]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/aio.c
aio: fix build when migration is disabled
[mirror_ubuntu-jammy-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41
42 #include <asm/kmap_types.h>
43 #include <asm/uaccess.h>
44
45 #include "internal.h"
46
47 #define AIO_RING_MAGIC 0xa10a10a1
48 #define AIO_RING_COMPAT_FEATURES 1
49 #define AIO_RING_INCOMPAT_FEATURES 0
50 struct aio_ring {
51 unsigned id; /* kernel internal index number */
52 unsigned nr; /* number of io_events */
53 unsigned head;
54 unsigned tail;
55
56 unsigned magic;
57 unsigned compat_features;
58 unsigned incompat_features;
59 unsigned header_length; /* size of aio_ring */
60
61
62 struct io_event io_events[0];
63 }; /* 128 bytes + ring size */
64
65 #define AIO_RING_PAGES 8
66
67 struct kioctx {
68 atomic_t users;
69 atomic_t dead;
70
71 /* This needs improving */
72 unsigned long user_id;
73 struct hlist_node list;
74
75 /*
76 * This is what userspace passed to io_setup(), it's not used for
77 * anything but counting against the global max_reqs quota.
78 *
79 * The real limit is nr_events - 1, which will be larger (see
80 * aio_setup_ring())
81 */
82 unsigned max_reqs;
83
84 /* Size of ringbuffer, in units of struct io_event */
85 unsigned nr_events;
86
87 unsigned long mmap_base;
88 unsigned long mmap_size;
89
90 struct page **ring_pages;
91 long nr_pages;
92
93 struct rcu_head rcu_head;
94 struct work_struct rcu_work;
95
96 struct {
97 atomic_t reqs_active;
98 } ____cacheline_aligned_in_smp;
99
100 struct {
101 spinlock_t ctx_lock;
102 struct list_head active_reqs; /* used for cancellation */
103 } ____cacheline_aligned_in_smp;
104
105 struct {
106 struct mutex ring_lock;
107 wait_queue_head_t wait;
108 } ____cacheline_aligned_in_smp;
109
110 struct {
111 unsigned tail;
112 spinlock_t completion_lock;
113 } ____cacheline_aligned_in_smp;
114
115 struct page *internal_pages[AIO_RING_PAGES];
116 struct file *aio_ring_file;
117 };
118
119 /*------ sysctl variables----*/
120 static DEFINE_SPINLOCK(aio_nr_lock);
121 unsigned long aio_nr; /* current system wide number of aio requests */
122 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
123 /*----end sysctl variables---*/
124
125 static struct kmem_cache *kiocb_cachep;
126 static struct kmem_cache *kioctx_cachep;
127
128 /* aio_setup
129 * Creates the slab caches used by the aio routines, panic on
130 * failure as this is done early during the boot sequence.
131 */
132 static int __init aio_setup(void)
133 {
134 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
135 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
136
137 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
138
139 return 0;
140 }
141 __initcall(aio_setup);
142
143 static void aio_free_ring(struct kioctx *ctx)
144 {
145 int i;
146 struct file *aio_ring_file = ctx->aio_ring_file;
147
148 for (i = 0; i < ctx->nr_pages; i++) {
149 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
150 page_count(ctx->ring_pages[i]));
151 put_page(ctx->ring_pages[i]);
152 }
153
154 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
155 kfree(ctx->ring_pages);
156
157 if (aio_ring_file) {
158 truncate_setsize(aio_ring_file->f_inode, 0);
159 pr_debug("pid(%d) i_nlink=%u d_count=%d d_unhashed=%d i_count=%d\n",
160 current->pid, aio_ring_file->f_inode->i_nlink,
161 aio_ring_file->f_path.dentry->d_count,
162 d_unhashed(aio_ring_file->f_path.dentry),
163 atomic_read(&aio_ring_file->f_inode->i_count));
164 fput(aio_ring_file);
165 ctx->aio_ring_file = NULL;
166 }
167 }
168
169 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
170 {
171 vma->vm_ops = &generic_file_vm_ops;
172 return 0;
173 }
174
175 static const struct file_operations aio_ring_fops = {
176 .mmap = aio_ring_mmap,
177 };
178
179 static int aio_set_page_dirty(struct page *page)
180 {
181 return 0;
182 }
183
184 #if IS_ENABLED(CONFIG_MIGRATION)
185 static int aio_migratepage(struct address_space *mapping, struct page *new,
186 struct page *old, enum migrate_mode mode)
187 {
188 struct kioctx *ctx = mapping->private_data;
189 unsigned long flags;
190 unsigned idx = old->index;
191 int rc;
192
193 /* Writeback must be complete */
194 BUG_ON(PageWriteback(old));
195 put_page(old);
196
197 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
198 if (rc != MIGRATEPAGE_SUCCESS) {
199 get_page(old);
200 return rc;
201 }
202
203 get_page(new);
204
205 spin_lock_irqsave(&ctx->completion_lock, flags);
206 migrate_page_copy(new, old);
207 ctx->ring_pages[idx] = new;
208 spin_unlock_irqrestore(&ctx->completion_lock, flags);
209
210 return rc;
211 }
212 #endif
213
214 static const struct address_space_operations aio_ctx_aops = {
215 .set_page_dirty = aio_set_page_dirty,
216 #if IS_ENABLED(CONFIG_MIGRATION)
217 .migratepage = aio_migratepage,
218 #endif
219 };
220
221 static int aio_setup_ring(struct kioctx *ctx)
222 {
223 struct aio_ring *ring;
224 unsigned nr_events = ctx->max_reqs;
225 struct mm_struct *mm = current->mm;
226 unsigned long size, populate;
227 int nr_pages;
228 int i;
229 struct file *file;
230
231 /* Compensate for the ring buffer's head/tail overlap entry */
232 nr_events += 2; /* 1 is required, 2 for good luck */
233
234 size = sizeof(struct aio_ring);
235 size += sizeof(struct io_event) * nr_events;
236
237 nr_pages = PFN_UP(size);
238 if (nr_pages < 0)
239 return -EINVAL;
240
241 file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
242 if (IS_ERR(file)) {
243 ctx->aio_ring_file = NULL;
244 return -EAGAIN;
245 }
246
247 file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
248 file->f_inode->i_mapping->private_data = ctx;
249 file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
250
251 for (i = 0; i < nr_pages; i++) {
252 struct page *page;
253 page = find_or_create_page(file->f_inode->i_mapping,
254 i, GFP_HIGHUSER | __GFP_ZERO);
255 if (!page)
256 break;
257 pr_debug("pid(%d) page[%d]->count=%d\n",
258 current->pid, i, page_count(page));
259 SetPageUptodate(page);
260 SetPageDirty(page);
261 unlock_page(page);
262 }
263 ctx->aio_ring_file = file;
264 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
265 / sizeof(struct io_event);
266
267 ctx->ring_pages = ctx->internal_pages;
268 if (nr_pages > AIO_RING_PAGES) {
269 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
270 GFP_KERNEL);
271 if (!ctx->ring_pages)
272 return -ENOMEM;
273 }
274
275 ctx->mmap_size = nr_pages * PAGE_SIZE;
276 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
277
278 down_write(&mm->mmap_sem);
279 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
280 PROT_READ | PROT_WRITE,
281 MAP_SHARED | MAP_POPULATE, 0, &populate);
282 if (IS_ERR((void *)ctx->mmap_base)) {
283 up_write(&mm->mmap_sem);
284 ctx->mmap_size = 0;
285 aio_free_ring(ctx);
286 return -EAGAIN;
287 }
288 up_write(&mm->mmap_sem);
289
290 mm_populate(ctx->mmap_base, populate);
291
292 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
293 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
294 1, 0, ctx->ring_pages, NULL);
295 for (i = 0; i < ctx->nr_pages; i++)
296 put_page(ctx->ring_pages[i]);
297
298 if (unlikely(ctx->nr_pages != nr_pages)) {
299 aio_free_ring(ctx);
300 return -EAGAIN;
301 }
302
303 ctx->user_id = ctx->mmap_base;
304 ctx->nr_events = nr_events; /* trusted copy */
305
306 ring = kmap_atomic(ctx->ring_pages[0]);
307 ring->nr = nr_events; /* user copy */
308 ring->id = ctx->user_id;
309 ring->head = ring->tail = 0;
310 ring->magic = AIO_RING_MAGIC;
311 ring->compat_features = AIO_RING_COMPAT_FEATURES;
312 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
313 ring->header_length = sizeof(struct aio_ring);
314 kunmap_atomic(ring);
315 flush_dcache_page(ctx->ring_pages[0]);
316
317 return 0;
318 }
319
320 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
321 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
322 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
323
324 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
325 {
326 struct kioctx *ctx = req->ki_ctx;
327 unsigned long flags;
328
329 spin_lock_irqsave(&ctx->ctx_lock, flags);
330
331 if (!req->ki_list.next)
332 list_add(&req->ki_list, &ctx->active_reqs);
333
334 req->ki_cancel = cancel;
335
336 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
337 }
338 EXPORT_SYMBOL(kiocb_set_cancel_fn);
339
340 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb,
341 struct io_event *res)
342 {
343 kiocb_cancel_fn *old, *cancel;
344 int ret = -EINVAL;
345
346 /*
347 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
348 * actually has a cancel function, hence the cmpxchg()
349 */
350
351 cancel = ACCESS_ONCE(kiocb->ki_cancel);
352 do {
353 if (!cancel || cancel == KIOCB_CANCELLED)
354 return ret;
355
356 old = cancel;
357 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
358 } while (cancel != old);
359
360 atomic_inc(&kiocb->ki_users);
361 spin_unlock_irq(&ctx->ctx_lock);
362
363 memset(res, 0, sizeof(*res));
364 res->obj = (u64)(unsigned long)kiocb->ki_obj.user;
365 res->data = kiocb->ki_user_data;
366 ret = cancel(kiocb, res);
367
368 spin_lock_irq(&ctx->ctx_lock);
369
370 return ret;
371 }
372
373 static void free_ioctx_rcu(struct rcu_head *head)
374 {
375 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
376 kmem_cache_free(kioctx_cachep, ctx);
377 }
378
379 /*
380 * When this function runs, the kioctx has been removed from the "hash table"
381 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
382 * now it's safe to cancel any that need to be.
383 */
384 static void free_ioctx(struct kioctx *ctx)
385 {
386 struct aio_ring *ring;
387 struct io_event res;
388 struct kiocb *req;
389 unsigned head, avail;
390
391 spin_lock_irq(&ctx->ctx_lock);
392
393 while (!list_empty(&ctx->active_reqs)) {
394 req = list_first_entry(&ctx->active_reqs,
395 struct kiocb, ki_list);
396
397 list_del_init(&req->ki_list);
398 kiocb_cancel(ctx, req, &res);
399 }
400
401 spin_unlock_irq(&ctx->ctx_lock);
402
403 ring = kmap_atomic(ctx->ring_pages[0]);
404 head = ring->head;
405 kunmap_atomic(ring);
406
407 while (atomic_read(&ctx->reqs_active) > 0) {
408 wait_event(ctx->wait,
409 head != ctx->tail ||
410 atomic_read(&ctx->reqs_active) <= 0);
411
412 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
413
414 atomic_sub(avail, &ctx->reqs_active);
415 head += avail;
416 head %= ctx->nr_events;
417 }
418
419 WARN_ON(atomic_read(&ctx->reqs_active) < 0);
420
421 aio_free_ring(ctx);
422
423 pr_debug("freeing %p\n", ctx);
424
425 /*
426 * Here the call_rcu() is between the wait_event() for reqs_active to
427 * hit 0, and freeing the ioctx.
428 *
429 * aio_complete() decrements reqs_active, but it has to touch the ioctx
430 * after to issue a wakeup so we use rcu.
431 */
432 call_rcu(&ctx->rcu_head, free_ioctx_rcu);
433 }
434
435 static void put_ioctx(struct kioctx *ctx)
436 {
437 if (unlikely(atomic_dec_and_test(&ctx->users)))
438 free_ioctx(ctx);
439 }
440
441 /* ioctx_alloc
442 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
443 */
444 static struct kioctx *ioctx_alloc(unsigned nr_events)
445 {
446 struct mm_struct *mm = current->mm;
447 struct kioctx *ctx;
448 int err = -ENOMEM;
449
450 /* Prevent overflows */
451 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
452 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
453 pr_debug("ENOMEM: nr_events too high\n");
454 return ERR_PTR(-EINVAL);
455 }
456
457 if (!nr_events || (unsigned long)nr_events > aio_max_nr)
458 return ERR_PTR(-EAGAIN);
459
460 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
461 if (!ctx)
462 return ERR_PTR(-ENOMEM);
463
464 ctx->max_reqs = nr_events;
465
466 atomic_set(&ctx->users, 2);
467 atomic_set(&ctx->dead, 0);
468 spin_lock_init(&ctx->ctx_lock);
469 spin_lock_init(&ctx->completion_lock);
470 mutex_init(&ctx->ring_lock);
471 init_waitqueue_head(&ctx->wait);
472
473 INIT_LIST_HEAD(&ctx->active_reqs);
474
475 if (aio_setup_ring(ctx) < 0)
476 goto out_freectx;
477
478 /* limit the number of system wide aios */
479 spin_lock(&aio_nr_lock);
480 if (aio_nr + nr_events > aio_max_nr ||
481 aio_nr + nr_events < aio_nr) {
482 spin_unlock(&aio_nr_lock);
483 goto out_cleanup;
484 }
485 aio_nr += ctx->max_reqs;
486 spin_unlock(&aio_nr_lock);
487
488 /* now link into global list. */
489 spin_lock(&mm->ioctx_lock);
490 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
491 spin_unlock(&mm->ioctx_lock);
492
493 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
494 ctx, ctx->user_id, mm, ctx->nr_events);
495 return ctx;
496
497 out_cleanup:
498 err = -EAGAIN;
499 aio_free_ring(ctx);
500 out_freectx:
501 if (ctx->aio_ring_file)
502 fput(ctx->aio_ring_file);
503 kmem_cache_free(kioctx_cachep, ctx);
504 pr_debug("error allocating ioctx %d\n", err);
505 return ERR_PTR(err);
506 }
507
508 static void kill_ioctx_work(struct work_struct *work)
509 {
510 struct kioctx *ctx = container_of(work, struct kioctx, rcu_work);
511
512 wake_up_all(&ctx->wait);
513 put_ioctx(ctx);
514 }
515
516 static void kill_ioctx_rcu(struct rcu_head *head)
517 {
518 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
519
520 INIT_WORK(&ctx->rcu_work, kill_ioctx_work);
521 schedule_work(&ctx->rcu_work);
522 }
523
524 /* kill_ioctx
525 * Cancels all outstanding aio requests on an aio context. Used
526 * when the processes owning a context have all exited to encourage
527 * the rapid destruction of the kioctx.
528 */
529 static void kill_ioctx(struct kioctx *ctx)
530 {
531 if (!atomic_xchg(&ctx->dead, 1)) {
532 hlist_del_rcu(&ctx->list);
533
534 /*
535 * It'd be more correct to do this in free_ioctx(), after all
536 * the outstanding kiocbs have finished - but by then io_destroy
537 * has already returned, so io_setup() could potentially return
538 * -EAGAIN with no ioctxs actually in use (as far as userspace
539 * could tell).
540 */
541 spin_lock(&aio_nr_lock);
542 BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
543 aio_nr -= ctx->max_reqs;
544 spin_unlock(&aio_nr_lock);
545
546 if (ctx->mmap_size)
547 vm_munmap(ctx->mmap_base, ctx->mmap_size);
548
549 /* Between hlist_del_rcu() and dropping the initial ref */
550 call_rcu(&ctx->rcu_head, kill_ioctx_rcu);
551 }
552 }
553
554 /* wait_on_sync_kiocb:
555 * Waits on the given sync kiocb to complete.
556 */
557 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
558 {
559 while (atomic_read(&iocb->ki_users)) {
560 set_current_state(TASK_UNINTERRUPTIBLE);
561 if (!atomic_read(&iocb->ki_users))
562 break;
563 io_schedule();
564 }
565 __set_current_state(TASK_RUNNING);
566 return iocb->ki_user_data;
567 }
568 EXPORT_SYMBOL(wait_on_sync_kiocb);
569
570 /*
571 * exit_aio: called when the last user of mm goes away. At this point, there is
572 * no way for any new requests to be submited or any of the io_* syscalls to be
573 * called on the context.
574 *
575 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
576 * them.
577 */
578 void exit_aio(struct mm_struct *mm)
579 {
580 struct kioctx *ctx;
581 struct hlist_node *n;
582
583 hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) {
584 if (1 != atomic_read(&ctx->users))
585 printk(KERN_DEBUG
586 "exit_aio:ioctx still alive: %d %d %d\n",
587 atomic_read(&ctx->users),
588 atomic_read(&ctx->dead),
589 atomic_read(&ctx->reqs_active));
590 /*
591 * We don't need to bother with munmap() here -
592 * exit_mmap(mm) is coming and it'll unmap everything.
593 * Since aio_free_ring() uses non-zero ->mmap_size
594 * as indicator that it needs to unmap the area,
595 * just set it to 0; aio_free_ring() is the only
596 * place that uses ->mmap_size, so it's safe.
597 */
598 ctx->mmap_size = 0;
599
600 kill_ioctx(ctx);
601 }
602 }
603
604 /* aio_get_req
605 * Allocate a slot for an aio request. Increments the ki_users count
606 * of the kioctx so that the kioctx stays around until all requests are
607 * complete. Returns NULL if no requests are free.
608 *
609 * Returns with kiocb->ki_users set to 2. The io submit code path holds
610 * an extra reference while submitting the i/o.
611 * This prevents races between the aio code path referencing the
612 * req (after submitting it) and aio_complete() freeing the req.
613 */
614 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
615 {
616 struct kiocb *req;
617
618 if (atomic_read(&ctx->reqs_active) >= ctx->nr_events)
619 return NULL;
620
621 if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1)
622 goto out_put;
623
624 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
625 if (unlikely(!req))
626 goto out_put;
627
628 atomic_set(&req->ki_users, 2);
629 req->ki_ctx = ctx;
630
631 return req;
632 out_put:
633 atomic_dec(&ctx->reqs_active);
634 return NULL;
635 }
636
637 static void kiocb_free(struct kiocb *req)
638 {
639 if (req->ki_filp)
640 fput(req->ki_filp);
641 if (req->ki_eventfd != NULL)
642 eventfd_ctx_put(req->ki_eventfd);
643 if (req->ki_dtor)
644 req->ki_dtor(req);
645 if (req->ki_iovec != &req->ki_inline_vec)
646 kfree(req->ki_iovec);
647 kmem_cache_free(kiocb_cachep, req);
648 }
649
650 void aio_put_req(struct kiocb *req)
651 {
652 if (atomic_dec_and_test(&req->ki_users))
653 kiocb_free(req);
654 }
655 EXPORT_SYMBOL(aio_put_req);
656
657 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
658 {
659 struct mm_struct *mm = current->mm;
660 struct kioctx *ctx, *ret = NULL;
661
662 rcu_read_lock();
663
664 hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) {
665 if (ctx->user_id == ctx_id) {
666 atomic_inc(&ctx->users);
667 ret = ctx;
668 break;
669 }
670 }
671
672 rcu_read_unlock();
673 return ret;
674 }
675
676 /* aio_complete
677 * Called when the io request on the given iocb is complete.
678 */
679 void aio_complete(struct kiocb *iocb, long res, long res2)
680 {
681 struct kioctx *ctx = iocb->ki_ctx;
682 struct aio_ring *ring;
683 struct io_event *ev_page, *event;
684 unsigned long flags;
685 unsigned tail, pos;
686
687 /*
688 * Special case handling for sync iocbs:
689 * - events go directly into the iocb for fast handling
690 * - the sync task with the iocb in its stack holds the single iocb
691 * ref, no other paths have a way to get another ref
692 * - the sync task helpfully left a reference to itself in the iocb
693 */
694 if (is_sync_kiocb(iocb)) {
695 BUG_ON(atomic_read(&iocb->ki_users) != 1);
696 iocb->ki_user_data = res;
697 atomic_set(&iocb->ki_users, 0);
698 wake_up_process(iocb->ki_obj.tsk);
699 return;
700 }
701
702 /*
703 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
704 * need to issue a wakeup after decrementing reqs_active.
705 */
706 rcu_read_lock();
707
708 if (iocb->ki_list.next) {
709 unsigned long flags;
710
711 spin_lock_irqsave(&ctx->ctx_lock, flags);
712 list_del(&iocb->ki_list);
713 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
714 }
715
716 /*
717 * cancelled requests don't get events, userland was given one
718 * when the event got cancelled.
719 */
720 if (unlikely(xchg(&iocb->ki_cancel,
721 KIOCB_CANCELLED) == KIOCB_CANCELLED)) {
722 atomic_dec(&ctx->reqs_active);
723 /* Still need the wake_up in case free_ioctx is waiting */
724 goto put_rq;
725 }
726
727 /*
728 * Add a completion event to the ring buffer. Must be done holding
729 * ctx->completion_lock to prevent other code from messing with the tail
730 * pointer since we might be called from irq context.
731 */
732 spin_lock_irqsave(&ctx->completion_lock, flags);
733
734 tail = ctx->tail;
735 pos = tail + AIO_EVENTS_OFFSET;
736
737 if (++tail >= ctx->nr_events)
738 tail = 0;
739
740 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
741 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
742
743 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
744 event->data = iocb->ki_user_data;
745 event->res = res;
746 event->res2 = res2;
747
748 kunmap_atomic(ev_page);
749 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
750
751 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
752 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
753 res, res2);
754
755 /* after flagging the request as done, we
756 * must never even look at it again
757 */
758 smp_wmb(); /* make event visible before updating tail */
759
760 ctx->tail = tail;
761
762 ring = kmap_atomic(ctx->ring_pages[0]);
763 ring->tail = tail;
764 kunmap_atomic(ring);
765 flush_dcache_page(ctx->ring_pages[0]);
766
767 spin_unlock_irqrestore(&ctx->completion_lock, flags);
768
769 pr_debug("added to ring %p at [%u]\n", iocb, tail);
770
771 /*
772 * Check if the user asked us to deliver the result through an
773 * eventfd. The eventfd_signal() function is safe to be called
774 * from IRQ context.
775 */
776 if (iocb->ki_eventfd != NULL)
777 eventfd_signal(iocb->ki_eventfd, 1);
778
779 put_rq:
780 /* everything turned out well, dispose of the aiocb. */
781 aio_put_req(iocb);
782
783 /*
784 * We have to order our ring_info tail store above and test
785 * of the wait list below outside the wait lock. This is
786 * like in wake_up_bit() where clearing a bit has to be
787 * ordered with the unlocked test.
788 */
789 smp_mb();
790
791 if (waitqueue_active(&ctx->wait))
792 wake_up(&ctx->wait);
793
794 rcu_read_unlock();
795 }
796 EXPORT_SYMBOL(aio_complete);
797
798 /* aio_read_events
799 * Pull an event off of the ioctx's event ring. Returns the number of
800 * events fetched
801 */
802 static long aio_read_events_ring(struct kioctx *ctx,
803 struct io_event __user *event, long nr)
804 {
805 struct aio_ring *ring;
806 unsigned head, pos;
807 long ret = 0;
808 int copy_ret;
809
810 mutex_lock(&ctx->ring_lock);
811
812 ring = kmap_atomic(ctx->ring_pages[0]);
813 head = ring->head;
814 kunmap_atomic(ring);
815
816 pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events);
817
818 if (head == ctx->tail)
819 goto out;
820
821 while (ret < nr) {
822 long avail;
823 struct io_event *ev;
824 struct page *page;
825
826 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
827 if (head == ctx->tail)
828 break;
829
830 avail = min(avail, nr - ret);
831 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
832 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
833
834 pos = head + AIO_EVENTS_OFFSET;
835 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
836 pos %= AIO_EVENTS_PER_PAGE;
837
838 ev = kmap(page);
839 copy_ret = copy_to_user(event + ret, ev + pos,
840 sizeof(*ev) * avail);
841 kunmap(page);
842
843 if (unlikely(copy_ret)) {
844 ret = -EFAULT;
845 goto out;
846 }
847
848 ret += avail;
849 head += avail;
850 head %= ctx->nr_events;
851 }
852
853 ring = kmap_atomic(ctx->ring_pages[0]);
854 ring->head = head;
855 kunmap_atomic(ring);
856 flush_dcache_page(ctx->ring_pages[0]);
857
858 pr_debug("%li h%u t%u\n", ret, head, ctx->tail);
859
860 atomic_sub(ret, &ctx->reqs_active);
861 out:
862 mutex_unlock(&ctx->ring_lock);
863
864 return ret;
865 }
866
867 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
868 struct io_event __user *event, long *i)
869 {
870 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
871
872 if (ret > 0)
873 *i += ret;
874
875 if (unlikely(atomic_read(&ctx->dead)))
876 ret = -EINVAL;
877
878 if (!*i)
879 *i = ret;
880
881 return ret < 0 || *i >= min_nr;
882 }
883
884 static long read_events(struct kioctx *ctx, long min_nr, long nr,
885 struct io_event __user *event,
886 struct timespec __user *timeout)
887 {
888 ktime_t until = { .tv64 = KTIME_MAX };
889 long ret = 0;
890
891 if (timeout) {
892 struct timespec ts;
893
894 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
895 return -EFAULT;
896
897 until = timespec_to_ktime(ts);
898 }
899
900 /*
901 * Note that aio_read_events() is being called as the conditional - i.e.
902 * we're calling it after prepare_to_wait() has set task state to
903 * TASK_INTERRUPTIBLE.
904 *
905 * But aio_read_events() can block, and if it blocks it's going to flip
906 * the task state back to TASK_RUNNING.
907 *
908 * This should be ok, provided it doesn't flip the state back to
909 * TASK_RUNNING and return 0 too much - that causes us to spin. That
910 * will only happen if the mutex_lock() call blocks, and we then find
911 * the ringbuffer empty. So in practice we should be ok, but it's
912 * something to be aware of when touching this code.
913 */
914 wait_event_interruptible_hrtimeout(ctx->wait,
915 aio_read_events(ctx, min_nr, nr, event, &ret), until);
916
917 if (!ret && signal_pending(current))
918 ret = -EINTR;
919
920 return ret;
921 }
922
923 /* sys_io_setup:
924 * Create an aio_context capable of receiving at least nr_events.
925 * ctxp must not point to an aio_context that already exists, and
926 * must be initialized to 0 prior to the call. On successful
927 * creation of the aio_context, *ctxp is filled in with the resulting
928 * handle. May fail with -EINVAL if *ctxp is not initialized,
929 * if the specified nr_events exceeds internal limits. May fail
930 * with -EAGAIN if the specified nr_events exceeds the user's limit
931 * of available events. May fail with -ENOMEM if insufficient kernel
932 * resources are available. May fail with -EFAULT if an invalid
933 * pointer is passed for ctxp. Will fail with -ENOSYS if not
934 * implemented.
935 */
936 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
937 {
938 struct kioctx *ioctx = NULL;
939 unsigned long ctx;
940 long ret;
941
942 ret = get_user(ctx, ctxp);
943 if (unlikely(ret))
944 goto out;
945
946 ret = -EINVAL;
947 if (unlikely(ctx || nr_events == 0)) {
948 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
949 ctx, nr_events);
950 goto out;
951 }
952
953 ioctx = ioctx_alloc(nr_events);
954 ret = PTR_ERR(ioctx);
955 if (!IS_ERR(ioctx)) {
956 ret = put_user(ioctx->user_id, ctxp);
957 if (ret)
958 kill_ioctx(ioctx);
959 put_ioctx(ioctx);
960 }
961
962 out:
963 return ret;
964 }
965
966 /* sys_io_destroy:
967 * Destroy the aio_context specified. May cancel any outstanding
968 * AIOs and block on completion. Will fail with -ENOSYS if not
969 * implemented. May fail with -EINVAL if the context pointed to
970 * is invalid.
971 */
972 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
973 {
974 struct kioctx *ioctx = lookup_ioctx(ctx);
975 if (likely(NULL != ioctx)) {
976 kill_ioctx(ioctx);
977 put_ioctx(ioctx);
978 return 0;
979 }
980 pr_debug("EINVAL: io_destroy: invalid context id\n");
981 return -EINVAL;
982 }
983
984 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
985 {
986 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
987
988 BUG_ON(ret <= 0);
989
990 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
991 ssize_t this = min((ssize_t)iov->iov_len, ret);
992 iov->iov_base += this;
993 iov->iov_len -= this;
994 iocb->ki_left -= this;
995 ret -= this;
996 if (iov->iov_len == 0) {
997 iocb->ki_cur_seg++;
998 iov++;
999 }
1000 }
1001
1002 /* the caller should not have done more io than what fit in
1003 * the remaining iovecs */
1004 BUG_ON(ret > 0 && iocb->ki_left == 0);
1005 }
1006
1007 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1008 unsigned long, loff_t);
1009
1010 static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op)
1011 {
1012 struct file *file = iocb->ki_filp;
1013 struct address_space *mapping = file->f_mapping;
1014 struct inode *inode = mapping->host;
1015 ssize_t ret = 0;
1016
1017 /* This matches the pread()/pwrite() logic */
1018 if (iocb->ki_pos < 0)
1019 return -EINVAL;
1020
1021 if (rw == WRITE)
1022 file_start_write(file);
1023 do {
1024 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1025 iocb->ki_nr_segs - iocb->ki_cur_seg,
1026 iocb->ki_pos);
1027 if (ret > 0)
1028 aio_advance_iovec(iocb, ret);
1029
1030 /* retry all partial writes. retry partial reads as long as its a
1031 * regular file. */
1032 } while (ret > 0 && iocb->ki_left > 0 &&
1033 (rw == WRITE ||
1034 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1035 if (rw == WRITE)
1036 file_end_write(file);
1037
1038 /* This means we must have transferred all that we could */
1039 /* No need to retry anymore */
1040 if ((ret == 0) || (iocb->ki_left == 0))
1041 ret = iocb->ki_nbytes - iocb->ki_left;
1042
1043 /* If we managed to write some out we return that, rather than
1044 * the eventual error. */
1045 if (rw == WRITE
1046 && ret < 0 && ret != -EIOCBQUEUED
1047 && iocb->ki_nbytes - iocb->ki_left)
1048 ret = iocb->ki_nbytes - iocb->ki_left;
1049
1050 return ret;
1051 }
1052
1053 static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat)
1054 {
1055 ssize_t ret;
1056
1057 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1058
1059 #ifdef CONFIG_COMPAT
1060 if (compat)
1061 ret = compat_rw_copy_check_uvector(rw,
1062 (struct compat_iovec __user *)kiocb->ki_buf,
1063 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
1064 &kiocb->ki_iovec);
1065 else
1066 #endif
1067 ret = rw_copy_check_uvector(rw,
1068 (struct iovec __user *)kiocb->ki_buf,
1069 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
1070 &kiocb->ki_iovec);
1071 if (ret < 0)
1072 return ret;
1073
1074 /* ki_nbytes now reflect bytes instead of segs */
1075 kiocb->ki_nbytes = ret;
1076 return 0;
1077 }
1078
1079 static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb)
1080 {
1081 if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes)))
1082 return -EFAULT;
1083
1084 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1085 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1086 kiocb->ki_iovec->iov_len = kiocb->ki_nbytes;
1087 kiocb->ki_nr_segs = 1;
1088 return 0;
1089 }
1090
1091 /*
1092 * aio_setup_iocb:
1093 * Performs the initial checks and aio retry method
1094 * setup for the kiocb at the time of io submission.
1095 */
1096 static ssize_t aio_run_iocb(struct kiocb *req, bool compat)
1097 {
1098 struct file *file = req->ki_filp;
1099 ssize_t ret;
1100 int rw;
1101 fmode_t mode;
1102 aio_rw_op *rw_op;
1103
1104 switch (req->ki_opcode) {
1105 case IOCB_CMD_PREAD:
1106 case IOCB_CMD_PREADV:
1107 mode = FMODE_READ;
1108 rw = READ;
1109 rw_op = file->f_op->aio_read;
1110 goto rw_common;
1111
1112 case IOCB_CMD_PWRITE:
1113 case IOCB_CMD_PWRITEV:
1114 mode = FMODE_WRITE;
1115 rw = WRITE;
1116 rw_op = file->f_op->aio_write;
1117 goto rw_common;
1118 rw_common:
1119 if (unlikely(!(file->f_mode & mode)))
1120 return -EBADF;
1121
1122 if (!rw_op)
1123 return -EINVAL;
1124
1125 ret = (req->ki_opcode == IOCB_CMD_PREADV ||
1126 req->ki_opcode == IOCB_CMD_PWRITEV)
1127 ? aio_setup_vectored_rw(rw, req, compat)
1128 : aio_setup_single_vector(rw, req);
1129 if (ret)
1130 return ret;
1131
1132 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1133 if (ret < 0)
1134 return ret;
1135
1136 req->ki_nbytes = ret;
1137 req->ki_left = ret;
1138
1139 ret = aio_rw_vect_retry(req, rw, rw_op);
1140 break;
1141
1142 case IOCB_CMD_FDSYNC:
1143 if (!file->f_op->aio_fsync)
1144 return -EINVAL;
1145
1146 ret = file->f_op->aio_fsync(req, 1);
1147 break;
1148
1149 case IOCB_CMD_FSYNC:
1150 if (!file->f_op->aio_fsync)
1151 return -EINVAL;
1152
1153 ret = file->f_op->aio_fsync(req, 0);
1154 break;
1155
1156 default:
1157 pr_debug("EINVAL: no operation provided\n");
1158 return -EINVAL;
1159 }
1160
1161 if (ret != -EIOCBQUEUED) {
1162 /*
1163 * There's no easy way to restart the syscall since other AIO's
1164 * may be already running. Just fail this IO with EINTR.
1165 */
1166 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1167 ret == -ERESTARTNOHAND ||
1168 ret == -ERESTART_RESTARTBLOCK))
1169 ret = -EINTR;
1170 aio_complete(req, ret, 0);
1171 }
1172
1173 return 0;
1174 }
1175
1176 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1177 struct iocb *iocb, bool compat)
1178 {
1179 struct kiocb *req;
1180 ssize_t ret;
1181
1182 /* enforce forwards compatibility on users */
1183 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1184 pr_debug("EINVAL: reserve field set\n");
1185 return -EINVAL;
1186 }
1187
1188 /* prevent overflows */
1189 if (unlikely(
1190 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1191 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1192 ((ssize_t)iocb->aio_nbytes < 0)
1193 )) {
1194 pr_debug("EINVAL: io_submit: overflow check\n");
1195 return -EINVAL;
1196 }
1197
1198 req = aio_get_req(ctx);
1199 if (unlikely(!req))
1200 return -EAGAIN;
1201
1202 req->ki_filp = fget(iocb->aio_fildes);
1203 if (unlikely(!req->ki_filp)) {
1204 ret = -EBADF;
1205 goto out_put_req;
1206 }
1207
1208 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1209 /*
1210 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1211 * instance of the file* now. The file descriptor must be
1212 * an eventfd() fd, and will be signaled for each completed
1213 * event using the eventfd_signal() function.
1214 */
1215 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1216 if (IS_ERR(req->ki_eventfd)) {
1217 ret = PTR_ERR(req->ki_eventfd);
1218 req->ki_eventfd = NULL;
1219 goto out_put_req;
1220 }
1221 }
1222
1223 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1224 if (unlikely(ret)) {
1225 pr_debug("EFAULT: aio_key\n");
1226 goto out_put_req;
1227 }
1228
1229 req->ki_obj.user = user_iocb;
1230 req->ki_user_data = iocb->aio_data;
1231 req->ki_pos = iocb->aio_offset;
1232
1233 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1234 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1235 req->ki_opcode = iocb->aio_lio_opcode;
1236
1237 ret = aio_run_iocb(req, compat);
1238 if (ret)
1239 goto out_put_req;
1240
1241 aio_put_req(req); /* drop extra ref to req */
1242 return 0;
1243 out_put_req:
1244 atomic_dec(&ctx->reqs_active);
1245 aio_put_req(req); /* drop extra ref to req */
1246 aio_put_req(req); /* drop i/o ref to req */
1247 return ret;
1248 }
1249
1250 long do_io_submit(aio_context_t ctx_id, long nr,
1251 struct iocb __user *__user *iocbpp, bool compat)
1252 {
1253 struct kioctx *ctx;
1254 long ret = 0;
1255 int i = 0;
1256 struct blk_plug plug;
1257
1258 if (unlikely(nr < 0))
1259 return -EINVAL;
1260
1261 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1262 nr = LONG_MAX/sizeof(*iocbpp);
1263
1264 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1265 return -EFAULT;
1266
1267 ctx = lookup_ioctx(ctx_id);
1268 if (unlikely(!ctx)) {
1269 pr_debug("EINVAL: invalid context id\n");
1270 return -EINVAL;
1271 }
1272
1273 blk_start_plug(&plug);
1274
1275 /*
1276 * AKPM: should this return a partial result if some of the IOs were
1277 * successfully submitted?
1278 */
1279 for (i=0; i<nr; i++) {
1280 struct iocb __user *user_iocb;
1281 struct iocb tmp;
1282
1283 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1284 ret = -EFAULT;
1285 break;
1286 }
1287
1288 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1289 ret = -EFAULT;
1290 break;
1291 }
1292
1293 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1294 if (ret)
1295 break;
1296 }
1297 blk_finish_plug(&plug);
1298
1299 put_ioctx(ctx);
1300 return i ? i : ret;
1301 }
1302
1303 /* sys_io_submit:
1304 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1305 * the number of iocbs queued. May return -EINVAL if the aio_context
1306 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1307 * *iocbpp[0] is not properly initialized, if the operation specified
1308 * is invalid for the file descriptor in the iocb. May fail with
1309 * -EFAULT if any of the data structures point to invalid data. May
1310 * fail with -EBADF if the file descriptor specified in the first
1311 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1312 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1313 * fail with -ENOSYS if not implemented.
1314 */
1315 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1316 struct iocb __user * __user *, iocbpp)
1317 {
1318 return do_io_submit(ctx_id, nr, iocbpp, 0);
1319 }
1320
1321 /* lookup_kiocb
1322 * Finds a given iocb for cancellation.
1323 */
1324 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1325 u32 key)
1326 {
1327 struct list_head *pos;
1328
1329 assert_spin_locked(&ctx->ctx_lock);
1330
1331 if (key != KIOCB_KEY)
1332 return NULL;
1333
1334 /* TODO: use a hash or array, this sucks. */
1335 list_for_each(pos, &ctx->active_reqs) {
1336 struct kiocb *kiocb = list_kiocb(pos);
1337 if (kiocb->ki_obj.user == iocb)
1338 return kiocb;
1339 }
1340 return NULL;
1341 }
1342
1343 /* sys_io_cancel:
1344 * Attempts to cancel an iocb previously passed to io_submit. If
1345 * the operation is successfully cancelled, the resulting event is
1346 * copied into the memory pointed to by result without being placed
1347 * into the completion queue and 0 is returned. May fail with
1348 * -EFAULT if any of the data structures pointed to are invalid.
1349 * May fail with -EINVAL if aio_context specified by ctx_id is
1350 * invalid. May fail with -EAGAIN if the iocb specified was not
1351 * cancelled. Will fail with -ENOSYS if not implemented.
1352 */
1353 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1354 struct io_event __user *, result)
1355 {
1356 struct io_event res;
1357 struct kioctx *ctx;
1358 struct kiocb *kiocb;
1359 u32 key;
1360 int ret;
1361
1362 ret = get_user(key, &iocb->aio_key);
1363 if (unlikely(ret))
1364 return -EFAULT;
1365
1366 ctx = lookup_ioctx(ctx_id);
1367 if (unlikely(!ctx))
1368 return -EINVAL;
1369
1370 spin_lock_irq(&ctx->ctx_lock);
1371
1372 kiocb = lookup_kiocb(ctx, iocb, key);
1373 if (kiocb)
1374 ret = kiocb_cancel(ctx, kiocb, &res);
1375 else
1376 ret = -EINVAL;
1377
1378 spin_unlock_irq(&ctx->ctx_lock);
1379
1380 if (!ret) {
1381 /* Cancellation succeeded -- copy the result
1382 * into the user's buffer.
1383 */
1384 if (copy_to_user(result, &res, sizeof(res)))
1385 ret = -EFAULT;
1386 }
1387
1388 put_ioctx(ctx);
1389
1390 return ret;
1391 }
1392
1393 /* io_getevents:
1394 * Attempts to read at least min_nr events and up to nr events from
1395 * the completion queue for the aio_context specified by ctx_id. If
1396 * it succeeds, the number of read events is returned. May fail with
1397 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1398 * out of range, if timeout is out of range. May fail with -EFAULT
1399 * if any of the memory specified is invalid. May return 0 or
1400 * < min_nr if the timeout specified by timeout has elapsed
1401 * before sufficient events are available, where timeout == NULL
1402 * specifies an infinite timeout. Note that the timeout pointed to by
1403 * timeout is relative. Will fail with -ENOSYS if not implemented.
1404 */
1405 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1406 long, min_nr,
1407 long, nr,
1408 struct io_event __user *, events,
1409 struct timespec __user *, timeout)
1410 {
1411 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1412 long ret = -EINVAL;
1413
1414 if (likely(ioctx)) {
1415 if (likely(min_nr <= nr && min_nr >= 0))
1416 ret = read_events(ioctx, min_nr, nr, events, timeout);
1417 put_ioctx(ioctx);
1418 }
1419 return ret;
1420 }