]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/binfmt_elf.c
UBUNTU: SAUCE: shiftfs: let userns root destroy subvolumes from other users
[mirror_ubuntu-hirsute-kernel.git] / fs / binfmt_elf.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
50 #include <asm/page.h>
51
52 #ifndef ELF_COMPAT
53 #define ELF_COMPAT 0
54 #endif
55
56 #ifndef user_long_t
57 #define user_long_t long
58 #endif
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
61 #endif
62
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
66 #endif
67
68 static int load_elf_binary(struct linux_binprm *bprm);
69
70 #ifdef CONFIG_USELIB
71 static int load_elf_library(struct file *);
72 #else
73 #define load_elf_library NULL
74 #endif
75
76 /*
77 * If we don't support core dumping, then supply a NULL so we
78 * don't even try.
79 */
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
82 #else
83 #define elf_core_dump NULL
84 #endif
85
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
88 #else
89 #define ELF_MIN_ALIGN PAGE_SIZE
90 #endif
91
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS 0
94 #endif
95
96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
99
100 static struct linux_binfmt elf_format = {
101 .module = THIS_MODULE,
102 .load_binary = load_elf_binary,
103 .load_shlib = load_elf_library,
104 .core_dump = elf_core_dump,
105 .min_coredump = ELF_EXEC_PAGESIZE,
106 };
107
108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
109
110 static int set_brk(unsigned long start, unsigned long end, int prot)
111 {
112 start = ELF_PAGEALIGN(start);
113 end = ELF_PAGEALIGN(end);
114 if (end > start) {
115 /*
116 * Map the last of the bss segment.
117 * If the header is requesting these pages to be
118 * executable, honour that (ppc32 needs this).
119 */
120 int error = vm_brk_flags(start, end - start,
121 prot & PROT_EXEC ? VM_EXEC : 0);
122 if (error)
123 return error;
124 }
125 current->mm->start_brk = current->mm->brk = end;
126 return 0;
127 }
128
129 /* We need to explicitly zero any fractional pages
130 after the data section (i.e. bss). This would
131 contain the junk from the file that should not
132 be in memory
133 */
134 static int padzero(unsigned long elf_bss)
135 {
136 unsigned long nbyte;
137
138 nbyte = ELF_PAGEOFFSET(elf_bss);
139 if (nbyte) {
140 nbyte = ELF_MIN_ALIGN - nbyte;
141 if (clear_user((void __user *) elf_bss, nbyte))
142 return -EFAULT;
143 }
144 return 0;
145 }
146
147 /* Let's use some macros to make this stack manipulation a little clearer */
148 #ifdef CONFIG_STACK_GROWSUP
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
150 #define STACK_ROUND(sp, items) \
151 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ \
153 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
154 old_sp; })
155 #else
156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
157 #define STACK_ROUND(sp, items) \
158 (((unsigned long) (sp - items)) &~ 15UL)
159 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
160 #endif
161
162 #ifndef ELF_BASE_PLATFORM
163 /*
164 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
165 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
166 * will be copied to the user stack in the same manner as AT_PLATFORM.
167 */
168 #define ELF_BASE_PLATFORM NULL
169 #endif
170
171 static int
172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
173 unsigned long load_addr, unsigned long interp_load_addr,
174 unsigned long e_entry)
175 {
176 struct mm_struct *mm = current->mm;
177 unsigned long p = bprm->p;
178 int argc = bprm->argc;
179 int envc = bprm->envc;
180 elf_addr_t __user *sp;
181 elf_addr_t __user *u_platform;
182 elf_addr_t __user *u_base_platform;
183 elf_addr_t __user *u_rand_bytes;
184 const char *k_platform = ELF_PLATFORM;
185 const char *k_base_platform = ELF_BASE_PLATFORM;
186 unsigned char k_rand_bytes[16];
187 int items;
188 elf_addr_t *elf_info;
189 int ei_index;
190 const struct cred *cred = current_cred();
191 struct vm_area_struct *vma;
192
193 /*
194 * In some cases (e.g. Hyper-Threading), we want to avoid L1
195 * evictions by the processes running on the same package. One
196 * thing we can do is to shuffle the initial stack for them.
197 */
198
199 p = arch_align_stack(p);
200
201 /*
202 * If this architecture has a platform capability string, copy it
203 * to userspace. In some cases (Sparc), this info is impossible
204 * for userspace to get any other way, in others (i386) it is
205 * merely difficult.
206 */
207 u_platform = NULL;
208 if (k_platform) {
209 size_t len = strlen(k_platform) + 1;
210
211 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
212 if (copy_to_user(u_platform, k_platform, len))
213 return -EFAULT;
214 }
215
216 /*
217 * If this architecture has a "base" platform capability
218 * string, copy it to userspace.
219 */
220 u_base_platform = NULL;
221 if (k_base_platform) {
222 size_t len = strlen(k_base_platform) + 1;
223
224 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
225 if (copy_to_user(u_base_platform, k_base_platform, len))
226 return -EFAULT;
227 }
228
229 /*
230 * Generate 16 random bytes for userspace PRNG seeding.
231 */
232 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
233 u_rand_bytes = (elf_addr_t __user *)
234 STACK_ALLOC(p, sizeof(k_rand_bytes));
235 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
236 return -EFAULT;
237
238 /* Create the ELF interpreter info */
239 elf_info = (elf_addr_t *)mm->saved_auxv;
240 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
241 #define NEW_AUX_ENT(id, val) \
242 do { \
243 *elf_info++ = id; \
244 *elf_info++ = val; \
245 } while (0)
246
247 #ifdef ARCH_DLINFO
248 /*
249 * ARCH_DLINFO must come first so PPC can do its special alignment of
250 * AUXV.
251 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
252 * ARCH_DLINFO changes
253 */
254 ARCH_DLINFO;
255 #endif
256 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
257 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
258 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
259 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
260 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
261 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
262 NEW_AUX_ENT(AT_BASE, interp_load_addr);
263 NEW_AUX_ENT(AT_FLAGS, 0);
264 NEW_AUX_ENT(AT_ENTRY, e_entry);
265 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
266 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
267 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
268 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
269 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
270 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
271 #ifdef ELF_HWCAP2
272 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
273 #endif
274 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
275 if (k_platform) {
276 NEW_AUX_ENT(AT_PLATFORM,
277 (elf_addr_t)(unsigned long)u_platform);
278 }
279 if (k_base_platform) {
280 NEW_AUX_ENT(AT_BASE_PLATFORM,
281 (elf_addr_t)(unsigned long)u_base_platform);
282 }
283 if (bprm->have_execfd) {
284 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
285 }
286 #undef NEW_AUX_ENT
287 /* AT_NULL is zero; clear the rest too */
288 memset(elf_info, 0, (char *)mm->saved_auxv +
289 sizeof(mm->saved_auxv) - (char *)elf_info);
290
291 /* And advance past the AT_NULL entry. */
292 elf_info += 2;
293
294 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
295 sp = STACK_ADD(p, ei_index);
296
297 items = (argc + 1) + (envc + 1) + 1;
298 bprm->p = STACK_ROUND(sp, items);
299
300 /* Point sp at the lowest address on the stack */
301 #ifdef CONFIG_STACK_GROWSUP
302 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
303 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
304 #else
305 sp = (elf_addr_t __user *)bprm->p;
306 #endif
307
308
309 /*
310 * Grow the stack manually; some architectures have a limit on how
311 * far ahead a user-space access may be in order to grow the stack.
312 */
313 if (mmap_read_lock_killable(mm))
314 return -EINTR;
315 vma = find_extend_vma(mm, bprm->p);
316 mmap_read_unlock(mm);
317 if (!vma)
318 return -EFAULT;
319
320 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
321 if (put_user(argc, sp++))
322 return -EFAULT;
323
324 /* Populate list of argv pointers back to argv strings. */
325 p = mm->arg_end = mm->arg_start;
326 while (argc-- > 0) {
327 size_t len;
328 if (put_user((elf_addr_t)p, sp++))
329 return -EFAULT;
330 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
331 if (!len || len > MAX_ARG_STRLEN)
332 return -EINVAL;
333 p += len;
334 }
335 if (put_user(0, sp++))
336 return -EFAULT;
337 mm->arg_end = p;
338
339 /* Populate list of envp pointers back to envp strings. */
340 mm->env_end = mm->env_start = p;
341 while (envc-- > 0) {
342 size_t len;
343 if (put_user((elf_addr_t)p, sp++))
344 return -EFAULT;
345 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
346 if (!len || len > MAX_ARG_STRLEN)
347 return -EINVAL;
348 p += len;
349 }
350 if (put_user(0, sp++))
351 return -EFAULT;
352 mm->env_end = p;
353
354 /* Put the elf_info on the stack in the right place. */
355 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
356 return -EFAULT;
357 return 0;
358 }
359
360 static unsigned long elf_map(struct file *filep, unsigned long addr,
361 const struct elf_phdr *eppnt, int prot, int type,
362 unsigned long total_size)
363 {
364 unsigned long map_addr;
365 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
366 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
367 addr = ELF_PAGESTART(addr);
368 size = ELF_PAGEALIGN(size);
369
370 /* mmap() will return -EINVAL if given a zero size, but a
371 * segment with zero filesize is perfectly valid */
372 if (!size)
373 return addr;
374
375 /*
376 * total_size is the size of the ELF (interpreter) image.
377 * The _first_ mmap needs to know the full size, otherwise
378 * randomization might put this image into an overlapping
379 * position with the ELF binary image. (since size < total_size)
380 * So we first map the 'big' image - and unmap the remainder at
381 * the end. (which unmap is needed for ELF images with holes.)
382 */
383 if (total_size) {
384 total_size = ELF_PAGEALIGN(total_size);
385 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
386 if (!BAD_ADDR(map_addr))
387 vm_munmap(map_addr+size, total_size-size);
388 } else
389 map_addr = vm_mmap(filep, addr, size, prot, type, off);
390
391 if ((type & MAP_FIXED_NOREPLACE) &&
392 PTR_ERR((void *)map_addr) == -EEXIST)
393 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
394 task_pid_nr(current), current->comm, (void *)addr);
395
396 return(map_addr);
397 }
398
399 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
400 {
401 int i, first_idx = -1, last_idx = -1;
402
403 for (i = 0; i < nr; i++) {
404 if (cmds[i].p_type == PT_LOAD) {
405 last_idx = i;
406 if (first_idx == -1)
407 first_idx = i;
408 }
409 }
410 if (first_idx == -1)
411 return 0;
412
413 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
414 ELF_PAGESTART(cmds[first_idx].p_vaddr);
415 }
416
417 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
418 {
419 ssize_t rv;
420
421 rv = kernel_read(file, buf, len, &pos);
422 if (unlikely(rv != len)) {
423 return (rv < 0) ? rv : -EIO;
424 }
425 return 0;
426 }
427
428 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
429 {
430 unsigned long alignment = 0;
431 int i;
432
433 for (i = 0; i < nr; i++) {
434 if (cmds[i].p_type == PT_LOAD) {
435 unsigned long p_align = cmds[i].p_align;
436
437 /* skip non-power of two alignments as invalid */
438 if (!is_power_of_2(p_align))
439 continue;
440 alignment = max(alignment, p_align);
441 }
442 }
443
444 /* ensure we align to at least one page */
445 return ELF_PAGEALIGN(alignment);
446 }
447
448 /**
449 * load_elf_phdrs() - load ELF program headers
450 * @elf_ex: ELF header of the binary whose program headers should be loaded
451 * @elf_file: the opened ELF binary file
452 *
453 * Loads ELF program headers from the binary file elf_file, which has the ELF
454 * header pointed to by elf_ex, into a newly allocated array. The caller is
455 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
456 */
457 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
458 struct file *elf_file)
459 {
460 struct elf_phdr *elf_phdata = NULL;
461 int retval, err = -1;
462 unsigned int size;
463
464 /*
465 * If the size of this structure has changed, then punt, since
466 * we will be doing the wrong thing.
467 */
468 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
469 goto out;
470
471 /* Sanity check the number of program headers... */
472 /* ...and their total size. */
473 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
474 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
475 goto out;
476
477 elf_phdata = kmalloc(size, GFP_KERNEL);
478 if (!elf_phdata)
479 goto out;
480
481 /* Read in the program headers */
482 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
483 if (retval < 0) {
484 err = retval;
485 goto out;
486 }
487
488 /* Success! */
489 err = 0;
490 out:
491 if (err) {
492 kfree(elf_phdata);
493 elf_phdata = NULL;
494 }
495 return elf_phdata;
496 }
497
498 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
499
500 /**
501 * struct arch_elf_state - arch-specific ELF loading state
502 *
503 * This structure is used to preserve architecture specific data during
504 * the loading of an ELF file, throughout the checking of architecture
505 * specific ELF headers & through to the point where the ELF load is
506 * known to be proceeding (ie. SET_PERSONALITY).
507 *
508 * This implementation is a dummy for architectures which require no
509 * specific state.
510 */
511 struct arch_elf_state {
512 };
513
514 #define INIT_ARCH_ELF_STATE {}
515
516 /**
517 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
518 * @ehdr: The main ELF header
519 * @phdr: The program header to check
520 * @elf: The open ELF file
521 * @is_interp: True if the phdr is from the interpreter of the ELF being
522 * loaded, else false.
523 * @state: Architecture-specific state preserved throughout the process
524 * of loading the ELF.
525 *
526 * Inspects the program header phdr to validate its correctness and/or
527 * suitability for the system. Called once per ELF program header in the
528 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
529 * interpreter.
530 *
531 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
532 * with that return code.
533 */
534 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
535 struct elf_phdr *phdr,
536 struct file *elf, bool is_interp,
537 struct arch_elf_state *state)
538 {
539 /* Dummy implementation, always proceed */
540 return 0;
541 }
542
543 /**
544 * arch_check_elf() - check an ELF executable
545 * @ehdr: The main ELF header
546 * @has_interp: True if the ELF has an interpreter, else false.
547 * @interp_ehdr: The interpreter's ELF header
548 * @state: Architecture-specific state preserved throughout the process
549 * of loading the ELF.
550 *
551 * Provides a final opportunity for architecture code to reject the loading
552 * of the ELF & cause an exec syscall to return an error. This is called after
553 * all program headers to be checked by arch_elf_pt_proc have been.
554 *
555 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
556 * with that return code.
557 */
558 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
559 struct elfhdr *interp_ehdr,
560 struct arch_elf_state *state)
561 {
562 /* Dummy implementation, always proceed */
563 return 0;
564 }
565
566 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
567
568 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
569 bool has_interp, bool is_interp)
570 {
571 int prot = 0;
572
573 if (p_flags & PF_R)
574 prot |= PROT_READ;
575 if (p_flags & PF_W)
576 prot |= PROT_WRITE;
577 if (p_flags & PF_X)
578 prot |= PROT_EXEC;
579
580 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
581 }
582
583 /* This is much more generalized than the library routine read function,
584 so we keep this separate. Technically the library read function
585 is only provided so that we can read a.out libraries that have
586 an ELF header */
587
588 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
589 struct file *interpreter,
590 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
591 struct arch_elf_state *arch_state)
592 {
593 struct elf_phdr *eppnt;
594 unsigned long load_addr = 0;
595 int load_addr_set = 0;
596 unsigned long last_bss = 0, elf_bss = 0;
597 int bss_prot = 0;
598 unsigned long error = ~0UL;
599 unsigned long total_size;
600 int i;
601
602 /* First of all, some simple consistency checks */
603 if (interp_elf_ex->e_type != ET_EXEC &&
604 interp_elf_ex->e_type != ET_DYN)
605 goto out;
606 if (!elf_check_arch(interp_elf_ex) ||
607 elf_check_fdpic(interp_elf_ex))
608 goto out;
609 if (!interpreter->f_op->mmap)
610 goto out;
611
612 total_size = total_mapping_size(interp_elf_phdata,
613 interp_elf_ex->e_phnum);
614 if (!total_size) {
615 error = -EINVAL;
616 goto out;
617 }
618
619 eppnt = interp_elf_phdata;
620 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
621 if (eppnt->p_type == PT_LOAD) {
622 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
623 int elf_prot = make_prot(eppnt->p_flags, arch_state,
624 true, true);
625 unsigned long vaddr = 0;
626 unsigned long k, map_addr;
627
628 vaddr = eppnt->p_vaddr;
629 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
630 elf_type |= MAP_FIXED_NOREPLACE;
631 else if (no_base && interp_elf_ex->e_type == ET_DYN)
632 load_addr = -vaddr;
633
634 map_addr = elf_map(interpreter, load_addr + vaddr,
635 eppnt, elf_prot, elf_type, total_size);
636 total_size = 0;
637 error = map_addr;
638 if (BAD_ADDR(map_addr))
639 goto out;
640
641 if (!load_addr_set &&
642 interp_elf_ex->e_type == ET_DYN) {
643 load_addr = map_addr - ELF_PAGESTART(vaddr);
644 load_addr_set = 1;
645 }
646
647 /*
648 * Check to see if the section's size will overflow the
649 * allowed task size. Note that p_filesz must always be
650 * <= p_memsize so it's only necessary to check p_memsz.
651 */
652 k = load_addr + eppnt->p_vaddr;
653 if (BAD_ADDR(k) ||
654 eppnt->p_filesz > eppnt->p_memsz ||
655 eppnt->p_memsz > TASK_SIZE ||
656 TASK_SIZE - eppnt->p_memsz < k) {
657 error = -ENOMEM;
658 goto out;
659 }
660
661 /*
662 * Find the end of the file mapping for this phdr, and
663 * keep track of the largest address we see for this.
664 */
665 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
666 if (k > elf_bss)
667 elf_bss = k;
668
669 /*
670 * Do the same thing for the memory mapping - between
671 * elf_bss and last_bss is the bss section.
672 */
673 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
674 if (k > last_bss) {
675 last_bss = k;
676 bss_prot = elf_prot;
677 }
678 }
679 }
680
681 /*
682 * Now fill out the bss section: first pad the last page from
683 * the file up to the page boundary, and zero it from elf_bss
684 * up to the end of the page.
685 */
686 if (padzero(elf_bss)) {
687 error = -EFAULT;
688 goto out;
689 }
690 /*
691 * Next, align both the file and mem bss up to the page size,
692 * since this is where elf_bss was just zeroed up to, and where
693 * last_bss will end after the vm_brk_flags() below.
694 */
695 elf_bss = ELF_PAGEALIGN(elf_bss);
696 last_bss = ELF_PAGEALIGN(last_bss);
697 /* Finally, if there is still more bss to allocate, do it. */
698 if (last_bss > elf_bss) {
699 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
700 bss_prot & PROT_EXEC ? VM_EXEC : 0);
701 if (error)
702 goto out;
703 }
704
705 error = load_addr;
706 out:
707 return error;
708 }
709
710 /*
711 * These are the functions used to load ELF style executables and shared
712 * libraries. There is no binary dependent code anywhere else.
713 */
714
715 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
716 struct arch_elf_state *arch,
717 bool have_prev_type, u32 *prev_type)
718 {
719 size_t o, step;
720 const struct gnu_property *pr;
721 int ret;
722
723 if (*off == datasz)
724 return -ENOENT;
725
726 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
727 return -EIO;
728 o = *off;
729 datasz -= *off;
730
731 if (datasz < sizeof(*pr))
732 return -ENOEXEC;
733 pr = (const struct gnu_property *)(data + o);
734 o += sizeof(*pr);
735 datasz -= sizeof(*pr);
736
737 if (pr->pr_datasz > datasz)
738 return -ENOEXEC;
739
740 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
741 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
742 if (step > datasz)
743 return -ENOEXEC;
744
745 /* Properties are supposed to be unique and sorted on pr_type: */
746 if (have_prev_type && pr->pr_type <= *prev_type)
747 return -ENOEXEC;
748 *prev_type = pr->pr_type;
749
750 ret = arch_parse_elf_property(pr->pr_type, data + o,
751 pr->pr_datasz, ELF_COMPAT, arch);
752 if (ret)
753 return ret;
754
755 *off = o + step;
756 return 0;
757 }
758
759 #define NOTE_DATA_SZ SZ_1K
760 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
761 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
762
763 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
764 struct arch_elf_state *arch)
765 {
766 union {
767 struct elf_note nhdr;
768 char data[NOTE_DATA_SZ];
769 } note;
770 loff_t pos;
771 ssize_t n;
772 size_t off, datasz;
773 int ret;
774 bool have_prev_type;
775 u32 prev_type;
776
777 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
778 return 0;
779
780 /* load_elf_binary() shouldn't call us unless this is true... */
781 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
782 return -ENOEXEC;
783
784 /* If the properties are crazy large, that's too bad (for now): */
785 if (phdr->p_filesz > sizeof(note))
786 return -ENOEXEC;
787
788 pos = phdr->p_offset;
789 n = kernel_read(f, &note, phdr->p_filesz, &pos);
790
791 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
792 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
793 return -EIO;
794
795 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
796 note.nhdr.n_namesz != NOTE_NAME_SZ ||
797 strncmp(note.data + sizeof(note.nhdr),
798 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
799 return -ENOEXEC;
800
801 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
802 ELF_GNU_PROPERTY_ALIGN);
803 if (off > n)
804 return -ENOEXEC;
805
806 if (note.nhdr.n_descsz > n - off)
807 return -ENOEXEC;
808 datasz = off + note.nhdr.n_descsz;
809
810 have_prev_type = false;
811 do {
812 ret = parse_elf_property(note.data, &off, datasz, arch,
813 have_prev_type, &prev_type);
814 have_prev_type = true;
815 } while (!ret);
816
817 return ret == -ENOENT ? 0 : ret;
818 }
819
820 static int load_elf_binary(struct linux_binprm *bprm)
821 {
822 struct file *interpreter = NULL; /* to shut gcc up */
823 unsigned long load_addr = 0, load_bias = 0;
824 int load_addr_set = 0;
825 unsigned long error;
826 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
827 struct elf_phdr *elf_property_phdata = NULL;
828 unsigned long elf_bss, elf_brk;
829 int bss_prot = 0;
830 int retval, i;
831 unsigned long elf_entry;
832 unsigned long e_entry;
833 unsigned long interp_load_addr = 0;
834 unsigned long start_code, end_code, start_data, end_data;
835 unsigned long reloc_func_desc __maybe_unused = 0;
836 int executable_stack = EXSTACK_DEFAULT;
837 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
838 struct elfhdr *interp_elf_ex = NULL;
839 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
840 struct mm_struct *mm;
841 struct pt_regs *regs;
842
843 retval = -ENOEXEC;
844 /* First of all, some simple consistency checks */
845 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
846 goto out;
847
848 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
849 goto out;
850 if (!elf_check_arch(elf_ex))
851 goto out;
852 if (elf_check_fdpic(elf_ex))
853 goto out;
854 if (!bprm->file->f_op->mmap)
855 goto out;
856
857 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
858 if (!elf_phdata)
859 goto out;
860
861 elf_ppnt = elf_phdata;
862 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
863 char *elf_interpreter;
864
865 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
866 elf_property_phdata = elf_ppnt;
867 continue;
868 }
869
870 if (elf_ppnt->p_type != PT_INTERP)
871 continue;
872
873 /*
874 * This is the program interpreter used for shared libraries -
875 * for now assume that this is an a.out format binary.
876 */
877 retval = -ENOEXEC;
878 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
879 goto out_free_ph;
880
881 retval = -ENOMEM;
882 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
883 if (!elf_interpreter)
884 goto out_free_ph;
885
886 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
887 elf_ppnt->p_offset);
888 if (retval < 0)
889 goto out_free_interp;
890 /* make sure path is NULL terminated */
891 retval = -ENOEXEC;
892 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
893 goto out_free_interp;
894
895 interpreter = open_exec(elf_interpreter);
896 kfree(elf_interpreter);
897 retval = PTR_ERR(interpreter);
898 if (IS_ERR(interpreter))
899 goto out_free_ph;
900
901 /*
902 * If the binary is not readable then enforce mm->dumpable = 0
903 * regardless of the interpreter's permissions.
904 */
905 would_dump(bprm, interpreter);
906
907 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
908 if (!interp_elf_ex) {
909 retval = -ENOMEM;
910 goto out_free_ph;
911 }
912
913 /* Get the exec headers */
914 retval = elf_read(interpreter, interp_elf_ex,
915 sizeof(*interp_elf_ex), 0);
916 if (retval < 0)
917 goto out_free_dentry;
918
919 break;
920
921 out_free_interp:
922 kfree(elf_interpreter);
923 goto out_free_ph;
924 }
925
926 elf_ppnt = elf_phdata;
927 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
928 switch (elf_ppnt->p_type) {
929 case PT_GNU_STACK:
930 if (elf_ppnt->p_flags & PF_X)
931 executable_stack = EXSTACK_ENABLE_X;
932 else
933 executable_stack = EXSTACK_DISABLE_X;
934 break;
935
936 case PT_LOPROC ... PT_HIPROC:
937 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
938 bprm->file, false,
939 &arch_state);
940 if (retval)
941 goto out_free_dentry;
942 break;
943 }
944
945 /* Some simple consistency checks for the interpreter */
946 if (interpreter) {
947 retval = -ELIBBAD;
948 /* Not an ELF interpreter */
949 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
950 goto out_free_dentry;
951 /* Verify the interpreter has a valid arch */
952 if (!elf_check_arch(interp_elf_ex) ||
953 elf_check_fdpic(interp_elf_ex))
954 goto out_free_dentry;
955
956 /* Load the interpreter program headers */
957 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
958 interpreter);
959 if (!interp_elf_phdata)
960 goto out_free_dentry;
961
962 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
963 elf_property_phdata = NULL;
964 elf_ppnt = interp_elf_phdata;
965 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
966 switch (elf_ppnt->p_type) {
967 case PT_GNU_PROPERTY:
968 elf_property_phdata = elf_ppnt;
969 break;
970
971 case PT_LOPROC ... PT_HIPROC:
972 retval = arch_elf_pt_proc(interp_elf_ex,
973 elf_ppnt, interpreter,
974 true, &arch_state);
975 if (retval)
976 goto out_free_dentry;
977 break;
978 }
979 }
980
981 retval = parse_elf_properties(interpreter ?: bprm->file,
982 elf_property_phdata, &arch_state);
983 if (retval)
984 goto out_free_dentry;
985
986 /*
987 * Allow arch code to reject the ELF at this point, whilst it's
988 * still possible to return an error to the code that invoked
989 * the exec syscall.
990 */
991 retval = arch_check_elf(elf_ex,
992 !!interpreter, interp_elf_ex,
993 &arch_state);
994 if (retval)
995 goto out_free_dentry;
996
997 /* Flush all traces of the currently running executable */
998 retval = begin_new_exec(bprm);
999 if (retval)
1000 goto out_free_dentry;
1001
1002 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1003 may depend on the personality. */
1004 SET_PERSONALITY2(*elf_ex, &arch_state);
1005 if (elf_read_implies_exec(*elf_ex, executable_stack))
1006 current->personality |= READ_IMPLIES_EXEC;
1007
1008 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1009 current->flags |= PF_RANDOMIZE;
1010
1011 setup_new_exec(bprm);
1012
1013 /* Do this so that we can load the interpreter, if need be. We will
1014 change some of these later */
1015 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1016 executable_stack);
1017 if (retval < 0)
1018 goto out_free_dentry;
1019
1020 elf_bss = 0;
1021 elf_brk = 0;
1022
1023 start_code = ~0UL;
1024 end_code = 0;
1025 start_data = 0;
1026 end_data = 0;
1027
1028 /* Now we do a little grungy work by mmapping the ELF image into
1029 the correct location in memory. */
1030 for(i = 0, elf_ppnt = elf_phdata;
1031 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1032 int elf_prot, elf_flags;
1033 unsigned long k, vaddr;
1034 unsigned long total_size = 0;
1035 unsigned long alignment;
1036
1037 if (elf_ppnt->p_type != PT_LOAD)
1038 continue;
1039
1040 if (unlikely (elf_brk > elf_bss)) {
1041 unsigned long nbyte;
1042
1043 /* There was a PT_LOAD segment with p_memsz > p_filesz
1044 before this one. Map anonymous pages, if needed,
1045 and clear the area. */
1046 retval = set_brk(elf_bss + load_bias,
1047 elf_brk + load_bias,
1048 bss_prot);
1049 if (retval)
1050 goto out_free_dentry;
1051 nbyte = ELF_PAGEOFFSET(elf_bss);
1052 if (nbyte) {
1053 nbyte = ELF_MIN_ALIGN - nbyte;
1054 if (nbyte > elf_brk - elf_bss)
1055 nbyte = elf_brk - elf_bss;
1056 if (clear_user((void __user *)elf_bss +
1057 load_bias, nbyte)) {
1058 /*
1059 * This bss-zeroing can fail if the ELF
1060 * file specifies odd protections. So
1061 * we don't check the return value
1062 */
1063 }
1064 }
1065 }
1066
1067 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1068 !!interpreter, false);
1069
1070 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
1071
1072 vaddr = elf_ppnt->p_vaddr;
1073 /*
1074 * If we are loading ET_EXEC or we have already performed
1075 * the ET_DYN load_addr calculations, proceed normally.
1076 */
1077 if (elf_ex->e_type == ET_EXEC || load_addr_set) {
1078 elf_flags |= MAP_FIXED;
1079 } else if (elf_ex->e_type == ET_DYN) {
1080 /*
1081 * This logic is run once for the first LOAD Program
1082 * Header for ET_DYN binaries to calculate the
1083 * randomization (load_bias) for all the LOAD
1084 * Program Headers, and to calculate the entire
1085 * size of the ELF mapping (total_size). (Note that
1086 * load_addr_set is set to true later once the
1087 * initial mapping is performed.)
1088 *
1089 * There are effectively two types of ET_DYN
1090 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1091 * and loaders (ET_DYN without INTERP, since they
1092 * _are_ the ELF interpreter). The loaders must
1093 * be loaded away from programs since the program
1094 * may otherwise collide with the loader (especially
1095 * for ET_EXEC which does not have a randomized
1096 * position). For example to handle invocations of
1097 * "./ld.so someprog" to test out a new version of
1098 * the loader, the subsequent program that the
1099 * loader loads must avoid the loader itself, so
1100 * they cannot share the same load range. Sufficient
1101 * room for the brk must be allocated with the
1102 * loader as well, since brk must be available with
1103 * the loader.
1104 *
1105 * Therefore, programs are loaded offset from
1106 * ELF_ET_DYN_BASE and loaders are loaded into the
1107 * independently randomized mmap region (0 load_bias
1108 * without MAP_FIXED).
1109 */
1110 if (interpreter) {
1111 load_bias = ELF_ET_DYN_BASE;
1112 if (current->flags & PF_RANDOMIZE)
1113 load_bias += arch_mmap_rnd();
1114 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1115 if (alignment)
1116 load_bias &= ~(alignment - 1);
1117 elf_flags |= MAP_FIXED;
1118 } else
1119 load_bias = 0;
1120
1121 /*
1122 * Since load_bias is used for all subsequent loading
1123 * calculations, we must lower it by the first vaddr
1124 * so that the remaining calculations based on the
1125 * ELF vaddrs will be correctly offset. The result
1126 * is then page aligned.
1127 */
1128 load_bias = ELF_PAGESTART(load_bias - vaddr);
1129
1130 total_size = total_mapping_size(elf_phdata,
1131 elf_ex->e_phnum);
1132 if (!total_size) {
1133 retval = -EINVAL;
1134 goto out_free_dentry;
1135 }
1136 }
1137
1138 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1139 elf_prot, elf_flags, total_size);
1140 if (BAD_ADDR(error)) {
1141 retval = IS_ERR((void *)error) ?
1142 PTR_ERR((void*)error) : -EINVAL;
1143 goto out_free_dentry;
1144 }
1145
1146 if (!load_addr_set) {
1147 load_addr_set = 1;
1148 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1149 if (elf_ex->e_type == ET_DYN) {
1150 load_bias += error -
1151 ELF_PAGESTART(load_bias + vaddr);
1152 load_addr += load_bias;
1153 reloc_func_desc = load_bias;
1154 }
1155 }
1156 k = elf_ppnt->p_vaddr;
1157 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1158 start_code = k;
1159 if (start_data < k)
1160 start_data = k;
1161
1162 /*
1163 * Check to see if the section's size will overflow the
1164 * allowed task size. Note that p_filesz must always be
1165 * <= p_memsz so it is only necessary to check p_memsz.
1166 */
1167 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1168 elf_ppnt->p_memsz > TASK_SIZE ||
1169 TASK_SIZE - elf_ppnt->p_memsz < k) {
1170 /* set_brk can never work. Avoid overflows. */
1171 retval = -EINVAL;
1172 goto out_free_dentry;
1173 }
1174
1175 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1176
1177 if (k > elf_bss)
1178 elf_bss = k;
1179 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1180 end_code = k;
1181 if (end_data < k)
1182 end_data = k;
1183 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1184 if (k > elf_brk) {
1185 bss_prot = elf_prot;
1186 elf_brk = k;
1187 }
1188 }
1189
1190 e_entry = elf_ex->e_entry + load_bias;
1191 elf_bss += load_bias;
1192 elf_brk += load_bias;
1193 start_code += load_bias;
1194 end_code += load_bias;
1195 start_data += load_bias;
1196 end_data += load_bias;
1197
1198 /* Calling set_brk effectively mmaps the pages that we need
1199 * for the bss and break sections. We must do this before
1200 * mapping in the interpreter, to make sure it doesn't wind
1201 * up getting placed where the bss needs to go.
1202 */
1203 retval = set_brk(elf_bss, elf_brk, bss_prot);
1204 if (retval)
1205 goto out_free_dentry;
1206 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1207 retval = -EFAULT; /* Nobody gets to see this, but.. */
1208 goto out_free_dentry;
1209 }
1210
1211 if (interpreter) {
1212 elf_entry = load_elf_interp(interp_elf_ex,
1213 interpreter,
1214 load_bias, interp_elf_phdata,
1215 &arch_state);
1216 if (!IS_ERR((void *)elf_entry)) {
1217 /*
1218 * load_elf_interp() returns relocation
1219 * adjustment
1220 */
1221 interp_load_addr = elf_entry;
1222 elf_entry += interp_elf_ex->e_entry;
1223 }
1224 if (BAD_ADDR(elf_entry)) {
1225 retval = IS_ERR((void *)elf_entry) ?
1226 (int)elf_entry : -EINVAL;
1227 goto out_free_dentry;
1228 }
1229 reloc_func_desc = interp_load_addr;
1230
1231 allow_write_access(interpreter);
1232 fput(interpreter);
1233
1234 kfree(interp_elf_ex);
1235 kfree(interp_elf_phdata);
1236 } else {
1237 elf_entry = e_entry;
1238 if (BAD_ADDR(elf_entry)) {
1239 retval = -EINVAL;
1240 goto out_free_dentry;
1241 }
1242 }
1243
1244 kfree(elf_phdata);
1245
1246 set_binfmt(&elf_format);
1247
1248 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1249 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1250 if (retval < 0)
1251 goto out;
1252 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1253
1254 retval = create_elf_tables(bprm, elf_ex,
1255 load_addr, interp_load_addr, e_entry);
1256 if (retval < 0)
1257 goto out;
1258
1259 mm = current->mm;
1260 mm->end_code = end_code;
1261 mm->start_code = start_code;
1262 mm->start_data = start_data;
1263 mm->end_data = end_data;
1264 mm->start_stack = bprm->p;
1265
1266 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1267 /*
1268 * For architectures with ELF randomization, when executing
1269 * a loader directly (i.e. no interpreter listed in ELF
1270 * headers), move the brk area out of the mmap region
1271 * (since it grows up, and may collide early with the stack
1272 * growing down), and into the unused ELF_ET_DYN_BASE region.
1273 */
1274 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1275 elf_ex->e_type == ET_DYN && !interpreter) {
1276 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1277 }
1278
1279 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1280 #ifdef compat_brk_randomized
1281 current->brk_randomized = 1;
1282 #endif
1283 }
1284
1285 if (current->personality & MMAP_PAGE_ZERO) {
1286 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1287 and some applications "depend" upon this behavior.
1288 Since we do not have the power to recompile these, we
1289 emulate the SVr4 behavior. Sigh. */
1290 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1291 MAP_FIXED | MAP_PRIVATE, 0);
1292 }
1293
1294 regs = current_pt_regs();
1295 #ifdef ELF_PLAT_INIT
1296 /*
1297 * The ABI may specify that certain registers be set up in special
1298 * ways (on i386 %edx is the address of a DT_FINI function, for
1299 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1300 * that the e_entry field is the address of the function descriptor
1301 * for the startup routine, rather than the address of the startup
1302 * routine itself. This macro performs whatever initialization to
1303 * the regs structure is required as well as any relocations to the
1304 * function descriptor entries when executing dynamically links apps.
1305 */
1306 ELF_PLAT_INIT(regs, reloc_func_desc);
1307 #endif
1308
1309 finalize_exec(bprm);
1310 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1311 retval = 0;
1312 out:
1313 return retval;
1314
1315 /* error cleanup */
1316 out_free_dentry:
1317 kfree(interp_elf_ex);
1318 kfree(interp_elf_phdata);
1319 allow_write_access(interpreter);
1320 if (interpreter)
1321 fput(interpreter);
1322 out_free_ph:
1323 kfree(elf_phdata);
1324 goto out;
1325 }
1326
1327 #ifdef CONFIG_USELIB
1328 /* This is really simpleminded and specialized - we are loading an
1329 a.out library that is given an ELF header. */
1330 static int load_elf_library(struct file *file)
1331 {
1332 struct elf_phdr *elf_phdata;
1333 struct elf_phdr *eppnt;
1334 unsigned long elf_bss, bss, len;
1335 int retval, error, i, j;
1336 struct elfhdr elf_ex;
1337
1338 error = -ENOEXEC;
1339 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1340 if (retval < 0)
1341 goto out;
1342
1343 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1344 goto out;
1345
1346 /* First of all, some simple consistency checks */
1347 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1348 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1349 goto out;
1350 if (elf_check_fdpic(&elf_ex))
1351 goto out;
1352
1353 /* Now read in all of the header information */
1354
1355 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1356 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1357
1358 error = -ENOMEM;
1359 elf_phdata = kmalloc(j, GFP_KERNEL);
1360 if (!elf_phdata)
1361 goto out;
1362
1363 eppnt = elf_phdata;
1364 error = -ENOEXEC;
1365 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1366 if (retval < 0)
1367 goto out_free_ph;
1368
1369 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1370 if ((eppnt + i)->p_type == PT_LOAD)
1371 j++;
1372 if (j != 1)
1373 goto out_free_ph;
1374
1375 while (eppnt->p_type != PT_LOAD)
1376 eppnt++;
1377
1378 /* Now use mmap to map the library into memory. */
1379 error = vm_mmap(file,
1380 ELF_PAGESTART(eppnt->p_vaddr),
1381 (eppnt->p_filesz +
1382 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1383 PROT_READ | PROT_WRITE | PROT_EXEC,
1384 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1385 (eppnt->p_offset -
1386 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1387 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1388 goto out_free_ph;
1389
1390 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1391 if (padzero(elf_bss)) {
1392 error = -EFAULT;
1393 goto out_free_ph;
1394 }
1395
1396 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1397 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1398 if (bss > len) {
1399 error = vm_brk(len, bss - len);
1400 if (error)
1401 goto out_free_ph;
1402 }
1403 error = 0;
1404
1405 out_free_ph:
1406 kfree(elf_phdata);
1407 out:
1408 return error;
1409 }
1410 #endif /* #ifdef CONFIG_USELIB */
1411
1412 #ifdef CONFIG_ELF_CORE
1413 /*
1414 * ELF core dumper
1415 *
1416 * Modelled on fs/exec.c:aout_core_dump()
1417 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1418 */
1419
1420 /* An ELF note in memory */
1421 struct memelfnote
1422 {
1423 const char *name;
1424 int type;
1425 unsigned int datasz;
1426 void *data;
1427 };
1428
1429 static int notesize(struct memelfnote *en)
1430 {
1431 int sz;
1432
1433 sz = sizeof(struct elf_note);
1434 sz += roundup(strlen(en->name) + 1, 4);
1435 sz += roundup(en->datasz, 4);
1436
1437 return sz;
1438 }
1439
1440 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1441 {
1442 struct elf_note en;
1443 en.n_namesz = strlen(men->name) + 1;
1444 en.n_descsz = men->datasz;
1445 en.n_type = men->type;
1446
1447 return dump_emit(cprm, &en, sizeof(en)) &&
1448 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1449 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1450 }
1451
1452 static void fill_elf_header(struct elfhdr *elf, int segs,
1453 u16 machine, u32 flags)
1454 {
1455 memset(elf, 0, sizeof(*elf));
1456
1457 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1458 elf->e_ident[EI_CLASS] = ELF_CLASS;
1459 elf->e_ident[EI_DATA] = ELF_DATA;
1460 elf->e_ident[EI_VERSION] = EV_CURRENT;
1461 elf->e_ident[EI_OSABI] = ELF_OSABI;
1462
1463 elf->e_type = ET_CORE;
1464 elf->e_machine = machine;
1465 elf->e_version = EV_CURRENT;
1466 elf->e_phoff = sizeof(struct elfhdr);
1467 elf->e_flags = flags;
1468 elf->e_ehsize = sizeof(struct elfhdr);
1469 elf->e_phentsize = sizeof(struct elf_phdr);
1470 elf->e_phnum = segs;
1471 }
1472
1473 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1474 {
1475 phdr->p_type = PT_NOTE;
1476 phdr->p_offset = offset;
1477 phdr->p_vaddr = 0;
1478 phdr->p_paddr = 0;
1479 phdr->p_filesz = sz;
1480 phdr->p_memsz = 0;
1481 phdr->p_flags = 0;
1482 phdr->p_align = 0;
1483 }
1484
1485 static void fill_note(struct memelfnote *note, const char *name, int type,
1486 unsigned int sz, void *data)
1487 {
1488 note->name = name;
1489 note->type = type;
1490 note->datasz = sz;
1491 note->data = data;
1492 }
1493
1494 /*
1495 * fill up all the fields in prstatus from the given task struct, except
1496 * registers which need to be filled up separately.
1497 */
1498 static void fill_prstatus(struct elf_prstatus *prstatus,
1499 struct task_struct *p, long signr)
1500 {
1501 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1502 prstatus->pr_sigpend = p->pending.signal.sig[0];
1503 prstatus->pr_sighold = p->blocked.sig[0];
1504 rcu_read_lock();
1505 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1506 rcu_read_unlock();
1507 prstatus->pr_pid = task_pid_vnr(p);
1508 prstatus->pr_pgrp = task_pgrp_vnr(p);
1509 prstatus->pr_sid = task_session_vnr(p);
1510 if (thread_group_leader(p)) {
1511 struct task_cputime cputime;
1512
1513 /*
1514 * This is the record for the group leader. It shows the
1515 * group-wide total, not its individual thread total.
1516 */
1517 thread_group_cputime(p, &cputime);
1518 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1519 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1520 } else {
1521 u64 utime, stime;
1522
1523 task_cputime(p, &utime, &stime);
1524 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1525 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1526 }
1527
1528 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1529 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1530 }
1531
1532 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1533 struct mm_struct *mm)
1534 {
1535 const struct cred *cred;
1536 unsigned int i, len;
1537
1538 /* first copy the parameters from user space */
1539 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1540
1541 len = mm->arg_end - mm->arg_start;
1542 if (len >= ELF_PRARGSZ)
1543 len = ELF_PRARGSZ-1;
1544 if (copy_from_user(&psinfo->pr_psargs,
1545 (const char __user *)mm->arg_start, len))
1546 return -EFAULT;
1547 for(i = 0; i < len; i++)
1548 if (psinfo->pr_psargs[i] == 0)
1549 psinfo->pr_psargs[i] = ' ';
1550 psinfo->pr_psargs[len] = 0;
1551
1552 rcu_read_lock();
1553 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1554 rcu_read_unlock();
1555 psinfo->pr_pid = task_pid_vnr(p);
1556 psinfo->pr_pgrp = task_pgrp_vnr(p);
1557 psinfo->pr_sid = task_session_vnr(p);
1558
1559 i = p->state ? ffz(~p->state) + 1 : 0;
1560 psinfo->pr_state = i;
1561 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1562 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1563 psinfo->pr_nice = task_nice(p);
1564 psinfo->pr_flag = p->flags;
1565 rcu_read_lock();
1566 cred = __task_cred(p);
1567 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1568 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1569 rcu_read_unlock();
1570 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1571
1572 return 0;
1573 }
1574
1575 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1576 {
1577 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1578 int i = 0;
1579 do
1580 i += 2;
1581 while (auxv[i - 2] != AT_NULL);
1582 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1583 }
1584
1585 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1586 const kernel_siginfo_t *siginfo)
1587 {
1588 copy_siginfo_to_external(csigdata, siginfo);
1589 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1590 }
1591
1592 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1593 /*
1594 * Format of NT_FILE note:
1595 *
1596 * long count -- how many files are mapped
1597 * long page_size -- units for file_ofs
1598 * array of [COUNT] elements of
1599 * long start
1600 * long end
1601 * long file_ofs
1602 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1603 */
1604 static int fill_files_note(struct memelfnote *note)
1605 {
1606 struct mm_struct *mm = current->mm;
1607 struct vm_area_struct *vma;
1608 unsigned count, size, names_ofs, remaining, n;
1609 user_long_t *data;
1610 user_long_t *start_end_ofs;
1611 char *name_base, *name_curpos;
1612
1613 /* *Estimated* file count and total data size needed */
1614 count = mm->map_count;
1615 if (count > UINT_MAX / 64)
1616 return -EINVAL;
1617 size = count * 64;
1618
1619 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1620 alloc:
1621 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1622 return -EINVAL;
1623 size = round_up(size, PAGE_SIZE);
1624 /*
1625 * "size" can be 0 here legitimately.
1626 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1627 */
1628 data = kvmalloc(size, GFP_KERNEL);
1629 if (ZERO_OR_NULL_PTR(data))
1630 return -ENOMEM;
1631
1632 start_end_ofs = data + 2;
1633 name_base = name_curpos = ((char *)data) + names_ofs;
1634 remaining = size - names_ofs;
1635 count = 0;
1636 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1637 struct file *file;
1638 const char *filename;
1639
1640 file = vma->vm_file;
1641 if (!file)
1642 continue;
1643 filename = file_path(file, name_curpos, remaining);
1644 if (IS_ERR(filename)) {
1645 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1646 kvfree(data);
1647 size = size * 5 / 4;
1648 goto alloc;
1649 }
1650 continue;
1651 }
1652
1653 /* file_path() fills at the end, move name down */
1654 /* n = strlen(filename) + 1: */
1655 n = (name_curpos + remaining) - filename;
1656 remaining = filename - name_curpos;
1657 memmove(name_curpos, filename, n);
1658 name_curpos += n;
1659
1660 *start_end_ofs++ = vma->vm_start;
1661 *start_end_ofs++ = vma->vm_end;
1662 *start_end_ofs++ = vma->vm_pgoff;
1663 count++;
1664 }
1665
1666 /* Now we know exact count of files, can store it */
1667 data[0] = count;
1668 data[1] = PAGE_SIZE;
1669 /*
1670 * Count usually is less than mm->map_count,
1671 * we need to move filenames down.
1672 */
1673 n = mm->map_count - count;
1674 if (n != 0) {
1675 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1676 memmove(name_base - shift_bytes, name_base,
1677 name_curpos - name_base);
1678 name_curpos -= shift_bytes;
1679 }
1680
1681 size = name_curpos - (char *)data;
1682 fill_note(note, "CORE", NT_FILE, size, data);
1683 return 0;
1684 }
1685
1686 #ifdef CORE_DUMP_USE_REGSET
1687 #include <linux/regset.h>
1688
1689 struct elf_thread_core_info {
1690 struct elf_thread_core_info *next;
1691 struct task_struct *task;
1692 struct elf_prstatus prstatus;
1693 struct memelfnote notes[];
1694 };
1695
1696 struct elf_note_info {
1697 struct elf_thread_core_info *thread;
1698 struct memelfnote psinfo;
1699 struct memelfnote signote;
1700 struct memelfnote auxv;
1701 struct memelfnote files;
1702 user_siginfo_t csigdata;
1703 size_t size;
1704 int thread_notes;
1705 };
1706
1707 /*
1708 * When a regset has a writeback hook, we call it on each thread before
1709 * dumping user memory. On register window machines, this makes sure the
1710 * user memory backing the register data is up to date before we read it.
1711 */
1712 static void do_thread_regset_writeback(struct task_struct *task,
1713 const struct user_regset *regset)
1714 {
1715 if (regset->writeback)
1716 regset->writeback(task, regset, 1);
1717 }
1718
1719 #ifndef PRSTATUS_SIZE
1720 #define PRSTATUS_SIZE(S, R) sizeof(S)
1721 #endif
1722
1723 #ifndef SET_PR_FPVALID
1724 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1725 #endif
1726
1727 static int fill_thread_core_info(struct elf_thread_core_info *t,
1728 const struct user_regset_view *view,
1729 long signr, size_t *total)
1730 {
1731 unsigned int i;
1732 int regset0_size;
1733
1734 /*
1735 * NT_PRSTATUS is the one special case, because the regset data
1736 * goes into the pr_reg field inside the note contents, rather
1737 * than being the whole note contents. We fill the reset in here.
1738 * We assume that regset 0 is NT_PRSTATUS.
1739 */
1740 fill_prstatus(&t->prstatus, t->task, signr);
1741 regset0_size = regset_get(t->task, &view->regsets[0],
1742 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1743 if (regset0_size < 0)
1744 return 0;
1745
1746 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1747 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1748 *total += notesize(&t->notes[0]);
1749
1750 do_thread_regset_writeback(t->task, &view->regsets[0]);
1751
1752 /*
1753 * Each other regset might generate a note too. For each regset
1754 * that has no core_note_type or is inactive, we leave t->notes[i]
1755 * all zero and we'll know to skip writing it later.
1756 */
1757 for (i = 1; i < view->n; ++i) {
1758 const struct user_regset *regset = &view->regsets[i];
1759 int note_type = regset->core_note_type;
1760 bool is_fpreg = note_type == NT_PRFPREG;
1761 void *data;
1762 int ret;
1763
1764 do_thread_regset_writeback(t->task, regset);
1765 if (!note_type) // not for coredumps
1766 continue;
1767 if (regset->active && regset->active(t->task, regset) <= 0)
1768 continue;
1769
1770 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1771 if (ret < 0)
1772 continue;
1773
1774 if (is_fpreg)
1775 SET_PR_FPVALID(&t->prstatus, 1, regset0_size);
1776
1777 fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX",
1778 note_type, ret, data);
1779
1780 *total += notesize(&t->notes[i]);
1781 }
1782
1783 return 1;
1784 }
1785
1786 static int fill_note_info(struct elfhdr *elf, int phdrs,
1787 struct elf_note_info *info,
1788 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1789 {
1790 struct task_struct *dump_task = current;
1791 const struct user_regset_view *view = task_user_regset_view(dump_task);
1792 struct elf_thread_core_info *t;
1793 struct elf_prpsinfo *psinfo;
1794 struct core_thread *ct;
1795 unsigned int i;
1796
1797 info->size = 0;
1798 info->thread = NULL;
1799
1800 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1801 if (psinfo == NULL) {
1802 info->psinfo.data = NULL; /* So we don't free this wrongly */
1803 return 0;
1804 }
1805
1806 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1807
1808 /*
1809 * Figure out how many notes we're going to need for each thread.
1810 */
1811 info->thread_notes = 0;
1812 for (i = 0; i < view->n; ++i)
1813 if (view->regsets[i].core_note_type != 0)
1814 ++info->thread_notes;
1815
1816 /*
1817 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1818 * since it is our one special case.
1819 */
1820 if (unlikely(info->thread_notes == 0) ||
1821 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1822 WARN_ON(1);
1823 return 0;
1824 }
1825
1826 /*
1827 * Initialize the ELF file header.
1828 */
1829 fill_elf_header(elf, phdrs,
1830 view->e_machine, view->e_flags);
1831
1832 /*
1833 * Allocate a structure for each thread.
1834 */
1835 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1836 t = kzalloc(offsetof(struct elf_thread_core_info,
1837 notes[info->thread_notes]),
1838 GFP_KERNEL);
1839 if (unlikely(!t))
1840 return 0;
1841
1842 t->task = ct->task;
1843 if (ct->task == dump_task || !info->thread) {
1844 t->next = info->thread;
1845 info->thread = t;
1846 } else {
1847 /*
1848 * Make sure to keep the original task at
1849 * the head of the list.
1850 */
1851 t->next = info->thread->next;
1852 info->thread->next = t;
1853 }
1854 }
1855
1856 /*
1857 * Now fill in each thread's information.
1858 */
1859 for (t = info->thread; t != NULL; t = t->next)
1860 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1861 return 0;
1862
1863 /*
1864 * Fill in the two process-wide notes.
1865 */
1866 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1867 info->size += notesize(&info->psinfo);
1868
1869 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1870 info->size += notesize(&info->signote);
1871
1872 fill_auxv_note(&info->auxv, current->mm);
1873 info->size += notesize(&info->auxv);
1874
1875 if (fill_files_note(&info->files) == 0)
1876 info->size += notesize(&info->files);
1877
1878 return 1;
1879 }
1880
1881 static size_t get_note_info_size(struct elf_note_info *info)
1882 {
1883 return info->size;
1884 }
1885
1886 /*
1887 * Write all the notes for each thread. When writing the first thread, the
1888 * process-wide notes are interleaved after the first thread-specific note.
1889 */
1890 static int write_note_info(struct elf_note_info *info,
1891 struct coredump_params *cprm)
1892 {
1893 bool first = true;
1894 struct elf_thread_core_info *t = info->thread;
1895
1896 do {
1897 int i;
1898
1899 if (!writenote(&t->notes[0], cprm))
1900 return 0;
1901
1902 if (first && !writenote(&info->psinfo, cprm))
1903 return 0;
1904 if (first && !writenote(&info->signote, cprm))
1905 return 0;
1906 if (first && !writenote(&info->auxv, cprm))
1907 return 0;
1908 if (first && info->files.data &&
1909 !writenote(&info->files, cprm))
1910 return 0;
1911
1912 for (i = 1; i < info->thread_notes; ++i)
1913 if (t->notes[i].data &&
1914 !writenote(&t->notes[i], cprm))
1915 return 0;
1916
1917 first = false;
1918 t = t->next;
1919 } while (t);
1920
1921 return 1;
1922 }
1923
1924 static void free_note_info(struct elf_note_info *info)
1925 {
1926 struct elf_thread_core_info *threads = info->thread;
1927 while (threads) {
1928 unsigned int i;
1929 struct elf_thread_core_info *t = threads;
1930 threads = t->next;
1931 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1932 for (i = 1; i < info->thread_notes; ++i)
1933 kfree(t->notes[i].data);
1934 kfree(t);
1935 }
1936 kfree(info->psinfo.data);
1937 kvfree(info->files.data);
1938 }
1939
1940 #else
1941
1942 /* Here is the structure in which status of each thread is captured. */
1943 struct elf_thread_status
1944 {
1945 struct list_head list;
1946 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1947 elf_fpregset_t fpu; /* NT_PRFPREG */
1948 struct task_struct *thread;
1949 struct memelfnote notes[3];
1950 int num_notes;
1951 };
1952
1953 /*
1954 * In order to add the specific thread information for the elf file format,
1955 * we need to keep a linked list of every threads pr_status and then create
1956 * a single section for them in the final core file.
1957 */
1958 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1959 {
1960 int sz = 0;
1961 struct task_struct *p = t->thread;
1962 t->num_notes = 0;
1963
1964 fill_prstatus(&t->prstatus, p, signr);
1965 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1966
1967 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1968 &(t->prstatus));
1969 t->num_notes++;
1970 sz += notesize(&t->notes[0]);
1971
1972 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1973 &t->fpu))) {
1974 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1975 &(t->fpu));
1976 t->num_notes++;
1977 sz += notesize(&t->notes[1]);
1978 }
1979 return sz;
1980 }
1981
1982 struct elf_note_info {
1983 struct memelfnote *notes;
1984 struct memelfnote *notes_files;
1985 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1986 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1987 struct list_head thread_list;
1988 elf_fpregset_t *fpu;
1989 user_siginfo_t csigdata;
1990 int thread_status_size;
1991 int numnote;
1992 };
1993
1994 static int elf_note_info_init(struct elf_note_info *info)
1995 {
1996 memset(info, 0, sizeof(*info));
1997 INIT_LIST_HEAD(&info->thread_list);
1998
1999 /* Allocate space for ELF notes */
2000 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2001 if (!info->notes)
2002 return 0;
2003 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2004 if (!info->psinfo)
2005 return 0;
2006 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2007 if (!info->prstatus)
2008 return 0;
2009 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2010 if (!info->fpu)
2011 return 0;
2012 return 1;
2013 }
2014
2015 static int fill_note_info(struct elfhdr *elf, int phdrs,
2016 struct elf_note_info *info,
2017 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2018 {
2019 struct core_thread *ct;
2020 struct elf_thread_status *ets;
2021
2022 if (!elf_note_info_init(info))
2023 return 0;
2024
2025 for (ct = current->mm->core_state->dumper.next;
2026 ct; ct = ct->next) {
2027 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2028 if (!ets)
2029 return 0;
2030
2031 ets->thread = ct->task;
2032 list_add(&ets->list, &info->thread_list);
2033 }
2034
2035 list_for_each_entry(ets, &info->thread_list, list) {
2036 int sz;
2037
2038 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2039 info->thread_status_size += sz;
2040 }
2041 /* now collect the dump for the current */
2042 memset(info->prstatus, 0, sizeof(*info->prstatus));
2043 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2044 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2045
2046 /* Set up header */
2047 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2048
2049 /*
2050 * Set up the notes in similar form to SVR4 core dumps made
2051 * with info from their /proc.
2052 */
2053
2054 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2055 sizeof(*info->prstatus), info->prstatus);
2056 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2057 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2058 sizeof(*info->psinfo), info->psinfo);
2059
2060 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2061 fill_auxv_note(info->notes + 3, current->mm);
2062 info->numnote = 4;
2063
2064 if (fill_files_note(info->notes + info->numnote) == 0) {
2065 info->notes_files = info->notes + info->numnote;
2066 info->numnote++;
2067 }
2068
2069 /* Try to dump the FPU. */
2070 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2071 info->fpu);
2072 if (info->prstatus->pr_fpvalid)
2073 fill_note(info->notes + info->numnote++,
2074 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2075 return 1;
2076 }
2077
2078 static size_t get_note_info_size(struct elf_note_info *info)
2079 {
2080 int sz = 0;
2081 int i;
2082
2083 for (i = 0; i < info->numnote; i++)
2084 sz += notesize(info->notes + i);
2085
2086 sz += info->thread_status_size;
2087
2088 return sz;
2089 }
2090
2091 static int write_note_info(struct elf_note_info *info,
2092 struct coredump_params *cprm)
2093 {
2094 struct elf_thread_status *ets;
2095 int i;
2096
2097 for (i = 0; i < info->numnote; i++)
2098 if (!writenote(info->notes + i, cprm))
2099 return 0;
2100
2101 /* write out the thread status notes section */
2102 list_for_each_entry(ets, &info->thread_list, list) {
2103 for (i = 0; i < ets->num_notes; i++)
2104 if (!writenote(&ets->notes[i], cprm))
2105 return 0;
2106 }
2107
2108 return 1;
2109 }
2110
2111 static void free_note_info(struct elf_note_info *info)
2112 {
2113 while (!list_empty(&info->thread_list)) {
2114 struct list_head *tmp = info->thread_list.next;
2115 list_del(tmp);
2116 kfree(list_entry(tmp, struct elf_thread_status, list));
2117 }
2118
2119 /* Free data possibly allocated by fill_files_note(): */
2120 if (info->notes_files)
2121 kvfree(info->notes_files->data);
2122
2123 kfree(info->prstatus);
2124 kfree(info->psinfo);
2125 kfree(info->notes);
2126 kfree(info->fpu);
2127 }
2128
2129 #endif
2130
2131 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2132 elf_addr_t e_shoff, int segs)
2133 {
2134 elf->e_shoff = e_shoff;
2135 elf->e_shentsize = sizeof(*shdr4extnum);
2136 elf->e_shnum = 1;
2137 elf->e_shstrndx = SHN_UNDEF;
2138
2139 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2140
2141 shdr4extnum->sh_type = SHT_NULL;
2142 shdr4extnum->sh_size = elf->e_shnum;
2143 shdr4extnum->sh_link = elf->e_shstrndx;
2144 shdr4extnum->sh_info = segs;
2145 }
2146
2147 /*
2148 * Actual dumper
2149 *
2150 * This is a two-pass process; first we find the offsets of the bits,
2151 * and then they are actually written out. If we run out of core limit
2152 * we just truncate.
2153 */
2154 static int elf_core_dump(struct coredump_params *cprm)
2155 {
2156 int has_dumped = 0;
2157 int vma_count, segs, i;
2158 size_t vma_data_size;
2159 struct elfhdr elf;
2160 loff_t offset = 0, dataoff;
2161 struct elf_note_info info = { };
2162 struct elf_phdr *phdr4note = NULL;
2163 struct elf_shdr *shdr4extnum = NULL;
2164 Elf_Half e_phnum;
2165 elf_addr_t e_shoff;
2166 struct core_vma_metadata *vma_meta;
2167
2168 if (dump_vma_snapshot(cprm, &vma_count, &vma_meta, &vma_data_size))
2169 return 0;
2170
2171 /*
2172 * The number of segs are recored into ELF header as 16bit value.
2173 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2174 */
2175 segs = vma_count + elf_core_extra_phdrs();
2176
2177 /* for notes section */
2178 segs++;
2179
2180 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2181 * this, kernel supports extended numbering. Have a look at
2182 * include/linux/elf.h for further information. */
2183 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2184
2185 /*
2186 * Collect all the non-memory information about the process for the
2187 * notes. This also sets up the file header.
2188 */
2189 if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2190 goto end_coredump;
2191
2192 has_dumped = 1;
2193
2194 offset += sizeof(elf); /* Elf header */
2195 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2196
2197 /* Write notes phdr entry */
2198 {
2199 size_t sz = get_note_info_size(&info);
2200
2201 /* For cell spufs */
2202 sz += elf_coredump_extra_notes_size();
2203
2204 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2205 if (!phdr4note)
2206 goto end_coredump;
2207
2208 fill_elf_note_phdr(phdr4note, sz, offset);
2209 offset += sz;
2210 }
2211
2212 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2213
2214 offset += vma_data_size;
2215 offset += elf_core_extra_data_size();
2216 e_shoff = offset;
2217
2218 if (e_phnum == PN_XNUM) {
2219 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2220 if (!shdr4extnum)
2221 goto end_coredump;
2222 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2223 }
2224
2225 offset = dataoff;
2226
2227 if (!dump_emit(cprm, &elf, sizeof(elf)))
2228 goto end_coredump;
2229
2230 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2231 goto end_coredump;
2232
2233 /* Write program headers for segments dump */
2234 for (i = 0; i < vma_count; i++) {
2235 struct core_vma_metadata *meta = vma_meta + i;
2236 struct elf_phdr phdr;
2237
2238 phdr.p_type = PT_LOAD;
2239 phdr.p_offset = offset;
2240 phdr.p_vaddr = meta->start;
2241 phdr.p_paddr = 0;
2242 phdr.p_filesz = meta->dump_size;
2243 phdr.p_memsz = meta->end - meta->start;
2244 offset += phdr.p_filesz;
2245 phdr.p_flags = 0;
2246 if (meta->flags & VM_READ)
2247 phdr.p_flags |= PF_R;
2248 if (meta->flags & VM_WRITE)
2249 phdr.p_flags |= PF_W;
2250 if (meta->flags & VM_EXEC)
2251 phdr.p_flags |= PF_X;
2252 phdr.p_align = ELF_EXEC_PAGESIZE;
2253
2254 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2255 goto end_coredump;
2256 }
2257
2258 if (!elf_core_write_extra_phdrs(cprm, offset))
2259 goto end_coredump;
2260
2261 /* write out the notes section */
2262 if (!write_note_info(&info, cprm))
2263 goto end_coredump;
2264
2265 /* For cell spufs */
2266 if (elf_coredump_extra_notes_write(cprm))
2267 goto end_coredump;
2268
2269 /* Align to page */
2270 if (!dump_skip(cprm, dataoff - cprm->pos))
2271 goto end_coredump;
2272
2273 for (i = 0; i < vma_count; i++) {
2274 struct core_vma_metadata *meta = vma_meta + i;
2275
2276 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2277 goto end_coredump;
2278 }
2279 dump_truncate(cprm);
2280
2281 if (!elf_core_write_extra_data(cprm))
2282 goto end_coredump;
2283
2284 if (e_phnum == PN_XNUM) {
2285 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2286 goto end_coredump;
2287 }
2288
2289 end_coredump:
2290 free_note_info(&info);
2291 kfree(shdr4extnum);
2292 kvfree(vma_meta);
2293 kfree(phdr4note);
2294 return has_dumped;
2295 }
2296
2297 #endif /* CONFIG_ELF_CORE */
2298
2299 static int __init init_elf_binfmt(void)
2300 {
2301 register_binfmt(&elf_format);
2302 return 0;
2303 }
2304
2305 static void __exit exit_elf_binfmt(void)
2306 {
2307 /* Remove the COFF and ELF loaders. */
2308 unregister_binfmt(&elf_format);
2309 }
2310
2311 core_initcall(init_elf_binfmt);
2312 module_exit(exit_elf_binfmt);
2313 MODULE_LICENSE("GPL");