]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/aio.c
rxrpc: Fix undefined packet handling
[mirror_ubuntu-hirsute-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx __rcu *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83 };
84
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct rcu_work free_rwork; /* see free_ioctx() */
119
120 /*
121 * signals when all in-flight requests are done
122 */
123 struct ctx_rq_wait *rq_wait;
124
125 struct {
126 /*
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
131 *
132 * We batch accesses to it with a percpu version.
133 */
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 unsigned tail;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
152
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
155
156 unsigned id;
157 };
158
159 /*
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
163 * userspace).
164 *
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169 */
170 #define KIOCB_CANCELLED ((void *) (~0ULL))
171
172 struct aio_kiocb {
173 struct kiocb common;
174
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
177
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
180
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
183
184 /*
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
187 */
188 struct eventfd_ctx *ki_eventfd;
189 };
190
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr; /* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
196
197 static struct kmem_cache *kiocb_cachep;
198 static struct kmem_cache *kioctx_cachep;
199
200 static struct vfsmount *aio_mnt;
201
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
204
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206 {
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
213
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
217
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
222 }
223 path.mnt = mntget(aio_mnt);
224
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
230 }
231
232 file->f_flags = O_RDWR;
233 return file;
234 }
235
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238 {
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
241 };
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 AIO_RING_MAGIC);
244
245 if (!IS_ERR(root))
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
247 return root;
248 }
249
250 /* aio_setup
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
253 */
254 static int __init aio_setup(void)
255 {
256 static struct file_system_type aio_fs = {
257 .name = "aio",
258 .mount = aio_mount,
259 .kill_sb = kill_anon_super,
260 };
261 aio_mnt = kern_mount(&aio_fs);
262 if (IS_ERR(aio_mnt))
263 panic("Failed to create aio fs mount.");
264
265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267
268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
269
270 return 0;
271 }
272 __initcall(aio_setup);
273
274 static void put_aio_ring_file(struct kioctx *ctx)
275 {
276 struct file *aio_ring_file = ctx->aio_ring_file;
277 struct address_space *i_mapping;
278
279 if (aio_ring_file) {
280 truncate_setsize(file_inode(aio_ring_file), 0);
281
282 /* Prevent further access to the kioctx from migratepages */
283 i_mapping = aio_ring_file->f_mapping;
284 spin_lock(&i_mapping->private_lock);
285 i_mapping->private_data = NULL;
286 ctx->aio_ring_file = NULL;
287 spin_unlock(&i_mapping->private_lock);
288
289 fput(aio_ring_file);
290 }
291 }
292
293 static void aio_free_ring(struct kioctx *ctx)
294 {
295 int i;
296
297 /* Disconnect the kiotx from the ring file. This prevents future
298 * accesses to the kioctx from page migration.
299 */
300 put_aio_ring_file(ctx);
301
302 for (i = 0; i < ctx->nr_pages; i++) {
303 struct page *page;
304 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 page_count(ctx->ring_pages[i]));
306 page = ctx->ring_pages[i];
307 if (!page)
308 continue;
309 ctx->ring_pages[i] = NULL;
310 put_page(page);
311 }
312
313 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 kfree(ctx->ring_pages);
315 ctx->ring_pages = NULL;
316 }
317 }
318
319 static int aio_ring_mremap(struct vm_area_struct *vma)
320 {
321 struct file *file = vma->vm_file;
322 struct mm_struct *mm = vma->vm_mm;
323 struct kioctx_table *table;
324 int i, res = -EINVAL;
325
326 spin_lock(&mm->ioctx_lock);
327 rcu_read_lock();
328 table = rcu_dereference(mm->ioctx_table);
329 for (i = 0; i < table->nr; i++) {
330 struct kioctx *ctx;
331
332 ctx = rcu_dereference(table->table[i]);
333 if (ctx && ctx->aio_ring_file == file) {
334 if (!atomic_read(&ctx->dead)) {
335 ctx->user_id = ctx->mmap_base = vma->vm_start;
336 res = 0;
337 }
338 break;
339 }
340 }
341
342 rcu_read_unlock();
343 spin_unlock(&mm->ioctx_lock);
344 return res;
345 }
346
347 static const struct vm_operations_struct aio_ring_vm_ops = {
348 .mremap = aio_ring_mremap,
349 #if IS_ENABLED(CONFIG_MMU)
350 .fault = filemap_fault,
351 .map_pages = filemap_map_pages,
352 .page_mkwrite = filemap_page_mkwrite,
353 #endif
354 };
355
356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
357 {
358 vma->vm_flags |= VM_DONTEXPAND;
359 vma->vm_ops = &aio_ring_vm_ops;
360 return 0;
361 }
362
363 static const struct file_operations aio_ring_fops = {
364 .mmap = aio_ring_mmap,
365 };
366
367 #if IS_ENABLED(CONFIG_MIGRATION)
368 static int aio_migratepage(struct address_space *mapping, struct page *new,
369 struct page *old, enum migrate_mode mode)
370 {
371 struct kioctx *ctx;
372 unsigned long flags;
373 pgoff_t idx;
374 int rc;
375
376 /*
377 * We cannot support the _NO_COPY case here, because copy needs to
378 * happen under the ctx->completion_lock. That does not work with the
379 * migration workflow of MIGRATE_SYNC_NO_COPY.
380 */
381 if (mode == MIGRATE_SYNC_NO_COPY)
382 return -EINVAL;
383
384 rc = 0;
385
386 /* mapping->private_lock here protects against the kioctx teardown. */
387 spin_lock(&mapping->private_lock);
388 ctx = mapping->private_data;
389 if (!ctx) {
390 rc = -EINVAL;
391 goto out;
392 }
393
394 /* The ring_lock mutex. The prevents aio_read_events() from writing
395 * to the ring's head, and prevents page migration from mucking in
396 * a partially initialized kiotx.
397 */
398 if (!mutex_trylock(&ctx->ring_lock)) {
399 rc = -EAGAIN;
400 goto out;
401 }
402
403 idx = old->index;
404 if (idx < (pgoff_t)ctx->nr_pages) {
405 /* Make sure the old page hasn't already been changed */
406 if (ctx->ring_pages[idx] != old)
407 rc = -EAGAIN;
408 } else
409 rc = -EINVAL;
410
411 if (rc != 0)
412 goto out_unlock;
413
414 /* Writeback must be complete */
415 BUG_ON(PageWriteback(old));
416 get_page(new);
417
418 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
419 if (rc != MIGRATEPAGE_SUCCESS) {
420 put_page(new);
421 goto out_unlock;
422 }
423
424 /* Take completion_lock to prevent other writes to the ring buffer
425 * while the old page is copied to the new. This prevents new
426 * events from being lost.
427 */
428 spin_lock_irqsave(&ctx->completion_lock, flags);
429 migrate_page_copy(new, old);
430 BUG_ON(ctx->ring_pages[idx] != old);
431 ctx->ring_pages[idx] = new;
432 spin_unlock_irqrestore(&ctx->completion_lock, flags);
433
434 /* The old page is no longer accessible. */
435 put_page(old);
436
437 out_unlock:
438 mutex_unlock(&ctx->ring_lock);
439 out:
440 spin_unlock(&mapping->private_lock);
441 return rc;
442 }
443 #endif
444
445 static const struct address_space_operations aio_ctx_aops = {
446 .set_page_dirty = __set_page_dirty_no_writeback,
447 #if IS_ENABLED(CONFIG_MIGRATION)
448 .migratepage = aio_migratepage,
449 #endif
450 };
451
452 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
453 {
454 struct aio_ring *ring;
455 struct mm_struct *mm = current->mm;
456 unsigned long size, unused;
457 int nr_pages;
458 int i;
459 struct file *file;
460
461 /* Compensate for the ring buffer's head/tail overlap entry */
462 nr_events += 2; /* 1 is required, 2 for good luck */
463
464 size = sizeof(struct aio_ring);
465 size += sizeof(struct io_event) * nr_events;
466
467 nr_pages = PFN_UP(size);
468 if (nr_pages < 0)
469 return -EINVAL;
470
471 file = aio_private_file(ctx, nr_pages);
472 if (IS_ERR(file)) {
473 ctx->aio_ring_file = NULL;
474 return -ENOMEM;
475 }
476
477 ctx->aio_ring_file = file;
478 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
479 / sizeof(struct io_event);
480
481 ctx->ring_pages = ctx->internal_pages;
482 if (nr_pages > AIO_RING_PAGES) {
483 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
484 GFP_KERNEL);
485 if (!ctx->ring_pages) {
486 put_aio_ring_file(ctx);
487 return -ENOMEM;
488 }
489 }
490
491 for (i = 0; i < nr_pages; i++) {
492 struct page *page;
493 page = find_or_create_page(file->f_mapping,
494 i, GFP_HIGHUSER | __GFP_ZERO);
495 if (!page)
496 break;
497 pr_debug("pid(%d) page[%d]->count=%d\n",
498 current->pid, i, page_count(page));
499 SetPageUptodate(page);
500 unlock_page(page);
501
502 ctx->ring_pages[i] = page;
503 }
504 ctx->nr_pages = i;
505
506 if (unlikely(i != nr_pages)) {
507 aio_free_ring(ctx);
508 return -ENOMEM;
509 }
510
511 ctx->mmap_size = nr_pages * PAGE_SIZE;
512 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
513
514 if (down_write_killable(&mm->mmap_sem)) {
515 ctx->mmap_size = 0;
516 aio_free_ring(ctx);
517 return -EINTR;
518 }
519
520 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
521 PROT_READ | PROT_WRITE,
522 MAP_SHARED, 0, &unused, NULL);
523 up_write(&mm->mmap_sem);
524 if (IS_ERR((void *)ctx->mmap_base)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -ENOMEM;
528 }
529
530 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
531
532 ctx->user_id = ctx->mmap_base;
533 ctx->nr_events = nr_events; /* trusted copy */
534
535 ring = kmap_atomic(ctx->ring_pages[0]);
536 ring->nr = nr_events; /* user copy */
537 ring->id = ~0U;
538 ring->head = ring->tail = 0;
539 ring->magic = AIO_RING_MAGIC;
540 ring->compat_features = AIO_RING_COMPAT_FEATURES;
541 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
542 ring->header_length = sizeof(struct aio_ring);
543 kunmap_atomic(ring);
544 flush_dcache_page(ctx->ring_pages[0]);
545
546 return 0;
547 }
548
549 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
550 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
552
553 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
554 {
555 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
556 struct kioctx *ctx = req->ki_ctx;
557 unsigned long flags;
558
559 spin_lock_irqsave(&ctx->ctx_lock, flags);
560
561 if (!req->ki_list.next)
562 list_add(&req->ki_list, &ctx->active_reqs);
563
564 req->ki_cancel = cancel;
565
566 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
567 }
568 EXPORT_SYMBOL(kiocb_set_cancel_fn);
569
570 static int kiocb_cancel(struct aio_kiocb *kiocb)
571 {
572 kiocb_cancel_fn *old, *cancel;
573
574 /*
575 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
576 * actually has a cancel function, hence the cmpxchg()
577 */
578
579 cancel = READ_ONCE(kiocb->ki_cancel);
580 do {
581 if (!cancel || cancel == KIOCB_CANCELLED)
582 return -EINVAL;
583
584 old = cancel;
585 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
586 } while (cancel != old);
587
588 return cancel(&kiocb->common);
589 }
590
591 /*
592 * free_ioctx() should be RCU delayed to synchronize against the RCU
593 * protected lookup_ioctx() and also needs process context to call
594 * aio_free_ring(). Use rcu_work.
595 */
596 static void free_ioctx(struct work_struct *work)
597 {
598 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
599 free_rwork);
600 pr_debug("freeing %p\n", ctx);
601
602 aio_free_ring(ctx);
603 free_percpu(ctx->cpu);
604 percpu_ref_exit(&ctx->reqs);
605 percpu_ref_exit(&ctx->users);
606 kmem_cache_free(kioctx_cachep, ctx);
607 }
608
609 static void free_ioctx_reqs(struct percpu_ref *ref)
610 {
611 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
612
613 /* At this point we know that there are no any in-flight requests */
614 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
615 complete(&ctx->rq_wait->comp);
616
617 /* Synchronize against RCU protected table->table[] dereferences */
618 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
619 queue_rcu_work(system_wq, &ctx->free_rwork);
620 }
621
622 /*
623 * When this function runs, the kioctx has been removed from the "hash table"
624 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
625 * now it's safe to cancel any that need to be.
626 */
627 static void free_ioctx_users(struct percpu_ref *ref)
628 {
629 struct kioctx *ctx = container_of(ref, struct kioctx, users);
630 struct aio_kiocb *req;
631
632 spin_lock_irq(&ctx->ctx_lock);
633
634 while (!list_empty(&ctx->active_reqs)) {
635 req = list_first_entry(&ctx->active_reqs,
636 struct aio_kiocb, ki_list);
637
638 list_del_init(&req->ki_list);
639 kiocb_cancel(req);
640 }
641
642 spin_unlock_irq(&ctx->ctx_lock);
643
644 percpu_ref_kill(&ctx->reqs);
645 percpu_ref_put(&ctx->reqs);
646 }
647
648 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
649 {
650 unsigned i, new_nr;
651 struct kioctx_table *table, *old;
652 struct aio_ring *ring;
653
654 spin_lock(&mm->ioctx_lock);
655 table = rcu_dereference_raw(mm->ioctx_table);
656
657 while (1) {
658 if (table)
659 for (i = 0; i < table->nr; i++)
660 if (!rcu_access_pointer(table->table[i])) {
661 ctx->id = i;
662 rcu_assign_pointer(table->table[i], ctx);
663 spin_unlock(&mm->ioctx_lock);
664
665 /* While kioctx setup is in progress,
666 * we are protected from page migration
667 * changes ring_pages by ->ring_lock.
668 */
669 ring = kmap_atomic(ctx->ring_pages[0]);
670 ring->id = ctx->id;
671 kunmap_atomic(ring);
672 return 0;
673 }
674
675 new_nr = (table ? table->nr : 1) * 4;
676 spin_unlock(&mm->ioctx_lock);
677
678 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
679 new_nr, GFP_KERNEL);
680 if (!table)
681 return -ENOMEM;
682
683 table->nr = new_nr;
684
685 spin_lock(&mm->ioctx_lock);
686 old = rcu_dereference_raw(mm->ioctx_table);
687
688 if (!old) {
689 rcu_assign_pointer(mm->ioctx_table, table);
690 } else if (table->nr > old->nr) {
691 memcpy(table->table, old->table,
692 old->nr * sizeof(struct kioctx *));
693
694 rcu_assign_pointer(mm->ioctx_table, table);
695 kfree_rcu(old, rcu);
696 } else {
697 kfree(table);
698 table = old;
699 }
700 }
701 }
702
703 static void aio_nr_sub(unsigned nr)
704 {
705 spin_lock(&aio_nr_lock);
706 if (WARN_ON(aio_nr - nr > aio_nr))
707 aio_nr = 0;
708 else
709 aio_nr -= nr;
710 spin_unlock(&aio_nr_lock);
711 }
712
713 /* ioctx_alloc
714 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
715 */
716 static struct kioctx *ioctx_alloc(unsigned nr_events)
717 {
718 struct mm_struct *mm = current->mm;
719 struct kioctx *ctx;
720 int err = -ENOMEM;
721
722 /*
723 * Store the original nr_events -- what userspace passed to io_setup(),
724 * for counting against the global limit -- before it changes.
725 */
726 unsigned int max_reqs = nr_events;
727
728 /*
729 * We keep track of the number of available ringbuffer slots, to prevent
730 * overflow (reqs_available), and we also use percpu counters for this.
731 *
732 * So since up to half the slots might be on other cpu's percpu counters
733 * and unavailable, double nr_events so userspace sees what they
734 * expected: additionally, we move req_batch slots to/from percpu
735 * counters at a time, so make sure that isn't 0:
736 */
737 nr_events = max(nr_events, num_possible_cpus() * 4);
738 nr_events *= 2;
739
740 /* Prevent overflows */
741 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
742 pr_debug("ENOMEM: nr_events too high\n");
743 return ERR_PTR(-EINVAL);
744 }
745
746 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
747 return ERR_PTR(-EAGAIN);
748
749 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
750 if (!ctx)
751 return ERR_PTR(-ENOMEM);
752
753 ctx->max_reqs = max_reqs;
754
755 spin_lock_init(&ctx->ctx_lock);
756 spin_lock_init(&ctx->completion_lock);
757 mutex_init(&ctx->ring_lock);
758 /* Protect against page migration throughout kiotx setup by keeping
759 * the ring_lock mutex held until setup is complete. */
760 mutex_lock(&ctx->ring_lock);
761 init_waitqueue_head(&ctx->wait);
762
763 INIT_LIST_HEAD(&ctx->active_reqs);
764
765 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
766 goto err;
767
768 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
769 goto err;
770
771 ctx->cpu = alloc_percpu(struct kioctx_cpu);
772 if (!ctx->cpu)
773 goto err;
774
775 err = aio_setup_ring(ctx, nr_events);
776 if (err < 0)
777 goto err;
778
779 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
780 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
781 if (ctx->req_batch < 1)
782 ctx->req_batch = 1;
783
784 /* limit the number of system wide aios */
785 spin_lock(&aio_nr_lock);
786 if (aio_nr + ctx->max_reqs > aio_max_nr ||
787 aio_nr + ctx->max_reqs < aio_nr) {
788 spin_unlock(&aio_nr_lock);
789 err = -EAGAIN;
790 goto err_ctx;
791 }
792 aio_nr += ctx->max_reqs;
793 spin_unlock(&aio_nr_lock);
794
795 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
796 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
797
798 err = ioctx_add_table(ctx, mm);
799 if (err)
800 goto err_cleanup;
801
802 /* Release the ring_lock mutex now that all setup is complete. */
803 mutex_unlock(&ctx->ring_lock);
804
805 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
806 ctx, ctx->user_id, mm, ctx->nr_events);
807 return ctx;
808
809 err_cleanup:
810 aio_nr_sub(ctx->max_reqs);
811 err_ctx:
812 atomic_set(&ctx->dead, 1);
813 if (ctx->mmap_size)
814 vm_munmap(ctx->mmap_base, ctx->mmap_size);
815 aio_free_ring(ctx);
816 err:
817 mutex_unlock(&ctx->ring_lock);
818 free_percpu(ctx->cpu);
819 percpu_ref_exit(&ctx->reqs);
820 percpu_ref_exit(&ctx->users);
821 kmem_cache_free(kioctx_cachep, ctx);
822 pr_debug("error allocating ioctx %d\n", err);
823 return ERR_PTR(err);
824 }
825
826 /* kill_ioctx
827 * Cancels all outstanding aio requests on an aio context. Used
828 * when the processes owning a context have all exited to encourage
829 * the rapid destruction of the kioctx.
830 */
831 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
832 struct ctx_rq_wait *wait)
833 {
834 struct kioctx_table *table;
835
836 spin_lock(&mm->ioctx_lock);
837 if (atomic_xchg(&ctx->dead, 1)) {
838 spin_unlock(&mm->ioctx_lock);
839 return -EINVAL;
840 }
841
842 table = rcu_dereference_raw(mm->ioctx_table);
843 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
844 RCU_INIT_POINTER(table->table[ctx->id], NULL);
845 spin_unlock(&mm->ioctx_lock);
846
847 /* free_ioctx_reqs() will do the necessary RCU synchronization */
848 wake_up_all(&ctx->wait);
849
850 /*
851 * It'd be more correct to do this in free_ioctx(), after all
852 * the outstanding kiocbs have finished - but by then io_destroy
853 * has already returned, so io_setup() could potentially return
854 * -EAGAIN with no ioctxs actually in use (as far as userspace
855 * could tell).
856 */
857 aio_nr_sub(ctx->max_reqs);
858
859 if (ctx->mmap_size)
860 vm_munmap(ctx->mmap_base, ctx->mmap_size);
861
862 ctx->rq_wait = wait;
863 percpu_ref_kill(&ctx->users);
864 return 0;
865 }
866
867 /*
868 * exit_aio: called when the last user of mm goes away. At this point, there is
869 * no way for any new requests to be submited or any of the io_* syscalls to be
870 * called on the context.
871 *
872 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
873 * them.
874 */
875 void exit_aio(struct mm_struct *mm)
876 {
877 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
878 struct ctx_rq_wait wait;
879 int i, skipped;
880
881 if (!table)
882 return;
883
884 atomic_set(&wait.count, table->nr);
885 init_completion(&wait.comp);
886
887 skipped = 0;
888 for (i = 0; i < table->nr; ++i) {
889 struct kioctx *ctx =
890 rcu_dereference_protected(table->table[i], true);
891
892 if (!ctx) {
893 skipped++;
894 continue;
895 }
896
897 /*
898 * We don't need to bother with munmap() here - exit_mmap(mm)
899 * is coming and it'll unmap everything. And we simply can't,
900 * this is not necessarily our ->mm.
901 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
902 * that it needs to unmap the area, just set it to 0.
903 */
904 ctx->mmap_size = 0;
905 kill_ioctx(mm, ctx, &wait);
906 }
907
908 if (!atomic_sub_and_test(skipped, &wait.count)) {
909 /* Wait until all IO for the context are done. */
910 wait_for_completion(&wait.comp);
911 }
912
913 RCU_INIT_POINTER(mm->ioctx_table, NULL);
914 kfree(table);
915 }
916
917 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
918 {
919 struct kioctx_cpu *kcpu;
920 unsigned long flags;
921
922 local_irq_save(flags);
923 kcpu = this_cpu_ptr(ctx->cpu);
924 kcpu->reqs_available += nr;
925
926 while (kcpu->reqs_available >= ctx->req_batch * 2) {
927 kcpu->reqs_available -= ctx->req_batch;
928 atomic_add(ctx->req_batch, &ctx->reqs_available);
929 }
930
931 local_irq_restore(flags);
932 }
933
934 static bool get_reqs_available(struct kioctx *ctx)
935 {
936 struct kioctx_cpu *kcpu;
937 bool ret = false;
938 unsigned long flags;
939
940 local_irq_save(flags);
941 kcpu = this_cpu_ptr(ctx->cpu);
942 if (!kcpu->reqs_available) {
943 int old, avail = atomic_read(&ctx->reqs_available);
944
945 do {
946 if (avail < ctx->req_batch)
947 goto out;
948
949 old = avail;
950 avail = atomic_cmpxchg(&ctx->reqs_available,
951 avail, avail - ctx->req_batch);
952 } while (avail != old);
953
954 kcpu->reqs_available += ctx->req_batch;
955 }
956
957 ret = true;
958 kcpu->reqs_available--;
959 out:
960 local_irq_restore(flags);
961 return ret;
962 }
963
964 /* refill_reqs_available
965 * Updates the reqs_available reference counts used for tracking the
966 * number of free slots in the completion ring. This can be called
967 * from aio_complete() (to optimistically update reqs_available) or
968 * from aio_get_req() (the we're out of events case). It must be
969 * called holding ctx->completion_lock.
970 */
971 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
972 unsigned tail)
973 {
974 unsigned events_in_ring, completed;
975
976 /* Clamp head since userland can write to it. */
977 head %= ctx->nr_events;
978 if (head <= tail)
979 events_in_ring = tail - head;
980 else
981 events_in_ring = ctx->nr_events - (head - tail);
982
983 completed = ctx->completed_events;
984 if (events_in_ring < completed)
985 completed -= events_in_ring;
986 else
987 completed = 0;
988
989 if (!completed)
990 return;
991
992 ctx->completed_events -= completed;
993 put_reqs_available(ctx, completed);
994 }
995
996 /* user_refill_reqs_available
997 * Called to refill reqs_available when aio_get_req() encounters an
998 * out of space in the completion ring.
999 */
1000 static void user_refill_reqs_available(struct kioctx *ctx)
1001 {
1002 spin_lock_irq(&ctx->completion_lock);
1003 if (ctx->completed_events) {
1004 struct aio_ring *ring;
1005 unsigned head;
1006
1007 /* Access of ring->head may race with aio_read_events_ring()
1008 * here, but that's okay since whether we read the old version
1009 * or the new version, and either will be valid. The important
1010 * part is that head cannot pass tail since we prevent
1011 * aio_complete() from updating tail by holding
1012 * ctx->completion_lock. Even if head is invalid, the check
1013 * against ctx->completed_events below will make sure we do the
1014 * safe/right thing.
1015 */
1016 ring = kmap_atomic(ctx->ring_pages[0]);
1017 head = ring->head;
1018 kunmap_atomic(ring);
1019
1020 refill_reqs_available(ctx, head, ctx->tail);
1021 }
1022
1023 spin_unlock_irq(&ctx->completion_lock);
1024 }
1025
1026 /* aio_get_req
1027 * Allocate a slot for an aio request.
1028 * Returns NULL if no requests are free.
1029 */
1030 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1031 {
1032 struct aio_kiocb *req;
1033
1034 if (!get_reqs_available(ctx)) {
1035 user_refill_reqs_available(ctx);
1036 if (!get_reqs_available(ctx))
1037 return NULL;
1038 }
1039
1040 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1041 if (unlikely(!req))
1042 goto out_put;
1043
1044 percpu_ref_get(&ctx->reqs);
1045
1046 req->ki_ctx = ctx;
1047 return req;
1048 out_put:
1049 put_reqs_available(ctx, 1);
1050 return NULL;
1051 }
1052
1053 static void kiocb_free(struct aio_kiocb *req)
1054 {
1055 if (req->common.ki_filp)
1056 fput(req->common.ki_filp);
1057 if (req->ki_eventfd != NULL)
1058 eventfd_ctx_put(req->ki_eventfd);
1059 kmem_cache_free(kiocb_cachep, req);
1060 }
1061
1062 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1063 {
1064 struct aio_ring __user *ring = (void __user *)ctx_id;
1065 struct mm_struct *mm = current->mm;
1066 struct kioctx *ctx, *ret = NULL;
1067 struct kioctx_table *table;
1068 unsigned id;
1069
1070 if (get_user(id, &ring->id))
1071 return NULL;
1072
1073 rcu_read_lock();
1074 table = rcu_dereference(mm->ioctx_table);
1075
1076 if (!table || id >= table->nr)
1077 goto out;
1078
1079 ctx = rcu_dereference(table->table[id]);
1080 if (ctx && ctx->user_id == ctx_id) {
1081 percpu_ref_get(&ctx->users);
1082 ret = ctx;
1083 }
1084 out:
1085 rcu_read_unlock();
1086 return ret;
1087 }
1088
1089 /* aio_complete
1090 * Called when the io request on the given iocb is complete.
1091 */
1092 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1093 {
1094 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1095 struct kioctx *ctx = iocb->ki_ctx;
1096 struct aio_ring *ring;
1097 struct io_event *ev_page, *event;
1098 unsigned tail, pos, head;
1099 unsigned long flags;
1100
1101 if (kiocb->ki_flags & IOCB_WRITE) {
1102 struct file *file = kiocb->ki_filp;
1103
1104 /*
1105 * Tell lockdep we inherited freeze protection from submission
1106 * thread.
1107 */
1108 if (S_ISREG(file_inode(file)->i_mode))
1109 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1110 file_end_write(file);
1111 }
1112
1113 /*
1114 * Special case handling for sync iocbs:
1115 * - events go directly into the iocb for fast handling
1116 * - the sync task with the iocb in its stack holds the single iocb
1117 * ref, no other paths have a way to get another ref
1118 * - the sync task helpfully left a reference to itself in the iocb
1119 */
1120 BUG_ON(is_sync_kiocb(kiocb));
1121
1122 if (iocb->ki_list.next) {
1123 unsigned long flags;
1124
1125 spin_lock_irqsave(&ctx->ctx_lock, flags);
1126 list_del(&iocb->ki_list);
1127 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1128 }
1129
1130 /*
1131 * Add a completion event to the ring buffer. Must be done holding
1132 * ctx->completion_lock to prevent other code from messing with the tail
1133 * pointer since we might be called from irq context.
1134 */
1135 spin_lock_irqsave(&ctx->completion_lock, flags);
1136
1137 tail = ctx->tail;
1138 pos = tail + AIO_EVENTS_OFFSET;
1139
1140 if (++tail >= ctx->nr_events)
1141 tail = 0;
1142
1143 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1144 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1145
1146 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1147 event->data = iocb->ki_user_data;
1148 event->res = res;
1149 event->res2 = res2;
1150
1151 kunmap_atomic(ev_page);
1152 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1153
1154 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1155 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1156 res, res2);
1157
1158 /* after flagging the request as done, we
1159 * must never even look at it again
1160 */
1161 smp_wmb(); /* make event visible before updating tail */
1162
1163 ctx->tail = tail;
1164
1165 ring = kmap_atomic(ctx->ring_pages[0]);
1166 head = ring->head;
1167 ring->tail = tail;
1168 kunmap_atomic(ring);
1169 flush_dcache_page(ctx->ring_pages[0]);
1170
1171 ctx->completed_events++;
1172 if (ctx->completed_events > 1)
1173 refill_reqs_available(ctx, head, tail);
1174 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1175
1176 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1177
1178 /*
1179 * Check if the user asked us to deliver the result through an
1180 * eventfd. The eventfd_signal() function is safe to be called
1181 * from IRQ context.
1182 */
1183 if (iocb->ki_eventfd != NULL)
1184 eventfd_signal(iocb->ki_eventfd, 1);
1185
1186 /* everything turned out well, dispose of the aiocb. */
1187 kiocb_free(iocb);
1188
1189 /*
1190 * We have to order our ring_info tail store above and test
1191 * of the wait list below outside the wait lock. This is
1192 * like in wake_up_bit() where clearing a bit has to be
1193 * ordered with the unlocked test.
1194 */
1195 smp_mb();
1196
1197 if (waitqueue_active(&ctx->wait))
1198 wake_up(&ctx->wait);
1199
1200 percpu_ref_put(&ctx->reqs);
1201 }
1202
1203 /* aio_read_events_ring
1204 * Pull an event off of the ioctx's event ring. Returns the number of
1205 * events fetched
1206 */
1207 static long aio_read_events_ring(struct kioctx *ctx,
1208 struct io_event __user *event, long nr)
1209 {
1210 struct aio_ring *ring;
1211 unsigned head, tail, pos;
1212 long ret = 0;
1213 int copy_ret;
1214
1215 /*
1216 * The mutex can block and wake us up and that will cause
1217 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1218 * and repeat. This should be rare enough that it doesn't cause
1219 * peformance issues. See the comment in read_events() for more detail.
1220 */
1221 sched_annotate_sleep();
1222 mutex_lock(&ctx->ring_lock);
1223
1224 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1225 ring = kmap_atomic(ctx->ring_pages[0]);
1226 head = ring->head;
1227 tail = ring->tail;
1228 kunmap_atomic(ring);
1229
1230 /*
1231 * Ensure that once we've read the current tail pointer, that
1232 * we also see the events that were stored up to the tail.
1233 */
1234 smp_rmb();
1235
1236 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1237
1238 if (head == tail)
1239 goto out;
1240
1241 head %= ctx->nr_events;
1242 tail %= ctx->nr_events;
1243
1244 while (ret < nr) {
1245 long avail;
1246 struct io_event *ev;
1247 struct page *page;
1248
1249 avail = (head <= tail ? tail : ctx->nr_events) - head;
1250 if (head == tail)
1251 break;
1252
1253 avail = min(avail, nr - ret);
1254 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1255 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1256
1257 pos = head + AIO_EVENTS_OFFSET;
1258 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1259 pos %= AIO_EVENTS_PER_PAGE;
1260
1261 ev = kmap(page);
1262 copy_ret = copy_to_user(event + ret, ev + pos,
1263 sizeof(*ev) * avail);
1264 kunmap(page);
1265
1266 if (unlikely(copy_ret)) {
1267 ret = -EFAULT;
1268 goto out;
1269 }
1270
1271 ret += avail;
1272 head += avail;
1273 head %= ctx->nr_events;
1274 }
1275
1276 ring = kmap_atomic(ctx->ring_pages[0]);
1277 ring->head = head;
1278 kunmap_atomic(ring);
1279 flush_dcache_page(ctx->ring_pages[0]);
1280
1281 pr_debug("%li h%u t%u\n", ret, head, tail);
1282 out:
1283 mutex_unlock(&ctx->ring_lock);
1284
1285 return ret;
1286 }
1287
1288 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1289 struct io_event __user *event, long *i)
1290 {
1291 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1292
1293 if (ret > 0)
1294 *i += ret;
1295
1296 if (unlikely(atomic_read(&ctx->dead)))
1297 ret = -EINVAL;
1298
1299 if (!*i)
1300 *i = ret;
1301
1302 return ret < 0 || *i >= min_nr;
1303 }
1304
1305 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1306 struct io_event __user *event,
1307 ktime_t until)
1308 {
1309 long ret = 0;
1310
1311 /*
1312 * Note that aio_read_events() is being called as the conditional - i.e.
1313 * we're calling it after prepare_to_wait() has set task state to
1314 * TASK_INTERRUPTIBLE.
1315 *
1316 * But aio_read_events() can block, and if it blocks it's going to flip
1317 * the task state back to TASK_RUNNING.
1318 *
1319 * This should be ok, provided it doesn't flip the state back to
1320 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1321 * will only happen if the mutex_lock() call blocks, and we then find
1322 * the ringbuffer empty. So in practice we should be ok, but it's
1323 * something to be aware of when touching this code.
1324 */
1325 if (until == 0)
1326 aio_read_events(ctx, min_nr, nr, event, &ret);
1327 else
1328 wait_event_interruptible_hrtimeout(ctx->wait,
1329 aio_read_events(ctx, min_nr, nr, event, &ret),
1330 until);
1331
1332 if (!ret && signal_pending(current))
1333 ret = -EINTR;
1334
1335 return ret;
1336 }
1337
1338 /* sys_io_setup:
1339 * Create an aio_context capable of receiving at least nr_events.
1340 * ctxp must not point to an aio_context that already exists, and
1341 * must be initialized to 0 prior to the call. On successful
1342 * creation of the aio_context, *ctxp is filled in with the resulting
1343 * handle. May fail with -EINVAL if *ctxp is not initialized,
1344 * if the specified nr_events exceeds internal limits. May fail
1345 * with -EAGAIN if the specified nr_events exceeds the user's limit
1346 * of available events. May fail with -ENOMEM if insufficient kernel
1347 * resources are available. May fail with -EFAULT if an invalid
1348 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1349 * implemented.
1350 */
1351 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1352 {
1353 struct kioctx *ioctx = NULL;
1354 unsigned long ctx;
1355 long ret;
1356
1357 ret = get_user(ctx, ctxp);
1358 if (unlikely(ret))
1359 goto out;
1360
1361 ret = -EINVAL;
1362 if (unlikely(ctx || nr_events == 0)) {
1363 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1364 ctx, nr_events);
1365 goto out;
1366 }
1367
1368 ioctx = ioctx_alloc(nr_events);
1369 ret = PTR_ERR(ioctx);
1370 if (!IS_ERR(ioctx)) {
1371 ret = put_user(ioctx->user_id, ctxp);
1372 if (ret)
1373 kill_ioctx(current->mm, ioctx, NULL);
1374 percpu_ref_put(&ioctx->users);
1375 }
1376
1377 out:
1378 return ret;
1379 }
1380
1381 #ifdef CONFIG_COMPAT
1382 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1383 {
1384 struct kioctx *ioctx = NULL;
1385 unsigned long ctx;
1386 long ret;
1387
1388 ret = get_user(ctx, ctx32p);
1389 if (unlikely(ret))
1390 goto out;
1391
1392 ret = -EINVAL;
1393 if (unlikely(ctx || nr_events == 0)) {
1394 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1395 ctx, nr_events);
1396 goto out;
1397 }
1398
1399 ioctx = ioctx_alloc(nr_events);
1400 ret = PTR_ERR(ioctx);
1401 if (!IS_ERR(ioctx)) {
1402 /* truncating is ok because it's a user address */
1403 ret = put_user((u32)ioctx->user_id, ctx32p);
1404 if (ret)
1405 kill_ioctx(current->mm, ioctx, NULL);
1406 percpu_ref_put(&ioctx->users);
1407 }
1408
1409 out:
1410 return ret;
1411 }
1412 #endif
1413
1414 /* sys_io_destroy:
1415 * Destroy the aio_context specified. May cancel any outstanding
1416 * AIOs and block on completion. Will fail with -ENOSYS if not
1417 * implemented. May fail with -EINVAL if the context pointed to
1418 * is invalid.
1419 */
1420 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1421 {
1422 struct kioctx *ioctx = lookup_ioctx(ctx);
1423 if (likely(NULL != ioctx)) {
1424 struct ctx_rq_wait wait;
1425 int ret;
1426
1427 init_completion(&wait.comp);
1428 atomic_set(&wait.count, 1);
1429
1430 /* Pass requests_done to kill_ioctx() where it can be set
1431 * in a thread-safe way. If we try to set it here then we have
1432 * a race condition if two io_destroy() called simultaneously.
1433 */
1434 ret = kill_ioctx(current->mm, ioctx, &wait);
1435 percpu_ref_put(&ioctx->users);
1436
1437 /* Wait until all IO for the context are done. Otherwise kernel
1438 * keep using user-space buffers even if user thinks the context
1439 * is destroyed.
1440 */
1441 if (!ret)
1442 wait_for_completion(&wait.comp);
1443
1444 return ret;
1445 }
1446 pr_debug("EINVAL: invalid context id\n");
1447 return -EINVAL;
1448 }
1449
1450 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1451 bool vectored, bool compat, struct iov_iter *iter)
1452 {
1453 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1454 size_t len = iocb->aio_nbytes;
1455
1456 if (!vectored) {
1457 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1458 *iovec = NULL;
1459 return ret;
1460 }
1461 #ifdef CONFIG_COMPAT
1462 if (compat)
1463 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1464 iter);
1465 #endif
1466 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1467 }
1468
1469 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1470 {
1471 switch (ret) {
1472 case -EIOCBQUEUED:
1473 return ret;
1474 case -ERESTARTSYS:
1475 case -ERESTARTNOINTR:
1476 case -ERESTARTNOHAND:
1477 case -ERESTART_RESTARTBLOCK:
1478 /*
1479 * There's no easy way to restart the syscall since other AIO's
1480 * may be already running. Just fail this IO with EINTR.
1481 */
1482 ret = -EINTR;
1483 /*FALLTHRU*/
1484 default:
1485 aio_complete(req, ret, 0);
1486 return 0;
1487 }
1488 }
1489
1490 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1491 bool compat)
1492 {
1493 struct file *file = req->ki_filp;
1494 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1495 struct iov_iter iter;
1496 ssize_t ret;
1497
1498 if (unlikely(!(file->f_mode & FMODE_READ)))
1499 return -EBADF;
1500 if (unlikely(!file->f_op->read_iter))
1501 return -EINVAL;
1502
1503 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1504 if (ret)
1505 return ret;
1506 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1507 if (!ret)
1508 ret = aio_ret(req, call_read_iter(file, req, &iter));
1509 kfree(iovec);
1510 return ret;
1511 }
1512
1513 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1514 bool compat)
1515 {
1516 struct file *file = req->ki_filp;
1517 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1518 struct iov_iter iter;
1519 ssize_t ret;
1520
1521 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1522 return -EBADF;
1523 if (unlikely(!file->f_op->write_iter))
1524 return -EINVAL;
1525
1526 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1527 if (ret)
1528 return ret;
1529 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1530 if (!ret) {
1531 req->ki_flags |= IOCB_WRITE;
1532 file_start_write(file);
1533 ret = aio_ret(req, call_write_iter(file, req, &iter));
1534 /*
1535 * We release freeze protection in aio_complete(). Fool lockdep
1536 * by telling it the lock got released so that it doesn't
1537 * complain about held lock when we return to userspace.
1538 */
1539 if (S_ISREG(file_inode(file)->i_mode))
1540 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1541 }
1542 kfree(iovec);
1543 return ret;
1544 }
1545
1546 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1547 struct iocb *iocb, bool compat)
1548 {
1549 struct aio_kiocb *req;
1550 struct file *file;
1551 ssize_t ret;
1552
1553 /* enforce forwards compatibility on users */
1554 if (unlikely(iocb->aio_reserved2)) {
1555 pr_debug("EINVAL: reserve field set\n");
1556 return -EINVAL;
1557 }
1558
1559 /* prevent overflows */
1560 if (unlikely(
1561 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1562 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1563 ((ssize_t)iocb->aio_nbytes < 0)
1564 )) {
1565 pr_debug("EINVAL: overflow check\n");
1566 return -EINVAL;
1567 }
1568
1569 req = aio_get_req(ctx);
1570 if (unlikely(!req))
1571 return -EAGAIN;
1572
1573 req->common.ki_filp = file = fget(iocb->aio_fildes);
1574 if (unlikely(!req->common.ki_filp)) {
1575 ret = -EBADF;
1576 goto out_put_req;
1577 }
1578 req->common.ki_pos = iocb->aio_offset;
1579 req->common.ki_complete = aio_complete;
1580 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1581 req->common.ki_hint = file_write_hint(file);
1582
1583 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1584 /*
1585 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1586 * instance of the file* now. The file descriptor must be
1587 * an eventfd() fd, and will be signaled for each completed
1588 * event using the eventfd_signal() function.
1589 */
1590 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1591 if (IS_ERR(req->ki_eventfd)) {
1592 ret = PTR_ERR(req->ki_eventfd);
1593 req->ki_eventfd = NULL;
1594 goto out_put_req;
1595 }
1596
1597 req->common.ki_flags |= IOCB_EVENTFD;
1598 }
1599
1600 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1601 if (unlikely(ret)) {
1602 pr_debug("EINVAL: aio_rw_flags\n");
1603 goto out_put_req;
1604 }
1605
1606 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1607 if (unlikely(ret)) {
1608 pr_debug("EFAULT: aio_key\n");
1609 goto out_put_req;
1610 }
1611
1612 req->ki_user_iocb = user_iocb;
1613 req->ki_user_data = iocb->aio_data;
1614
1615 get_file(file);
1616 switch (iocb->aio_lio_opcode) {
1617 case IOCB_CMD_PREAD:
1618 ret = aio_read(&req->common, iocb, false, compat);
1619 break;
1620 case IOCB_CMD_PWRITE:
1621 ret = aio_write(&req->common, iocb, false, compat);
1622 break;
1623 case IOCB_CMD_PREADV:
1624 ret = aio_read(&req->common, iocb, true, compat);
1625 break;
1626 case IOCB_CMD_PWRITEV:
1627 ret = aio_write(&req->common, iocb, true, compat);
1628 break;
1629 default:
1630 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1631 ret = -EINVAL;
1632 break;
1633 }
1634 fput(file);
1635
1636 if (ret && ret != -EIOCBQUEUED)
1637 goto out_put_req;
1638 return 0;
1639 out_put_req:
1640 put_reqs_available(ctx, 1);
1641 percpu_ref_put(&ctx->reqs);
1642 kiocb_free(req);
1643 return ret;
1644 }
1645
1646 static long do_io_submit(aio_context_t ctx_id, long nr,
1647 struct iocb __user *__user *iocbpp, bool compat)
1648 {
1649 struct kioctx *ctx;
1650 long ret = 0;
1651 int i = 0;
1652 struct blk_plug plug;
1653
1654 if (unlikely(nr < 0))
1655 return -EINVAL;
1656
1657 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1658 nr = LONG_MAX/sizeof(*iocbpp);
1659
1660 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1661 return -EFAULT;
1662
1663 ctx = lookup_ioctx(ctx_id);
1664 if (unlikely(!ctx)) {
1665 pr_debug("EINVAL: invalid context id\n");
1666 return -EINVAL;
1667 }
1668
1669 blk_start_plug(&plug);
1670
1671 /*
1672 * AKPM: should this return a partial result if some of the IOs were
1673 * successfully submitted?
1674 */
1675 for (i=0; i<nr; i++) {
1676 struct iocb __user *user_iocb;
1677 struct iocb tmp;
1678
1679 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1680 ret = -EFAULT;
1681 break;
1682 }
1683
1684 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1685 ret = -EFAULT;
1686 break;
1687 }
1688
1689 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1690 if (ret)
1691 break;
1692 }
1693 blk_finish_plug(&plug);
1694
1695 percpu_ref_put(&ctx->users);
1696 return i ? i : ret;
1697 }
1698
1699 /* sys_io_submit:
1700 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1701 * the number of iocbs queued. May return -EINVAL if the aio_context
1702 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1703 * *iocbpp[0] is not properly initialized, if the operation specified
1704 * is invalid for the file descriptor in the iocb. May fail with
1705 * -EFAULT if any of the data structures point to invalid data. May
1706 * fail with -EBADF if the file descriptor specified in the first
1707 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1708 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1709 * fail with -ENOSYS if not implemented.
1710 */
1711 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1712 struct iocb __user * __user *, iocbpp)
1713 {
1714 return do_io_submit(ctx_id, nr, iocbpp, 0);
1715 }
1716
1717 #ifdef CONFIG_COMPAT
1718 static inline long
1719 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1720 {
1721 compat_uptr_t uptr;
1722 int i;
1723
1724 for (i = 0; i < nr; ++i) {
1725 if (get_user(uptr, ptr32 + i))
1726 return -EFAULT;
1727 if (put_user(compat_ptr(uptr), ptr64 + i))
1728 return -EFAULT;
1729 }
1730 return 0;
1731 }
1732
1733 #define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *))
1734
1735 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1736 int, nr, u32 __user *, iocb)
1737 {
1738 struct iocb __user * __user *iocb64;
1739 long ret;
1740
1741 if (unlikely(nr < 0))
1742 return -EINVAL;
1743
1744 if (nr > MAX_AIO_SUBMITS)
1745 nr = MAX_AIO_SUBMITS;
1746
1747 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1748 ret = copy_iocb(nr, iocb, iocb64);
1749 if (!ret)
1750 ret = do_io_submit(ctx_id, nr, iocb64, 1);
1751 return ret;
1752 }
1753 #endif
1754
1755 /* lookup_kiocb
1756 * Finds a given iocb for cancellation.
1757 */
1758 static struct aio_kiocb *
1759 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1760 {
1761 struct aio_kiocb *kiocb;
1762
1763 assert_spin_locked(&ctx->ctx_lock);
1764
1765 if (key != KIOCB_KEY)
1766 return NULL;
1767
1768 /* TODO: use a hash or array, this sucks. */
1769 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1770 if (kiocb->ki_user_iocb == iocb)
1771 return kiocb;
1772 }
1773 return NULL;
1774 }
1775
1776 /* sys_io_cancel:
1777 * Attempts to cancel an iocb previously passed to io_submit. If
1778 * the operation is successfully cancelled, the resulting event is
1779 * copied into the memory pointed to by result without being placed
1780 * into the completion queue and 0 is returned. May fail with
1781 * -EFAULT if any of the data structures pointed to are invalid.
1782 * May fail with -EINVAL if aio_context specified by ctx_id is
1783 * invalid. May fail with -EAGAIN if the iocb specified was not
1784 * cancelled. Will fail with -ENOSYS if not implemented.
1785 */
1786 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1787 struct io_event __user *, result)
1788 {
1789 struct kioctx *ctx;
1790 struct aio_kiocb *kiocb;
1791 u32 key;
1792 int ret;
1793
1794 ret = get_user(key, &iocb->aio_key);
1795 if (unlikely(ret))
1796 return -EFAULT;
1797
1798 ctx = lookup_ioctx(ctx_id);
1799 if (unlikely(!ctx))
1800 return -EINVAL;
1801
1802 spin_lock_irq(&ctx->ctx_lock);
1803
1804 kiocb = lookup_kiocb(ctx, iocb, key);
1805 if (kiocb)
1806 ret = kiocb_cancel(kiocb);
1807 else
1808 ret = -EINVAL;
1809
1810 spin_unlock_irq(&ctx->ctx_lock);
1811
1812 if (!ret) {
1813 /*
1814 * The result argument is no longer used - the io_event is
1815 * always delivered via the ring buffer. -EINPROGRESS indicates
1816 * cancellation is progress:
1817 */
1818 ret = -EINPROGRESS;
1819 }
1820
1821 percpu_ref_put(&ctx->users);
1822
1823 return ret;
1824 }
1825
1826 static long do_io_getevents(aio_context_t ctx_id,
1827 long min_nr,
1828 long nr,
1829 struct io_event __user *events,
1830 struct timespec64 *ts)
1831 {
1832 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1833 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1834 long ret = -EINVAL;
1835
1836 if (likely(ioctx)) {
1837 if (likely(min_nr <= nr && min_nr >= 0))
1838 ret = read_events(ioctx, min_nr, nr, events, until);
1839 percpu_ref_put(&ioctx->users);
1840 }
1841
1842 return ret;
1843 }
1844
1845 /* io_getevents:
1846 * Attempts to read at least min_nr events and up to nr events from
1847 * the completion queue for the aio_context specified by ctx_id. If
1848 * it succeeds, the number of read events is returned. May fail with
1849 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1850 * out of range, if timeout is out of range. May fail with -EFAULT
1851 * if any of the memory specified is invalid. May return 0 or
1852 * < min_nr if the timeout specified by timeout has elapsed
1853 * before sufficient events are available, where timeout == NULL
1854 * specifies an infinite timeout. Note that the timeout pointed to by
1855 * timeout is relative. Will fail with -ENOSYS if not implemented.
1856 */
1857 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1858 long, min_nr,
1859 long, nr,
1860 struct io_event __user *, events,
1861 struct timespec __user *, timeout)
1862 {
1863 struct timespec64 ts;
1864
1865 if (timeout) {
1866 if (unlikely(get_timespec64(&ts, timeout)))
1867 return -EFAULT;
1868 }
1869
1870 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1871 }
1872
1873 #ifdef CONFIG_COMPAT
1874 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1875 compat_long_t, min_nr,
1876 compat_long_t, nr,
1877 struct io_event __user *, events,
1878 struct compat_timespec __user *, timeout)
1879 {
1880 struct timespec64 t;
1881
1882 if (timeout) {
1883 if (compat_get_timespec64(&t, timeout))
1884 return -EFAULT;
1885
1886 }
1887
1888 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1889 }
1890 #endif