;
762 struct list_head run_list;
763
764 assert_spin_locked(&ctx->ctx_lock);
765
766 list_replace_init(&ctx->run_list, &run_list);
767 while (!list_empty(&run_list)) {
768 iocb = list_entry(run_list.next, struct kiocb,
769 ki_run_list);
770 list_del(&iocb->ki_run_list);
771 /*
772 * Hold an extra reference while retrying i/o.
773 */
774 iocb->ki_users++; /* grab extra reference */
775 aio_run_iocb(iocb);
776 __aio_put_req(ctx, iocb);
777 }
778 if (!list_empty(&ctx->run_list))
779 return 1;
780 return 0;
781 }
782
783 static void aio_queue_work(struct kioctx * ctx)
784 {
785 unsigned long timeout;
786 /*
787 * if someone is waiting, get the work started right
788 * away, otherwise, use a longer delay
789 */
790 smp_mb();
791 if (waitqueue_active(&ctx->wait))
792 timeout = 1;
793 else
794 timeout = HZ/10;
795 queue_delayed_work(aio_wq, &ctx->wq, timeout);
796 }
797
798 /*
799 * aio_run_all_iocbs:
800 * Process all pending retries queued on the ioctx
801 * run list, and keep running them until the list
802 * stays empty.
803 * Assumes it is operating within the aio issuer's mm context.
804 */
805 static inline void aio_run_all_iocbs(struct kioctx *ctx)
806 {
807 spin_lock_irq(&ctx->ctx_lock);
808 while (__aio_run_iocbs(ctx))
809 ;
810 spin_unlock_irq(&ctx->ctx_lock);
811 }
812
813 /*
814 * aio_kick_handler:
815 * Work queue handler triggered to process pending
816 * retries on an ioctx. Takes on the aio issuer's
817 * mm context before running the iocbs, so that
818 * copy_xxx_user operates on the issuer's address
819 * space.
820 * Run on aiod's context.
821 */
822 static void aio_kick_handler(struct work_struct *work)
823 {
824 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
825 mm_segment_t oldfs = get_fs();
826 struct mm_struct *mm;
827 int requeue;
828
829 set_fs(USER_DS);
830 use_mm(ctx->mm);
831 spin_lock_irq(&ctx->ctx_lock);
832 requeue =__aio_run_iocbs(ctx);
833 mm = ctx->mm;
834 spin_unlock_irq(&ctx->ctx_lock);
835 unuse_mm(mm);
836 set_fs(oldfs);
837 /*
838 * we're in a worker thread already; no point using non-zero delay
839 */
840 if (requeue)
841 queue_delayed_work(aio_wq, &ctx->wq, 0);
842 }
843
844
845 /*
846 * Called by kick_iocb to queue the kiocb for retry
847 * and if required activate the aio work queue to process
848 * it
849 */
850 static void try_queue_kicked_iocb(struct kiocb *iocb)
851 {
852 struct kioctx *ctx = iocb->ki_ctx;
853 unsigned long flags;
854 int run = 0;
855
856 spin_lock_irqsave(&ctx->ctx_lock, flags);
857 /* set this inside the lock so that we can't race with aio_run_iocb()
858 * testing it and putting the iocb on the run list under the lock */
859 if (!kiocbTryKick(iocb))
860 run = __queue_kicked_iocb(iocb);
861 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
862 if (run)
863 aio_queue_work(ctx);
864 }
865
866 /*
867 * kick_iocb:
868 * Called typically from a wait queue callback context
869 * to trigger a retry of the iocb.
870 * The retry is usually executed by aio workqueue
871 * threads (See aio_kick_handler).
872 */
873 void kick_iocb(struct kiocb *iocb)
874 {
875 /* sync iocbs are easy: they can only ever be executing from a
876 * single context. */
877 if (is_sync_kiocb(iocb)) {
878 kiocbSetKicked(iocb);
879 wake_up_process(iocb->ki_obj.tsk);
880 return;
881 }
882
883 try_queue_kicked_iocb(iocb);
884 }
885 EXPORT_SYMBOL(kick_iocb);
886
887 /* aio_complete
888 * Called when the io request on the given iocb is complete.
889 * Returns true if this is the last user of the request. The
890 * only other user of the request can be the cancellation code.
891 */
892 int aio_complete(struct kiocb *iocb, long res, long res2)
893 {
894 struct kioctx *ctx = iocb->ki_ctx;
895 struct aio_ring_info *info;
896 struct aio_ring *ring;
897 struct io_event *event;
898 unsigned long flags;
899 unsigned long tail;
900 int ret;
901
902 /*
903 * Special case handling for sync iocbs:
904 * - events go directly into the iocb for fast handling
905 * - the sync task with the iocb in its stack holds the single iocb
906 * ref, no other paths have a way to get another ref
907 * - the sync task helpfully left a reference to itself in the iocb
908 */
909 if (is_sync_kiocb(iocb)) {
910 BUG_ON(iocb->ki_users != 1);
911 iocb->ki_user_data = res;
912 iocb->ki_users = 0;
913 wake_up_process(iocb->ki_obj.tsk);
914 return 1;
915 }
916
917 info = &ctx->ring_info;
918
919 /* add a completion event to the ring buffer.
920 * must be done holding ctx->ctx_lock to prevent
921 * other code from messing with the tail
922 * pointer since we might be called from irq
923 * context.
924 */
925 spin_lock_irqsave(&ctx->ctx_lock, flags);
926
927 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
928 list_del_init(&iocb->ki_run_list);
929
930 /*
931 * cancelled requests don't get events, userland was given one
932 * when the event got cancelled.
933 */
934 if (kiocbIsCancelled(iocb))
935 goto put_rq;
936
937 ring = kmap_atomic(info->ring_pages[0]);
938
939 tail = info->tail;
940 event = aio_ring_event(info, tail);
941 if (++tail >= info->nr)
942 tail = 0;
943
944 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
945 event->data = iocb->ki_user_data;
946 event->res = res;
947 event->res2 = res2;
948
949 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
950 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
951 res, res2);
952
953 /* after flagging the request as done, we
954 * must never even look at it again
955 */
956 smp_wmb(); /* make event visible before updating tail */
957
958 info->tail = tail;
959 ring->tail = tail;
960
961 put_aio_ring_event(event);
962 kunmap_atomic(ring);
963
964 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
965
966 /*
967 * Check if the user asked us to deliver the result through an
968 * eventfd. The eventfd_signal() function is safe to be called
969 * from IRQ context.
970 */
971 if (iocb->ki_eventfd != NULL)
972 eventfd_signal(iocb->ki_eventfd, 1);
973
974 put_rq:
975 /* everything turned out well, dispose of the aiocb. */
976 ret = __aio_put_req(ctx, iocb);
977
978 /*
979 * We have to order our ring_info tail store above and test
980 * of the wait list below outside the wait lock. This is
981 * like in wake_up_bit() where clearing a bit has to be
982 * ordered with the unlocked test.
983 */
984 smp_mb();
985
986 if (waitqueue_active(&ctx->wait))
987 wake_up(&ctx->wait);
988
989 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
990 return ret;
991 }
992 EXPORT_SYMBOL(aio_complete);
993
994 /* aio_read_evt
995 * Pull an event off of the ioctx's event ring. Returns the number of
996 * events fetched (0 or 1 ;-)
997 * FIXME: make this use cmpxchg.
998 * TODO: make the ringbuffer user mmap()able (requires FIXME).
999 */
1000 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1001 {
1002 struct aio_ring_info *info = &ioctx->ring_info;
1003 struct aio_ring *ring;
1004 unsigned long head;
1005 int ret = 0;
1006
1007 ring = kmap_atomic(info->ring_pages[0]);
1008 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1009 (unsigned long)ring->head, (unsigned long)ring->tail,
1010 (unsigned long)ring->nr);
1011
1012 if (ring->head == ring->tail)
1013 goto out;
1014
1015 spin_lock(&info->ring_lock);
1016
1017 head = ring->head % info->nr;
1018 if (head != ring->tail) {
1019 struct io_event *evp = aio_ring_event(info, head);
1020 *ent = *evp;
1021 head = (head + 1) % info->nr;
1022 smp_mb(); /* finish reading the event before updatng the head */
1023 ring->head = head;
1024 ret = 1;
1025 put_aio_ring_event(evp);
1026 }
1027 spin_unlock(&info->ring_lock);
1028
1029 out:
1030 kunmap_atomic(ring);
1031 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1032 (unsigned long)ring->head, (unsigned long)ring->tail);
1033 return ret;
1034 }
1035
1036 struct aio_timeout {
1037 struct timer_list timer;
1038 int timed_out;
1039 struct task_struct *p;
1040 };
1041
1042 static void timeout_func(unsigned long data)
1043 {
1044 struct aio_timeout *to = (struct aio_timeout *)data;
1045
1046 to->timed_out = 1;
1047 wake_up_process(to->p);
1048 }
1049
1050 static inline void init_timeout(struct aio_timeout *to)
1051 {
1052 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1053 to->timed_out = 0;
1054 to->p = current;
1055 }
1056
1057 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1058 const struct timespec *ts)
1059 {
1060 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1061 if (time_after(to->timer.expires, jiffies))
1062 add_timer(&to->timer);
1063 else
1064 to->timed_out = 1;
1065 }
1066
1067 static inline void clear_timeout(struct aio_timeout *to)
1068 {
1069 del_singleshot_timer_sync(&to->timer);
1070 }
1071
1072 static int read_events(struct kioctx *ctx,
1073 long min_nr, long nr,
1074 struct io_event __user *event,
1075 struct timespec __user *timeout)
1076 {
1077 long start_jiffies = jiffies;
1078 struct task_struct *tsk = current;
1079 DECLARE_WAITQUEUE(wait, tsk);
1080 int ret;
1081 int i = 0;
1082 struct io_event ent;
1083 struct aio_timeout to;
1084 int retry = 0;
1085
1086 /* needed to zero any padding within an entry (there shouldn't be
1087 * any, but C is fun!
1088 */
1089 memset(&ent, 0, sizeof(ent));
1090 retry:
1091 ret = 0;
1092 while (likely(i < nr)) {
1093 ret = aio_read_evt(ctx, &ent);
1094 if (unlikely(ret <= 0))
1095 break;
1096
1097 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1098 ent.data, ent.obj, ent.res, ent.res2);
1099
1100 /* Could we split the check in two? */
1101 ret = -EFAULT;
1102 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1103 dprintk("aio: lost an event due to EFAULT.\n");
1104 break;
1105 }
1106 ret = 0;
1107
1108 /* Good, event copied to userland, update counts. */
1109 event ++;
1110 i ++;
1111 }
1112
1113 if (min_nr <= i)
1114 return i;
1115 if (ret)
1116 return ret;
1117
1118 /* End fast path */
1119
1120 /* racey check, but it gets redone */
1121 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1122 retry = 1;
1123 aio_run_all_iocbs(ctx);
1124 goto retry;
1125 }
1126
1127 init_timeout(&to);
1128 if (timeout) {
1129 struct timespec ts;
1130 ret = -EFAULT;
1131 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1132 goto out;
1133
1134 set_timeout(start_jiffies, &to, &ts);
1135 }
1136
1137 while (likely(i < nr)) {
1138 add_wait_queue_exclusive(&ctx->wait, &wait);
1139 do {
1140 set_task_state(tsk, TASK_INTERRUPTIBLE);
1141 ret = aio_read_evt(ctx, &ent);
1142 if (ret)
1143 break;
1144 if (min_nr <= i)
1145 break;
1146 if (unlikely(ctx->dead)) {
1147 ret = -EINVAL;
1148 break;
1149 }
1150 if (to.timed_out) /* Only check after read evt */
1151 break;
1152 /* Try to only show up in io wait if there are ops
1153 * in flight */
1154 if (ctx->reqs_active)
1155 io_schedule();
1156 else
1157 schedule();
1158 if (signal_pending(tsk)) {
1159 ret = -EINTR;
1160 break;
1161 }
1162 /*ret = aio_read_evt(ctx, &ent);*/
1163 } while (1) ;
1164
1165 set_task_state(tsk, TASK_RUNNING);
1166 remove_wait_queue(&ctx->wait, &wait);
1167
1168 if (unlikely(ret <= 0))
1169 break;
1170
1171 ret = -EFAULT;
1172 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1173 dprintk("aio: lost an event due to EFAULT.\n");
1174 break;
1175 }
1176
1177 /* Good, event copied to userland, update counts. */
1178 event ++;
1179 i ++;
1180 }
1181
1182 if (timeout)
1183 clear_timeout(&to);
1184 out:
1185 destroy_timer_on_stack(&to.timer);
1186 return i ? i : ret;
1187 }
1188
1189 /* Take an ioctx and remove it from the list of ioctx's. Protects
1190 * against races with itself via ->dead.
1191 */
1192 static void io_destroy(struct kioctx *ioctx)
1193 {
1194 struct mm_struct *mm = current->mm;
1195 int was_dead;
1196
1197 /* delete the entry from the list is someone else hasn't already */
1198 spin_lock(&mm->ioctx_lock);
1199 was_dead = ioctx->dead;
1200 ioctx->dead = 1;
1201 hlist_del_rcu(&ioctx->list);
1202 spin_unlock(&mm->ioctx_lock);
1203
1204 dprintk("aio_release(%p)\n", ioctx);
1205 if (likely(!was_dead))
1206 put_ioctx(ioctx); /* twice for the list */
1207
1208 kill_ctx(ioctx);
1209
1210 /*
1211 * Wake up any waiters. The setting of ctx->dead must be seen
1212 * by other CPUs at this point. Right now, we rely on the
1213 * locking done by the above calls to ensure this consistency.
1214 */
1215 wake_up_all(&ioctx->wait);
1216 }
1217
1218 /* sys_io_setup:
1219 * Create an aio_context capable of receiving at least nr_events.
1220 * ctxp must not point to an aio_context that already exists, and
1221 * must be initialized to 0 prior to the call. On successful
1222 * creation of the aio_context, *ctxp is filled in with the resulting
1223 * handle. May fail with -EINVAL if *ctxp is not initialized,
1224 * if the specified nr_events exceeds internal limits. May fail
1225 * with -EAGAIN if the specified nr_events exceeds the user's limit
1226 * of available events. May fail with -ENOMEM if insufficient kernel
1227 * resources are available. May fail with -EFAULT if an invalid
1228 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1229 * implemented.
1230 */
1231 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1232 {
1233 struct kioctx *ioctx = NULL;
1234 unsigned long ctx;
1235 long ret;
1236
1237 ret = get_user(ctx, ctxp);
1238 if (unlikely(ret))
1239 goto out;
1240
1241 ret = -EINVAL;
1242 if (unlikely(ctx || nr_events == 0)) {
1243 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1244 ctx, nr_events);
1245 goto out;
1246 }
1247
1248 ioctx = ioctx_alloc(nr_events);
1249 ret = PTR_ERR(ioctx);
1250 if (!IS_ERR(ioctx)) {
1251 ret = put_user(ioctx->user_id, ctxp);
1252 if (ret)
1253 io_destroy(ioctx);
1254 put_ioctx(ioctx);
1255 }
1256
1257 out:
1258 return ret;
1259 }
1260
1261 /* sys_io_destroy:
1262 * Destroy the aio_context specified. May cancel any outstanding
1263 * AIOs and block on completion. Will fail with -ENOSYS if not
1264 * implemented. May fail with -EINVAL if the context pointed to
1265 * is invalid.
1266 */
1267 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1268 {
1269 struct kioctx *ioctx = lookup_ioctx(ctx);
1270 if (likely(NULL != ioctx)) {
1271 io_destroy(ioctx);
1272 put_ioctx(ioctx);
1273 return 0;
1274 }
1275 pr_debug("EINVAL: io_destroy: invalid context id\n");
1276 return -EINVAL;
1277 }
1278
1279 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1280 {
1281 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1282
1283 BUG_ON(ret <= 0);
1284
1285 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1286 ssize_t this = min((ssize_t)iov->iov_len, ret);
1287 iov->iov_base += this;
1288 iov->iov_len -= this;
1289 iocb->ki_left -= this;
1290 ret -= this;
1291 if (iov->iov_len == 0) {
1292 iocb->ki_cur_seg++;
1293 iov++;
1294 }
1295 }
1296
1297 /* the caller should not have done more io than what fit in
1298 * the remaining iovecs */
1299 BUG_ON(ret > 0 && iocb->ki_left == 0);
1300 }
1301
1302 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1303 {
1304 struct file *file = iocb->ki_filp;
1305 struct address_space *mapping = file->f_mapping;
1306 struct inode *inode = mapping->host;
1307 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1308 unsigned long, loff_t);
1309 ssize_t ret = 0;
1310 unsigned short opcode;
1311
1312 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1313 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1314 rw_op = file->f_op->aio_read;
1315 opcode = IOCB_CMD_PREADV;
1316 } else {
1317 rw_op = file->f_op->aio_write;
1318 opcode = IOCB_CMD_PWRITEV;
1319 }
1320
1321 /* This matches the pread()/pwrite() logic */
1322 if (iocb->ki_pos < 0)
1323 return -EINVAL;
1324
1325 do {
1326 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1327 iocb->ki_nr_segs - iocb->ki_cur_seg,
1328 iocb->ki_pos);
1329 if (ret > 0)
1330 aio_advance_iovec(iocb, ret);
1331
1332 /* retry all partial writes. retry partial reads as long as its a
1333 * regular file. */
1334 } while (ret > 0 && iocb->ki_left > 0 &&
1335 (opcode == IOCB_CMD_PWRITEV ||
1336 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1337
1338 /* This means we must have transferred all that we could */
1339 /* No need to retry anymore */
1340 if ((ret == 0) || (iocb->ki_left == 0))
1341 ret = iocb->ki_nbytes - iocb->ki_left;
1342
1343 /* If we managed to write some out we return that, rather than
1344 * the eventual error. */
1345 if (opcode == IOCB_CMD_PWRITEV
1346 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1347 && iocb->ki_nbytes - iocb->ki_left)
1348 ret = iocb->ki_nbytes - iocb->ki_left;
1349
1350 return ret;
1351 }
1352
1353 static ssize_t aio_fdsync(struct kiocb *iocb)
1354 {
1355 struct file *file = iocb->ki_filp;
1356 ssize_t ret = -EINVAL;
1357
1358 if (file->f_op->aio_fsync)
1359 ret = file->f_op->aio_fsync(iocb, 1);
1360 return ret;
1361 }
1362
1363 static ssize_t aio_fsync(struct kiocb *iocb)
1364 {
1365 struct file *file = iocb->ki_filp;
1366 ssize_t ret = -EINVAL;
1367
1368 if (file->f_op->aio_fsync)
1369 ret = file->f_op->aio_fsync(iocb, 0);
1370 return ret;
1371 }
1372
1373 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1374 {
1375 ssize_t ret;
1376
1377 #ifdef CONFIG_COMPAT
1378 if (compat)
1379 ret = compat_rw_copy_check_uvector(type,
1380 (struct compat_iovec __user *)kiocb->ki_buf,
1381 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1382 &kiocb->ki_iovec);
1383 else
1384 #endif
1385 ret = rw_copy_check_uvector(type,
1386 (struct iovec __user *)kiocb->ki_buf,
1387 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1388 &kiocb->ki_iovec);
1389 if (ret < 0)
1390 goto out;
1391
1392 ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret);
1393 if (ret < 0)
1394 goto out;
1395
1396 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1397 kiocb->ki_cur_seg = 0;
1398 /* ki_nbytes/left now reflect bytes instead of segs */
1399 kiocb->ki_nbytes = ret;
1400 kiocb->ki_left = ret;
1401
1402 ret = 0;
1403 out:
1404 return ret;
1405 }
1406
1407 static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb)
1408 {
1409 int bytes;
1410
1411 bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left);
1412 if (bytes < 0)
1413 return bytes;
1414
1415 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1416 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1417 kiocb->ki_iovec->iov_len = bytes;
1418 kiocb->ki_nr_segs = 1;
1419 kiocb->ki_cur_seg = 0;
1420 return 0;
1421 }
1422
1423 /*
1424 * aio_setup_iocb:
1425 * Performs the initial checks and aio retry method
1426 * setup for the kiocb at the time of io submission.
1427 */
1428 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1429 {
1430 struct file *file = kiocb->ki_filp;
1431 ssize_t ret = 0;
1432
1433 switch (kiocb->ki_opcode) {
1434 case IOCB_CMD_PREAD:
1435 ret = -EBADF;
1436 if (unlikely(!(file->f_mode & FMODE_READ)))
1437 break;
1438 ret = -EFAULT;
1439 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1440 kiocb->ki_left)))
1441 break;
1442 ret = aio_setup_single_vector(READ, file, kiocb);
1443 if (ret)
1444 break;
1445 ret = -EINVAL;
1446 if (file->f_op->aio_read)
1447 kiocb->ki_retry = aio_rw_vect_retry;
1448 break;
1449 case IOCB_CMD_PWRITE:
1450 ret = -EBADF;
1451 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1452 break;
1453 ret = -EFAULT;
1454 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1455 kiocb->ki_left)))
1456 break;
1457 ret = aio_setup_single_vector(WRITE, file, kiocb);
1458 if (ret)
1459 break;
1460 ret = -EINVAL;
1461 if (file->f_op->aio_write)
1462 kiocb->ki_retry = aio_rw_vect_retry;
1463 break;
1464 case IOCB_CMD_PREADV:
1465 ret = -EBADF;
1466 if (unlikely(!(file->f_mode & FMODE_READ)))
1467 break;
1468 ret = aio_setup_vectored_rw(READ, kiocb, compat);
1469 if (ret)
1470 break;
1471 ret = -EINVAL;
1472 if (file->f_op->aio_read)
1473 kiocb->ki_retry = aio_rw_vect_retry;
1474 break;
1475 case IOCB_CMD_PWRITEV:
1476 ret = -EBADF;
1477 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1478 break;
1479 ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1480 if (ret)
1481 break;
1482 ret = -EINVAL;
1483 if (file->f_op->aio_write)
1484 kiocb->ki_retry = aio_rw_vect_retry;
1485 break;
1486 case IOCB_CMD_FDSYNC:
1487 ret = -EINVAL;
1488 if (file->f_op->aio_fsync)
1489 kiocb->ki_retry = aio_fdsync;
1490 break;
1491 case IOCB_CMD_FSYNC:
1492 ret = -EINVAL;
1493 if (file->f_op->aio_fsync)
1494 kiocb->ki_retry = aio_fsync;
1495 break;
1496 default:
1497 dprintk("EINVAL: io_submit: no operation provided\n");
1498 ret = -EINVAL;
1499 }
1500
1501 if (!kiocb->ki_retry)
1502 return ret;
1503
1504 return 0;
1505 }
1506
1507 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1508 struct iocb *iocb, struct kiocb_batch *batch,
1509 bool compat)
1510 {
1511 struct kiocb *req;
1512 struct file *file;
1513 ssize_t ret;
1514
1515 /* enforce forwards compatibility on users */
1516 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1517 pr_debug("EINVAL: io_submit: reserve field set\n");
1518 return -EINVAL;
1519 }
1520
1521 /* prevent overflows */
1522 if (unlikely(
1523 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1524 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1525 ((ssize_t)iocb->aio_nbytes < 0)
1526 )) {
1527 pr_debug("EINVAL: io_submit: overflow check\n");
1528 return -EINVAL;
1529 }
1530
1531 file = fget(iocb->aio_fildes);
1532 if (unlikely(!file))
1533 return -EBADF;
1534
1535 req = aio_get_req(ctx, batch); /* returns with 2 references to req */
1536 if (unlikely(!req)) {
1537 fput(file);
1538 return -EAGAIN;
1539 }
1540 req->ki_filp = file;
1541 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1542 /*
1543 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1544 * instance of the file* now. The file descriptor must be
1545 * an eventfd() fd, and will be signaled for each completed
1546 * event using the eventfd_signal() function.
1547 */
1548 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1549 if (IS_ERR(req->ki_eventfd)) {
1550 ret = PTR_ERR(req->ki_eventfd);
1551 req->ki_eventfd = NULL;
1552 goto out_put_req;
1553 }
1554 }
1555
1556 ret = put_user(req->ki_key, &user_iocb->aio_key);
1557 if (unlikely(ret)) {
1558 dprintk("EFAULT: aio_key\n");
1559 goto out_put_req;
1560 }
1561
1562 req->ki_obj.user = user_iocb;
1563 req->ki_user_data = iocb->aio_data;
1564 req->ki_pos = iocb->aio_offset;
1565
1566 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1567 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1568 req->ki_opcode = iocb->aio_lio_opcode;
1569
1570 ret = aio_setup_iocb(req, compat);
1571
1572 if (ret)
1573 goto out_put_req;
1574
1575 spin_lock_irq(&ctx->ctx_lock);
1576 /*
1577 * We could have raced with io_destroy() and are currently holding a
1578 * reference to ctx which should be destroyed. We cannot submit IO
1579 * since ctx gets freed as soon as io_submit() puts its reference. The
1580 * check here is reliable: io_destroy() sets ctx->dead before waiting
1581 * for outstanding IO and the barrier between these two is realized by
1582 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
1583 * increment ctx->reqs_active before checking for ctx->dead and the
1584 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1585 * don't see ctx->dead set here, io_destroy() waits for our IO to
1586 * finish.
1587 */
1588 if (ctx->dead) {
1589 spin_unlock_irq(&ctx->ctx_lock);
1590 ret = -EINVAL;
1591 goto out_put_req;
1592 }
1593 aio_run_iocb(req);
1594 if (!list_empty(&ctx->run_list)) {
1595 /* drain the run list */
1596 while (__aio_run_iocbs(ctx))
1597 ;
1598 }
1599 spin_unlock_irq(&ctx->ctx_lock);
1600
1601 aio_put_req(req); /* drop extra ref to req */
1602 return 0;
1603
1604 out_put_req:
1605 aio_put_req(req); /* drop extra ref to req */
1606 aio_put_req(req); /* drop i/o ref to req */
1607 return ret;
1608 }
1609
1610 long do_io_submit(aio_context_t ctx_id, long nr,
1611 struct iocb __user *__user *iocbpp, bool compat)
1612 {
1613 struct kioctx *ctx;
1614 long ret = 0;
1615 int i = 0;
1616 struct blk_plug plug;
1617 struct kiocb_batch batch;
1618
1619 if (unlikely(nr < 0))
1620 return -EINVAL;
1621
1622 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1623 nr = LONG_MAX/sizeof(*iocbpp);
1624
1625 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1626 return -EFAULT;
1627
1628 ctx = lookup_ioctx(ctx_id);
1629 if (unlikely(!ctx)) {
1630 pr_debug("EINVAL: io_submit: invalid context id\n");
1631 return -EINVAL;
1632 }
1633
1634 kiocb_batch_init(&batch, nr);
1635
1636 blk_start_plug(&plug);
1637
1638 /*
1639 * AKPM: should this return a partial result if some of the IOs were
1640 * successfully submitted?
1641 */
1642 for (i=0; i<nr; i++) {
1643 struct iocb __user *user_iocb;
1644 struct iocb tmp;
1645
1646 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1647 ret = -EFAULT;
1648 break;
1649 }
1650
1651 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1652 ret = -EFAULT;
1653 break;
1654 }
1655
1656 ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1657 if (ret)
1658 break;
1659 }
1660 blk_finish_plug(&plug);
1661
1662 kiocb_batch_free(ctx, &batch);
1663 put_ioctx(ctx);
1664 return i ? i : ret;
1665 }
1666
1667 /* sys_io_submit:
1668 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1669 * the number of iocbs queued. May return -EINVAL if the aio_context
1670 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1671 * *iocbpp[0] is not properly initialized, if the operation specified
1672 * is invalid for the file descriptor in the iocb. May fail with
1673 * -EFAULT if any of the data structures point to invalid data. May
1674 * fail with -EBADF if the file descriptor specified in the first
1675 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1676 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1677 * fail with -ENOSYS if not implemented.
1678 */
1679 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1680 struct iocb __user * __user *, iocbpp)
1681 {
1682 return do_io_submit(ctx_id, nr, iocbpp, 0);
1683 }
1684
1685 /* lookup_kiocb
1686 * Finds a given iocb for cancellation.
1687 */
1688 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1689 u32 key)
1690 {
1691 struct list_head *pos;
1692
1693 assert_spin_locked(&ctx->ctx_lock);
1694
1695 /* TODO: use a hash or array, this sucks. */
1696 list_for_each(pos, &ctx->active_reqs) {
1697 struct kiocb *kiocb = list_kiocb(pos);
1698 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1699 return kiocb;
1700 }
1701 return NULL;
1702 }
1703
1704 /* sys_io_cancel:
1705 * Attempts to cancel an iocb previously passed to io_submit. If
1706 * the operation is successfully cancelled, the resulting event is
1707 * copied into the memory pointed to by result without being placed
1708 * into the completion queue and 0 is returned. May fail with
1709 * -EFAULT if any of the data structures pointed to are invalid.
1710 * May fail with -EINVAL if aio_context specified by ctx_id is
1711 * invalid. May fail with -EAGAIN if the iocb specified was not
1712 * cancelled. Will fail with -ENOSYS if not implemented.
1713 */
1714 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1715 struct io_event __user *, result)
1716 {
1717 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1718 struct kioctx *ctx;
1719 struct kiocb *kiocb;
1720 u32 key;
1721 int ret;
1722
1723 ret = get_user(key, &iocb->aio_key);
1724 if (unlikely(ret))
1725 return -EFAULT;
1726
1727 ctx = lookup_ioctx(ctx_id);
1728 if (unlikely(!ctx))
1729 return -EINVAL;
1730
1731 spin_lock_irq(&ctx->ctx_lock);
1732 ret = -EAGAIN;
1733 kiocb = lookup_kiocb(ctx, iocb, key);
1734 if (kiocb && kiocb->ki_cancel) {
1735 cancel = kiocb->ki_cancel;
1736 kiocb->ki_users ++;
1737 kiocbSetCancelled(kiocb);
1738 } else
1739 cancel = NULL;
1740 spin_unlock_irq(&ctx->ctx_lock);
1741
1742 if (NULL != cancel) {
1743 struct io_event tmp;
1744 pr_debug("calling cancel\n");
1745 memset(&tmp, 0, sizeof(tmp));
1746 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1747 tmp.data = kiocb->ki_user_data;
1748 ret = cancel(kiocb, &tmp);
1749 if (!ret) {
1750 /* Cancellation succeeded -- copy the result
1751 * into the user's buffer.
1752 */
1753 if (copy_to_user(result, &tmp, sizeof(tmp)))
1754 ret = -EFAULT;
1755 }
1756 } else
1757 ret = -EINVAL;
1758
1759 put_ioctx(ctx);
1760
1761 return ret;
1762 }
1763
1764 /* io_getevents:
1765 * Attempts to read at least min_nr events and up to nr events from
1766 * the completion queue for the aio_context specified by ctx_id. If
1767 * it succeeds, the number of read events is returned. May fail with
1768 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1769 * out of range, if timeout is out of range. May fail with -EFAULT
1770 * if any of the memory specified is invalid. May return 0 or
1771 * < min_nr if the timeout specified by timeout has elapsed
1772 * before sufficient events are available, where timeout == NULL
1773 * specifies an infinite timeout. Note that the timeout pointed to by
1774 * timeout is relative and will be updated if not NULL and the
1775 * operation blocks. Will fail with -ENOSYS if not implemented.
1776 */
1777 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1778 long, min_nr,
1779 long, nr,
1780 struct io_event __user *, events,
1781 struct timespec __user *, timeout)
1782 {
1783 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1784 long ret = -EINVAL;
1785
1786 if (likely(ioctx)) {
1787 if (likely(min_nr <= nr && min_nr >= 0))
1788 ret = read_events(ioctx, min_nr, nr, events, timeout);
1789 put_ioctx(ioctx);
1790 }
1791
1792 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1793 return ret;
1794 }