]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/aio.c
aio: fix serial draining in exit_aio()
[mirror_ubuntu-artful-kernel.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83 };
84
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct work_struct free_work;
119
120 /*
121 * signals when all in-flight requests are done
122 */
123 struct ctx_rq_wait *rq_wait;
124
125 struct {
126 /*
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
131 *
132 * We batch accesses to it with a percpu version.
133 */
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 unsigned tail;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
152
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
155
156 unsigned id;
157 };
158
159 /*------ sysctl variables----*/
160 static DEFINE_SPINLOCK(aio_nr_lock);
161 unsigned long aio_nr; /* current system wide number of aio requests */
162 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
163 /*----end sysctl variables---*/
164
165 static struct kmem_cache *kiocb_cachep;
166 static struct kmem_cache *kioctx_cachep;
167
168 static struct vfsmount *aio_mnt;
169
170 static const struct file_operations aio_ring_fops;
171 static const struct address_space_operations aio_ctx_aops;
172
173 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
174 {
175 struct qstr this = QSTR_INIT("[aio]", 5);
176 struct file *file;
177 struct path path;
178 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
179 if (IS_ERR(inode))
180 return ERR_CAST(inode);
181
182 inode->i_mapping->a_ops = &aio_ctx_aops;
183 inode->i_mapping->private_data = ctx;
184 inode->i_size = PAGE_SIZE * nr_pages;
185
186 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
187 if (!path.dentry) {
188 iput(inode);
189 return ERR_PTR(-ENOMEM);
190 }
191 path.mnt = mntget(aio_mnt);
192
193 d_instantiate(path.dentry, inode);
194 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
195 if (IS_ERR(file)) {
196 path_put(&path);
197 return file;
198 }
199
200 file->f_flags = O_RDWR;
201 return file;
202 }
203
204 static struct dentry *aio_mount(struct file_system_type *fs_type,
205 int flags, const char *dev_name, void *data)
206 {
207 static const struct dentry_operations ops = {
208 .d_dname = simple_dname,
209 };
210 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
211 }
212
213 /* aio_setup
214 * Creates the slab caches used by the aio routines, panic on
215 * failure as this is done early during the boot sequence.
216 */
217 static int __init aio_setup(void)
218 {
219 static struct file_system_type aio_fs = {
220 .name = "aio",
221 .mount = aio_mount,
222 .kill_sb = kill_anon_super,
223 };
224 aio_mnt = kern_mount(&aio_fs);
225 if (IS_ERR(aio_mnt))
226 panic("Failed to create aio fs mount.");
227
228 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
229 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
230
231 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
232
233 return 0;
234 }
235 __initcall(aio_setup);
236
237 static void put_aio_ring_file(struct kioctx *ctx)
238 {
239 struct file *aio_ring_file = ctx->aio_ring_file;
240 if (aio_ring_file) {
241 truncate_setsize(aio_ring_file->f_inode, 0);
242
243 /* Prevent further access to the kioctx from migratepages */
244 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
245 aio_ring_file->f_inode->i_mapping->private_data = NULL;
246 ctx->aio_ring_file = NULL;
247 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
248
249 fput(aio_ring_file);
250 }
251 }
252
253 static void aio_free_ring(struct kioctx *ctx)
254 {
255 int i;
256
257 /* Disconnect the kiotx from the ring file. This prevents future
258 * accesses to the kioctx from page migration.
259 */
260 put_aio_ring_file(ctx);
261
262 for (i = 0; i < ctx->nr_pages; i++) {
263 struct page *page;
264 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
265 page_count(ctx->ring_pages[i]));
266 page = ctx->ring_pages[i];
267 if (!page)
268 continue;
269 ctx->ring_pages[i] = NULL;
270 put_page(page);
271 }
272
273 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
274 kfree(ctx->ring_pages);
275 ctx->ring_pages = NULL;
276 }
277 }
278
279 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
280 {
281 vma->vm_flags |= VM_DONTEXPAND;
282 vma->vm_ops = &generic_file_vm_ops;
283 return 0;
284 }
285
286 static void aio_ring_remap(struct file *file, struct vm_area_struct *vma)
287 {
288 struct mm_struct *mm = vma->vm_mm;
289 struct kioctx_table *table;
290 int i;
291
292 spin_lock(&mm->ioctx_lock);
293 rcu_read_lock();
294 table = rcu_dereference(mm->ioctx_table);
295 for (i = 0; i < table->nr; i++) {
296 struct kioctx *ctx;
297
298 ctx = table->table[i];
299 if (ctx && ctx->aio_ring_file == file) {
300 ctx->user_id = ctx->mmap_base = vma->vm_start;
301 break;
302 }
303 }
304
305 rcu_read_unlock();
306 spin_unlock(&mm->ioctx_lock);
307 }
308
309 static const struct file_operations aio_ring_fops = {
310 .mmap = aio_ring_mmap,
311 .mremap = aio_ring_remap,
312 };
313
314 #if IS_ENABLED(CONFIG_MIGRATION)
315 static int aio_migratepage(struct address_space *mapping, struct page *new,
316 struct page *old, enum migrate_mode mode)
317 {
318 struct kioctx *ctx;
319 unsigned long flags;
320 pgoff_t idx;
321 int rc;
322
323 rc = 0;
324
325 /* mapping->private_lock here protects against the kioctx teardown. */
326 spin_lock(&mapping->private_lock);
327 ctx = mapping->private_data;
328 if (!ctx) {
329 rc = -EINVAL;
330 goto out;
331 }
332
333 /* The ring_lock mutex. The prevents aio_read_events() from writing
334 * to the ring's head, and prevents page migration from mucking in
335 * a partially initialized kiotx.
336 */
337 if (!mutex_trylock(&ctx->ring_lock)) {
338 rc = -EAGAIN;
339 goto out;
340 }
341
342 idx = old->index;
343 if (idx < (pgoff_t)ctx->nr_pages) {
344 /* Make sure the old page hasn't already been changed */
345 if (ctx->ring_pages[idx] != old)
346 rc = -EAGAIN;
347 } else
348 rc = -EINVAL;
349
350 if (rc != 0)
351 goto out_unlock;
352
353 /* Writeback must be complete */
354 BUG_ON(PageWriteback(old));
355 get_page(new);
356
357 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
358 if (rc != MIGRATEPAGE_SUCCESS) {
359 put_page(new);
360 goto out_unlock;
361 }
362
363 /* Take completion_lock to prevent other writes to the ring buffer
364 * while the old page is copied to the new. This prevents new
365 * events from being lost.
366 */
367 spin_lock_irqsave(&ctx->completion_lock, flags);
368 migrate_page_copy(new, old);
369 BUG_ON(ctx->ring_pages[idx] != old);
370 ctx->ring_pages[idx] = new;
371 spin_unlock_irqrestore(&ctx->completion_lock, flags);
372
373 /* The old page is no longer accessible. */
374 put_page(old);
375
376 out_unlock:
377 mutex_unlock(&ctx->ring_lock);
378 out:
379 spin_unlock(&mapping->private_lock);
380 return rc;
381 }
382 #endif
383
384 static const struct address_space_operations aio_ctx_aops = {
385 .set_page_dirty = __set_page_dirty_no_writeback,
386 #if IS_ENABLED(CONFIG_MIGRATION)
387 .migratepage = aio_migratepage,
388 #endif
389 };
390
391 static int aio_setup_ring(struct kioctx *ctx)
392 {
393 struct aio_ring *ring;
394 unsigned nr_events = ctx->max_reqs;
395 struct mm_struct *mm = current->mm;
396 unsigned long size, unused;
397 int nr_pages;
398 int i;
399 struct file *file;
400
401 /* Compensate for the ring buffer's head/tail overlap entry */
402 nr_events += 2; /* 1 is required, 2 for good luck */
403
404 size = sizeof(struct aio_ring);
405 size += sizeof(struct io_event) * nr_events;
406
407 nr_pages = PFN_UP(size);
408 if (nr_pages < 0)
409 return -EINVAL;
410
411 file = aio_private_file(ctx, nr_pages);
412 if (IS_ERR(file)) {
413 ctx->aio_ring_file = NULL;
414 return -ENOMEM;
415 }
416
417 ctx->aio_ring_file = file;
418 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
419 / sizeof(struct io_event);
420
421 ctx->ring_pages = ctx->internal_pages;
422 if (nr_pages > AIO_RING_PAGES) {
423 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
424 GFP_KERNEL);
425 if (!ctx->ring_pages) {
426 put_aio_ring_file(ctx);
427 return -ENOMEM;
428 }
429 }
430
431 for (i = 0; i < nr_pages; i++) {
432 struct page *page;
433 page = find_or_create_page(file->f_inode->i_mapping,
434 i, GFP_HIGHUSER | __GFP_ZERO);
435 if (!page)
436 break;
437 pr_debug("pid(%d) page[%d]->count=%d\n",
438 current->pid, i, page_count(page));
439 SetPageUptodate(page);
440 unlock_page(page);
441
442 ctx->ring_pages[i] = page;
443 }
444 ctx->nr_pages = i;
445
446 if (unlikely(i != nr_pages)) {
447 aio_free_ring(ctx);
448 return -ENOMEM;
449 }
450
451 ctx->mmap_size = nr_pages * PAGE_SIZE;
452 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
453
454 down_write(&mm->mmap_sem);
455 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
456 PROT_READ | PROT_WRITE,
457 MAP_SHARED, 0, &unused);
458 up_write(&mm->mmap_sem);
459 if (IS_ERR((void *)ctx->mmap_base)) {
460 ctx->mmap_size = 0;
461 aio_free_ring(ctx);
462 return -ENOMEM;
463 }
464
465 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
466
467 ctx->user_id = ctx->mmap_base;
468 ctx->nr_events = nr_events; /* trusted copy */
469
470 ring = kmap_atomic(ctx->ring_pages[0]);
471 ring->nr = nr_events; /* user copy */
472 ring->id = ~0U;
473 ring->head = ring->tail = 0;
474 ring->magic = AIO_RING_MAGIC;
475 ring->compat_features = AIO_RING_COMPAT_FEATURES;
476 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
477 ring->header_length = sizeof(struct aio_ring);
478 kunmap_atomic(ring);
479 flush_dcache_page(ctx->ring_pages[0]);
480
481 return 0;
482 }
483
484 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
485 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
486 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
487
488 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
489 {
490 struct kioctx *ctx = req->ki_ctx;
491 unsigned long flags;
492
493 spin_lock_irqsave(&ctx->ctx_lock, flags);
494
495 if (!req->ki_list.next)
496 list_add(&req->ki_list, &ctx->active_reqs);
497
498 req->ki_cancel = cancel;
499
500 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
501 }
502 EXPORT_SYMBOL(kiocb_set_cancel_fn);
503
504 static int kiocb_cancel(struct kiocb *kiocb)
505 {
506 kiocb_cancel_fn *old, *cancel;
507
508 /*
509 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
510 * actually has a cancel function, hence the cmpxchg()
511 */
512
513 cancel = ACCESS_ONCE(kiocb->ki_cancel);
514 do {
515 if (!cancel || cancel == KIOCB_CANCELLED)
516 return -EINVAL;
517
518 old = cancel;
519 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
520 } while (cancel != old);
521
522 return cancel(kiocb);
523 }
524
525 static void free_ioctx(struct work_struct *work)
526 {
527 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
528
529 pr_debug("freeing %p\n", ctx);
530
531 aio_free_ring(ctx);
532 free_percpu(ctx->cpu);
533 percpu_ref_exit(&ctx->reqs);
534 percpu_ref_exit(&ctx->users);
535 kmem_cache_free(kioctx_cachep, ctx);
536 }
537
538 static void free_ioctx_reqs(struct percpu_ref *ref)
539 {
540 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
541
542 /* At this point we know that there are no any in-flight requests */
543 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
544 complete(&ctx->rq_wait->comp);
545
546 INIT_WORK(&ctx->free_work, free_ioctx);
547 schedule_work(&ctx->free_work);
548 }
549
550 /*
551 * When this function runs, the kioctx has been removed from the "hash table"
552 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
553 * now it's safe to cancel any that need to be.
554 */
555 static void free_ioctx_users(struct percpu_ref *ref)
556 {
557 struct kioctx *ctx = container_of(ref, struct kioctx, users);
558 struct kiocb *req;
559
560 spin_lock_irq(&ctx->ctx_lock);
561
562 while (!list_empty(&ctx->active_reqs)) {
563 req = list_first_entry(&ctx->active_reqs,
564 struct kiocb, ki_list);
565
566 list_del_init(&req->ki_list);
567 kiocb_cancel(req);
568 }
569
570 spin_unlock_irq(&ctx->ctx_lock);
571
572 percpu_ref_kill(&ctx->reqs);
573 percpu_ref_put(&ctx->reqs);
574 }
575
576 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
577 {
578 unsigned i, new_nr;
579 struct kioctx_table *table, *old;
580 struct aio_ring *ring;
581
582 spin_lock(&mm->ioctx_lock);
583 table = rcu_dereference_raw(mm->ioctx_table);
584
585 while (1) {
586 if (table)
587 for (i = 0; i < table->nr; i++)
588 if (!table->table[i]) {
589 ctx->id = i;
590 table->table[i] = ctx;
591 spin_unlock(&mm->ioctx_lock);
592
593 /* While kioctx setup is in progress,
594 * we are protected from page migration
595 * changes ring_pages by ->ring_lock.
596 */
597 ring = kmap_atomic(ctx->ring_pages[0]);
598 ring->id = ctx->id;
599 kunmap_atomic(ring);
600 return 0;
601 }
602
603 new_nr = (table ? table->nr : 1) * 4;
604 spin_unlock(&mm->ioctx_lock);
605
606 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
607 new_nr, GFP_KERNEL);
608 if (!table)
609 return -ENOMEM;
610
611 table->nr = new_nr;
612
613 spin_lock(&mm->ioctx_lock);
614 old = rcu_dereference_raw(mm->ioctx_table);
615
616 if (!old) {
617 rcu_assign_pointer(mm->ioctx_table, table);
618 } else if (table->nr > old->nr) {
619 memcpy(table->table, old->table,
620 old->nr * sizeof(struct kioctx *));
621
622 rcu_assign_pointer(mm->ioctx_table, table);
623 kfree_rcu(old, rcu);
624 } else {
625 kfree(table);
626 table = old;
627 }
628 }
629 }
630
631 static void aio_nr_sub(unsigned nr)
632 {
633 spin_lock(&aio_nr_lock);
634 if (WARN_ON(aio_nr - nr > aio_nr))
635 aio_nr = 0;
636 else
637 aio_nr -= nr;
638 spin_unlock(&aio_nr_lock);
639 }
640
641 /* ioctx_alloc
642 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
643 */
644 static struct kioctx *ioctx_alloc(unsigned nr_events)
645 {
646 struct mm_struct *mm = current->mm;
647 struct kioctx *ctx;
648 int err = -ENOMEM;
649
650 /*
651 * We keep track of the number of available ringbuffer slots, to prevent
652 * overflow (reqs_available), and we also use percpu counters for this.
653 *
654 * So since up to half the slots might be on other cpu's percpu counters
655 * and unavailable, double nr_events so userspace sees what they
656 * expected: additionally, we move req_batch slots to/from percpu
657 * counters at a time, so make sure that isn't 0:
658 */
659 nr_events = max(nr_events, num_possible_cpus() * 4);
660 nr_events *= 2;
661
662 /* Prevent overflows */
663 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
664 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
665 pr_debug("ENOMEM: nr_events too high\n");
666 return ERR_PTR(-EINVAL);
667 }
668
669 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
670 return ERR_PTR(-EAGAIN);
671
672 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
673 if (!ctx)
674 return ERR_PTR(-ENOMEM);
675
676 ctx->max_reqs = nr_events;
677
678 spin_lock_init(&ctx->ctx_lock);
679 spin_lock_init(&ctx->completion_lock);
680 mutex_init(&ctx->ring_lock);
681 /* Protect against page migration throughout kiotx setup by keeping
682 * the ring_lock mutex held until setup is complete. */
683 mutex_lock(&ctx->ring_lock);
684 init_waitqueue_head(&ctx->wait);
685
686 INIT_LIST_HEAD(&ctx->active_reqs);
687
688 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
689 goto err;
690
691 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
692 goto err;
693
694 ctx->cpu = alloc_percpu(struct kioctx_cpu);
695 if (!ctx->cpu)
696 goto err;
697
698 err = aio_setup_ring(ctx);
699 if (err < 0)
700 goto err;
701
702 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
703 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
704 if (ctx->req_batch < 1)
705 ctx->req_batch = 1;
706
707 /* limit the number of system wide aios */
708 spin_lock(&aio_nr_lock);
709 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
710 aio_nr + nr_events < aio_nr) {
711 spin_unlock(&aio_nr_lock);
712 err = -EAGAIN;
713 goto err_ctx;
714 }
715 aio_nr += ctx->max_reqs;
716 spin_unlock(&aio_nr_lock);
717
718 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
719 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
720
721 err = ioctx_add_table(ctx, mm);
722 if (err)
723 goto err_cleanup;
724
725 /* Release the ring_lock mutex now that all setup is complete. */
726 mutex_unlock(&ctx->ring_lock);
727
728 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
729 ctx, ctx->user_id, mm, ctx->nr_events);
730 return ctx;
731
732 err_cleanup:
733 aio_nr_sub(ctx->max_reqs);
734 err_ctx:
735 aio_free_ring(ctx);
736 err:
737 mutex_unlock(&ctx->ring_lock);
738 free_percpu(ctx->cpu);
739 percpu_ref_exit(&ctx->reqs);
740 percpu_ref_exit(&ctx->users);
741 kmem_cache_free(kioctx_cachep, ctx);
742 pr_debug("error allocating ioctx %d\n", err);
743 return ERR_PTR(err);
744 }
745
746 /* kill_ioctx
747 * Cancels all outstanding aio requests on an aio context. Used
748 * when the processes owning a context have all exited to encourage
749 * the rapid destruction of the kioctx.
750 */
751 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
752 struct ctx_rq_wait *wait)
753 {
754 struct kioctx_table *table;
755
756 if (atomic_xchg(&ctx->dead, 1))
757 return -EINVAL;
758
759
760 spin_lock(&mm->ioctx_lock);
761 table = rcu_dereference_raw(mm->ioctx_table);
762 WARN_ON(ctx != table->table[ctx->id]);
763 table->table[ctx->id] = NULL;
764 spin_unlock(&mm->ioctx_lock);
765
766 /* percpu_ref_kill() will do the necessary call_rcu() */
767 wake_up_all(&ctx->wait);
768
769 /*
770 * It'd be more correct to do this in free_ioctx(), after all
771 * the outstanding kiocbs have finished - but by then io_destroy
772 * has already returned, so io_setup() could potentially return
773 * -EAGAIN with no ioctxs actually in use (as far as userspace
774 * could tell).
775 */
776 aio_nr_sub(ctx->max_reqs);
777
778 if (ctx->mmap_size)
779 vm_munmap(ctx->mmap_base, ctx->mmap_size);
780
781 ctx->rq_wait = wait;
782 percpu_ref_kill(&ctx->users);
783 return 0;
784 }
785
786 /* wait_on_sync_kiocb:
787 * Waits on the given sync kiocb to complete.
788 */
789 ssize_t wait_on_sync_kiocb(struct kiocb *req)
790 {
791 while (!req->ki_ctx) {
792 set_current_state(TASK_UNINTERRUPTIBLE);
793 if (req->ki_ctx)
794 break;
795 io_schedule();
796 }
797 __set_current_state(TASK_RUNNING);
798 return req->ki_user_data;
799 }
800 EXPORT_SYMBOL(wait_on_sync_kiocb);
801
802 /*
803 * exit_aio: called when the last user of mm goes away. At this point, there is
804 * no way for any new requests to be submited or any of the io_* syscalls to be
805 * called on the context.
806 *
807 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
808 * them.
809 */
810 void exit_aio(struct mm_struct *mm)
811 {
812 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
813 struct ctx_rq_wait wait;
814 int i, skipped;
815
816 if (!table)
817 return;
818
819 atomic_set(&wait.count, table->nr);
820 init_completion(&wait.comp);
821
822 skipped = 0;
823 for (i = 0; i < table->nr; ++i) {
824 struct kioctx *ctx = table->table[i];
825
826 if (!ctx) {
827 skipped++;
828 continue;
829 }
830
831 /*
832 * We don't need to bother with munmap() here - exit_mmap(mm)
833 * is coming and it'll unmap everything. And we simply can't,
834 * this is not necessarily our ->mm.
835 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
836 * that it needs to unmap the area, just set it to 0.
837 */
838 ctx->mmap_size = 0;
839 kill_ioctx(mm, ctx, &wait);
840 }
841
842 if (!atomic_sub_and_test(skipped, &wait.count)) {
843 /* Wait until all IO for the context are done. */
844 wait_for_completion(&wait.comp);
845 }
846
847 RCU_INIT_POINTER(mm->ioctx_table, NULL);
848 kfree(table);
849 }
850
851 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
852 {
853 struct kioctx_cpu *kcpu;
854 unsigned long flags;
855
856 local_irq_save(flags);
857 kcpu = this_cpu_ptr(ctx->cpu);
858 kcpu->reqs_available += nr;
859
860 while (kcpu->reqs_available >= ctx->req_batch * 2) {
861 kcpu->reqs_available -= ctx->req_batch;
862 atomic_add(ctx->req_batch, &ctx->reqs_available);
863 }
864
865 local_irq_restore(flags);
866 }
867
868 static bool get_reqs_available(struct kioctx *ctx)
869 {
870 struct kioctx_cpu *kcpu;
871 bool ret = false;
872 unsigned long flags;
873
874 local_irq_save(flags);
875 kcpu = this_cpu_ptr(ctx->cpu);
876 if (!kcpu->reqs_available) {
877 int old, avail = atomic_read(&ctx->reqs_available);
878
879 do {
880 if (avail < ctx->req_batch)
881 goto out;
882
883 old = avail;
884 avail = atomic_cmpxchg(&ctx->reqs_available,
885 avail, avail - ctx->req_batch);
886 } while (avail != old);
887
888 kcpu->reqs_available += ctx->req_batch;
889 }
890
891 ret = true;
892 kcpu->reqs_available--;
893 out:
894 local_irq_restore(flags);
895 return ret;
896 }
897
898 /* refill_reqs_available
899 * Updates the reqs_available reference counts used for tracking the
900 * number of free slots in the completion ring. This can be called
901 * from aio_complete() (to optimistically update reqs_available) or
902 * from aio_get_req() (the we're out of events case). It must be
903 * called holding ctx->completion_lock.
904 */
905 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
906 unsigned tail)
907 {
908 unsigned events_in_ring, completed;
909
910 /* Clamp head since userland can write to it. */
911 head %= ctx->nr_events;
912 if (head <= tail)
913 events_in_ring = tail - head;
914 else
915 events_in_ring = ctx->nr_events - (head - tail);
916
917 completed = ctx->completed_events;
918 if (events_in_ring < completed)
919 completed -= events_in_ring;
920 else
921 completed = 0;
922
923 if (!completed)
924 return;
925
926 ctx->completed_events -= completed;
927 put_reqs_available(ctx, completed);
928 }
929
930 /* user_refill_reqs_available
931 * Called to refill reqs_available when aio_get_req() encounters an
932 * out of space in the completion ring.
933 */
934 static void user_refill_reqs_available(struct kioctx *ctx)
935 {
936 spin_lock_irq(&ctx->completion_lock);
937 if (ctx->completed_events) {
938 struct aio_ring *ring;
939 unsigned head;
940
941 /* Access of ring->head may race with aio_read_events_ring()
942 * here, but that's okay since whether we read the old version
943 * or the new version, and either will be valid. The important
944 * part is that head cannot pass tail since we prevent
945 * aio_complete() from updating tail by holding
946 * ctx->completion_lock. Even if head is invalid, the check
947 * against ctx->completed_events below will make sure we do the
948 * safe/right thing.
949 */
950 ring = kmap_atomic(ctx->ring_pages[0]);
951 head = ring->head;
952 kunmap_atomic(ring);
953
954 refill_reqs_available(ctx, head, ctx->tail);
955 }
956
957 spin_unlock_irq(&ctx->completion_lock);
958 }
959
960 /* aio_get_req
961 * Allocate a slot for an aio request.
962 * Returns NULL if no requests are free.
963 */
964 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
965 {
966 struct kiocb *req;
967
968 if (!get_reqs_available(ctx)) {
969 user_refill_reqs_available(ctx);
970 if (!get_reqs_available(ctx))
971 return NULL;
972 }
973
974 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
975 if (unlikely(!req))
976 goto out_put;
977
978 percpu_ref_get(&ctx->reqs);
979
980 req->ki_ctx = ctx;
981 return req;
982 out_put:
983 put_reqs_available(ctx, 1);
984 return NULL;
985 }
986
987 static void kiocb_free(struct kiocb *req)
988 {
989 if (req->ki_filp)
990 fput(req->ki_filp);
991 if (req->ki_eventfd != NULL)
992 eventfd_ctx_put(req->ki_eventfd);
993 kmem_cache_free(kiocb_cachep, req);
994 }
995
996 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
997 {
998 struct aio_ring __user *ring = (void __user *)ctx_id;
999 struct mm_struct *mm = current->mm;
1000 struct kioctx *ctx, *ret = NULL;
1001 struct kioctx_table *table;
1002 unsigned id;
1003
1004 if (get_user(id, &ring->id))
1005 return NULL;
1006
1007 rcu_read_lock();
1008 table = rcu_dereference(mm->ioctx_table);
1009
1010 if (!table || id >= table->nr)
1011 goto out;
1012
1013 ctx = table->table[id];
1014 if (ctx && ctx->user_id == ctx_id) {
1015 percpu_ref_get(&ctx->users);
1016 ret = ctx;
1017 }
1018 out:
1019 rcu_read_unlock();
1020 return ret;
1021 }
1022
1023 /* aio_complete
1024 * Called when the io request on the given iocb is complete.
1025 */
1026 void aio_complete(struct kiocb *iocb, long res, long res2)
1027 {
1028 struct kioctx *ctx = iocb->ki_ctx;
1029 struct aio_ring *ring;
1030 struct io_event *ev_page, *event;
1031 unsigned tail, pos, head;
1032 unsigned long flags;
1033
1034 /*
1035 * Special case handling for sync iocbs:
1036 * - events go directly into the iocb for fast handling
1037 * - the sync task with the iocb in its stack holds the single iocb
1038 * ref, no other paths have a way to get another ref
1039 * - the sync task helpfully left a reference to itself in the iocb
1040 */
1041 if (is_sync_kiocb(iocb)) {
1042 iocb->ki_user_data = res;
1043 smp_wmb();
1044 iocb->ki_ctx = ERR_PTR(-EXDEV);
1045 wake_up_process(iocb->ki_obj.tsk);
1046 return;
1047 }
1048
1049 if (iocb->ki_list.next) {
1050 unsigned long flags;
1051
1052 spin_lock_irqsave(&ctx->ctx_lock, flags);
1053 list_del(&iocb->ki_list);
1054 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1055 }
1056
1057 /*
1058 * Add a completion event to the ring buffer. Must be done holding
1059 * ctx->completion_lock to prevent other code from messing with the tail
1060 * pointer since we might be called from irq context.
1061 */
1062 spin_lock_irqsave(&ctx->completion_lock, flags);
1063
1064 tail = ctx->tail;
1065 pos = tail + AIO_EVENTS_OFFSET;
1066
1067 if (++tail >= ctx->nr_events)
1068 tail = 0;
1069
1070 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1071 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1072
1073 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1074 event->data = iocb->ki_user_data;
1075 event->res = res;
1076 event->res2 = res2;
1077
1078 kunmap_atomic(ev_page);
1079 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1080
1081 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1082 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1083 res, res2);
1084
1085 /* after flagging the request as done, we
1086 * must never even look at it again
1087 */
1088 smp_wmb(); /* make event visible before updating tail */
1089
1090 ctx->tail = tail;
1091
1092 ring = kmap_atomic(ctx->ring_pages[0]);
1093 head = ring->head;
1094 ring->tail = tail;
1095 kunmap_atomic(ring);
1096 flush_dcache_page(ctx->ring_pages[0]);
1097
1098 ctx->completed_events++;
1099 if (ctx->completed_events > 1)
1100 refill_reqs_available(ctx, head, tail);
1101 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1102
1103 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1104
1105 /*
1106 * Check if the user asked us to deliver the result through an
1107 * eventfd. The eventfd_signal() function is safe to be called
1108 * from IRQ context.
1109 */
1110 if (iocb->ki_eventfd != NULL)
1111 eventfd_signal(iocb->ki_eventfd, 1);
1112
1113 /* everything turned out well, dispose of the aiocb. */
1114 kiocb_free(iocb);
1115
1116 /*
1117 * We have to order our ring_info tail store above and test
1118 * of the wait list below outside the wait lock. This is
1119 * like in wake_up_bit() where clearing a bit has to be
1120 * ordered with the unlocked test.
1121 */
1122 smp_mb();
1123
1124 if (waitqueue_active(&ctx->wait))
1125 wake_up(&ctx->wait);
1126
1127 percpu_ref_put(&ctx->reqs);
1128 }
1129 EXPORT_SYMBOL(aio_complete);
1130
1131 /* aio_read_events_ring
1132 * Pull an event off of the ioctx's event ring. Returns the number of
1133 * events fetched
1134 */
1135 static long aio_read_events_ring(struct kioctx *ctx,
1136 struct io_event __user *event, long nr)
1137 {
1138 struct aio_ring *ring;
1139 unsigned head, tail, pos;
1140 long ret = 0;
1141 int copy_ret;
1142
1143 /*
1144 * The mutex can block and wake us up and that will cause
1145 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1146 * and repeat. This should be rare enough that it doesn't cause
1147 * peformance issues. See the comment in read_events() for more detail.
1148 */
1149 sched_annotate_sleep();
1150 mutex_lock(&ctx->ring_lock);
1151
1152 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1153 ring = kmap_atomic(ctx->ring_pages[0]);
1154 head = ring->head;
1155 tail = ring->tail;
1156 kunmap_atomic(ring);
1157
1158 /*
1159 * Ensure that once we've read the current tail pointer, that
1160 * we also see the events that were stored up to the tail.
1161 */
1162 smp_rmb();
1163
1164 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1165
1166 if (head == tail)
1167 goto out;
1168
1169 head %= ctx->nr_events;
1170 tail %= ctx->nr_events;
1171
1172 while (ret < nr) {
1173 long avail;
1174 struct io_event *ev;
1175 struct page *page;
1176
1177 avail = (head <= tail ? tail : ctx->nr_events) - head;
1178 if (head == tail)
1179 break;
1180
1181 avail = min(avail, nr - ret);
1182 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1183 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1184
1185 pos = head + AIO_EVENTS_OFFSET;
1186 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1187 pos %= AIO_EVENTS_PER_PAGE;
1188
1189 ev = kmap(page);
1190 copy_ret = copy_to_user(event + ret, ev + pos,
1191 sizeof(*ev) * avail);
1192 kunmap(page);
1193
1194 if (unlikely(copy_ret)) {
1195 ret = -EFAULT;
1196 goto out;
1197 }
1198
1199 ret += avail;
1200 head += avail;
1201 head %= ctx->nr_events;
1202 }
1203
1204 ring = kmap_atomic(ctx->ring_pages[0]);
1205 ring->head = head;
1206 kunmap_atomic(ring);
1207 flush_dcache_page(ctx->ring_pages[0]);
1208
1209 pr_debug("%li h%u t%u\n", ret, head, tail);
1210 out:
1211 mutex_unlock(&ctx->ring_lock);
1212
1213 return ret;
1214 }
1215
1216 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1217 struct io_event __user *event, long *i)
1218 {
1219 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1220
1221 if (ret > 0)
1222 *i += ret;
1223
1224 if (unlikely(atomic_read(&ctx->dead)))
1225 ret = -EINVAL;
1226
1227 if (!*i)
1228 *i = ret;
1229
1230 return ret < 0 || *i >= min_nr;
1231 }
1232
1233 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1234 struct io_event __user *event,
1235 struct timespec __user *timeout)
1236 {
1237 ktime_t until = { .tv64 = KTIME_MAX };
1238 long ret = 0;
1239
1240 if (timeout) {
1241 struct timespec ts;
1242
1243 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1244 return -EFAULT;
1245
1246 until = timespec_to_ktime(ts);
1247 }
1248
1249 /*
1250 * Note that aio_read_events() is being called as the conditional - i.e.
1251 * we're calling it after prepare_to_wait() has set task state to
1252 * TASK_INTERRUPTIBLE.
1253 *
1254 * But aio_read_events() can block, and if it blocks it's going to flip
1255 * the task state back to TASK_RUNNING.
1256 *
1257 * This should be ok, provided it doesn't flip the state back to
1258 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1259 * will only happen if the mutex_lock() call blocks, and we then find
1260 * the ringbuffer empty. So in practice we should be ok, but it's
1261 * something to be aware of when touching this code.
1262 */
1263 if (until.tv64 == 0)
1264 aio_read_events(ctx, min_nr, nr, event, &ret);
1265 else
1266 wait_event_interruptible_hrtimeout(ctx->wait,
1267 aio_read_events(ctx, min_nr, nr, event, &ret),
1268 until);
1269
1270 if (!ret && signal_pending(current))
1271 ret = -EINTR;
1272
1273 return ret;
1274 }
1275
1276 /* sys_io_setup:
1277 * Create an aio_context capable of receiving at least nr_events.
1278 * ctxp must not point to an aio_context that already exists, and
1279 * must be initialized to 0 prior to the call. On successful
1280 * creation of the aio_context, *ctxp is filled in with the resulting
1281 * handle. May fail with -EINVAL if *ctxp is not initialized,
1282 * if the specified nr_events exceeds internal limits. May fail
1283 * with -EAGAIN if the specified nr_events exceeds the user's limit
1284 * of available events. May fail with -ENOMEM if insufficient kernel
1285 * resources are available. May fail with -EFAULT if an invalid
1286 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1287 * implemented.
1288 */
1289 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1290 {
1291 struct kioctx *ioctx = NULL;
1292 unsigned long ctx;
1293 long ret;
1294
1295 ret = get_user(ctx, ctxp);
1296 if (unlikely(ret))
1297 goto out;
1298
1299 ret = -EINVAL;
1300 if (unlikely(ctx || nr_events == 0)) {
1301 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1302 ctx, nr_events);
1303 goto out;
1304 }
1305
1306 ioctx = ioctx_alloc(nr_events);
1307 ret = PTR_ERR(ioctx);
1308 if (!IS_ERR(ioctx)) {
1309 ret = put_user(ioctx->user_id, ctxp);
1310 if (ret)
1311 kill_ioctx(current->mm, ioctx, NULL);
1312 percpu_ref_put(&ioctx->users);
1313 }
1314
1315 out:
1316 return ret;
1317 }
1318
1319 /* sys_io_destroy:
1320 * Destroy the aio_context specified. May cancel any outstanding
1321 * AIOs and block on completion. Will fail with -ENOSYS if not
1322 * implemented. May fail with -EINVAL if the context pointed to
1323 * is invalid.
1324 */
1325 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1326 {
1327 struct kioctx *ioctx = lookup_ioctx(ctx);
1328 if (likely(NULL != ioctx)) {
1329 struct ctx_rq_wait wait;
1330 int ret;
1331
1332 init_completion(&wait.comp);
1333 atomic_set(&wait.count, 1);
1334
1335 /* Pass requests_done to kill_ioctx() where it can be set
1336 * in a thread-safe way. If we try to set it here then we have
1337 * a race condition if two io_destroy() called simultaneously.
1338 */
1339 ret = kill_ioctx(current->mm, ioctx, &wait);
1340 percpu_ref_put(&ioctx->users);
1341
1342 /* Wait until all IO for the context are done. Otherwise kernel
1343 * keep using user-space buffers even if user thinks the context
1344 * is destroyed.
1345 */
1346 if (!ret)
1347 wait_for_completion(&wait.comp);
1348
1349 return ret;
1350 }
1351 pr_debug("EINVAL: invalid context id\n");
1352 return -EINVAL;
1353 }
1354
1355 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1356 unsigned long, loff_t);
1357 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1358
1359 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1360 int rw, char __user *buf,
1361 unsigned long *nr_segs,
1362 struct iovec **iovec,
1363 bool compat)
1364 {
1365 ssize_t ret;
1366
1367 *nr_segs = kiocb->ki_nbytes;
1368
1369 #ifdef CONFIG_COMPAT
1370 if (compat)
1371 ret = compat_rw_copy_check_uvector(rw,
1372 (struct compat_iovec __user *)buf,
1373 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1374 else
1375 #endif
1376 ret = rw_copy_check_uvector(rw,
1377 (struct iovec __user *)buf,
1378 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1379 if (ret < 0)
1380 return ret;
1381
1382 /* ki_nbytes now reflect bytes instead of segs */
1383 kiocb->ki_nbytes = ret;
1384 return 0;
1385 }
1386
1387 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1388 int rw, char __user *buf,
1389 unsigned long *nr_segs,
1390 struct iovec *iovec)
1391 {
1392 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1393 return -EFAULT;
1394
1395 iovec->iov_base = buf;
1396 iovec->iov_len = kiocb->ki_nbytes;
1397 *nr_segs = 1;
1398 return 0;
1399 }
1400
1401 /*
1402 * aio_run_iocb:
1403 * Performs the initial checks and io submission.
1404 */
1405 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1406 char __user *buf, bool compat)
1407 {
1408 struct file *file = req->ki_filp;
1409 ssize_t ret;
1410 unsigned long nr_segs;
1411 int rw;
1412 fmode_t mode;
1413 aio_rw_op *rw_op;
1414 rw_iter_op *iter_op;
1415 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1416 struct iov_iter iter;
1417
1418 switch (opcode) {
1419 case IOCB_CMD_PREAD:
1420 case IOCB_CMD_PREADV:
1421 mode = FMODE_READ;
1422 rw = READ;
1423 rw_op = file->f_op->aio_read;
1424 iter_op = file->f_op->read_iter;
1425 goto rw_common;
1426
1427 case IOCB_CMD_PWRITE:
1428 case IOCB_CMD_PWRITEV:
1429 mode = FMODE_WRITE;
1430 rw = WRITE;
1431 rw_op = file->f_op->aio_write;
1432 iter_op = file->f_op->write_iter;
1433 goto rw_common;
1434 rw_common:
1435 if (unlikely(!(file->f_mode & mode)))
1436 return -EBADF;
1437
1438 if (!rw_op && !iter_op)
1439 return -EINVAL;
1440
1441 ret = (opcode == IOCB_CMD_PREADV ||
1442 opcode == IOCB_CMD_PWRITEV)
1443 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1444 &iovec, compat)
1445 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1446 iovec);
1447 if (!ret)
1448 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1449 if (ret < 0) {
1450 if (iovec != inline_vecs)
1451 kfree(iovec);
1452 return ret;
1453 }
1454
1455 req->ki_nbytes = ret;
1456
1457 /* XXX: move/kill - rw_verify_area()? */
1458 /* This matches the pread()/pwrite() logic */
1459 if (req->ki_pos < 0) {
1460 ret = -EINVAL;
1461 break;
1462 }
1463
1464 if (rw == WRITE)
1465 file_start_write(file);
1466
1467 if (iter_op) {
1468 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1469 ret = iter_op(req, &iter);
1470 } else {
1471 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1472 }
1473
1474 if (rw == WRITE)
1475 file_end_write(file);
1476 break;
1477
1478 case IOCB_CMD_FDSYNC:
1479 if (!file->f_op->aio_fsync)
1480 return -EINVAL;
1481
1482 ret = file->f_op->aio_fsync(req, 1);
1483 break;
1484
1485 case IOCB_CMD_FSYNC:
1486 if (!file->f_op->aio_fsync)
1487 return -EINVAL;
1488
1489 ret = file->f_op->aio_fsync(req, 0);
1490 break;
1491
1492 default:
1493 pr_debug("EINVAL: no operation provided\n");
1494 return -EINVAL;
1495 }
1496
1497 if (iovec != inline_vecs)
1498 kfree(iovec);
1499
1500 if (ret != -EIOCBQUEUED) {
1501 /*
1502 * There's no easy way to restart the syscall since other AIO's
1503 * may be already running. Just fail this IO with EINTR.
1504 */
1505 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1506 ret == -ERESTARTNOHAND ||
1507 ret == -ERESTART_RESTARTBLOCK))
1508 ret = -EINTR;
1509 aio_complete(req, ret, 0);
1510 }
1511
1512 return 0;
1513 }
1514
1515 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1516 struct iocb *iocb, bool compat)
1517 {
1518 struct kiocb *req;
1519 ssize_t ret;
1520
1521 /* enforce forwards compatibility on users */
1522 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1523 pr_debug("EINVAL: reserve field set\n");
1524 return -EINVAL;
1525 }
1526
1527 /* prevent overflows */
1528 if (unlikely(
1529 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1530 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1531 ((ssize_t)iocb->aio_nbytes < 0)
1532 )) {
1533 pr_debug("EINVAL: overflow check\n");
1534 return -EINVAL;
1535 }
1536
1537 req = aio_get_req(ctx);
1538 if (unlikely(!req))
1539 return -EAGAIN;
1540
1541 req->ki_filp = fget(iocb->aio_fildes);
1542 if (unlikely(!req->ki_filp)) {
1543 ret = -EBADF;
1544 goto out_put_req;
1545 }
1546
1547 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1548 /*
1549 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1550 * instance of the file* now. The file descriptor must be
1551 * an eventfd() fd, and will be signaled for each completed
1552 * event using the eventfd_signal() function.
1553 */
1554 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1555 if (IS_ERR(req->ki_eventfd)) {
1556 ret = PTR_ERR(req->ki_eventfd);
1557 req->ki_eventfd = NULL;
1558 goto out_put_req;
1559 }
1560 }
1561
1562 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1563 if (unlikely(ret)) {
1564 pr_debug("EFAULT: aio_key\n");
1565 goto out_put_req;
1566 }
1567
1568 req->ki_obj.user = user_iocb;
1569 req->ki_user_data = iocb->aio_data;
1570 req->ki_pos = iocb->aio_offset;
1571 req->ki_nbytes = iocb->aio_nbytes;
1572
1573 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1574 (char __user *)(unsigned long)iocb->aio_buf,
1575 compat);
1576 if (ret)
1577 goto out_put_req;
1578
1579 return 0;
1580 out_put_req:
1581 put_reqs_available(ctx, 1);
1582 percpu_ref_put(&ctx->reqs);
1583 kiocb_free(req);
1584 return ret;
1585 }
1586
1587 long do_io_submit(aio_context_t ctx_id, long nr,
1588 struct iocb __user *__user *iocbpp, bool compat)
1589 {
1590 struct kioctx *ctx;
1591 long ret = 0;
1592 int i = 0;
1593 struct blk_plug plug;
1594
1595 if (unlikely(nr < 0))
1596 return -EINVAL;
1597
1598 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1599 nr = LONG_MAX/sizeof(*iocbpp);
1600
1601 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1602 return -EFAULT;
1603
1604 ctx = lookup_ioctx(ctx_id);
1605 if (unlikely(!ctx)) {
1606 pr_debug("EINVAL: invalid context id\n");
1607 return -EINVAL;
1608 }
1609
1610 blk_start_plug(&plug);
1611
1612 /*
1613 * AKPM: should this return a partial result if some of the IOs were
1614 * successfully submitted?
1615 */
1616 for (i=0; i<nr; i++) {
1617 struct iocb __user *user_iocb;
1618 struct iocb tmp;
1619
1620 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1621 ret = -EFAULT;
1622 break;
1623 }
1624
1625 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1626 ret = -EFAULT;
1627 break;
1628 }
1629
1630 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1631 if (ret)
1632 break;
1633 }
1634 blk_finish_plug(&plug);
1635
1636 percpu_ref_put(&ctx->users);
1637 return i ? i : ret;
1638 }
1639
1640 /* sys_io_submit:
1641 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1642 * the number of iocbs queued. May return -EINVAL if the aio_context
1643 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1644 * *iocbpp[0] is not properly initialized, if the operation specified
1645 * is invalid for the file descriptor in the iocb. May fail with
1646 * -EFAULT if any of the data structures point to invalid data. May
1647 * fail with -EBADF if the file descriptor specified in the first
1648 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1649 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1650 * fail with -ENOSYS if not implemented.
1651 */
1652 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1653 struct iocb __user * __user *, iocbpp)
1654 {
1655 return do_io_submit(ctx_id, nr, iocbpp, 0);
1656 }
1657
1658 /* lookup_kiocb
1659 * Finds a given iocb for cancellation.
1660 */
1661 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1662 u32 key)
1663 {
1664 struct list_head *pos;
1665
1666 assert_spin_locked(&ctx->ctx_lock);
1667
1668 if (key != KIOCB_KEY)
1669 return NULL;
1670
1671 /* TODO: use a hash or array, this sucks. */
1672 list_for_each(pos, &ctx->active_reqs) {
1673 struct kiocb *kiocb = list_kiocb(pos);
1674 if (kiocb->ki_obj.user == iocb)
1675 return kiocb;
1676 }
1677 return NULL;
1678 }
1679
1680 /* sys_io_cancel:
1681 * Attempts to cancel an iocb previously passed to io_submit. If
1682 * the operation is successfully cancelled, the resulting event is
1683 * copied into the memory pointed to by result without being placed
1684 * into the completion queue and 0 is returned. May fail with
1685 * -EFAULT if any of the data structures pointed to are invalid.
1686 * May fail with -EINVAL if aio_context specified by ctx_id is
1687 * invalid. May fail with -EAGAIN if the iocb specified was not
1688 * cancelled. Will fail with -ENOSYS if not implemented.
1689 */
1690 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1691 struct io_event __user *, result)
1692 {
1693 struct kioctx *ctx;
1694 struct kiocb *kiocb;
1695 u32 key;
1696 int ret;
1697
1698 ret = get_user(key, &iocb->aio_key);
1699 if (unlikely(ret))
1700 return -EFAULT;
1701
1702 ctx = lookup_ioctx(ctx_id);
1703 if (unlikely(!ctx))
1704 return -EINVAL;
1705
1706 spin_lock_irq(&ctx->ctx_lock);
1707
1708 kiocb = lookup_kiocb(ctx, iocb, key);
1709 if (kiocb)
1710 ret = kiocb_cancel(kiocb);
1711 else
1712 ret = -EINVAL;
1713
1714 spin_unlock_irq(&ctx->ctx_lock);
1715
1716 if (!ret) {
1717 /*
1718 * The result argument is no longer used - the io_event is
1719 * always delivered via the ring buffer. -EINPROGRESS indicates
1720 * cancellation is progress:
1721 */
1722 ret = -EINPROGRESS;
1723 }
1724
1725 percpu_ref_put(&ctx->users);
1726
1727 return ret;
1728 }
1729
1730 /* io_getevents:
1731 * Attempts to read at least min_nr events and up to nr events from
1732 * the completion queue for the aio_context specified by ctx_id. If
1733 * it succeeds, the number of read events is returned. May fail with
1734 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1735 * out of range, if timeout is out of range. May fail with -EFAULT
1736 * if any of the memory specified is invalid. May return 0 or
1737 * < min_nr if the timeout specified by timeout has elapsed
1738 * before sufficient events are available, where timeout == NULL
1739 * specifies an infinite timeout. Note that the timeout pointed to by
1740 * timeout is relative. Will fail with -ENOSYS if not implemented.
1741 */
1742 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1743 long, min_nr,
1744 long, nr,
1745 struct io_event __user *, events,
1746 struct timespec __user *, timeout)
1747 {
1748 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1749 long ret = -EINVAL;
1750
1751 if (likely(ioctx)) {
1752 if (likely(min_nr <= nr && min_nr >= 0))
1753 ret = read_events(ioctx, min_nr, nr, events, timeout);
1754 percpu_ref_put(&ioctx->users);
1755 }
1756 return ret;
1757 }