]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/aio.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/uio.h>
23
24 #include <linux/sched/signal.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/mm.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_context.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44
45 #include <asm/kmap_types.h>
46 #include <linux/uaccess.h>
47
48 #include "internal.h"
49
50 #define KIOCB_KEY 0
51
52 #define AIO_RING_MAGIC 0xa10a10a1
53 #define AIO_RING_COMPAT_FEATURES 1
54 #define AIO_RING_INCOMPAT_FEATURES 0
55 struct aio_ring {
56 unsigned id; /* kernel internal index number */
57 unsigned nr; /* number of io_events */
58 unsigned head; /* Written to by userland or under ring_lock
59 * mutex by aio_read_events_ring(). */
60 unsigned tail;
61
62 unsigned magic;
63 unsigned compat_features;
64 unsigned incompat_features;
65 unsigned header_length; /* size of aio_ring */
66
67
68 struct io_event io_events[0];
69 }; /* 128 bytes + ring size */
70
71 #define AIO_RING_PAGES 8
72
73 struct kioctx_table {
74 struct rcu_head rcu;
75 unsigned nr;
76 struct kioctx __rcu *table[];
77 };
78
79 struct kioctx_cpu {
80 unsigned reqs_available;
81 };
82
83 struct ctx_rq_wait {
84 struct completion comp;
85 atomic_t count;
86 };
87
88 struct kioctx {
89 struct percpu_ref users;
90 atomic_t dead;
91
92 struct percpu_ref reqs;
93
94 unsigned long user_id;
95
96 struct __percpu kioctx_cpu *cpu;
97
98 /*
99 * For percpu reqs_available, number of slots we move to/from global
100 * counter at a time:
101 */
102 unsigned req_batch;
103 /*
104 * This is what userspace passed to io_setup(), it's not used for
105 * anything but counting against the global max_reqs quota.
106 *
107 * The real limit is nr_events - 1, which will be larger (see
108 * aio_setup_ring())
109 */
110 unsigned max_reqs;
111
112 /* Size of ringbuffer, in units of struct io_event */
113 unsigned nr_events;
114
115 unsigned long mmap_base;
116 unsigned long mmap_size;
117
118 struct page **ring_pages;
119 long nr_pages;
120
121 struct rcu_work free_rwork; /* see free_ioctx() */
122
123 /*
124 * signals when all in-flight requests are done
125 */
126 struct ctx_rq_wait *rq_wait;
127
128 struct {
129 /*
130 * This counts the number of available slots in the ringbuffer,
131 * so we avoid overflowing it: it's decremented (if positive)
132 * when allocating a kiocb and incremented when the resulting
133 * io_event is pulled off the ringbuffer.
134 *
135 * We batch accesses to it with a percpu version.
136 */
137 atomic_t reqs_available;
138 } ____cacheline_aligned_in_smp;
139
140 struct {
141 spinlock_t ctx_lock;
142 struct list_head active_reqs; /* used for cancellation */
143 } ____cacheline_aligned_in_smp;
144
145 struct {
146 struct mutex ring_lock;
147 wait_queue_head_t wait;
148 } ____cacheline_aligned_in_smp;
149
150 struct {
151 unsigned tail;
152 unsigned completed_events;
153 spinlock_t completion_lock;
154 } ____cacheline_aligned_in_smp;
155
156 struct page *internal_pages[AIO_RING_PAGES];
157 struct file *aio_ring_file;
158
159 unsigned id;
160 };
161
162 struct fsync_iocb {
163 struct work_struct work;
164 struct file *file;
165 bool datasync;
166 };
167
168 struct poll_iocb {
169 struct file *file;
170 __poll_t events;
171 struct wait_queue_head *head;
172
173 union {
174 struct wait_queue_entry wait;
175 struct work_struct work;
176 };
177 };
178
179 struct aio_kiocb {
180 union {
181 struct kiocb rw;
182 struct fsync_iocb fsync;
183 struct poll_iocb poll;
184 };
185
186 struct kioctx *ki_ctx;
187 kiocb_cancel_fn *ki_cancel;
188
189 struct iocb __user *ki_user_iocb; /* user's aiocb */
190 __u64 ki_user_data; /* user's data for completion */
191
192 struct list_head ki_list; /* the aio core uses this
193 * for cancellation */
194
195 /*
196 * If the aio_resfd field of the userspace iocb is not zero,
197 * this is the underlying eventfd context to deliver events to.
198 */
199 struct eventfd_ctx *ki_eventfd;
200 };
201
202 /*------ sysctl variables----*/
203 static DEFINE_SPINLOCK(aio_nr_lock);
204 unsigned long aio_nr; /* current system wide number of aio requests */
205 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
206 /*----end sysctl variables---*/
207
208 static struct kmem_cache *kiocb_cachep;
209 static struct kmem_cache *kioctx_cachep;
210
211 static struct vfsmount *aio_mnt;
212
213 static const struct file_operations aio_ring_fops;
214 static const struct address_space_operations aio_ctx_aops;
215
216 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
217 {
218 struct qstr this = QSTR_INIT("[aio]", 5);
219 struct file *file;
220 struct path path;
221 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
222 if (IS_ERR(inode))
223 return ERR_CAST(inode);
224
225 inode->i_mapping->a_ops = &aio_ctx_aops;
226 inode->i_mapping->private_data = ctx;
227 inode->i_size = PAGE_SIZE * nr_pages;
228
229 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
230 if (!path.dentry) {
231 iput(inode);
232 return ERR_PTR(-ENOMEM);
233 }
234 path.mnt = mntget(aio_mnt);
235
236 d_instantiate(path.dentry, inode);
237 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
238 if (IS_ERR(file)) {
239 path_put(&path);
240 return file;
241 }
242
243 file->f_flags = O_RDWR;
244 return file;
245 }
246
247 static struct dentry *aio_mount(struct file_system_type *fs_type,
248 int flags, const char *dev_name, void *data)
249 {
250 static const struct dentry_operations ops = {
251 .d_dname = simple_dname,
252 };
253 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
254 AIO_RING_MAGIC);
255
256 if (!IS_ERR(root))
257 root->d_sb->s_iflags |= SB_I_NOEXEC;
258 return root;
259 }
260
261 /* aio_setup
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
264 */
265 static int __init aio_setup(void)
266 {
267 static struct file_system_type aio_fs = {
268 .name = "aio",
269 .mount = aio_mount,
270 .kill_sb = kill_anon_super,
271 };
272 aio_mnt = kern_mount(&aio_fs);
273 if (IS_ERR(aio_mnt))
274 panic("Failed to create aio fs mount.");
275
276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 return 0;
279 }
280 __initcall(aio_setup);
281
282 static void put_aio_ring_file(struct kioctx *ctx)
283 {
284 struct file *aio_ring_file = ctx->aio_ring_file;
285 struct address_space *i_mapping;
286
287 if (aio_ring_file) {
288 truncate_setsize(file_inode(aio_ring_file), 0);
289
290 /* Prevent further access to the kioctx from migratepages */
291 i_mapping = aio_ring_file->f_mapping;
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
294 ctx->aio_ring_file = NULL;
295 spin_unlock(&i_mapping->private_lock);
296
297 fput(aio_ring_file);
298 }
299 }
300
301 static void aio_free_ring(struct kioctx *ctx)
302 {
303 int i;
304
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
307 */
308 put_aio_ring_file(ctx);
309
310 for (i = 0; i < ctx->nr_pages; i++) {
311 struct page *page;
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
314 page = ctx->ring_pages[i];
315 if (!page)
316 continue;
317 ctx->ring_pages[i] = NULL;
318 put_page(page);
319 }
320
321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 kfree(ctx->ring_pages);
323 ctx->ring_pages = NULL;
324 }
325 }
326
327 static int aio_ring_mremap(struct vm_area_struct *vma)
328 {
329 struct file *file = vma->vm_file;
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
332 int i, res = -EINVAL;
333
334 spin_lock(&mm->ioctx_lock);
335 rcu_read_lock();
336 table = rcu_dereference(mm->ioctx_table);
337 for (i = 0; i < table->nr; i++) {
338 struct kioctx *ctx;
339
340 ctx = rcu_dereference(table->table[i]);
341 if (ctx && ctx->aio_ring_file == file) {
342 if (!atomic_read(&ctx->dead)) {
343 ctx->user_id = ctx->mmap_base = vma->vm_start;
344 res = 0;
345 }
346 break;
347 }
348 }
349
350 rcu_read_unlock();
351 spin_unlock(&mm->ioctx_lock);
352 return res;
353 }
354
355 static const struct vm_operations_struct aio_ring_vm_ops = {
356 .mremap = aio_ring_mremap,
357 #if IS_ENABLED(CONFIG_MMU)
358 .fault = filemap_fault,
359 .map_pages = filemap_map_pages,
360 .page_mkwrite = filemap_page_mkwrite,
361 #endif
362 };
363
364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
365 {
366 vma->vm_flags |= VM_DONTEXPAND;
367 vma->vm_ops = &aio_ring_vm_ops;
368 return 0;
369 }
370
371 static const struct file_operations aio_ring_fops = {
372 .mmap = aio_ring_mmap,
373 };
374
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space *mapping, struct page *new,
377 struct page *old, enum migrate_mode mode)
378 {
379 struct kioctx *ctx;
380 unsigned long flags;
381 pgoff_t idx;
382 int rc;
383
384 /*
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
388 */
389 if (mode == MIGRATE_SYNC_NO_COPY)
390 return -EINVAL;
391
392 rc = 0;
393
394 /* mapping->private_lock here protects against the kioctx teardown. */
395 spin_lock(&mapping->private_lock);
396 ctx = mapping->private_data;
397 if (!ctx) {
398 rc = -EINVAL;
399 goto out;
400 }
401
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
405 */
406 if (!mutex_trylock(&ctx->ring_lock)) {
407 rc = -EAGAIN;
408 goto out;
409 }
410
411 idx = old->index;
412 if (idx < (pgoff_t)ctx->nr_pages) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx->ring_pages[idx] != old)
415 rc = -EAGAIN;
416 } else
417 rc = -EINVAL;
418
419 if (rc != 0)
420 goto out_unlock;
421
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old));
424 get_page(new);
425
426 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
427 if (rc != MIGRATEPAGE_SUCCESS) {
428 put_page(new);
429 goto out_unlock;
430 }
431
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
435 */
436 spin_lock_irqsave(&ctx->completion_lock, flags);
437 migrate_page_copy(new, old);
438 BUG_ON(ctx->ring_pages[idx] != old);
439 ctx->ring_pages[idx] = new;
440 spin_unlock_irqrestore(&ctx->completion_lock, flags);
441
442 /* The old page is no longer accessible. */
443 put_page(old);
444
445 out_unlock:
446 mutex_unlock(&ctx->ring_lock);
447 out:
448 spin_unlock(&mapping->private_lock);
449 return rc;
450 }
451 #endif
452
453 static const struct address_space_operations aio_ctx_aops = {
454 .set_page_dirty = __set_page_dirty_no_writeback,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 .migratepage = aio_migratepage,
457 #endif
458 };
459
460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
461 {
462 struct aio_ring *ring;
463 struct mm_struct *mm = current->mm;
464 unsigned long size, unused;
465 int nr_pages;
466 int i;
467 struct file *file;
468
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events += 2; /* 1 is required, 2 for good luck */
471
472 size = sizeof(struct aio_ring);
473 size += sizeof(struct io_event) * nr_events;
474
475 nr_pages = PFN_UP(size);
476 if (nr_pages < 0)
477 return -EINVAL;
478
479 file = aio_private_file(ctx, nr_pages);
480 if (IS_ERR(file)) {
481 ctx->aio_ring_file = NULL;
482 return -ENOMEM;
483 }
484
485 ctx->aio_ring_file = file;
486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 / sizeof(struct io_event);
488
489 ctx->ring_pages = ctx->internal_pages;
490 if (nr_pages > AIO_RING_PAGES) {
491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 GFP_KERNEL);
493 if (!ctx->ring_pages) {
494 put_aio_ring_file(ctx);
495 return -ENOMEM;
496 }
497 }
498
499 for (i = 0; i < nr_pages; i++) {
500 struct page *page;
501 page = find_or_create_page(file->f_mapping,
502 i, GFP_HIGHUSER | __GFP_ZERO);
503 if (!page)
504 break;
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current->pid, i, page_count(page));
507 SetPageUptodate(page);
508 unlock_page(page);
509
510 ctx->ring_pages[i] = page;
511 }
512 ctx->nr_pages = i;
513
514 if (unlikely(i != nr_pages)) {
515 aio_free_ring(ctx);
516 return -ENOMEM;
517 }
518
519 ctx->mmap_size = nr_pages * PAGE_SIZE;
520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
521
522 if (down_write_killable(&mm->mmap_sem)) {
523 ctx->mmap_size = 0;
524 aio_free_ring(ctx);
525 return -EINTR;
526 }
527
528 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
529 PROT_READ | PROT_WRITE,
530 MAP_SHARED, 0, &unused, NULL);
531 up_write(&mm->mmap_sem);
532 if (IS_ERR((void *)ctx->mmap_base)) {
533 ctx->mmap_size = 0;
534 aio_free_ring(ctx);
535 return -ENOMEM;
536 }
537
538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
539
540 ctx->user_id = ctx->mmap_base;
541 ctx->nr_events = nr_events; /* trusted copy */
542
543 ring = kmap_atomic(ctx->ring_pages[0]);
544 ring->nr = nr_events; /* user copy */
545 ring->id = ~0U;
546 ring->head = ring->tail = 0;
547 ring->magic = AIO_RING_MAGIC;
548 ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 ring->header_length = sizeof(struct aio_ring);
551 kunmap_atomic(ring);
552 flush_dcache_page(ctx->ring_pages[0]);
553
554 return 0;
555 }
556
557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
560
561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
562 {
563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 struct kioctx *ctx = req->ki_ctx;
565 unsigned long flags;
566
567 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 return;
569
570 spin_lock_irqsave(&ctx->ctx_lock, flags);
571 list_add_tail(&req->ki_list, &ctx->active_reqs);
572 req->ki_cancel = cancel;
573 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
574 }
575 EXPORT_SYMBOL(kiocb_set_cancel_fn);
576
577 /*
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
580 * aio_free_ring(). Use rcu_work.
581 */
582 static void free_ioctx(struct work_struct *work)
583 {
584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 free_rwork);
586 pr_debug("freeing %p\n", ctx);
587
588 aio_free_ring(ctx);
589 free_percpu(ctx->cpu);
590 percpu_ref_exit(&ctx->reqs);
591 percpu_ref_exit(&ctx->users);
592 kmem_cache_free(kioctx_cachep, ctx);
593 }
594
595 static void free_ioctx_reqs(struct percpu_ref *ref)
596 {
597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598
599 /* At this point we know that there are no any in-flight requests */
600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 complete(&ctx->rq_wait->comp);
602
603 /* Synchronize against RCU protected table->table[] dereferences */
604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 queue_rcu_work(system_wq, &ctx->free_rwork);
606 }
607
608 /*
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
612 */
613 static void free_ioctx_users(struct percpu_ref *ref)
614 {
615 struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 struct aio_kiocb *req;
617
618 spin_lock_irq(&ctx->ctx_lock);
619
620 while (!list_empty(&ctx->active_reqs)) {
621 req = list_first_entry(&ctx->active_reqs,
622 struct aio_kiocb, ki_list);
623 req->ki_cancel(&req->rw);
624 list_del_init(&req->ki_list);
625 }
626
627 spin_unlock_irq(&ctx->ctx_lock);
628
629 percpu_ref_kill(&ctx->reqs);
630 percpu_ref_put(&ctx->reqs);
631 }
632
633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634 {
635 unsigned i, new_nr;
636 struct kioctx_table *table, *old;
637 struct aio_ring *ring;
638
639 spin_lock(&mm->ioctx_lock);
640 table = rcu_dereference_raw(mm->ioctx_table);
641
642 while (1) {
643 if (table)
644 for (i = 0; i < table->nr; i++)
645 if (!rcu_access_pointer(table->table[i])) {
646 ctx->id = i;
647 rcu_assign_pointer(table->table[i], ctx);
648 spin_unlock(&mm->ioctx_lock);
649
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
653 */
654 ring = kmap_atomic(ctx->ring_pages[0]);
655 ring->id = ctx->id;
656 kunmap_atomic(ring);
657 return 0;
658 }
659
660 new_nr = (table ? table->nr : 1) * 4;
661 spin_unlock(&mm->ioctx_lock);
662
663 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
664 new_nr, GFP_KERNEL);
665 if (!table)
666 return -ENOMEM;
667
668 table->nr = new_nr;
669
670 spin_lock(&mm->ioctx_lock);
671 old = rcu_dereference_raw(mm->ioctx_table);
672
673 if (!old) {
674 rcu_assign_pointer(mm->ioctx_table, table);
675 } else if (table->nr > old->nr) {
676 memcpy(table->table, old->table,
677 old->nr * sizeof(struct kioctx *));
678
679 rcu_assign_pointer(mm->ioctx_table, table);
680 kfree_rcu(old, rcu);
681 } else {
682 kfree(table);
683 table = old;
684 }
685 }
686 }
687
688 static void aio_nr_sub(unsigned nr)
689 {
690 spin_lock(&aio_nr_lock);
691 if (WARN_ON(aio_nr - nr > aio_nr))
692 aio_nr = 0;
693 else
694 aio_nr -= nr;
695 spin_unlock(&aio_nr_lock);
696 }
697
698 /* ioctx_alloc
699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
700 */
701 static struct kioctx *ioctx_alloc(unsigned nr_events)
702 {
703 struct mm_struct *mm = current->mm;
704 struct kioctx *ctx;
705 int err = -ENOMEM;
706
707 /*
708 * Store the original nr_events -- what userspace passed to io_setup(),
709 * for counting against the global limit -- before it changes.
710 */
711 unsigned int max_reqs = nr_events;
712
713 /*
714 * We keep track of the number of available ringbuffer slots, to prevent
715 * overflow (reqs_available), and we also use percpu counters for this.
716 *
717 * So since up to half the slots might be on other cpu's percpu counters
718 * and unavailable, double nr_events so userspace sees what they
719 * expected: additionally, we move req_batch slots to/from percpu
720 * counters at a time, so make sure that isn't 0:
721 */
722 nr_events = max(nr_events, num_possible_cpus() * 4);
723 nr_events *= 2;
724
725 /* Prevent overflows */
726 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
727 pr_debug("ENOMEM: nr_events too high\n");
728 return ERR_PTR(-EINVAL);
729 }
730
731 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
732 return ERR_PTR(-EAGAIN);
733
734 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
735 if (!ctx)
736 return ERR_PTR(-ENOMEM);
737
738 ctx->max_reqs = max_reqs;
739
740 spin_lock_init(&ctx->ctx_lock);
741 spin_lock_init(&ctx->completion_lock);
742 mutex_init(&ctx->ring_lock);
743 /* Protect against page migration throughout kiotx setup by keeping
744 * the ring_lock mutex held until setup is complete. */
745 mutex_lock(&ctx->ring_lock);
746 init_waitqueue_head(&ctx->wait);
747
748 INIT_LIST_HEAD(&ctx->active_reqs);
749
750 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
751 goto err;
752
753 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
754 goto err;
755
756 ctx->cpu = alloc_percpu(struct kioctx_cpu);
757 if (!ctx->cpu)
758 goto err;
759
760 err = aio_setup_ring(ctx, nr_events);
761 if (err < 0)
762 goto err;
763
764 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
765 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
766 if (ctx->req_batch < 1)
767 ctx->req_batch = 1;
768
769 /* limit the number of system wide aios */
770 spin_lock(&aio_nr_lock);
771 if (aio_nr + ctx->max_reqs > aio_max_nr ||
772 aio_nr + ctx->max_reqs < aio_nr) {
773 spin_unlock(&aio_nr_lock);
774 err = -EAGAIN;
775 goto err_ctx;
776 }
777 aio_nr += ctx->max_reqs;
778 spin_unlock(&aio_nr_lock);
779
780 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
781 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
782
783 err = ioctx_add_table(ctx, mm);
784 if (err)
785 goto err_cleanup;
786
787 /* Release the ring_lock mutex now that all setup is complete. */
788 mutex_unlock(&ctx->ring_lock);
789
790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
791 ctx, ctx->user_id, mm, ctx->nr_events);
792 return ctx;
793
794 err_cleanup:
795 aio_nr_sub(ctx->max_reqs);
796 err_ctx:
797 atomic_set(&ctx->dead, 1);
798 if (ctx->mmap_size)
799 vm_munmap(ctx->mmap_base, ctx->mmap_size);
800 aio_free_ring(ctx);
801 err:
802 mutex_unlock(&ctx->ring_lock);
803 free_percpu(ctx->cpu);
804 percpu_ref_exit(&ctx->reqs);
805 percpu_ref_exit(&ctx->users);
806 kmem_cache_free(kioctx_cachep, ctx);
807 pr_debug("error allocating ioctx %d\n", err);
808 return ERR_PTR(err);
809 }
810
811 /* kill_ioctx
812 * Cancels all outstanding aio requests on an aio context. Used
813 * when the processes owning a context have all exited to encourage
814 * the rapid destruction of the kioctx.
815 */
816 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
817 struct ctx_rq_wait *wait)
818 {
819 struct kioctx_table *table;
820
821 spin_lock(&mm->ioctx_lock);
822 if (atomic_xchg(&ctx->dead, 1)) {
823 spin_unlock(&mm->ioctx_lock);
824 return -EINVAL;
825 }
826
827 table = rcu_dereference_raw(mm->ioctx_table);
828 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
829 RCU_INIT_POINTER(table->table[ctx->id], NULL);
830 spin_unlock(&mm->ioctx_lock);
831
832 /* free_ioctx_reqs() will do the necessary RCU synchronization */
833 wake_up_all(&ctx->wait);
834
835 /*
836 * It'd be more correct to do this in free_ioctx(), after all
837 * the outstanding kiocbs have finished - but by then io_destroy
838 * has already returned, so io_setup() could potentially return
839 * -EAGAIN with no ioctxs actually in use (as far as userspace
840 * could tell).
841 */
842 aio_nr_sub(ctx->max_reqs);
843
844 if (ctx->mmap_size)
845 vm_munmap(ctx->mmap_base, ctx->mmap_size);
846
847 ctx->rq_wait = wait;
848 percpu_ref_kill(&ctx->users);
849 return 0;
850 }
851
852 /*
853 * exit_aio: called when the last user of mm goes away. At this point, there is
854 * no way for any new requests to be submited or any of the io_* syscalls to be
855 * called on the context.
856 *
857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
858 * them.
859 */
860 void exit_aio(struct mm_struct *mm)
861 {
862 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
863 struct ctx_rq_wait wait;
864 int i, skipped;
865
866 if (!table)
867 return;
868
869 atomic_set(&wait.count, table->nr);
870 init_completion(&wait.comp);
871
872 skipped = 0;
873 for (i = 0; i < table->nr; ++i) {
874 struct kioctx *ctx =
875 rcu_dereference_protected(table->table[i], true);
876
877 if (!ctx) {
878 skipped++;
879 continue;
880 }
881
882 /*
883 * We don't need to bother with munmap() here - exit_mmap(mm)
884 * is coming and it'll unmap everything. And we simply can't,
885 * this is not necessarily our ->mm.
886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 * that it needs to unmap the area, just set it to 0.
888 */
889 ctx->mmap_size = 0;
890 kill_ioctx(mm, ctx, &wait);
891 }
892
893 if (!atomic_sub_and_test(skipped, &wait.count)) {
894 /* Wait until all IO for the context are done. */
895 wait_for_completion(&wait.comp);
896 }
897
898 RCU_INIT_POINTER(mm->ioctx_table, NULL);
899 kfree(table);
900 }
901
902 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
903 {
904 struct kioctx_cpu *kcpu;
905 unsigned long flags;
906
907 local_irq_save(flags);
908 kcpu = this_cpu_ptr(ctx->cpu);
909 kcpu->reqs_available += nr;
910
911 while (kcpu->reqs_available >= ctx->req_batch * 2) {
912 kcpu->reqs_available -= ctx->req_batch;
913 atomic_add(ctx->req_batch, &ctx->reqs_available);
914 }
915
916 local_irq_restore(flags);
917 }
918
919 static bool get_reqs_available(struct kioctx *ctx)
920 {
921 struct kioctx_cpu *kcpu;
922 bool ret = false;
923 unsigned long flags;
924
925 local_irq_save(flags);
926 kcpu = this_cpu_ptr(ctx->cpu);
927 if (!kcpu->reqs_available) {
928 int old, avail = atomic_read(&ctx->reqs_available);
929
930 do {
931 if (avail < ctx->req_batch)
932 goto out;
933
934 old = avail;
935 avail = atomic_cmpxchg(&ctx->reqs_available,
936 avail, avail - ctx->req_batch);
937 } while (avail != old);
938
939 kcpu->reqs_available += ctx->req_batch;
940 }
941
942 ret = true;
943 kcpu->reqs_available--;
944 out:
945 local_irq_restore(flags);
946 return ret;
947 }
948
949 /* refill_reqs_available
950 * Updates the reqs_available reference counts used for tracking the
951 * number of free slots in the completion ring. This can be called
952 * from aio_complete() (to optimistically update reqs_available) or
953 * from aio_get_req() (the we're out of events case). It must be
954 * called holding ctx->completion_lock.
955 */
956 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
957 unsigned tail)
958 {
959 unsigned events_in_ring, completed;
960
961 /* Clamp head since userland can write to it. */
962 head %= ctx->nr_events;
963 if (head <= tail)
964 events_in_ring = tail - head;
965 else
966 events_in_ring = ctx->nr_events - (head - tail);
967
968 completed = ctx->completed_events;
969 if (events_in_ring < completed)
970 completed -= events_in_ring;
971 else
972 completed = 0;
973
974 if (!completed)
975 return;
976
977 ctx->completed_events -= completed;
978 put_reqs_available(ctx, completed);
979 }
980
981 /* user_refill_reqs_available
982 * Called to refill reqs_available when aio_get_req() encounters an
983 * out of space in the completion ring.
984 */
985 static void user_refill_reqs_available(struct kioctx *ctx)
986 {
987 spin_lock_irq(&ctx->completion_lock);
988 if (ctx->completed_events) {
989 struct aio_ring *ring;
990 unsigned head;
991
992 /* Access of ring->head may race with aio_read_events_ring()
993 * here, but that's okay since whether we read the old version
994 * or the new version, and either will be valid. The important
995 * part is that head cannot pass tail since we prevent
996 * aio_complete() from updating tail by holding
997 * ctx->completion_lock. Even if head is invalid, the check
998 * against ctx->completed_events below will make sure we do the
999 * safe/right thing.
1000 */
1001 ring = kmap_atomic(ctx->ring_pages[0]);
1002 head = ring->head;
1003 kunmap_atomic(ring);
1004
1005 refill_reqs_available(ctx, head, ctx->tail);
1006 }
1007
1008 spin_unlock_irq(&ctx->completion_lock);
1009 }
1010
1011 /* aio_get_req
1012 * Allocate a slot for an aio request.
1013 * Returns NULL if no requests are free.
1014 */
1015 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1016 {
1017 struct aio_kiocb *req;
1018
1019 if (!get_reqs_available(ctx)) {
1020 user_refill_reqs_available(ctx);
1021 if (!get_reqs_available(ctx))
1022 return NULL;
1023 }
1024
1025 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1026 if (unlikely(!req))
1027 goto out_put;
1028
1029 percpu_ref_get(&ctx->reqs);
1030 INIT_LIST_HEAD(&req->ki_list);
1031 req->ki_ctx = ctx;
1032 return req;
1033 out_put:
1034 put_reqs_available(ctx, 1);
1035 return NULL;
1036 }
1037
1038 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1039 {
1040 struct aio_ring __user *ring = (void __user *)ctx_id;
1041 struct mm_struct *mm = current->mm;
1042 struct kioctx *ctx, *ret = NULL;
1043 struct kioctx_table *table;
1044 unsigned id;
1045
1046 if (get_user(id, &ring->id))
1047 return NULL;
1048
1049 rcu_read_lock();
1050 table = rcu_dereference(mm->ioctx_table);
1051
1052 if (!table || id >= table->nr)
1053 goto out;
1054
1055 ctx = rcu_dereference(table->table[id]);
1056 if (ctx && ctx->user_id == ctx_id) {
1057 if (percpu_ref_tryget_live(&ctx->users))
1058 ret = ctx;
1059 }
1060 out:
1061 rcu_read_unlock();
1062 return ret;
1063 }
1064
1065 /* aio_complete
1066 * Called when the io request on the given iocb is complete.
1067 */
1068 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1069 {
1070 struct kioctx *ctx = iocb->ki_ctx;
1071 struct aio_ring *ring;
1072 struct io_event *ev_page, *event;
1073 unsigned tail, pos, head;
1074 unsigned long flags;
1075
1076 /*
1077 * Add a completion event to the ring buffer. Must be done holding
1078 * ctx->completion_lock to prevent other code from messing with the tail
1079 * pointer since we might be called from irq context.
1080 */
1081 spin_lock_irqsave(&ctx->completion_lock, flags);
1082
1083 tail = ctx->tail;
1084 pos = tail + AIO_EVENTS_OFFSET;
1085
1086 if (++tail >= ctx->nr_events)
1087 tail = 0;
1088
1089 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1090 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1091
1092 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1093 event->data = iocb->ki_user_data;
1094 event->res = res;
1095 event->res2 = res2;
1096
1097 kunmap_atomic(ev_page);
1098 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1099
1100 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1101 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1102 res, res2);
1103
1104 /* after flagging the request as done, we
1105 * must never even look at it again
1106 */
1107 smp_wmb(); /* make event visible before updating tail */
1108
1109 ctx->tail = tail;
1110
1111 ring = kmap_atomic(ctx->ring_pages[0]);
1112 head = ring->head;
1113 ring->tail = tail;
1114 kunmap_atomic(ring);
1115 flush_dcache_page(ctx->ring_pages[0]);
1116
1117 ctx->completed_events++;
1118 if (ctx->completed_events > 1)
1119 refill_reqs_available(ctx, head, tail);
1120 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1121
1122 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1123
1124 /*
1125 * Check if the user asked us to deliver the result through an
1126 * eventfd. The eventfd_signal() function is safe to be called
1127 * from IRQ context.
1128 */
1129 if (iocb->ki_eventfd) {
1130 eventfd_signal(iocb->ki_eventfd, 1);
1131 eventfd_ctx_put(iocb->ki_eventfd);
1132 }
1133
1134 kmem_cache_free(kiocb_cachep, iocb);
1135
1136 /*
1137 * We have to order our ring_info tail store above and test
1138 * of the wait list below outside the wait lock. This is
1139 * like in wake_up_bit() where clearing a bit has to be
1140 * ordered with the unlocked test.
1141 */
1142 smp_mb();
1143
1144 if (waitqueue_active(&ctx->wait))
1145 wake_up(&ctx->wait);
1146
1147 percpu_ref_put(&ctx->reqs);
1148 }
1149
1150 /* aio_read_events_ring
1151 * Pull an event off of the ioctx's event ring. Returns the number of
1152 * events fetched
1153 */
1154 static long aio_read_events_ring(struct kioctx *ctx,
1155 struct io_event __user *event, long nr)
1156 {
1157 struct aio_ring *ring;
1158 unsigned head, tail, pos;
1159 long ret = 0;
1160 int copy_ret;
1161
1162 /*
1163 * The mutex can block and wake us up and that will cause
1164 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1165 * and repeat. This should be rare enough that it doesn't cause
1166 * peformance issues. See the comment in read_events() for more detail.
1167 */
1168 sched_annotate_sleep();
1169 mutex_lock(&ctx->ring_lock);
1170
1171 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1172 ring = kmap_atomic(ctx->ring_pages[0]);
1173 head = ring->head;
1174 tail = ring->tail;
1175 kunmap_atomic(ring);
1176
1177 /*
1178 * Ensure that once we've read the current tail pointer, that
1179 * we also see the events that were stored up to the tail.
1180 */
1181 smp_rmb();
1182
1183 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1184
1185 if (head == tail)
1186 goto out;
1187
1188 head %= ctx->nr_events;
1189 tail %= ctx->nr_events;
1190
1191 while (ret < nr) {
1192 long avail;
1193 struct io_event *ev;
1194 struct page *page;
1195
1196 avail = (head <= tail ? tail : ctx->nr_events) - head;
1197 if (head == tail)
1198 break;
1199
1200 pos = head + AIO_EVENTS_OFFSET;
1201 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1202 pos %= AIO_EVENTS_PER_PAGE;
1203
1204 avail = min(avail, nr - ret);
1205 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1206
1207 ev = kmap(page);
1208 copy_ret = copy_to_user(event + ret, ev + pos,
1209 sizeof(*ev) * avail);
1210 kunmap(page);
1211
1212 if (unlikely(copy_ret)) {
1213 ret = -EFAULT;
1214 goto out;
1215 }
1216
1217 ret += avail;
1218 head += avail;
1219 head %= ctx->nr_events;
1220 }
1221
1222 ring = kmap_atomic(ctx->ring_pages[0]);
1223 ring->head = head;
1224 kunmap_atomic(ring);
1225 flush_dcache_page(ctx->ring_pages[0]);
1226
1227 pr_debug("%li h%u t%u\n", ret, head, tail);
1228 out:
1229 mutex_unlock(&ctx->ring_lock);
1230
1231 return ret;
1232 }
1233
1234 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1235 struct io_event __user *event, long *i)
1236 {
1237 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1238
1239 if (ret > 0)
1240 *i += ret;
1241
1242 if (unlikely(atomic_read(&ctx->dead)))
1243 ret = -EINVAL;
1244
1245 if (!*i)
1246 *i = ret;
1247
1248 return ret < 0 || *i >= min_nr;
1249 }
1250
1251 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1252 struct io_event __user *event,
1253 ktime_t until)
1254 {
1255 long ret = 0;
1256
1257 /*
1258 * Note that aio_read_events() is being called as the conditional - i.e.
1259 * we're calling it after prepare_to_wait() has set task state to
1260 * TASK_INTERRUPTIBLE.
1261 *
1262 * But aio_read_events() can block, and if it blocks it's going to flip
1263 * the task state back to TASK_RUNNING.
1264 *
1265 * This should be ok, provided it doesn't flip the state back to
1266 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1267 * will only happen if the mutex_lock() call blocks, and we then find
1268 * the ringbuffer empty. So in practice we should be ok, but it's
1269 * something to be aware of when touching this code.
1270 */
1271 if (until == 0)
1272 aio_read_events(ctx, min_nr, nr, event, &ret);
1273 else
1274 wait_event_interruptible_hrtimeout(ctx->wait,
1275 aio_read_events(ctx, min_nr, nr, event, &ret),
1276 until);
1277 return ret;
1278 }
1279
1280 /* sys_io_setup:
1281 * Create an aio_context capable of receiving at least nr_events.
1282 * ctxp must not point to an aio_context that already exists, and
1283 * must be initialized to 0 prior to the call. On successful
1284 * creation of the aio_context, *ctxp is filled in with the resulting
1285 * handle. May fail with -EINVAL if *ctxp is not initialized,
1286 * if the specified nr_events exceeds internal limits. May fail
1287 * with -EAGAIN if the specified nr_events exceeds the user's limit
1288 * of available events. May fail with -ENOMEM if insufficient kernel
1289 * resources are available. May fail with -EFAULT if an invalid
1290 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1291 * implemented.
1292 */
1293 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1294 {
1295 struct kioctx *ioctx = NULL;
1296 unsigned long ctx;
1297 long ret;
1298
1299 ret = get_user(ctx, ctxp);
1300 if (unlikely(ret))
1301 goto out;
1302
1303 ret = -EINVAL;
1304 if (unlikely(ctx || nr_events == 0)) {
1305 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1306 ctx, nr_events);
1307 goto out;
1308 }
1309
1310 ioctx = ioctx_alloc(nr_events);
1311 ret = PTR_ERR(ioctx);
1312 if (!IS_ERR(ioctx)) {
1313 ret = put_user(ioctx->user_id, ctxp);
1314 if (ret)
1315 kill_ioctx(current->mm, ioctx, NULL);
1316 percpu_ref_put(&ioctx->users);
1317 }
1318
1319 out:
1320 return ret;
1321 }
1322
1323 #ifdef CONFIG_COMPAT
1324 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1325 {
1326 struct kioctx *ioctx = NULL;
1327 unsigned long ctx;
1328 long ret;
1329
1330 ret = get_user(ctx, ctx32p);
1331 if (unlikely(ret))
1332 goto out;
1333
1334 ret = -EINVAL;
1335 if (unlikely(ctx || nr_events == 0)) {
1336 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1337 ctx, nr_events);
1338 goto out;
1339 }
1340
1341 ioctx = ioctx_alloc(nr_events);
1342 ret = PTR_ERR(ioctx);
1343 if (!IS_ERR(ioctx)) {
1344 /* truncating is ok because it's a user address */
1345 ret = put_user((u32)ioctx->user_id, ctx32p);
1346 if (ret)
1347 kill_ioctx(current->mm, ioctx, NULL);
1348 percpu_ref_put(&ioctx->users);
1349 }
1350
1351 out:
1352 return ret;
1353 }
1354 #endif
1355
1356 /* sys_io_destroy:
1357 * Destroy the aio_context specified. May cancel any outstanding
1358 * AIOs and block on completion. Will fail with -ENOSYS if not
1359 * implemented. May fail with -EINVAL if the context pointed to
1360 * is invalid.
1361 */
1362 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1363 {
1364 struct kioctx *ioctx = lookup_ioctx(ctx);
1365 if (likely(NULL != ioctx)) {
1366 struct ctx_rq_wait wait;
1367 int ret;
1368
1369 init_completion(&wait.comp);
1370 atomic_set(&wait.count, 1);
1371
1372 /* Pass requests_done to kill_ioctx() where it can be set
1373 * in a thread-safe way. If we try to set it here then we have
1374 * a race condition if two io_destroy() called simultaneously.
1375 */
1376 ret = kill_ioctx(current->mm, ioctx, &wait);
1377 percpu_ref_put(&ioctx->users);
1378
1379 /* Wait until all IO for the context are done. Otherwise kernel
1380 * keep using user-space buffers even if user thinks the context
1381 * is destroyed.
1382 */
1383 if (!ret)
1384 wait_for_completion(&wait.comp);
1385
1386 return ret;
1387 }
1388 pr_debug("EINVAL: invalid context id\n");
1389 return -EINVAL;
1390 }
1391
1392 static void aio_remove_iocb(struct aio_kiocb *iocb)
1393 {
1394 struct kioctx *ctx = iocb->ki_ctx;
1395 unsigned long flags;
1396
1397 spin_lock_irqsave(&ctx->ctx_lock, flags);
1398 list_del(&iocb->ki_list);
1399 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1400 }
1401
1402 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1403 {
1404 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1405
1406 if (!list_empty_careful(&iocb->ki_list))
1407 aio_remove_iocb(iocb);
1408
1409 if (kiocb->ki_flags & IOCB_WRITE) {
1410 struct inode *inode = file_inode(kiocb->ki_filp);
1411
1412 /*
1413 * Tell lockdep we inherited freeze protection from submission
1414 * thread.
1415 */
1416 if (S_ISREG(inode->i_mode))
1417 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1418 file_end_write(kiocb->ki_filp);
1419 }
1420
1421 fput(kiocb->ki_filp);
1422 aio_complete(iocb, res, res2);
1423 }
1424
1425 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1426 {
1427 int ret;
1428
1429 req->ki_filp = fget(iocb->aio_fildes);
1430 if (unlikely(!req->ki_filp))
1431 return -EBADF;
1432 req->ki_complete = aio_complete_rw;
1433 req->ki_pos = iocb->aio_offset;
1434 req->ki_flags = iocb_flags(req->ki_filp);
1435 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1436 req->ki_flags |= IOCB_EVENTFD;
1437 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1438 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1439 /*
1440 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1441 * aio_reqprio is interpreted as an I/O scheduling
1442 * class and priority.
1443 */
1444 ret = ioprio_check_cap(iocb->aio_reqprio);
1445 if (ret) {
1446 pr_debug("aio ioprio check cap error: %d\n", ret);
1447 return ret;
1448 }
1449
1450 req->ki_ioprio = iocb->aio_reqprio;
1451 } else
1452 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1453
1454 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1455 if (unlikely(ret))
1456 fput(req->ki_filp);
1457 return ret;
1458 }
1459
1460 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1461 bool vectored, bool compat, struct iov_iter *iter)
1462 {
1463 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1464 size_t len = iocb->aio_nbytes;
1465
1466 if (!vectored) {
1467 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1468 *iovec = NULL;
1469 return ret;
1470 }
1471 #ifdef CONFIG_COMPAT
1472 if (compat)
1473 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1474 iter);
1475 #endif
1476 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1477 }
1478
1479 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1480 {
1481 switch (ret) {
1482 case -EIOCBQUEUED:
1483 break;
1484 case -ERESTARTSYS:
1485 case -ERESTARTNOINTR:
1486 case -ERESTARTNOHAND:
1487 case -ERESTART_RESTARTBLOCK:
1488 /*
1489 * There's no easy way to restart the syscall since other AIO's
1490 * may be already running. Just fail this IO with EINTR.
1491 */
1492 ret = -EINTR;
1493 /*FALLTHRU*/
1494 default:
1495 aio_complete_rw(req, ret, 0);
1496 }
1497 }
1498
1499 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1500 bool compat)
1501 {
1502 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1503 struct iov_iter iter;
1504 struct file *file;
1505 ssize_t ret;
1506
1507 ret = aio_prep_rw(req, iocb);
1508 if (ret)
1509 return ret;
1510 file = req->ki_filp;
1511
1512 ret = -EBADF;
1513 if (unlikely(!(file->f_mode & FMODE_READ)))
1514 goto out_fput;
1515 ret = -EINVAL;
1516 if (unlikely(!file->f_op->read_iter))
1517 goto out_fput;
1518
1519 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1520 if (ret)
1521 goto out_fput;
1522 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1523 if (!ret)
1524 aio_rw_done(req, call_read_iter(file, req, &iter));
1525 kfree(iovec);
1526 out_fput:
1527 if (unlikely(ret))
1528 fput(file);
1529 return ret;
1530 }
1531
1532 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1533 bool compat)
1534 {
1535 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1536 struct iov_iter iter;
1537 struct file *file;
1538 ssize_t ret;
1539
1540 ret = aio_prep_rw(req, iocb);
1541 if (ret)
1542 return ret;
1543 file = req->ki_filp;
1544
1545 ret = -EBADF;
1546 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1547 goto out_fput;
1548 ret = -EINVAL;
1549 if (unlikely(!file->f_op->write_iter))
1550 goto out_fput;
1551
1552 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1553 if (ret)
1554 goto out_fput;
1555 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1556 if (!ret) {
1557 /*
1558 * Open-code file_start_write here to grab freeze protection,
1559 * which will be released by another thread in
1560 * aio_complete_rw(). Fool lockdep by telling it the lock got
1561 * released so that it doesn't complain about the held lock when
1562 * we return to userspace.
1563 */
1564 if (S_ISREG(file_inode(file)->i_mode)) {
1565 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1566 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1567 }
1568 req->ki_flags |= IOCB_WRITE;
1569 aio_rw_done(req, call_write_iter(file, req, &iter));
1570 }
1571 kfree(iovec);
1572 out_fput:
1573 if (unlikely(ret))
1574 fput(file);
1575 return ret;
1576 }
1577
1578 static void aio_fsync_work(struct work_struct *work)
1579 {
1580 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1581 int ret;
1582
1583 ret = vfs_fsync(req->file, req->datasync);
1584 fput(req->file);
1585 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1586 }
1587
1588 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1589 {
1590 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1591 iocb->aio_rw_flags))
1592 return -EINVAL;
1593 req->file = fget(iocb->aio_fildes);
1594 if (unlikely(!req->file))
1595 return -EBADF;
1596 if (unlikely(!req->file->f_op->fsync)) {
1597 fput(req->file);
1598 return -EINVAL;
1599 }
1600
1601 req->datasync = datasync;
1602 INIT_WORK(&req->work, aio_fsync_work);
1603 schedule_work(&req->work);
1604 return 0;
1605 }
1606
1607 /* need to use list_del_init so we can check if item was present */
1608 static inline bool __aio_poll_remove(struct poll_iocb *req)
1609 {
1610 if (list_empty(&req->wait.entry))
1611 return false;
1612 list_del_init(&req->wait.entry);
1613 return true;
1614 }
1615
1616 static inline void __aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1617 {
1618 fput(iocb->poll.file);
1619 aio_complete(iocb, mangle_poll(mask), 0);
1620 }
1621
1622 static void aio_poll_work(struct work_struct *work)
1623 {
1624 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, poll.work);
1625
1626 if (!list_empty_careful(&iocb->ki_list))
1627 aio_remove_iocb(iocb);
1628 __aio_poll_complete(iocb, iocb->poll.events);
1629 }
1630
1631 static int aio_poll_cancel(struct kiocb *iocb)
1632 {
1633 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1634 struct poll_iocb *req = &aiocb->poll;
1635 struct wait_queue_head *head = req->head;
1636 bool found = false;
1637
1638 spin_lock(&head->lock);
1639 found = __aio_poll_remove(req);
1640 spin_unlock(&head->lock);
1641
1642 if (found) {
1643 req->events = 0;
1644 INIT_WORK(&req->work, aio_poll_work);
1645 schedule_work(&req->work);
1646 }
1647 return 0;
1648 }
1649
1650 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1651 void *key)
1652 {
1653 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1654 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1655 struct file *file = req->file;
1656 __poll_t mask = key_to_poll(key);
1657
1658 assert_spin_locked(&req->head->lock);
1659
1660 /* for instances that support it check for an event match first: */
1661 if (mask && !(mask & req->events))
1662 return 0;
1663
1664 mask = file->f_op->poll_mask(file, req->events) & req->events;
1665 if (!mask)
1666 return 0;
1667
1668 __aio_poll_remove(req);
1669
1670 /*
1671 * Try completing without a context switch if we can acquire ctx_lock
1672 * without spinning. Otherwise we need to defer to a workqueue to
1673 * avoid a deadlock due to the lock order.
1674 */
1675 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1676 list_del_init(&iocb->ki_list);
1677 spin_unlock(&iocb->ki_ctx->ctx_lock);
1678
1679 __aio_poll_complete(iocb, mask);
1680 } else {
1681 req->events = mask;
1682 INIT_WORK(&req->work, aio_poll_work);
1683 schedule_work(&req->work);
1684 }
1685
1686 return 1;
1687 }
1688
1689 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1690 {
1691 struct kioctx *ctx = aiocb->ki_ctx;
1692 struct poll_iocb *req = &aiocb->poll;
1693 __poll_t mask;
1694
1695 /* reject any unknown events outside the normal event mask. */
1696 if ((u16)iocb->aio_buf != iocb->aio_buf)
1697 return -EINVAL;
1698 /* reject fields that are not defined for poll */
1699 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1700 return -EINVAL;
1701
1702 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1703 req->file = fget(iocb->aio_fildes);
1704 if (unlikely(!req->file))
1705 return -EBADF;
1706 if (!file_has_poll_mask(req->file))
1707 goto out_fail;
1708
1709 req->head = req->file->f_op->get_poll_head(req->file, req->events);
1710 if (!req->head)
1711 goto out_fail;
1712 if (IS_ERR(req->head)) {
1713 mask = EPOLLERR;
1714 goto done;
1715 }
1716
1717 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1718 aiocb->ki_cancel = aio_poll_cancel;
1719
1720 spin_lock_irq(&ctx->ctx_lock);
1721 spin_lock(&req->head->lock);
1722 mask = req->file->f_op->poll_mask(req->file, req->events) & req->events;
1723 if (!mask) {
1724 __add_wait_queue(req->head, &req->wait);
1725 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1726 }
1727 spin_unlock(&req->head->lock);
1728 spin_unlock_irq(&ctx->ctx_lock);
1729 done:
1730 if (mask)
1731 __aio_poll_complete(aiocb, mask);
1732 return 0;
1733 out_fail:
1734 fput(req->file);
1735 return -EINVAL; /* same as no support for IOCB_CMD_POLL */
1736 }
1737
1738 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1739 bool compat)
1740 {
1741 struct aio_kiocb *req;
1742 struct iocb iocb;
1743 ssize_t ret;
1744
1745 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1746 return -EFAULT;
1747
1748 /* enforce forwards compatibility on users */
1749 if (unlikely(iocb.aio_reserved2)) {
1750 pr_debug("EINVAL: reserve field set\n");
1751 return -EINVAL;
1752 }
1753
1754 /* prevent overflows */
1755 if (unlikely(
1756 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1757 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1758 ((ssize_t)iocb.aio_nbytes < 0)
1759 )) {
1760 pr_debug("EINVAL: overflow check\n");
1761 return -EINVAL;
1762 }
1763
1764 req = aio_get_req(ctx);
1765 if (unlikely(!req))
1766 return -EAGAIN;
1767
1768 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1769 /*
1770 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1771 * instance of the file* now. The file descriptor must be
1772 * an eventfd() fd, and will be signaled for each completed
1773 * event using the eventfd_signal() function.
1774 */
1775 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1776 if (IS_ERR(req->ki_eventfd)) {
1777 ret = PTR_ERR(req->ki_eventfd);
1778 req->ki_eventfd = NULL;
1779 goto out_put_req;
1780 }
1781 }
1782
1783 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1784 if (unlikely(ret)) {
1785 pr_debug("EFAULT: aio_key\n");
1786 goto out_put_req;
1787 }
1788
1789 req->ki_user_iocb = user_iocb;
1790 req->ki_user_data = iocb.aio_data;
1791
1792 switch (iocb.aio_lio_opcode) {
1793 case IOCB_CMD_PREAD:
1794 ret = aio_read(&req->rw, &iocb, false, compat);
1795 break;
1796 case IOCB_CMD_PWRITE:
1797 ret = aio_write(&req->rw, &iocb, false, compat);
1798 break;
1799 case IOCB_CMD_PREADV:
1800 ret = aio_read(&req->rw, &iocb, true, compat);
1801 break;
1802 case IOCB_CMD_PWRITEV:
1803 ret = aio_write(&req->rw, &iocb, true, compat);
1804 break;
1805 case IOCB_CMD_FSYNC:
1806 ret = aio_fsync(&req->fsync, &iocb, false);
1807 break;
1808 case IOCB_CMD_FDSYNC:
1809 ret = aio_fsync(&req->fsync, &iocb, true);
1810 break;
1811 case IOCB_CMD_POLL:
1812 ret = aio_poll(req, &iocb);
1813 break;
1814 default:
1815 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1816 ret = -EINVAL;
1817 break;
1818 }
1819
1820 /*
1821 * If ret is 0, we'd either done aio_complete() ourselves or have
1822 * arranged for that to be done asynchronously. Anything non-zero
1823 * means that we need to destroy req ourselves.
1824 */
1825 if (ret)
1826 goto out_put_req;
1827 return 0;
1828 out_put_req:
1829 put_reqs_available(ctx, 1);
1830 percpu_ref_put(&ctx->reqs);
1831 if (req->ki_eventfd)
1832 eventfd_ctx_put(req->ki_eventfd);
1833 kmem_cache_free(kiocb_cachep, req);
1834 return ret;
1835 }
1836
1837 /* sys_io_submit:
1838 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1839 * the number of iocbs queued. May return -EINVAL if the aio_context
1840 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1841 * *iocbpp[0] is not properly initialized, if the operation specified
1842 * is invalid for the file descriptor in the iocb. May fail with
1843 * -EFAULT if any of the data structures point to invalid data. May
1844 * fail with -EBADF if the file descriptor specified in the first
1845 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1846 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1847 * fail with -ENOSYS if not implemented.
1848 */
1849 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1850 struct iocb __user * __user *, iocbpp)
1851 {
1852 struct kioctx *ctx;
1853 long ret = 0;
1854 int i = 0;
1855 struct blk_plug plug;
1856
1857 if (unlikely(nr < 0))
1858 return -EINVAL;
1859
1860 ctx = lookup_ioctx(ctx_id);
1861 if (unlikely(!ctx)) {
1862 pr_debug("EINVAL: invalid context id\n");
1863 return -EINVAL;
1864 }
1865
1866 if (nr > ctx->nr_events)
1867 nr = ctx->nr_events;
1868
1869 blk_start_plug(&plug);
1870 for (i = 0; i < nr; i++) {
1871 struct iocb __user *user_iocb;
1872
1873 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1874 ret = -EFAULT;
1875 break;
1876 }
1877
1878 ret = io_submit_one(ctx, user_iocb, false);
1879 if (ret)
1880 break;
1881 }
1882 blk_finish_plug(&plug);
1883
1884 percpu_ref_put(&ctx->users);
1885 return i ? i : ret;
1886 }
1887
1888 #ifdef CONFIG_COMPAT
1889 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1890 int, nr, compat_uptr_t __user *, iocbpp)
1891 {
1892 struct kioctx *ctx;
1893 long ret = 0;
1894 int i = 0;
1895 struct blk_plug plug;
1896
1897 if (unlikely(nr < 0))
1898 return -EINVAL;
1899
1900 ctx = lookup_ioctx(ctx_id);
1901 if (unlikely(!ctx)) {
1902 pr_debug("EINVAL: invalid context id\n");
1903 return -EINVAL;
1904 }
1905
1906 if (nr > ctx->nr_events)
1907 nr = ctx->nr_events;
1908
1909 blk_start_plug(&plug);
1910 for (i = 0; i < nr; i++) {
1911 compat_uptr_t user_iocb;
1912
1913 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1914 ret = -EFAULT;
1915 break;
1916 }
1917
1918 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1919 if (ret)
1920 break;
1921 }
1922 blk_finish_plug(&plug);
1923
1924 percpu_ref_put(&ctx->users);
1925 return i ? i : ret;
1926 }
1927 #endif
1928
1929 /* lookup_kiocb
1930 * Finds a given iocb for cancellation.
1931 */
1932 static struct aio_kiocb *
1933 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1934 {
1935 struct aio_kiocb *kiocb;
1936
1937 assert_spin_locked(&ctx->ctx_lock);
1938
1939 /* TODO: use a hash or array, this sucks. */
1940 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1941 if (kiocb->ki_user_iocb == iocb)
1942 return kiocb;
1943 }
1944 return NULL;
1945 }
1946
1947 /* sys_io_cancel:
1948 * Attempts to cancel an iocb previously passed to io_submit. If
1949 * the operation is successfully cancelled, the resulting event is
1950 * copied into the memory pointed to by result without being placed
1951 * into the completion queue and 0 is returned. May fail with
1952 * -EFAULT if any of the data structures pointed to are invalid.
1953 * May fail with -EINVAL if aio_context specified by ctx_id is
1954 * invalid. May fail with -EAGAIN if the iocb specified was not
1955 * cancelled. Will fail with -ENOSYS if not implemented.
1956 */
1957 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1958 struct io_event __user *, result)
1959 {
1960 struct kioctx *ctx;
1961 struct aio_kiocb *kiocb;
1962 int ret = -EINVAL;
1963 u32 key;
1964
1965 if (unlikely(get_user(key, &iocb->aio_key)))
1966 return -EFAULT;
1967 if (unlikely(key != KIOCB_KEY))
1968 return -EINVAL;
1969
1970 ctx = lookup_ioctx(ctx_id);
1971 if (unlikely(!ctx))
1972 return -EINVAL;
1973
1974 spin_lock_irq(&ctx->ctx_lock);
1975 kiocb = lookup_kiocb(ctx, iocb);
1976 if (kiocb) {
1977 ret = kiocb->ki_cancel(&kiocb->rw);
1978 list_del_init(&kiocb->ki_list);
1979 }
1980 spin_unlock_irq(&ctx->ctx_lock);
1981
1982 if (!ret) {
1983 /*
1984 * The result argument is no longer used - the io_event is
1985 * always delivered via the ring buffer. -EINPROGRESS indicates
1986 * cancellation is progress:
1987 */
1988 ret = -EINPROGRESS;
1989 }
1990
1991 percpu_ref_put(&ctx->users);
1992
1993 return ret;
1994 }
1995
1996 static long do_io_getevents(aio_context_t ctx_id,
1997 long min_nr,
1998 long nr,
1999 struct io_event __user *events,
2000 struct timespec64 *ts)
2001 {
2002 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2003 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2004 long ret = -EINVAL;
2005
2006 if (likely(ioctx)) {
2007 if (likely(min_nr <= nr && min_nr >= 0))
2008 ret = read_events(ioctx, min_nr, nr, events, until);
2009 percpu_ref_put(&ioctx->users);
2010 }
2011
2012 return ret;
2013 }
2014
2015 /* io_getevents:
2016 * Attempts to read at least min_nr events and up to nr events from
2017 * the completion queue for the aio_context specified by ctx_id. If
2018 * it succeeds, the number of read events is returned. May fail with
2019 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2020 * out of range, if timeout is out of range. May fail with -EFAULT
2021 * if any of the memory specified is invalid. May return 0 or
2022 * < min_nr if the timeout specified by timeout has elapsed
2023 * before sufficient events are available, where timeout == NULL
2024 * specifies an infinite timeout. Note that the timeout pointed to by
2025 * timeout is relative. Will fail with -ENOSYS if not implemented.
2026 */
2027 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2028 long, min_nr,
2029 long, nr,
2030 struct io_event __user *, events,
2031 struct timespec __user *, timeout)
2032 {
2033 struct timespec64 ts;
2034 int ret;
2035
2036 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2037 return -EFAULT;
2038
2039 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2040 if (!ret && signal_pending(current))
2041 ret = -EINTR;
2042 return ret;
2043 }
2044
2045 SYSCALL_DEFINE6(io_pgetevents,
2046 aio_context_t, ctx_id,
2047 long, min_nr,
2048 long, nr,
2049 struct io_event __user *, events,
2050 struct timespec __user *, timeout,
2051 const struct __aio_sigset __user *, usig)
2052 {
2053 struct __aio_sigset ksig = { NULL, };
2054 sigset_t ksigmask, sigsaved;
2055 struct timespec64 ts;
2056 int ret;
2057
2058 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2059 return -EFAULT;
2060
2061 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2062 return -EFAULT;
2063
2064 if (ksig.sigmask) {
2065 if (ksig.sigsetsize != sizeof(sigset_t))
2066 return -EINVAL;
2067 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2068 return -EFAULT;
2069 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2070 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2071 }
2072
2073 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2074 if (signal_pending(current)) {
2075 if (ksig.sigmask) {
2076 current->saved_sigmask = sigsaved;
2077 set_restore_sigmask();
2078 }
2079
2080 if (!ret)
2081 ret = -ERESTARTNOHAND;
2082 } else {
2083 if (ksig.sigmask)
2084 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2085 }
2086
2087 return ret;
2088 }
2089
2090 #ifdef CONFIG_COMPAT
2091 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2092 compat_long_t, min_nr,
2093 compat_long_t, nr,
2094 struct io_event __user *, events,
2095 struct compat_timespec __user *, timeout)
2096 {
2097 struct timespec64 t;
2098 int ret;
2099
2100 if (timeout && compat_get_timespec64(&t, timeout))
2101 return -EFAULT;
2102
2103 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2104 if (!ret && signal_pending(current))
2105 ret = -EINTR;
2106 return ret;
2107 }
2108
2109
2110 struct __compat_aio_sigset {
2111 compat_sigset_t __user *sigmask;
2112 compat_size_t sigsetsize;
2113 };
2114
2115 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2116 compat_aio_context_t, ctx_id,
2117 compat_long_t, min_nr,
2118 compat_long_t, nr,
2119 struct io_event __user *, events,
2120 struct compat_timespec __user *, timeout,
2121 const struct __compat_aio_sigset __user *, usig)
2122 {
2123 struct __compat_aio_sigset ksig = { NULL, };
2124 sigset_t ksigmask, sigsaved;
2125 struct timespec64 t;
2126 int ret;
2127
2128 if (timeout && compat_get_timespec64(&t, timeout))
2129 return -EFAULT;
2130
2131 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2132 return -EFAULT;
2133
2134 if (ksig.sigmask) {
2135 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2136 return -EINVAL;
2137 if (get_compat_sigset(&ksigmask, ksig.sigmask))
2138 return -EFAULT;
2139 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2140 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2141 }
2142
2143 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2144 if (signal_pending(current)) {
2145 if (ksig.sigmask) {
2146 current->saved_sigmask = sigsaved;
2147 set_restore_sigmask();
2148 }
2149 if (!ret)
2150 ret = -ERESTARTNOHAND;
2151 } else {
2152 if (ksig.sigmask)
2153 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2154 }
2155
2156 return ret;
2157 }
2158 #endif