]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/binfmt_elf.c
Merge tag 'for_v5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[mirror_ubuntu-focal-kernel.git] / fs / binfmt_elf.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
46 #include <asm/page.h>
47
48 #ifndef user_long_t
49 #define user_long_t long
50 #endif
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
53 #endif
54
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
58 #endif
59
60 static int load_elf_binary(struct linux_binprm *bprm);
61
62 #ifdef CONFIG_USELIB
63 static int load_elf_library(struct file *);
64 #else
65 #define load_elf_library NULL
66 #endif
67
68 /*
69 * If we don't support core dumping, then supply a NULL so we
70 * don't even try.
71 */
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params *cprm);
74 #else
75 #define elf_core_dump NULL
76 #endif
77
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
80 #else
81 #define ELF_MIN_ALIGN PAGE_SIZE
82 #endif
83
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS 0
86 #endif
87
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
91
92 static struct linux_binfmt elf_format = {
93 .module = THIS_MODULE,
94 .load_binary = load_elf_binary,
95 .load_shlib = load_elf_library,
96 .core_dump = elf_core_dump,
97 .min_coredump = ELF_EXEC_PAGESIZE,
98 };
99
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
101
102 static int set_brk(unsigned long start, unsigned long end, int prot)
103 {
104 start = ELF_PAGEALIGN(start);
105 end = ELF_PAGEALIGN(end);
106 if (end > start) {
107 /*
108 * Map the last of the bss segment.
109 * If the header is requesting these pages to be
110 * executable, honour that (ppc32 needs this).
111 */
112 int error = vm_brk_flags(start, end - start,
113 prot & PROT_EXEC ? VM_EXEC : 0);
114 if (error)
115 return error;
116 }
117 current->mm->start_brk = current->mm->brk = end;
118 return 0;
119 }
120
121 /* We need to explicitly zero any fractional pages
122 after the data section (i.e. bss). This would
123 contain the junk from the file that should not
124 be in memory
125 */
126 static int padzero(unsigned long elf_bss)
127 {
128 unsigned long nbyte;
129
130 nbyte = ELF_PAGEOFFSET(elf_bss);
131 if (nbyte) {
132 nbyte = ELF_MIN_ALIGN - nbyte;
133 if (clear_user((void __user *) elf_bss, nbyte))
134 return -EFAULT;
135 }
136 return 0;
137 }
138
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
146 old_sp; })
147 #else
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 (((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
152 #endif
153
154 #ifndef ELF_BASE_PLATFORM
155 /*
156 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158 * will be copied to the user stack in the same manner as AT_PLATFORM.
159 */
160 #define ELF_BASE_PLATFORM NULL
161 #endif
162
163 static int
164 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
165 unsigned long load_addr, unsigned long interp_load_addr)
166 {
167 unsigned long p = bprm->p;
168 int argc = bprm->argc;
169 int envc = bprm->envc;
170 elf_addr_t __user *sp;
171 elf_addr_t __user *u_platform;
172 elf_addr_t __user *u_base_platform;
173 elf_addr_t __user *u_rand_bytes;
174 const char *k_platform = ELF_PLATFORM;
175 const char *k_base_platform = ELF_BASE_PLATFORM;
176 unsigned char k_rand_bytes[16];
177 int items;
178 elf_addr_t *elf_info;
179 int ei_index = 0;
180 const struct cred *cred = current_cred();
181 struct vm_area_struct *vma;
182
183 /*
184 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 * evictions by the processes running on the same package. One
186 * thing we can do is to shuffle the initial stack for them.
187 */
188
189 p = arch_align_stack(p);
190
191 /*
192 * If this architecture has a platform capability string, copy it
193 * to userspace. In some cases (Sparc), this info is impossible
194 * for userspace to get any other way, in others (i386) it is
195 * merely difficult.
196 */
197 u_platform = NULL;
198 if (k_platform) {
199 size_t len = strlen(k_platform) + 1;
200
201 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 if (__copy_to_user(u_platform, k_platform, len))
203 return -EFAULT;
204 }
205
206 /*
207 * If this architecture has a "base" platform capability
208 * string, copy it to userspace.
209 */
210 u_base_platform = NULL;
211 if (k_base_platform) {
212 size_t len = strlen(k_base_platform) + 1;
213
214 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 if (__copy_to_user(u_base_platform, k_base_platform, len))
216 return -EFAULT;
217 }
218
219 /*
220 * Generate 16 random bytes for userspace PRNG seeding.
221 */
222 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
223 u_rand_bytes = (elf_addr_t __user *)
224 STACK_ALLOC(p, sizeof(k_rand_bytes));
225 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
226 return -EFAULT;
227
228 /* Create the ELF interpreter info */
229 elf_info = (elf_addr_t *)current->mm->saved_auxv;
230 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
232 do { \
233 elf_info[ei_index++] = id; \
234 elf_info[ei_index++] = val; \
235 } while (0)
236
237 #ifdef ARCH_DLINFO
238 /*
239 * ARCH_DLINFO must come first so PPC can do its special alignment of
240 * AUXV.
241 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 * ARCH_DLINFO changes
243 */
244 ARCH_DLINFO;
245 #endif
246 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
247 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
248 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
249 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
250 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
251 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
252 NEW_AUX_ENT(AT_BASE, interp_load_addr);
253 NEW_AUX_ENT(AT_FLAGS, 0);
254 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
255 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
256 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
257 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
258 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
259 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
260 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
261 #ifdef ELF_HWCAP2
262 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
263 #endif
264 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
265 if (k_platform) {
266 NEW_AUX_ENT(AT_PLATFORM,
267 (elf_addr_t)(unsigned long)u_platform);
268 }
269 if (k_base_platform) {
270 NEW_AUX_ENT(AT_BASE_PLATFORM,
271 (elf_addr_t)(unsigned long)u_base_platform);
272 }
273 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
274 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
275 }
276 #undef NEW_AUX_ENT
277 /* AT_NULL is zero; clear the rest too */
278 memset(&elf_info[ei_index], 0,
279 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
280
281 /* And advance past the AT_NULL entry. */
282 ei_index += 2;
283
284 sp = STACK_ADD(p, ei_index);
285
286 items = (argc + 1) + (envc + 1) + 1;
287 bprm->p = STACK_ROUND(sp, items);
288
289 /* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
292 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
293 #else
294 sp = (elf_addr_t __user *)bprm->p;
295 #endif
296
297
298 /*
299 * Grow the stack manually; some architectures have a limit on how
300 * far ahead a user-space access may be in order to grow the stack.
301 */
302 vma = find_extend_vma(current->mm, bprm->p);
303 if (!vma)
304 return -EFAULT;
305
306 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 if (__put_user(argc, sp++))
308 return -EFAULT;
309
310 /* Populate list of argv pointers back to argv strings. */
311 p = current->mm->arg_end = current->mm->arg_start;
312 while (argc-- > 0) {
313 size_t len;
314 if (__put_user((elf_addr_t)p, sp++))
315 return -EFAULT;
316 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
317 if (!len || len > MAX_ARG_STRLEN)
318 return -EINVAL;
319 p += len;
320 }
321 if (__put_user(0, sp++))
322 return -EFAULT;
323 current->mm->arg_end = p;
324
325 /* Populate list of envp pointers back to envp strings. */
326 current->mm->env_end = current->mm->env_start = p;
327 while (envc-- > 0) {
328 size_t len;
329 if (__put_user((elf_addr_t)p, sp++))
330 return -EFAULT;
331 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
332 if (!len || len > MAX_ARG_STRLEN)
333 return -EINVAL;
334 p += len;
335 }
336 if (__put_user(0, sp++))
337 return -EFAULT;
338 current->mm->env_end = p;
339
340 /* Put the elf_info on the stack in the right place. */
341 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
342 return -EFAULT;
343 return 0;
344 }
345
346 #ifndef elf_map
347
348 static unsigned long elf_map(struct file *filep, unsigned long addr,
349 const struct elf_phdr *eppnt, int prot, int type,
350 unsigned long total_size)
351 {
352 unsigned long map_addr;
353 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
354 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
355 addr = ELF_PAGESTART(addr);
356 size = ELF_PAGEALIGN(size);
357
358 /* mmap() will return -EINVAL if given a zero size, but a
359 * segment with zero filesize is perfectly valid */
360 if (!size)
361 return addr;
362
363 /*
364 * total_size is the size of the ELF (interpreter) image.
365 * The _first_ mmap needs to know the full size, otherwise
366 * randomization might put this image into an overlapping
367 * position with the ELF binary image. (since size < total_size)
368 * So we first map the 'big' image - and unmap the remainder at
369 * the end. (which unmap is needed for ELF images with holes.)
370 */
371 if (total_size) {
372 total_size = ELF_PAGEALIGN(total_size);
373 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
374 if (!BAD_ADDR(map_addr))
375 vm_munmap(map_addr+size, total_size-size);
376 } else
377 map_addr = vm_mmap(filep, addr, size, prot, type, off);
378
379 if ((type & MAP_FIXED_NOREPLACE) &&
380 PTR_ERR((void *)map_addr) == -EEXIST)
381 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 task_pid_nr(current), current->comm, (void *)addr);
383
384 return(map_addr);
385 }
386
387 #endif /* !elf_map */
388
389 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
390 {
391 int i, first_idx = -1, last_idx = -1;
392
393 for (i = 0; i < nr; i++) {
394 if (cmds[i].p_type == PT_LOAD) {
395 last_idx = i;
396 if (first_idx == -1)
397 first_idx = i;
398 }
399 }
400 if (first_idx == -1)
401 return 0;
402
403 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
404 ELF_PAGESTART(cmds[first_idx].p_vaddr);
405 }
406
407 /**
408 * load_elf_phdrs() - load ELF program headers
409 * @elf_ex: ELF header of the binary whose program headers should be loaded
410 * @elf_file: the opened ELF binary file
411 *
412 * Loads ELF program headers from the binary file elf_file, which has the ELF
413 * header pointed to by elf_ex, into a newly allocated array. The caller is
414 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
415 */
416 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
417 struct file *elf_file)
418 {
419 struct elf_phdr *elf_phdata = NULL;
420 int retval, err = -1;
421 loff_t pos = elf_ex->e_phoff;
422 unsigned int size;
423
424 /*
425 * If the size of this structure has changed, then punt, since
426 * we will be doing the wrong thing.
427 */
428 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 goto out;
430
431 /* Sanity check the number of program headers... */
432 /* ...and their total size. */
433 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
434 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
435 goto out;
436
437 elf_phdata = kmalloc(size, GFP_KERNEL);
438 if (!elf_phdata)
439 goto out;
440
441 /* Read in the program headers */
442 retval = kernel_read(elf_file, elf_phdata, size, &pos);
443 if (retval != size) {
444 err = (retval < 0) ? retval : -EIO;
445 goto out;
446 }
447
448 /* Success! */
449 err = 0;
450 out:
451 if (err) {
452 kfree(elf_phdata);
453 elf_phdata = NULL;
454 }
455 return elf_phdata;
456 }
457
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
459
460 /**
461 * struct arch_elf_state - arch-specific ELF loading state
462 *
463 * This structure is used to preserve architecture specific data during
464 * the loading of an ELF file, throughout the checking of architecture
465 * specific ELF headers & through to the point where the ELF load is
466 * known to be proceeding (ie. SET_PERSONALITY).
467 *
468 * This implementation is a dummy for architectures which require no
469 * specific state.
470 */
471 struct arch_elf_state {
472 };
473
474 #define INIT_ARCH_ELF_STATE {}
475
476 /**
477 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478 * @ehdr: The main ELF header
479 * @phdr: The program header to check
480 * @elf: The open ELF file
481 * @is_interp: True if the phdr is from the interpreter of the ELF being
482 * loaded, else false.
483 * @state: Architecture-specific state preserved throughout the process
484 * of loading the ELF.
485 *
486 * Inspects the program header phdr to validate its correctness and/or
487 * suitability for the system. Called once per ELF program header in the
488 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
489 * interpreter.
490 *
491 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492 * with that return code.
493 */
494 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
495 struct elf_phdr *phdr,
496 struct file *elf, bool is_interp,
497 struct arch_elf_state *state)
498 {
499 /* Dummy implementation, always proceed */
500 return 0;
501 }
502
503 /**
504 * arch_check_elf() - check an ELF executable
505 * @ehdr: The main ELF header
506 * @has_interp: True if the ELF has an interpreter, else false.
507 * @interp_ehdr: The interpreter's ELF header
508 * @state: Architecture-specific state preserved throughout the process
509 * of loading the ELF.
510 *
511 * Provides a final opportunity for architecture code to reject the loading
512 * of the ELF & cause an exec syscall to return an error. This is called after
513 * all program headers to be checked by arch_elf_pt_proc have been.
514 *
515 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516 * with that return code.
517 */
518 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
519 struct elfhdr *interp_ehdr,
520 struct arch_elf_state *state)
521 {
522 /* Dummy implementation, always proceed */
523 return 0;
524 }
525
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
527
528 static inline int make_prot(u32 p_flags)
529 {
530 int prot = 0;
531
532 if (p_flags & PF_R)
533 prot |= PROT_READ;
534 if (p_flags & PF_W)
535 prot |= PROT_WRITE;
536 if (p_flags & PF_X)
537 prot |= PROT_EXEC;
538 return prot;
539 }
540
541 /* This is much more generalized than the library routine read function,
542 so we keep this separate. Technically the library read function
543 is only provided so that we can read a.out libraries that have
544 an ELF header */
545
546 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
547 struct file *interpreter, unsigned long *interp_map_addr,
548 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
549 {
550 struct elf_phdr *eppnt;
551 unsigned long load_addr = 0;
552 int load_addr_set = 0;
553 unsigned long last_bss = 0, elf_bss = 0;
554 int bss_prot = 0;
555 unsigned long error = ~0UL;
556 unsigned long total_size;
557 int i;
558
559 /* First of all, some simple consistency checks */
560 if (interp_elf_ex->e_type != ET_EXEC &&
561 interp_elf_ex->e_type != ET_DYN)
562 goto out;
563 if (!elf_check_arch(interp_elf_ex) ||
564 elf_check_fdpic(interp_elf_ex))
565 goto out;
566 if (!interpreter->f_op->mmap)
567 goto out;
568
569 total_size = total_mapping_size(interp_elf_phdata,
570 interp_elf_ex->e_phnum);
571 if (!total_size) {
572 error = -EINVAL;
573 goto out;
574 }
575
576 eppnt = interp_elf_phdata;
577 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
578 if (eppnt->p_type == PT_LOAD) {
579 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
580 int elf_prot = make_prot(eppnt->p_flags);
581 unsigned long vaddr = 0;
582 unsigned long k, map_addr;
583
584 vaddr = eppnt->p_vaddr;
585 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
586 elf_type |= MAP_FIXED_NOREPLACE;
587 else if (no_base && interp_elf_ex->e_type == ET_DYN)
588 load_addr = -vaddr;
589
590 map_addr = elf_map(interpreter, load_addr + vaddr,
591 eppnt, elf_prot, elf_type, total_size);
592 total_size = 0;
593 if (!*interp_map_addr)
594 *interp_map_addr = map_addr;
595 error = map_addr;
596 if (BAD_ADDR(map_addr))
597 goto out;
598
599 if (!load_addr_set &&
600 interp_elf_ex->e_type == ET_DYN) {
601 load_addr = map_addr - ELF_PAGESTART(vaddr);
602 load_addr_set = 1;
603 }
604
605 /*
606 * Check to see if the section's size will overflow the
607 * allowed task size. Note that p_filesz must always be
608 * <= p_memsize so it's only necessary to check p_memsz.
609 */
610 k = load_addr + eppnt->p_vaddr;
611 if (BAD_ADDR(k) ||
612 eppnt->p_filesz > eppnt->p_memsz ||
613 eppnt->p_memsz > TASK_SIZE ||
614 TASK_SIZE - eppnt->p_memsz < k) {
615 error = -ENOMEM;
616 goto out;
617 }
618
619 /*
620 * Find the end of the file mapping for this phdr, and
621 * keep track of the largest address we see for this.
622 */
623 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
624 if (k > elf_bss)
625 elf_bss = k;
626
627 /*
628 * Do the same thing for the memory mapping - between
629 * elf_bss and last_bss is the bss section.
630 */
631 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
632 if (k > last_bss) {
633 last_bss = k;
634 bss_prot = elf_prot;
635 }
636 }
637 }
638
639 /*
640 * Now fill out the bss section: first pad the last page from
641 * the file up to the page boundary, and zero it from elf_bss
642 * up to the end of the page.
643 */
644 if (padzero(elf_bss)) {
645 error = -EFAULT;
646 goto out;
647 }
648 /*
649 * Next, align both the file and mem bss up to the page size,
650 * since this is where elf_bss was just zeroed up to, and where
651 * last_bss will end after the vm_brk_flags() below.
652 */
653 elf_bss = ELF_PAGEALIGN(elf_bss);
654 last_bss = ELF_PAGEALIGN(last_bss);
655 /* Finally, if there is still more bss to allocate, do it. */
656 if (last_bss > elf_bss) {
657 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
658 bss_prot & PROT_EXEC ? VM_EXEC : 0);
659 if (error)
660 goto out;
661 }
662
663 error = load_addr;
664 out:
665 return error;
666 }
667
668 /*
669 * These are the functions used to load ELF style executables and shared
670 * libraries. There is no binary dependent code anywhere else.
671 */
672
673 #ifndef STACK_RND_MASK
674 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
675 #endif
676
677 static unsigned long randomize_stack_top(unsigned long stack_top)
678 {
679 unsigned long random_variable = 0;
680
681 if (current->flags & PF_RANDOMIZE) {
682 random_variable = get_random_long();
683 random_variable &= STACK_RND_MASK;
684 random_variable <<= PAGE_SHIFT;
685 }
686 #ifdef CONFIG_STACK_GROWSUP
687 return PAGE_ALIGN(stack_top) + random_variable;
688 #else
689 return PAGE_ALIGN(stack_top) - random_variable;
690 #endif
691 }
692
693 static int load_elf_binary(struct linux_binprm *bprm)
694 {
695 struct file *interpreter = NULL; /* to shut gcc up */
696 unsigned long load_addr = 0, load_bias = 0;
697 int load_addr_set = 0;
698 unsigned long error;
699 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
700 unsigned long elf_bss, elf_brk;
701 int bss_prot = 0;
702 int retval, i;
703 unsigned long elf_entry;
704 unsigned long interp_load_addr = 0;
705 unsigned long start_code, end_code, start_data, end_data;
706 unsigned long reloc_func_desc __maybe_unused = 0;
707 int executable_stack = EXSTACK_DEFAULT;
708 struct {
709 struct elfhdr elf_ex;
710 struct elfhdr interp_elf_ex;
711 } *loc;
712 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
713 struct pt_regs *regs;
714
715 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
716 if (!loc) {
717 retval = -ENOMEM;
718 goto out_ret;
719 }
720
721 /* Get the exec-header */
722 loc->elf_ex = *((struct elfhdr *)bprm->buf);
723
724 retval = -ENOEXEC;
725 /* First of all, some simple consistency checks */
726 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
727 goto out;
728
729 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
730 goto out;
731 if (!elf_check_arch(&loc->elf_ex))
732 goto out;
733 if (elf_check_fdpic(&loc->elf_ex))
734 goto out;
735 if (!bprm->file->f_op->mmap)
736 goto out;
737
738 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
739 if (!elf_phdata)
740 goto out;
741
742 elf_ppnt = elf_phdata;
743 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
744 char *elf_interpreter;
745 loff_t pos;
746
747 if (elf_ppnt->p_type != PT_INTERP)
748 continue;
749
750 /*
751 * This is the program interpreter used for shared libraries -
752 * for now assume that this is an a.out format binary.
753 */
754 retval = -ENOEXEC;
755 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
756 goto out_free_ph;
757
758 retval = -ENOMEM;
759 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
760 if (!elf_interpreter)
761 goto out_free_ph;
762
763 pos = elf_ppnt->p_offset;
764 retval = kernel_read(bprm->file, elf_interpreter,
765 elf_ppnt->p_filesz, &pos);
766 if (retval != elf_ppnt->p_filesz) {
767 if (retval >= 0)
768 retval = -EIO;
769 goto out_free_interp;
770 }
771 /* make sure path is NULL terminated */
772 retval = -ENOEXEC;
773 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
774 goto out_free_interp;
775
776 interpreter = open_exec(elf_interpreter);
777 kfree(elf_interpreter);
778 retval = PTR_ERR(interpreter);
779 if (IS_ERR(interpreter))
780 goto out_free_ph;
781
782 /*
783 * If the binary is not readable then enforce mm->dumpable = 0
784 * regardless of the interpreter's permissions.
785 */
786 would_dump(bprm, interpreter);
787
788 /* Get the exec headers */
789 pos = 0;
790 retval = kernel_read(interpreter, &loc->interp_elf_ex,
791 sizeof(loc->interp_elf_ex), &pos);
792 if (retval != sizeof(loc->interp_elf_ex)) {
793 if (retval >= 0)
794 retval = -EIO;
795 goto out_free_dentry;
796 }
797
798 break;
799
800 out_free_interp:
801 kfree(elf_interpreter);
802 goto out_free_ph;
803 }
804
805 elf_ppnt = elf_phdata;
806 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
807 switch (elf_ppnt->p_type) {
808 case PT_GNU_STACK:
809 if (elf_ppnt->p_flags & PF_X)
810 executable_stack = EXSTACK_ENABLE_X;
811 else
812 executable_stack = EXSTACK_DISABLE_X;
813 break;
814
815 case PT_LOPROC ... PT_HIPROC:
816 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
817 bprm->file, false,
818 &arch_state);
819 if (retval)
820 goto out_free_dentry;
821 break;
822 }
823
824 /* Some simple consistency checks for the interpreter */
825 if (interpreter) {
826 retval = -ELIBBAD;
827 /* Not an ELF interpreter */
828 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
829 goto out_free_dentry;
830 /* Verify the interpreter has a valid arch */
831 if (!elf_check_arch(&loc->interp_elf_ex) ||
832 elf_check_fdpic(&loc->interp_elf_ex))
833 goto out_free_dentry;
834
835 /* Load the interpreter program headers */
836 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
837 interpreter);
838 if (!interp_elf_phdata)
839 goto out_free_dentry;
840
841 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
842 elf_ppnt = interp_elf_phdata;
843 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
844 switch (elf_ppnt->p_type) {
845 case PT_LOPROC ... PT_HIPROC:
846 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
847 elf_ppnt, interpreter,
848 true, &arch_state);
849 if (retval)
850 goto out_free_dentry;
851 break;
852 }
853 }
854
855 /*
856 * Allow arch code to reject the ELF at this point, whilst it's
857 * still possible to return an error to the code that invoked
858 * the exec syscall.
859 */
860 retval = arch_check_elf(&loc->elf_ex,
861 !!interpreter, &loc->interp_elf_ex,
862 &arch_state);
863 if (retval)
864 goto out_free_dentry;
865
866 /* Flush all traces of the currently running executable */
867 retval = flush_old_exec(bprm);
868 if (retval)
869 goto out_free_dentry;
870
871 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
872 may depend on the personality. */
873 SET_PERSONALITY2(loc->elf_ex, &arch_state);
874 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
875 current->personality |= READ_IMPLIES_EXEC;
876
877 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
878 current->flags |= PF_RANDOMIZE;
879
880 setup_new_exec(bprm);
881 install_exec_creds(bprm);
882
883 /* Do this so that we can load the interpreter, if need be. We will
884 change some of these later */
885 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
886 executable_stack);
887 if (retval < 0)
888 goto out_free_dentry;
889
890 elf_bss = 0;
891 elf_brk = 0;
892
893 start_code = ~0UL;
894 end_code = 0;
895 start_data = 0;
896 end_data = 0;
897
898 /* Now we do a little grungy work by mmapping the ELF image into
899 the correct location in memory. */
900 for(i = 0, elf_ppnt = elf_phdata;
901 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
902 int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
903 unsigned long k, vaddr;
904 unsigned long total_size = 0;
905
906 if (elf_ppnt->p_type != PT_LOAD)
907 continue;
908
909 if (unlikely (elf_brk > elf_bss)) {
910 unsigned long nbyte;
911
912 /* There was a PT_LOAD segment with p_memsz > p_filesz
913 before this one. Map anonymous pages, if needed,
914 and clear the area. */
915 retval = set_brk(elf_bss + load_bias,
916 elf_brk + load_bias,
917 bss_prot);
918 if (retval)
919 goto out_free_dentry;
920 nbyte = ELF_PAGEOFFSET(elf_bss);
921 if (nbyte) {
922 nbyte = ELF_MIN_ALIGN - nbyte;
923 if (nbyte > elf_brk - elf_bss)
924 nbyte = elf_brk - elf_bss;
925 if (clear_user((void __user *)elf_bss +
926 load_bias, nbyte)) {
927 /*
928 * This bss-zeroing can fail if the ELF
929 * file specifies odd protections. So
930 * we don't check the return value
931 */
932 }
933 }
934
935 /*
936 * Some binaries have overlapping elf segments and then
937 * we have to forcefully map over an existing mapping
938 * e.g. over this newly established brk mapping.
939 */
940 elf_fixed = MAP_FIXED;
941 }
942
943 elf_prot = make_prot(elf_ppnt->p_flags);
944
945 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
946
947 vaddr = elf_ppnt->p_vaddr;
948 /*
949 * If we are loading ET_EXEC or we have already performed
950 * the ET_DYN load_addr calculations, proceed normally.
951 */
952 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
953 elf_flags |= elf_fixed;
954 } else if (loc->elf_ex.e_type == ET_DYN) {
955 /*
956 * This logic is run once for the first LOAD Program
957 * Header for ET_DYN binaries to calculate the
958 * randomization (load_bias) for all the LOAD
959 * Program Headers, and to calculate the entire
960 * size of the ELF mapping (total_size). (Note that
961 * load_addr_set is set to true later once the
962 * initial mapping is performed.)
963 *
964 * There are effectively two types of ET_DYN
965 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
966 * and loaders (ET_DYN without INTERP, since they
967 * _are_ the ELF interpreter). The loaders must
968 * be loaded away from programs since the program
969 * may otherwise collide with the loader (especially
970 * for ET_EXEC which does not have a randomized
971 * position). For example to handle invocations of
972 * "./ld.so someprog" to test out a new version of
973 * the loader, the subsequent program that the
974 * loader loads must avoid the loader itself, so
975 * they cannot share the same load range. Sufficient
976 * room for the brk must be allocated with the
977 * loader as well, since brk must be available with
978 * the loader.
979 *
980 * Therefore, programs are loaded offset from
981 * ELF_ET_DYN_BASE and loaders are loaded into the
982 * independently randomized mmap region (0 load_bias
983 * without MAP_FIXED).
984 */
985 if (interpreter) {
986 load_bias = ELF_ET_DYN_BASE;
987 if (current->flags & PF_RANDOMIZE)
988 load_bias += arch_mmap_rnd();
989 elf_flags |= elf_fixed;
990 } else
991 load_bias = 0;
992
993 /*
994 * Since load_bias is used for all subsequent loading
995 * calculations, we must lower it by the first vaddr
996 * so that the remaining calculations based on the
997 * ELF vaddrs will be correctly offset. The result
998 * is then page aligned.
999 */
1000 load_bias = ELF_PAGESTART(load_bias - vaddr);
1001
1002 total_size = total_mapping_size(elf_phdata,
1003 loc->elf_ex.e_phnum);
1004 if (!total_size) {
1005 retval = -EINVAL;
1006 goto out_free_dentry;
1007 }
1008 }
1009
1010 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1011 elf_prot, elf_flags, total_size);
1012 if (BAD_ADDR(error)) {
1013 retval = IS_ERR((void *)error) ?
1014 PTR_ERR((void*)error) : -EINVAL;
1015 goto out_free_dentry;
1016 }
1017
1018 if (!load_addr_set) {
1019 load_addr_set = 1;
1020 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1021 if (loc->elf_ex.e_type == ET_DYN) {
1022 load_bias += error -
1023 ELF_PAGESTART(load_bias + vaddr);
1024 load_addr += load_bias;
1025 reloc_func_desc = load_bias;
1026 }
1027 }
1028 k = elf_ppnt->p_vaddr;
1029 if (k < start_code)
1030 start_code = k;
1031 if (start_data < k)
1032 start_data = k;
1033
1034 /*
1035 * Check to see if the section's size will overflow the
1036 * allowed task size. Note that p_filesz must always be
1037 * <= p_memsz so it is only necessary to check p_memsz.
1038 */
1039 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1040 elf_ppnt->p_memsz > TASK_SIZE ||
1041 TASK_SIZE - elf_ppnt->p_memsz < k) {
1042 /* set_brk can never work. Avoid overflows. */
1043 retval = -EINVAL;
1044 goto out_free_dentry;
1045 }
1046
1047 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1048
1049 if (k > elf_bss)
1050 elf_bss = k;
1051 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1052 end_code = k;
1053 if (end_data < k)
1054 end_data = k;
1055 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1056 if (k > elf_brk) {
1057 bss_prot = elf_prot;
1058 elf_brk = k;
1059 }
1060 }
1061
1062 loc->elf_ex.e_entry += load_bias;
1063 elf_bss += load_bias;
1064 elf_brk += load_bias;
1065 start_code += load_bias;
1066 end_code += load_bias;
1067 start_data += load_bias;
1068 end_data += load_bias;
1069
1070 /* Calling set_brk effectively mmaps the pages that we need
1071 * for the bss and break sections. We must do this before
1072 * mapping in the interpreter, to make sure it doesn't wind
1073 * up getting placed where the bss needs to go.
1074 */
1075 retval = set_brk(elf_bss, elf_brk, bss_prot);
1076 if (retval)
1077 goto out_free_dentry;
1078 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1079 retval = -EFAULT; /* Nobody gets to see this, but.. */
1080 goto out_free_dentry;
1081 }
1082
1083 if (interpreter) {
1084 unsigned long interp_map_addr = 0;
1085
1086 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1087 interpreter,
1088 &interp_map_addr,
1089 load_bias, interp_elf_phdata);
1090 if (!IS_ERR((void *)elf_entry)) {
1091 /*
1092 * load_elf_interp() returns relocation
1093 * adjustment
1094 */
1095 interp_load_addr = elf_entry;
1096 elf_entry += loc->interp_elf_ex.e_entry;
1097 }
1098 if (BAD_ADDR(elf_entry)) {
1099 retval = IS_ERR((void *)elf_entry) ?
1100 (int)elf_entry : -EINVAL;
1101 goto out_free_dentry;
1102 }
1103 reloc_func_desc = interp_load_addr;
1104
1105 allow_write_access(interpreter);
1106 fput(interpreter);
1107 } else {
1108 elf_entry = loc->elf_ex.e_entry;
1109 if (BAD_ADDR(elf_entry)) {
1110 retval = -EINVAL;
1111 goto out_free_dentry;
1112 }
1113 }
1114
1115 kfree(interp_elf_phdata);
1116 kfree(elf_phdata);
1117
1118 set_binfmt(&elf_format);
1119
1120 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1121 retval = arch_setup_additional_pages(bprm, !!interpreter);
1122 if (retval < 0)
1123 goto out;
1124 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1125
1126 retval = create_elf_tables(bprm, &loc->elf_ex,
1127 load_addr, interp_load_addr);
1128 if (retval < 0)
1129 goto out;
1130 /* N.B. passed_fileno might not be initialized? */
1131 current->mm->end_code = end_code;
1132 current->mm->start_code = start_code;
1133 current->mm->start_data = start_data;
1134 current->mm->end_data = end_data;
1135 current->mm->start_stack = bprm->p;
1136
1137 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1138 /*
1139 * For architectures with ELF randomization, when executing
1140 * a loader directly (i.e. no interpreter listed in ELF
1141 * headers), move the brk area out of the mmap region
1142 * (since it grows up, and may collide early with the stack
1143 * growing down), and into the unused ELF_ET_DYN_BASE region.
1144 */
1145 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && !interpreter)
1146 current->mm->brk = current->mm->start_brk =
1147 ELF_ET_DYN_BASE;
1148
1149 current->mm->brk = current->mm->start_brk =
1150 arch_randomize_brk(current->mm);
1151 #ifdef compat_brk_randomized
1152 current->brk_randomized = 1;
1153 #endif
1154 }
1155
1156 if (current->personality & MMAP_PAGE_ZERO) {
1157 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1158 and some applications "depend" upon this behavior.
1159 Since we do not have the power to recompile these, we
1160 emulate the SVr4 behavior. Sigh. */
1161 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1162 MAP_FIXED | MAP_PRIVATE, 0);
1163 }
1164
1165 regs = current_pt_regs();
1166 #ifdef ELF_PLAT_INIT
1167 /*
1168 * The ABI may specify that certain registers be set up in special
1169 * ways (on i386 %edx is the address of a DT_FINI function, for
1170 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1171 * that the e_entry field is the address of the function descriptor
1172 * for the startup routine, rather than the address of the startup
1173 * routine itself. This macro performs whatever initialization to
1174 * the regs structure is required as well as any relocations to the
1175 * function descriptor entries when executing dynamically links apps.
1176 */
1177 ELF_PLAT_INIT(regs, reloc_func_desc);
1178 #endif
1179
1180 finalize_exec(bprm);
1181 start_thread(regs, elf_entry, bprm->p);
1182 retval = 0;
1183 out:
1184 kfree(loc);
1185 out_ret:
1186 return retval;
1187
1188 /* error cleanup */
1189 out_free_dentry:
1190 kfree(interp_elf_phdata);
1191 allow_write_access(interpreter);
1192 if (interpreter)
1193 fput(interpreter);
1194 out_free_ph:
1195 kfree(elf_phdata);
1196 goto out;
1197 }
1198
1199 #ifdef CONFIG_USELIB
1200 /* This is really simpleminded and specialized - we are loading an
1201 a.out library that is given an ELF header. */
1202 static int load_elf_library(struct file *file)
1203 {
1204 struct elf_phdr *elf_phdata;
1205 struct elf_phdr *eppnt;
1206 unsigned long elf_bss, bss, len;
1207 int retval, error, i, j;
1208 struct elfhdr elf_ex;
1209 loff_t pos = 0;
1210
1211 error = -ENOEXEC;
1212 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1213 if (retval != sizeof(elf_ex))
1214 goto out;
1215
1216 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1217 goto out;
1218
1219 /* First of all, some simple consistency checks */
1220 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1221 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1222 goto out;
1223 if (elf_check_fdpic(&elf_ex))
1224 goto out;
1225
1226 /* Now read in all of the header information */
1227
1228 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1229 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1230
1231 error = -ENOMEM;
1232 elf_phdata = kmalloc(j, GFP_KERNEL);
1233 if (!elf_phdata)
1234 goto out;
1235
1236 eppnt = elf_phdata;
1237 error = -ENOEXEC;
1238 pos = elf_ex.e_phoff;
1239 retval = kernel_read(file, eppnt, j, &pos);
1240 if (retval != j)
1241 goto out_free_ph;
1242
1243 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1244 if ((eppnt + i)->p_type == PT_LOAD)
1245 j++;
1246 if (j != 1)
1247 goto out_free_ph;
1248
1249 while (eppnt->p_type != PT_LOAD)
1250 eppnt++;
1251
1252 /* Now use mmap to map the library into memory. */
1253 error = vm_mmap(file,
1254 ELF_PAGESTART(eppnt->p_vaddr),
1255 (eppnt->p_filesz +
1256 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1257 PROT_READ | PROT_WRITE | PROT_EXEC,
1258 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1259 (eppnt->p_offset -
1260 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1261 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1262 goto out_free_ph;
1263
1264 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1265 if (padzero(elf_bss)) {
1266 error = -EFAULT;
1267 goto out_free_ph;
1268 }
1269
1270 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1271 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1272 if (bss > len) {
1273 error = vm_brk(len, bss - len);
1274 if (error)
1275 goto out_free_ph;
1276 }
1277 error = 0;
1278
1279 out_free_ph:
1280 kfree(elf_phdata);
1281 out:
1282 return error;
1283 }
1284 #endif /* #ifdef CONFIG_USELIB */
1285
1286 #ifdef CONFIG_ELF_CORE
1287 /*
1288 * ELF core dumper
1289 *
1290 * Modelled on fs/exec.c:aout_core_dump()
1291 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1292 */
1293
1294 /*
1295 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1296 * that are useful for post-mortem analysis are included in every core dump.
1297 * In that way we ensure that the core dump is fully interpretable later
1298 * without matching up the same kernel and hardware config to see what PC values
1299 * meant. These special mappings include - vDSO, vsyscall, and other
1300 * architecture specific mappings
1301 */
1302 static bool always_dump_vma(struct vm_area_struct *vma)
1303 {
1304 /* Any vsyscall mappings? */
1305 if (vma == get_gate_vma(vma->vm_mm))
1306 return true;
1307
1308 /*
1309 * Assume that all vmas with a .name op should always be dumped.
1310 * If this changes, a new vm_ops field can easily be added.
1311 */
1312 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1313 return true;
1314
1315 /*
1316 * arch_vma_name() returns non-NULL for special architecture mappings,
1317 * such as vDSO sections.
1318 */
1319 if (arch_vma_name(vma))
1320 return true;
1321
1322 return false;
1323 }
1324
1325 /*
1326 * Decide what to dump of a segment, part, all or none.
1327 */
1328 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1329 unsigned long mm_flags)
1330 {
1331 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1332
1333 /* always dump the vdso and vsyscall sections */
1334 if (always_dump_vma(vma))
1335 goto whole;
1336
1337 if (vma->vm_flags & VM_DONTDUMP)
1338 return 0;
1339
1340 /* support for DAX */
1341 if (vma_is_dax(vma)) {
1342 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1343 goto whole;
1344 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1345 goto whole;
1346 return 0;
1347 }
1348
1349 /* Hugetlb memory check */
1350 if (vma->vm_flags & VM_HUGETLB) {
1351 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1352 goto whole;
1353 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1354 goto whole;
1355 return 0;
1356 }
1357
1358 /* Do not dump I/O mapped devices or special mappings */
1359 if (vma->vm_flags & VM_IO)
1360 return 0;
1361
1362 /* By default, dump shared memory if mapped from an anonymous file. */
1363 if (vma->vm_flags & VM_SHARED) {
1364 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1365 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1366 goto whole;
1367 return 0;
1368 }
1369
1370 /* Dump segments that have been written to. */
1371 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1372 goto whole;
1373 if (vma->vm_file == NULL)
1374 return 0;
1375
1376 if (FILTER(MAPPED_PRIVATE))
1377 goto whole;
1378
1379 /*
1380 * If this looks like the beginning of a DSO or executable mapping,
1381 * check for an ELF header. If we find one, dump the first page to
1382 * aid in determining what was mapped here.
1383 */
1384 if (FILTER(ELF_HEADERS) &&
1385 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1386 u32 __user *header = (u32 __user *) vma->vm_start;
1387 u32 word;
1388 mm_segment_t fs = get_fs();
1389 /*
1390 * Doing it this way gets the constant folded by GCC.
1391 */
1392 union {
1393 u32 cmp;
1394 char elfmag[SELFMAG];
1395 } magic;
1396 BUILD_BUG_ON(SELFMAG != sizeof word);
1397 magic.elfmag[EI_MAG0] = ELFMAG0;
1398 magic.elfmag[EI_MAG1] = ELFMAG1;
1399 magic.elfmag[EI_MAG2] = ELFMAG2;
1400 magic.elfmag[EI_MAG3] = ELFMAG3;
1401 /*
1402 * Switch to the user "segment" for get_user(),
1403 * then put back what elf_core_dump() had in place.
1404 */
1405 set_fs(USER_DS);
1406 if (unlikely(get_user(word, header)))
1407 word = 0;
1408 set_fs(fs);
1409 if (word == magic.cmp)
1410 return PAGE_SIZE;
1411 }
1412
1413 #undef FILTER
1414
1415 return 0;
1416
1417 whole:
1418 return vma->vm_end - vma->vm_start;
1419 }
1420
1421 /* An ELF note in memory */
1422 struct memelfnote
1423 {
1424 const char *name;
1425 int type;
1426 unsigned int datasz;
1427 void *data;
1428 };
1429
1430 static int notesize(struct memelfnote *en)
1431 {
1432 int sz;
1433
1434 sz = sizeof(struct elf_note);
1435 sz += roundup(strlen(en->name) + 1, 4);
1436 sz += roundup(en->datasz, 4);
1437
1438 return sz;
1439 }
1440
1441 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1442 {
1443 struct elf_note en;
1444 en.n_namesz = strlen(men->name) + 1;
1445 en.n_descsz = men->datasz;
1446 en.n_type = men->type;
1447
1448 return dump_emit(cprm, &en, sizeof(en)) &&
1449 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1450 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1451 }
1452
1453 static void fill_elf_header(struct elfhdr *elf, int segs,
1454 u16 machine, u32 flags)
1455 {
1456 memset(elf, 0, sizeof(*elf));
1457
1458 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1459 elf->e_ident[EI_CLASS] = ELF_CLASS;
1460 elf->e_ident[EI_DATA] = ELF_DATA;
1461 elf->e_ident[EI_VERSION] = EV_CURRENT;
1462 elf->e_ident[EI_OSABI] = ELF_OSABI;
1463
1464 elf->e_type = ET_CORE;
1465 elf->e_machine = machine;
1466 elf->e_version = EV_CURRENT;
1467 elf->e_phoff = sizeof(struct elfhdr);
1468 elf->e_flags = flags;
1469 elf->e_ehsize = sizeof(struct elfhdr);
1470 elf->e_phentsize = sizeof(struct elf_phdr);
1471 elf->e_phnum = segs;
1472 }
1473
1474 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1475 {
1476 phdr->p_type = PT_NOTE;
1477 phdr->p_offset = offset;
1478 phdr->p_vaddr = 0;
1479 phdr->p_paddr = 0;
1480 phdr->p_filesz = sz;
1481 phdr->p_memsz = 0;
1482 phdr->p_flags = 0;
1483 phdr->p_align = 0;
1484 }
1485
1486 static void fill_note(struct memelfnote *note, const char *name, int type,
1487 unsigned int sz, void *data)
1488 {
1489 note->name = name;
1490 note->type = type;
1491 note->datasz = sz;
1492 note->data = data;
1493 }
1494
1495 /*
1496 * fill up all the fields in prstatus from the given task struct, except
1497 * registers which need to be filled up separately.
1498 */
1499 static void fill_prstatus(struct elf_prstatus *prstatus,
1500 struct task_struct *p, long signr)
1501 {
1502 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1503 prstatus->pr_sigpend = p->pending.signal.sig[0];
1504 prstatus->pr_sighold = p->blocked.sig[0];
1505 rcu_read_lock();
1506 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1507 rcu_read_unlock();
1508 prstatus->pr_pid = task_pid_vnr(p);
1509 prstatus->pr_pgrp = task_pgrp_vnr(p);
1510 prstatus->pr_sid = task_session_vnr(p);
1511 if (thread_group_leader(p)) {
1512 struct task_cputime cputime;
1513
1514 /*
1515 * This is the record for the group leader. It shows the
1516 * group-wide total, not its individual thread total.
1517 */
1518 thread_group_cputime(p, &cputime);
1519 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1520 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1521 } else {
1522 u64 utime, stime;
1523
1524 task_cputime(p, &utime, &stime);
1525 prstatus->pr_utime = ns_to_timeval(utime);
1526 prstatus->pr_stime = ns_to_timeval(stime);
1527 }
1528
1529 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1530 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1531 }
1532
1533 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1534 struct mm_struct *mm)
1535 {
1536 const struct cred *cred;
1537 unsigned int i, len;
1538
1539 /* first copy the parameters from user space */
1540 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1541
1542 len = mm->arg_end - mm->arg_start;
1543 if (len >= ELF_PRARGSZ)
1544 len = ELF_PRARGSZ-1;
1545 if (copy_from_user(&psinfo->pr_psargs,
1546 (const char __user *)mm->arg_start, len))
1547 return -EFAULT;
1548 for(i = 0; i < len; i++)
1549 if (psinfo->pr_psargs[i] == 0)
1550 psinfo->pr_psargs[i] = ' ';
1551 psinfo->pr_psargs[len] = 0;
1552
1553 rcu_read_lock();
1554 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1555 rcu_read_unlock();
1556 psinfo->pr_pid = task_pid_vnr(p);
1557 psinfo->pr_pgrp = task_pgrp_vnr(p);
1558 psinfo->pr_sid = task_session_vnr(p);
1559
1560 i = p->state ? ffz(~p->state) + 1 : 0;
1561 psinfo->pr_state = i;
1562 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1563 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1564 psinfo->pr_nice = task_nice(p);
1565 psinfo->pr_flag = p->flags;
1566 rcu_read_lock();
1567 cred = __task_cred(p);
1568 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1569 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1570 rcu_read_unlock();
1571 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1572
1573 return 0;
1574 }
1575
1576 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1577 {
1578 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1579 int i = 0;
1580 do
1581 i += 2;
1582 while (auxv[i - 2] != AT_NULL);
1583 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1584 }
1585
1586 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1587 const kernel_siginfo_t *siginfo)
1588 {
1589 mm_segment_t old_fs = get_fs();
1590 set_fs(KERNEL_DS);
1591 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1592 set_fs(old_fs);
1593 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1594 }
1595
1596 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1597 /*
1598 * Format of NT_FILE note:
1599 *
1600 * long count -- how many files are mapped
1601 * long page_size -- units for file_ofs
1602 * array of [COUNT] elements of
1603 * long start
1604 * long end
1605 * long file_ofs
1606 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1607 */
1608 static int fill_files_note(struct memelfnote *note)
1609 {
1610 struct vm_area_struct *vma;
1611 unsigned count, size, names_ofs, remaining, n;
1612 user_long_t *data;
1613 user_long_t *start_end_ofs;
1614 char *name_base, *name_curpos;
1615
1616 /* *Estimated* file count and total data size needed */
1617 count = current->mm->map_count;
1618 if (count > UINT_MAX / 64)
1619 return -EINVAL;
1620 size = count * 64;
1621
1622 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1623 alloc:
1624 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1625 return -EINVAL;
1626 size = round_up(size, PAGE_SIZE);
1627 data = kvmalloc(size, GFP_KERNEL);
1628 if (ZERO_OR_NULL_PTR(data))
1629 return -ENOMEM;
1630
1631 start_end_ofs = data + 2;
1632 name_base = name_curpos = ((char *)data) + names_ofs;
1633 remaining = size - names_ofs;
1634 count = 0;
1635 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1636 struct file *file;
1637 const char *filename;
1638
1639 file = vma->vm_file;
1640 if (!file)
1641 continue;
1642 filename = file_path(file, name_curpos, remaining);
1643 if (IS_ERR(filename)) {
1644 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1645 kvfree(data);
1646 size = size * 5 / 4;
1647 goto alloc;
1648 }
1649 continue;
1650 }
1651
1652 /* file_path() fills at the end, move name down */
1653 /* n = strlen(filename) + 1: */
1654 n = (name_curpos + remaining) - filename;
1655 remaining = filename - name_curpos;
1656 memmove(name_curpos, filename, n);
1657 name_curpos += n;
1658
1659 *start_end_ofs++ = vma->vm_start;
1660 *start_end_ofs++ = vma->vm_end;
1661 *start_end_ofs++ = vma->vm_pgoff;
1662 count++;
1663 }
1664
1665 /* Now we know exact count of files, can store it */
1666 data[0] = count;
1667 data[1] = PAGE_SIZE;
1668 /*
1669 * Count usually is less than current->mm->map_count,
1670 * we need to move filenames down.
1671 */
1672 n = current->mm->map_count - count;
1673 if (n != 0) {
1674 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1675 memmove(name_base - shift_bytes, name_base,
1676 name_curpos - name_base);
1677 name_curpos -= shift_bytes;
1678 }
1679
1680 size = name_curpos - (char *)data;
1681 fill_note(note, "CORE", NT_FILE, size, data);
1682 return 0;
1683 }
1684
1685 #ifdef CORE_DUMP_USE_REGSET
1686 #include <linux/regset.h>
1687
1688 struct elf_thread_core_info {
1689 struct elf_thread_core_info *next;
1690 struct task_struct *task;
1691 struct elf_prstatus prstatus;
1692 struct memelfnote notes[0];
1693 };
1694
1695 struct elf_note_info {
1696 struct elf_thread_core_info *thread;
1697 struct memelfnote psinfo;
1698 struct memelfnote signote;
1699 struct memelfnote auxv;
1700 struct memelfnote files;
1701 user_siginfo_t csigdata;
1702 size_t size;
1703 int thread_notes;
1704 };
1705
1706 /*
1707 * When a regset has a writeback hook, we call it on each thread before
1708 * dumping user memory. On register window machines, this makes sure the
1709 * user memory backing the register data is up to date before we read it.
1710 */
1711 static void do_thread_regset_writeback(struct task_struct *task,
1712 const struct user_regset *regset)
1713 {
1714 if (regset->writeback)
1715 regset->writeback(task, regset, 1);
1716 }
1717
1718 #ifndef PRSTATUS_SIZE
1719 #define PRSTATUS_SIZE(S, R) sizeof(S)
1720 #endif
1721
1722 #ifndef SET_PR_FPVALID
1723 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1724 #endif
1725
1726 static int fill_thread_core_info(struct elf_thread_core_info *t,
1727 const struct user_regset_view *view,
1728 long signr, size_t *total)
1729 {
1730 unsigned int i;
1731 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1732
1733 /*
1734 * NT_PRSTATUS is the one special case, because the regset data
1735 * goes into the pr_reg field inside the note contents, rather
1736 * than being the whole note contents. We fill the reset in here.
1737 * We assume that regset 0 is NT_PRSTATUS.
1738 */
1739 fill_prstatus(&t->prstatus, t->task, signr);
1740 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1741 &t->prstatus.pr_reg, NULL);
1742
1743 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1744 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1745 *total += notesize(&t->notes[0]);
1746
1747 do_thread_regset_writeback(t->task, &view->regsets[0]);
1748
1749 /*
1750 * Each other regset might generate a note too. For each regset
1751 * that has no core_note_type or is inactive, we leave t->notes[i]
1752 * all zero and we'll know to skip writing it later.
1753 */
1754 for (i = 1; i < view->n; ++i) {
1755 const struct user_regset *regset = &view->regsets[i];
1756 do_thread_regset_writeback(t->task, regset);
1757 if (regset->core_note_type && regset->get &&
1758 (!regset->active || regset->active(t->task, regset) > 0)) {
1759 int ret;
1760 size_t size = regset_size(t->task, regset);
1761 void *data = kmalloc(size, GFP_KERNEL);
1762 if (unlikely(!data))
1763 return 0;
1764 ret = regset->get(t->task, regset,
1765 0, size, data, NULL);
1766 if (unlikely(ret))
1767 kfree(data);
1768 else {
1769 if (regset->core_note_type != NT_PRFPREG)
1770 fill_note(&t->notes[i], "LINUX",
1771 regset->core_note_type,
1772 size, data);
1773 else {
1774 SET_PR_FPVALID(&t->prstatus,
1775 1, regset0_size);
1776 fill_note(&t->notes[i], "CORE",
1777 NT_PRFPREG, size, data);
1778 }
1779 *total += notesize(&t->notes[i]);
1780 }
1781 }
1782 }
1783
1784 return 1;
1785 }
1786
1787 static int fill_note_info(struct elfhdr *elf, int phdrs,
1788 struct elf_note_info *info,
1789 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1790 {
1791 struct task_struct *dump_task = current;
1792 const struct user_regset_view *view = task_user_regset_view(dump_task);
1793 struct elf_thread_core_info *t;
1794 struct elf_prpsinfo *psinfo;
1795 struct core_thread *ct;
1796 unsigned int i;
1797
1798 info->size = 0;
1799 info->thread = NULL;
1800
1801 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1802 if (psinfo == NULL) {
1803 info->psinfo.data = NULL; /* So we don't free this wrongly */
1804 return 0;
1805 }
1806
1807 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1808
1809 /*
1810 * Figure out how many notes we're going to need for each thread.
1811 */
1812 info->thread_notes = 0;
1813 for (i = 0; i < view->n; ++i)
1814 if (view->regsets[i].core_note_type != 0)
1815 ++info->thread_notes;
1816
1817 /*
1818 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1819 * since it is our one special case.
1820 */
1821 if (unlikely(info->thread_notes == 0) ||
1822 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1823 WARN_ON(1);
1824 return 0;
1825 }
1826
1827 /*
1828 * Initialize the ELF file header.
1829 */
1830 fill_elf_header(elf, phdrs,
1831 view->e_machine, view->e_flags);
1832
1833 /*
1834 * Allocate a structure for each thread.
1835 */
1836 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1837 t = kzalloc(offsetof(struct elf_thread_core_info,
1838 notes[info->thread_notes]),
1839 GFP_KERNEL);
1840 if (unlikely(!t))
1841 return 0;
1842
1843 t->task = ct->task;
1844 if (ct->task == dump_task || !info->thread) {
1845 t->next = info->thread;
1846 info->thread = t;
1847 } else {
1848 /*
1849 * Make sure to keep the original task at
1850 * the head of the list.
1851 */
1852 t->next = info->thread->next;
1853 info->thread->next = t;
1854 }
1855 }
1856
1857 /*
1858 * Now fill in each thread's information.
1859 */
1860 for (t = info->thread; t != NULL; t = t->next)
1861 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1862 return 0;
1863
1864 /*
1865 * Fill in the two process-wide notes.
1866 */
1867 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1868 info->size += notesize(&info->psinfo);
1869
1870 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1871 info->size += notesize(&info->signote);
1872
1873 fill_auxv_note(&info->auxv, current->mm);
1874 info->size += notesize(&info->auxv);
1875
1876 if (fill_files_note(&info->files) == 0)
1877 info->size += notesize(&info->files);
1878
1879 return 1;
1880 }
1881
1882 static size_t get_note_info_size(struct elf_note_info *info)
1883 {
1884 return info->size;
1885 }
1886
1887 /*
1888 * Write all the notes for each thread. When writing the first thread, the
1889 * process-wide notes are interleaved after the first thread-specific note.
1890 */
1891 static int write_note_info(struct elf_note_info *info,
1892 struct coredump_params *cprm)
1893 {
1894 bool first = true;
1895 struct elf_thread_core_info *t = info->thread;
1896
1897 do {
1898 int i;
1899
1900 if (!writenote(&t->notes[0], cprm))
1901 return 0;
1902
1903 if (first && !writenote(&info->psinfo, cprm))
1904 return 0;
1905 if (first && !writenote(&info->signote, cprm))
1906 return 0;
1907 if (first && !writenote(&info->auxv, cprm))
1908 return 0;
1909 if (first && info->files.data &&
1910 !writenote(&info->files, cprm))
1911 return 0;
1912
1913 for (i = 1; i < info->thread_notes; ++i)
1914 if (t->notes[i].data &&
1915 !writenote(&t->notes[i], cprm))
1916 return 0;
1917
1918 first = false;
1919 t = t->next;
1920 } while (t);
1921
1922 return 1;
1923 }
1924
1925 static void free_note_info(struct elf_note_info *info)
1926 {
1927 struct elf_thread_core_info *threads = info->thread;
1928 while (threads) {
1929 unsigned int i;
1930 struct elf_thread_core_info *t = threads;
1931 threads = t->next;
1932 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1933 for (i = 1; i < info->thread_notes; ++i)
1934 kfree(t->notes[i].data);
1935 kfree(t);
1936 }
1937 kfree(info->psinfo.data);
1938 kvfree(info->files.data);
1939 }
1940
1941 #else
1942
1943 /* Here is the structure in which status of each thread is captured. */
1944 struct elf_thread_status
1945 {
1946 struct list_head list;
1947 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1948 elf_fpregset_t fpu; /* NT_PRFPREG */
1949 struct task_struct *thread;
1950 #ifdef ELF_CORE_COPY_XFPREGS
1951 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1952 #endif
1953 struct memelfnote notes[3];
1954 int num_notes;
1955 };
1956
1957 /*
1958 * In order to add the specific thread information for the elf file format,
1959 * we need to keep a linked list of every threads pr_status and then create
1960 * a single section for them in the final core file.
1961 */
1962 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1963 {
1964 int sz = 0;
1965 struct task_struct *p = t->thread;
1966 t->num_notes = 0;
1967
1968 fill_prstatus(&t->prstatus, p, signr);
1969 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1970
1971 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1972 &(t->prstatus));
1973 t->num_notes++;
1974 sz += notesize(&t->notes[0]);
1975
1976 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1977 &t->fpu))) {
1978 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1979 &(t->fpu));
1980 t->num_notes++;
1981 sz += notesize(&t->notes[1]);
1982 }
1983
1984 #ifdef ELF_CORE_COPY_XFPREGS
1985 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1986 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1987 sizeof(t->xfpu), &t->xfpu);
1988 t->num_notes++;
1989 sz += notesize(&t->notes[2]);
1990 }
1991 #endif
1992 return sz;
1993 }
1994
1995 struct elf_note_info {
1996 struct memelfnote *notes;
1997 struct memelfnote *notes_files;
1998 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1999 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2000 struct list_head thread_list;
2001 elf_fpregset_t *fpu;
2002 #ifdef ELF_CORE_COPY_XFPREGS
2003 elf_fpxregset_t *xfpu;
2004 #endif
2005 user_siginfo_t csigdata;
2006 int thread_status_size;
2007 int numnote;
2008 };
2009
2010 static int elf_note_info_init(struct elf_note_info *info)
2011 {
2012 memset(info, 0, sizeof(*info));
2013 INIT_LIST_HEAD(&info->thread_list);
2014
2015 /* Allocate space for ELF notes */
2016 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2017 if (!info->notes)
2018 return 0;
2019 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2020 if (!info->psinfo)
2021 return 0;
2022 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2023 if (!info->prstatus)
2024 return 0;
2025 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2026 if (!info->fpu)
2027 return 0;
2028 #ifdef ELF_CORE_COPY_XFPREGS
2029 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2030 if (!info->xfpu)
2031 return 0;
2032 #endif
2033 return 1;
2034 }
2035
2036 static int fill_note_info(struct elfhdr *elf, int phdrs,
2037 struct elf_note_info *info,
2038 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2039 {
2040 struct core_thread *ct;
2041 struct elf_thread_status *ets;
2042
2043 if (!elf_note_info_init(info))
2044 return 0;
2045
2046 for (ct = current->mm->core_state->dumper.next;
2047 ct; ct = ct->next) {
2048 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2049 if (!ets)
2050 return 0;
2051
2052 ets->thread = ct->task;
2053 list_add(&ets->list, &info->thread_list);
2054 }
2055
2056 list_for_each_entry(ets, &info->thread_list, list) {
2057 int sz;
2058
2059 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2060 info->thread_status_size += sz;
2061 }
2062 /* now collect the dump for the current */
2063 memset(info->prstatus, 0, sizeof(*info->prstatus));
2064 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2065 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2066
2067 /* Set up header */
2068 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2069
2070 /*
2071 * Set up the notes in similar form to SVR4 core dumps made
2072 * with info from their /proc.
2073 */
2074
2075 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2076 sizeof(*info->prstatus), info->prstatus);
2077 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2078 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2079 sizeof(*info->psinfo), info->psinfo);
2080
2081 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2082 fill_auxv_note(info->notes + 3, current->mm);
2083 info->numnote = 4;
2084
2085 if (fill_files_note(info->notes + info->numnote) == 0) {
2086 info->notes_files = info->notes + info->numnote;
2087 info->numnote++;
2088 }
2089
2090 /* Try to dump the FPU. */
2091 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2092 info->fpu);
2093 if (info->prstatus->pr_fpvalid)
2094 fill_note(info->notes + info->numnote++,
2095 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2096 #ifdef ELF_CORE_COPY_XFPREGS
2097 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2098 fill_note(info->notes + info->numnote++,
2099 "LINUX", ELF_CORE_XFPREG_TYPE,
2100 sizeof(*info->xfpu), info->xfpu);
2101 #endif
2102
2103 return 1;
2104 }
2105
2106 static size_t get_note_info_size(struct elf_note_info *info)
2107 {
2108 int sz = 0;
2109 int i;
2110
2111 for (i = 0; i < info->numnote; i++)
2112 sz += notesize(info->notes + i);
2113
2114 sz += info->thread_status_size;
2115
2116 return sz;
2117 }
2118
2119 static int write_note_info(struct elf_note_info *info,
2120 struct coredump_params *cprm)
2121 {
2122 struct elf_thread_status *ets;
2123 int i;
2124
2125 for (i = 0; i < info->numnote; i++)
2126 if (!writenote(info->notes + i, cprm))
2127 return 0;
2128
2129 /* write out the thread status notes section */
2130 list_for_each_entry(ets, &info->thread_list, list) {
2131 for (i = 0; i < ets->num_notes; i++)
2132 if (!writenote(&ets->notes[i], cprm))
2133 return 0;
2134 }
2135
2136 return 1;
2137 }
2138
2139 static void free_note_info(struct elf_note_info *info)
2140 {
2141 while (!list_empty(&info->thread_list)) {
2142 struct list_head *tmp = info->thread_list.next;
2143 list_del(tmp);
2144 kfree(list_entry(tmp, struct elf_thread_status, list));
2145 }
2146
2147 /* Free data possibly allocated by fill_files_note(): */
2148 if (info->notes_files)
2149 kvfree(info->notes_files->data);
2150
2151 kfree(info->prstatus);
2152 kfree(info->psinfo);
2153 kfree(info->notes);
2154 kfree(info->fpu);
2155 #ifdef ELF_CORE_COPY_XFPREGS
2156 kfree(info->xfpu);
2157 #endif
2158 }
2159
2160 #endif
2161
2162 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2163 struct vm_area_struct *gate_vma)
2164 {
2165 struct vm_area_struct *ret = tsk->mm->mmap;
2166
2167 if (ret)
2168 return ret;
2169 return gate_vma;
2170 }
2171 /*
2172 * Helper function for iterating across a vma list. It ensures that the caller
2173 * will visit `gate_vma' prior to terminating the search.
2174 */
2175 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2176 struct vm_area_struct *gate_vma)
2177 {
2178 struct vm_area_struct *ret;
2179
2180 ret = this_vma->vm_next;
2181 if (ret)
2182 return ret;
2183 if (this_vma == gate_vma)
2184 return NULL;
2185 return gate_vma;
2186 }
2187
2188 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2189 elf_addr_t e_shoff, int segs)
2190 {
2191 elf->e_shoff = e_shoff;
2192 elf->e_shentsize = sizeof(*shdr4extnum);
2193 elf->e_shnum = 1;
2194 elf->e_shstrndx = SHN_UNDEF;
2195
2196 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2197
2198 shdr4extnum->sh_type = SHT_NULL;
2199 shdr4extnum->sh_size = elf->e_shnum;
2200 shdr4extnum->sh_link = elf->e_shstrndx;
2201 shdr4extnum->sh_info = segs;
2202 }
2203
2204 /*
2205 * Actual dumper
2206 *
2207 * This is a two-pass process; first we find the offsets of the bits,
2208 * and then they are actually written out. If we run out of core limit
2209 * we just truncate.
2210 */
2211 static int elf_core_dump(struct coredump_params *cprm)
2212 {
2213 int has_dumped = 0;
2214 mm_segment_t fs;
2215 int segs, i;
2216 size_t vma_data_size = 0;
2217 struct vm_area_struct *vma, *gate_vma;
2218 struct elfhdr *elf = NULL;
2219 loff_t offset = 0, dataoff;
2220 struct elf_note_info info = { };
2221 struct elf_phdr *phdr4note = NULL;
2222 struct elf_shdr *shdr4extnum = NULL;
2223 Elf_Half e_phnum;
2224 elf_addr_t e_shoff;
2225 elf_addr_t *vma_filesz = NULL;
2226
2227 /*
2228 * We no longer stop all VM operations.
2229 *
2230 * This is because those proceses that could possibly change map_count
2231 * or the mmap / vma pages are now blocked in do_exit on current
2232 * finishing this core dump.
2233 *
2234 * Only ptrace can touch these memory addresses, but it doesn't change
2235 * the map_count or the pages allocated. So no possibility of crashing
2236 * exists while dumping the mm->vm_next areas to the core file.
2237 */
2238
2239 /* alloc memory for large data structures: too large to be on stack */
2240 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2241 if (!elf)
2242 goto out;
2243 /*
2244 * The number of segs are recored into ELF header as 16bit value.
2245 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2246 */
2247 segs = current->mm->map_count;
2248 segs += elf_core_extra_phdrs();
2249
2250 gate_vma = get_gate_vma(current->mm);
2251 if (gate_vma != NULL)
2252 segs++;
2253
2254 /* for notes section */
2255 segs++;
2256
2257 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2258 * this, kernel supports extended numbering. Have a look at
2259 * include/linux/elf.h for further information. */
2260 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2261
2262 /*
2263 * Collect all the non-memory information about the process for the
2264 * notes. This also sets up the file header.
2265 */
2266 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2267 goto cleanup;
2268
2269 has_dumped = 1;
2270
2271 fs = get_fs();
2272 set_fs(KERNEL_DS);
2273
2274 offset += sizeof(*elf); /* Elf header */
2275 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2276
2277 /* Write notes phdr entry */
2278 {
2279 size_t sz = get_note_info_size(&info);
2280
2281 sz += elf_coredump_extra_notes_size();
2282
2283 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2284 if (!phdr4note)
2285 goto end_coredump;
2286
2287 fill_elf_note_phdr(phdr4note, sz, offset);
2288 offset += sz;
2289 }
2290
2291 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2292
2293 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2294 goto end_coredump;
2295 vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2296 GFP_KERNEL);
2297 if (ZERO_OR_NULL_PTR(vma_filesz))
2298 goto end_coredump;
2299
2300 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2301 vma = next_vma(vma, gate_vma)) {
2302 unsigned long dump_size;
2303
2304 dump_size = vma_dump_size(vma, cprm->mm_flags);
2305 vma_filesz[i++] = dump_size;
2306 vma_data_size += dump_size;
2307 }
2308
2309 offset += vma_data_size;
2310 offset += elf_core_extra_data_size();
2311 e_shoff = offset;
2312
2313 if (e_phnum == PN_XNUM) {
2314 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2315 if (!shdr4extnum)
2316 goto end_coredump;
2317 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2318 }
2319
2320 offset = dataoff;
2321
2322 if (!dump_emit(cprm, elf, sizeof(*elf)))
2323 goto end_coredump;
2324
2325 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2326 goto end_coredump;
2327
2328 /* Write program headers for segments dump */
2329 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2330 vma = next_vma(vma, gate_vma)) {
2331 struct elf_phdr phdr;
2332
2333 phdr.p_type = PT_LOAD;
2334 phdr.p_offset = offset;
2335 phdr.p_vaddr = vma->vm_start;
2336 phdr.p_paddr = 0;
2337 phdr.p_filesz = vma_filesz[i++];
2338 phdr.p_memsz = vma->vm_end - vma->vm_start;
2339 offset += phdr.p_filesz;
2340 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2341 if (vma->vm_flags & VM_WRITE)
2342 phdr.p_flags |= PF_W;
2343 if (vma->vm_flags & VM_EXEC)
2344 phdr.p_flags |= PF_X;
2345 phdr.p_align = ELF_EXEC_PAGESIZE;
2346
2347 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2348 goto end_coredump;
2349 }
2350
2351 if (!elf_core_write_extra_phdrs(cprm, offset))
2352 goto end_coredump;
2353
2354 /* write out the notes section */
2355 if (!write_note_info(&info, cprm))
2356 goto end_coredump;
2357
2358 if (elf_coredump_extra_notes_write(cprm))
2359 goto end_coredump;
2360
2361 /* Align to page */
2362 if (!dump_skip(cprm, dataoff - cprm->pos))
2363 goto end_coredump;
2364
2365 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2366 vma = next_vma(vma, gate_vma)) {
2367 unsigned long addr;
2368 unsigned long end;
2369
2370 end = vma->vm_start + vma_filesz[i++];
2371
2372 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2373 struct page *page;
2374 int stop;
2375
2376 page = get_dump_page(addr);
2377 if (page) {
2378 void *kaddr = kmap(page);
2379 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2380 kunmap(page);
2381 put_page(page);
2382 } else
2383 stop = !dump_skip(cprm, PAGE_SIZE);
2384 if (stop)
2385 goto end_coredump;
2386 }
2387 }
2388 dump_truncate(cprm);
2389
2390 if (!elf_core_write_extra_data(cprm))
2391 goto end_coredump;
2392
2393 if (e_phnum == PN_XNUM) {
2394 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2395 goto end_coredump;
2396 }
2397
2398 end_coredump:
2399 set_fs(fs);
2400
2401 cleanup:
2402 free_note_info(&info);
2403 kfree(shdr4extnum);
2404 kvfree(vma_filesz);
2405 kfree(phdr4note);
2406 kfree(elf);
2407 out:
2408 return has_dumped;
2409 }
2410
2411 #endif /* CONFIG_ELF_CORE */
2412
2413 static int __init init_elf_binfmt(void)
2414 {
2415 register_binfmt(&elf_format);
2416 return 0;
2417 }
2418
2419 static void __exit exit_elf_binfmt(void)
2420 {
2421 /* Remove the COFF and ELF loaders. */
2422 unregister_binfmt(&elf_format);
2423 }
2424
2425 core_initcall(init_elf_binfmt);
2426 module_exit(exit_elf_binfmt);
2427 MODULE_LICENSE("GPL");