]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/binfmt_elf.c
Merge branch 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar...
[mirror_ubuntu-jammy-kernel.git] / fs / binfmt_elf.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
46 #include <asm/page.h>
47
48 #ifndef user_long_t
49 #define user_long_t long
50 #endif
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
53 #endif
54
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
58 #endif
59
60 static int load_elf_binary(struct linux_binprm *bprm);
61
62 #ifdef CONFIG_USELIB
63 static int load_elf_library(struct file *);
64 #else
65 #define load_elf_library NULL
66 #endif
67
68 /*
69 * If we don't support core dumping, then supply a NULL so we
70 * don't even try.
71 */
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params *cprm);
74 #else
75 #define elf_core_dump NULL
76 #endif
77
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
80 #else
81 #define ELF_MIN_ALIGN PAGE_SIZE
82 #endif
83
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS 0
86 #endif
87
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
91
92 static struct linux_binfmt elf_format = {
93 .module = THIS_MODULE,
94 .load_binary = load_elf_binary,
95 .load_shlib = load_elf_library,
96 .core_dump = elf_core_dump,
97 .min_coredump = ELF_EXEC_PAGESIZE,
98 };
99
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
101
102 static int set_brk(unsigned long start, unsigned long end, int prot)
103 {
104 start = ELF_PAGEALIGN(start);
105 end = ELF_PAGEALIGN(end);
106 if (end > start) {
107 /*
108 * Map the last of the bss segment.
109 * If the header is requesting these pages to be
110 * executable, honour that (ppc32 needs this).
111 */
112 int error = vm_brk_flags(start, end - start,
113 prot & PROT_EXEC ? VM_EXEC : 0);
114 if (error)
115 return error;
116 }
117 current->mm->start_brk = current->mm->brk = end;
118 return 0;
119 }
120
121 /* We need to explicitly zero any fractional pages
122 after the data section (i.e. bss). This would
123 contain the junk from the file that should not
124 be in memory
125 */
126 static int padzero(unsigned long elf_bss)
127 {
128 unsigned long nbyte;
129
130 nbyte = ELF_PAGEOFFSET(elf_bss);
131 if (nbyte) {
132 nbyte = ELF_MIN_ALIGN - nbyte;
133 if (clear_user((void __user *) elf_bss, nbyte))
134 return -EFAULT;
135 }
136 return 0;
137 }
138
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
146 old_sp; })
147 #else
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 (((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
152 #endif
153
154 #ifndef ELF_BASE_PLATFORM
155 /*
156 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158 * will be copied to the user stack in the same manner as AT_PLATFORM.
159 */
160 #define ELF_BASE_PLATFORM NULL
161 #endif
162
163 static int
164 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
165 unsigned long load_addr, unsigned long interp_load_addr)
166 {
167 unsigned long p = bprm->p;
168 int argc = bprm->argc;
169 int envc = bprm->envc;
170 elf_addr_t __user *sp;
171 elf_addr_t __user *u_platform;
172 elf_addr_t __user *u_base_platform;
173 elf_addr_t __user *u_rand_bytes;
174 const char *k_platform = ELF_PLATFORM;
175 const char *k_base_platform = ELF_BASE_PLATFORM;
176 unsigned char k_rand_bytes[16];
177 int items;
178 elf_addr_t *elf_info;
179 int ei_index = 0;
180 const struct cred *cred = current_cred();
181 struct vm_area_struct *vma;
182
183 /*
184 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 * evictions by the processes running on the same package. One
186 * thing we can do is to shuffle the initial stack for them.
187 */
188
189 p = arch_align_stack(p);
190
191 /*
192 * If this architecture has a platform capability string, copy it
193 * to userspace. In some cases (Sparc), this info is impossible
194 * for userspace to get any other way, in others (i386) it is
195 * merely difficult.
196 */
197 u_platform = NULL;
198 if (k_platform) {
199 size_t len = strlen(k_platform) + 1;
200
201 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 if (__copy_to_user(u_platform, k_platform, len))
203 return -EFAULT;
204 }
205
206 /*
207 * If this architecture has a "base" platform capability
208 * string, copy it to userspace.
209 */
210 u_base_platform = NULL;
211 if (k_base_platform) {
212 size_t len = strlen(k_base_platform) + 1;
213
214 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 if (__copy_to_user(u_base_platform, k_base_platform, len))
216 return -EFAULT;
217 }
218
219 /*
220 * Generate 16 random bytes for userspace PRNG seeding.
221 */
222 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
223 u_rand_bytes = (elf_addr_t __user *)
224 STACK_ALLOC(p, sizeof(k_rand_bytes));
225 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
226 return -EFAULT;
227
228 /* Create the ELF interpreter info */
229 elf_info = (elf_addr_t *)current->mm->saved_auxv;
230 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
232 do { \
233 elf_info[ei_index++] = id; \
234 elf_info[ei_index++] = val; \
235 } while (0)
236
237 #ifdef ARCH_DLINFO
238 /*
239 * ARCH_DLINFO must come first so PPC can do its special alignment of
240 * AUXV.
241 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 * ARCH_DLINFO changes
243 */
244 ARCH_DLINFO;
245 #endif
246 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
247 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
248 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
249 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
250 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
251 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
252 NEW_AUX_ENT(AT_BASE, interp_load_addr);
253 NEW_AUX_ENT(AT_FLAGS, 0);
254 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
255 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
256 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
257 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
258 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
259 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
260 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
261 #ifdef ELF_HWCAP2
262 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
263 #endif
264 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
265 if (k_platform) {
266 NEW_AUX_ENT(AT_PLATFORM,
267 (elf_addr_t)(unsigned long)u_platform);
268 }
269 if (k_base_platform) {
270 NEW_AUX_ENT(AT_BASE_PLATFORM,
271 (elf_addr_t)(unsigned long)u_base_platform);
272 }
273 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
274 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
275 }
276 #undef NEW_AUX_ENT
277 /* AT_NULL is zero; clear the rest too */
278 memset(&elf_info[ei_index], 0,
279 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
280
281 /* And advance past the AT_NULL entry. */
282 ei_index += 2;
283
284 sp = STACK_ADD(p, ei_index);
285
286 items = (argc + 1) + (envc + 1) + 1;
287 bprm->p = STACK_ROUND(sp, items);
288
289 /* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
292 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
293 #else
294 sp = (elf_addr_t __user *)bprm->p;
295 #endif
296
297
298 /*
299 * Grow the stack manually; some architectures have a limit on how
300 * far ahead a user-space access may be in order to grow the stack.
301 */
302 vma = find_extend_vma(current->mm, bprm->p);
303 if (!vma)
304 return -EFAULT;
305
306 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 if (__put_user(argc, sp++))
308 return -EFAULT;
309
310 /* Populate list of argv pointers back to argv strings. */
311 p = current->mm->arg_end = current->mm->arg_start;
312 while (argc-- > 0) {
313 size_t len;
314 if (__put_user((elf_addr_t)p, sp++))
315 return -EFAULT;
316 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
317 if (!len || len > MAX_ARG_STRLEN)
318 return -EINVAL;
319 p += len;
320 }
321 if (__put_user(0, sp++))
322 return -EFAULT;
323 current->mm->arg_end = p;
324
325 /* Populate list of envp pointers back to envp strings. */
326 current->mm->env_end = current->mm->env_start = p;
327 while (envc-- > 0) {
328 size_t len;
329 if (__put_user((elf_addr_t)p, sp++))
330 return -EFAULT;
331 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
332 if (!len || len > MAX_ARG_STRLEN)
333 return -EINVAL;
334 p += len;
335 }
336 if (__put_user(0, sp++))
337 return -EFAULT;
338 current->mm->env_end = p;
339
340 /* Put the elf_info on the stack in the right place. */
341 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
342 return -EFAULT;
343 return 0;
344 }
345
346 #ifndef elf_map
347
348 static unsigned long elf_map(struct file *filep, unsigned long addr,
349 const struct elf_phdr *eppnt, int prot, int type,
350 unsigned long total_size)
351 {
352 unsigned long map_addr;
353 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
354 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
355 addr = ELF_PAGESTART(addr);
356 size = ELF_PAGEALIGN(size);
357
358 /* mmap() will return -EINVAL if given a zero size, but a
359 * segment with zero filesize is perfectly valid */
360 if (!size)
361 return addr;
362
363 /*
364 * total_size is the size of the ELF (interpreter) image.
365 * The _first_ mmap needs to know the full size, otherwise
366 * randomization might put this image into an overlapping
367 * position with the ELF binary image. (since size < total_size)
368 * So we first map the 'big' image - and unmap the remainder at
369 * the end. (which unmap is needed for ELF images with holes.)
370 */
371 if (total_size) {
372 total_size = ELF_PAGEALIGN(total_size);
373 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
374 if (!BAD_ADDR(map_addr))
375 vm_munmap(map_addr+size, total_size-size);
376 } else
377 map_addr = vm_mmap(filep, addr, size, prot, type, off);
378
379 if ((type & MAP_FIXED_NOREPLACE) &&
380 PTR_ERR((void *)map_addr) == -EEXIST)
381 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 task_pid_nr(current), current->comm, (void *)addr);
383
384 return(map_addr);
385 }
386
387 #endif /* !elf_map */
388
389 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
390 {
391 int i, first_idx = -1, last_idx = -1;
392
393 for (i = 0; i < nr; i++) {
394 if (cmds[i].p_type == PT_LOAD) {
395 last_idx = i;
396 if (first_idx == -1)
397 first_idx = i;
398 }
399 }
400 if (first_idx == -1)
401 return 0;
402
403 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
404 ELF_PAGESTART(cmds[first_idx].p_vaddr);
405 }
406
407 /**
408 * load_elf_phdrs() - load ELF program headers
409 * @elf_ex: ELF header of the binary whose program headers should be loaded
410 * @elf_file: the opened ELF binary file
411 *
412 * Loads ELF program headers from the binary file elf_file, which has the ELF
413 * header pointed to by elf_ex, into a newly allocated array. The caller is
414 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
415 */
416 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
417 struct file *elf_file)
418 {
419 struct elf_phdr *elf_phdata = NULL;
420 int retval, err = -1;
421 loff_t pos = elf_ex->e_phoff;
422 unsigned int size;
423
424 /*
425 * If the size of this structure has changed, then punt, since
426 * we will be doing the wrong thing.
427 */
428 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 goto out;
430
431 /* Sanity check the number of program headers... */
432 /* ...and their total size. */
433 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
434 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
435 goto out;
436
437 elf_phdata = kmalloc(size, GFP_KERNEL);
438 if (!elf_phdata)
439 goto out;
440
441 /* Read in the program headers */
442 retval = kernel_read(elf_file, elf_phdata, size, &pos);
443 if (retval != size) {
444 err = (retval < 0) ? retval : -EIO;
445 goto out;
446 }
447
448 /* Success! */
449 err = 0;
450 out:
451 if (err) {
452 kfree(elf_phdata);
453 elf_phdata = NULL;
454 }
455 return elf_phdata;
456 }
457
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
459
460 /**
461 * struct arch_elf_state - arch-specific ELF loading state
462 *
463 * This structure is used to preserve architecture specific data during
464 * the loading of an ELF file, throughout the checking of architecture
465 * specific ELF headers & through to the point where the ELF load is
466 * known to be proceeding (ie. SET_PERSONALITY).
467 *
468 * This implementation is a dummy for architectures which require no
469 * specific state.
470 */
471 struct arch_elf_state {
472 };
473
474 #define INIT_ARCH_ELF_STATE {}
475
476 /**
477 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478 * @ehdr: The main ELF header
479 * @phdr: The program header to check
480 * @elf: The open ELF file
481 * @is_interp: True if the phdr is from the interpreter of the ELF being
482 * loaded, else false.
483 * @state: Architecture-specific state preserved throughout the process
484 * of loading the ELF.
485 *
486 * Inspects the program header phdr to validate its correctness and/or
487 * suitability for the system. Called once per ELF program header in the
488 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
489 * interpreter.
490 *
491 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492 * with that return code.
493 */
494 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
495 struct elf_phdr *phdr,
496 struct file *elf, bool is_interp,
497 struct arch_elf_state *state)
498 {
499 /* Dummy implementation, always proceed */
500 return 0;
501 }
502
503 /**
504 * arch_check_elf() - check an ELF executable
505 * @ehdr: The main ELF header
506 * @has_interp: True if the ELF has an interpreter, else false.
507 * @interp_ehdr: The interpreter's ELF header
508 * @state: Architecture-specific state preserved throughout the process
509 * of loading the ELF.
510 *
511 * Provides a final opportunity for architecture code to reject the loading
512 * of the ELF & cause an exec syscall to return an error. This is called after
513 * all program headers to be checked by arch_elf_pt_proc have been.
514 *
515 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516 * with that return code.
517 */
518 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
519 struct elfhdr *interp_ehdr,
520 struct arch_elf_state *state)
521 {
522 /* Dummy implementation, always proceed */
523 return 0;
524 }
525
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
527
528 static inline int make_prot(u32 p_flags)
529 {
530 int prot = 0;
531
532 if (p_flags & PF_R)
533 prot |= PROT_READ;
534 if (p_flags & PF_W)
535 prot |= PROT_WRITE;
536 if (p_flags & PF_X)
537 prot |= PROT_EXEC;
538 return prot;
539 }
540
541 /* This is much more generalized than the library routine read function,
542 so we keep this separate. Technically the library read function
543 is only provided so that we can read a.out libraries that have
544 an ELF header */
545
546 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
547 struct file *interpreter, unsigned long *interp_map_addr,
548 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
549 {
550 struct elf_phdr *eppnt;
551 unsigned long load_addr = 0;
552 int load_addr_set = 0;
553 unsigned long last_bss = 0, elf_bss = 0;
554 int bss_prot = 0;
555 unsigned long error = ~0UL;
556 unsigned long total_size;
557 int i;
558
559 /* First of all, some simple consistency checks */
560 if (interp_elf_ex->e_type != ET_EXEC &&
561 interp_elf_ex->e_type != ET_DYN)
562 goto out;
563 if (!elf_check_arch(interp_elf_ex) ||
564 elf_check_fdpic(interp_elf_ex))
565 goto out;
566 if (!interpreter->f_op->mmap)
567 goto out;
568
569 total_size = total_mapping_size(interp_elf_phdata,
570 interp_elf_ex->e_phnum);
571 if (!total_size) {
572 error = -EINVAL;
573 goto out;
574 }
575
576 eppnt = interp_elf_phdata;
577 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
578 if (eppnt->p_type == PT_LOAD) {
579 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
580 int elf_prot = make_prot(eppnt->p_flags);
581 unsigned long vaddr = 0;
582 unsigned long k, map_addr;
583
584 vaddr = eppnt->p_vaddr;
585 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
586 elf_type |= MAP_FIXED_NOREPLACE;
587 else if (no_base && interp_elf_ex->e_type == ET_DYN)
588 load_addr = -vaddr;
589
590 map_addr = elf_map(interpreter, load_addr + vaddr,
591 eppnt, elf_prot, elf_type, total_size);
592 total_size = 0;
593 if (!*interp_map_addr)
594 *interp_map_addr = map_addr;
595 error = map_addr;
596 if (BAD_ADDR(map_addr))
597 goto out;
598
599 if (!load_addr_set &&
600 interp_elf_ex->e_type == ET_DYN) {
601 load_addr = map_addr - ELF_PAGESTART(vaddr);
602 load_addr_set = 1;
603 }
604
605 /*
606 * Check to see if the section's size will overflow the
607 * allowed task size. Note that p_filesz must always be
608 * <= p_memsize so it's only necessary to check p_memsz.
609 */
610 k = load_addr + eppnt->p_vaddr;
611 if (BAD_ADDR(k) ||
612 eppnt->p_filesz > eppnt->p_memsz ||
613 eppnt->p_memsz > TASK_SIZE ||
614 TASK_SIZE - eppnt->p_memsz < k) {
615 error = -ENOMEM;
616 goto out;
617 }
618
619 /*
620 * Find the end of the file mapping for this phdr, and
621 * keep track of the largest address we see for this.
622 */
623 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
624 if (k > elf_bss)
625 elf_bss = k;
626
627 /*
628 * Do the same thing for the memory mapping - between
629 * elf_bss and last_bss is the bss section.
630 */
631 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
632 if (k > last_bss) {
633 last_bss = k;
634 bss_prot = elf_prot;
635 }
636 }
637 }
638
639 /*
640 * Now fill out the bss section: first pad the last page from
641 * the file up to the page boundary, and zero it from elf_bss
642 * up to the end of the page.
643 */
644 if (padzero(elf_bss)) {
645 error = -EFAULT;
646 goto out;
647 }
648 /*
649 * Next, align both the file and mem bss up to the page size,
650 * since this is where elf_bss was just zeroed up to, and where
651 * last_bss will end after the vm_brk_flags() below.
652 */
653 elf_bss = ELF_PAGEALIGN(elf_bss);
654 last_bss = ELF_PAGEALIGN(last_bss);
655 /* Finally, if there is still more bss to allocate, do it. */
656 if (last_bss > elf_bss) {
657 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
658 bss_prot & PROT_EXEC ? VM_EXEC : 0);
659 if (error)
660 goto out;
661 }
662
663 error = load_addr;
664 out:
665 return error;
666 }
667
668 /*
669 * These are the functions used to load ELF style executables and shared
670 * libraries. There is no binary dependent code anywhere else.
671 */
672
673 static int load_elf_binary(struct linux_binprm *bprm)
674 {
675 struct file *interpreter = NULL; /* to shut gcc up */
676 unsigned long load_addr = 0, load_bias = 0;
677 int load_addr_set = 0;
678 unsigned long error;
679 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
680 unsigned long elf_bss, elf_brk;
681 int bss_prot = 0;
682 int retval, i;
683 unsigned long elf_entry;
684 unsigned long interp_load_addr = 0;
685 unsigned long start_code, end_code, start_data, end_data;
686 unsigned long reloc_func_desc __maybe_unused = 0;
687 int executable_stack = EXSTACK_DEFAULT;
688 struct {
689 struct elfhdr elf_ex;
690 struct elfhdr interp_elf_ex;
691 } *loc;
692 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
693 struct pt_regs *regs;
694
695 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
696 if (!loc) {
697 retval = -ENOMEM;
698 goto out_ret;
699 }
700
701 /* Get the exec-header */
702 loc->elf_ex = *((struct elfhdr *)bprm->buf);
703
704 retval = -ENOEXEC;
705 /* First of all, some simple consistency checks */
706 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
707 goto out;
708
709 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
710 goto out;
711 if (!elf_check_arch(&loc->elf_ex))
712 goto out;
713 if (elf_check_fdpic(&loc->elf_ex))
714 goto out;
715 if (!bprm->file->f_op->mmap)
716 goto out;
717
718 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
719 if (!elf_phdata)
720 goto out;
721
722 elf_ppnt = elf_phdata;
723 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
724 char *elf_interpreter;
725 loff_t pos;
726
727 if (elf_ppnt->p_type != PT_INTERP)
728 continue;
729
730 /*
731 * This is the program interpreter used for shared libraries -
732 * for now assume that this is an a.out format binary.
733 */
734 retval = -ENOEXEC;
735 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
736 goto out_free_ph;
737
738 retval = -ENOMEM;
739 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
740 if (!elf_interpreter)
741 goto out_free_ph;
742
743 pos = elf_ppnt->p_offset;
744 retval = kernel_read(bprm->file, elf_interpreter,
745 elf_ppnt->p_filesz, &pos);
746 if (retval != elf_ppnt->p_filesz) {
747 if (retval >= 0)
748 retval = -EIO;
749 goto out_free_interp;
750 }
751 /* make sure path is NULL terminated */
752 retval = -ENOEXEC;
753 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
754 goto out_free_interp;
755
756 interpreter = open_exec(elf_interpreter);
757 kfree(elf_interpreter);
758 retval = PTR_ERR(interpreter);
759 if (IS_ERR(interpreter))
760 goto out_free_ph;
761
762 /*
763 * If the binary is not readable then enforce mm->dumpable = 0
764 * regardless of the interpreter's permissions.
765 */
766 would_dump(bprm, interpreter);
767
768 /* Get the exec headers */
769 pos = 0;
770 retval = kernel_read(interpreter, &loc->interp_elf_ex,
771 sizeof(loc->interp_elf_ex), &pos);
772 if (retval != sizeof(loc->interp_elf_ex)) {
773 if (retval >= 0)
774 retval = -EIO;
775 goto out_free_dentry;
776 }
777
778 break;
779
780 out_free_interp:
781 kfree(elf_interpreter);
782 goto out_free_ph;
783 }
784
785 elf_ppnt = elf_phdata;
786 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
787 switch (elf_ppnt->p_type) {
788 case PT_GNU_STACK:
789 if (elf_ppnt->p_flags & PF_X)
790 executable_stack = EXSTACK_ENABLE_X;
791 else
792 executable_stack = EXSTACK_DISABLE_X;
793 break;
794
795 case PT_LOPROC ... PT_HIPROC:
796 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
797 bprm->file, false,
798 &arch_state);
799 if (retval)
800 goto out_free_dentry;
801 break;
802 }
803
804 /* Some simple consistency checks for the interpreter */
805 if (interpreter) {
806 retval = -ELIBBAD;
807 /* Not an ELF interpreter */
808 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
809 goto out_free_dentry;
810 /* Verify the interpreter has a valid arch */
811 if (!elf_check_arch(&loc->interp_elf_ex) ||
812 elf_check_fdpic(&loc->interp_elf_ex))
813 goto out_free_dentry;
814
815 /* Load the interpreter program headers */
816 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
817 interpreter);
818 if (!interp_elf_phdata)
819 goto out_free_dentry;
820
821 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
822 elf_ppnt = interp_elf_phdata;
823 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
824 switch (elf_ppnt->p_type) {
825 case PT_LOPROC ... PT_HIPROC:
826 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
827 elf_ppnt, interpreter,
828 true, &arch_state);
829 if (retval)
830 goto out_free_dentry;
831 break;
832 }
833 }
834
835 /*
836 * Allow arch code to reject the ELF at this point, whilst it's
837 * still possible to return an error to the code that invoked
838 * the exec syscall.
839 */
840 retval = arch_check_elf(&loc->elf_ex,
841 !!interpreter, &loc->interp_elf_ex,
842 &arch_state);
843 if (retval)
844 goto out_free_dentry;
845
846 /* Flush all traces of the currently running executable */
847 retval = flush_old_exec(bprm);
848 if (retval)
849 goto out_free_dentry;
850
851 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
852 may depend on the personality. */
853 SET_PERSONALITY2(loc->elf_ex, &arch_state);
854 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
855 current->personality |= READ_IMPLIES_EXEC;
856
857 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
858 current->flags |= PF_RANDOMIZE;
859
860 setup_new_exec(bprm);
861 install_exec_creds(bprm);
862
863 /* Do this so that we can load the interpreter, if need be. We will
864 change some of these later */
865 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
866 executable_stack);
867 if (retval < 0)
868 goto out_free_dentry;
869
870 elf_bss = 0;
871 elf_brk = 0;
872
873 start_code = ~0UL;
874 end_code = 0;
875 start_data = 0;
876 end_data = 0;
877
878 /* Now we do a little grungy work by mmapping the ELF image into
879 the correct location in memory. */
880 for(i = 0, elf_ppnt = elf_phdata;
881 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
882 int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
883 unsigned long k, vaddr;
884 unsigned long total_size = 0;
885
886 if (elf_ppnt->p_type != PT_LOAD)
887 continue;
888
889 if (unlikely (elf_brk > elf_bss)) {
890 unsigned long nbyte;
891
892 /* There was a PT_LOAD segment with p_memsz > p_filesz
893 before this one. Map anonymous pages, if needed,
894 and clear the area. */
895 retval = set_brk(elf_bss + load_bias,
896 elf_brk + load_bias,
897 bss_prot);
898 if (retval)
899 goto out_free_dentry;
900 nbyte = ELF_PAGEOFFSET(elf_bss);
901 if (nbyte) {
902 nbyte = ELF_MIN_ALIGN - nbyte;
903 if (nbyte > elf_brk - elf_bss)
904 nbyte = elf_brk - elf_bss;
905 if (clear_user((void __user *)elf_bss +
906 load_bias, nbyte)) {
907 /*
908 * This bss-zeroing can fail if the ELF
909 * file specifies odd protections. So
910 * we don't check the return value
911 */
912 }
913 }
914
915 /*
916 * Some binaries have overlapping elf segments and then
917 * we have to forcefully map over an existing mapping
918 * e.g. over this newly established brk mapping.
919 */
920 elf_fixed = MAP_FIXED;
921 }
922
923 elf_prot = make_prot(elf_ppnt->p_flags);
924
925 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
926
927 vaddr = elf_ppnt->p_vaddr;
928 /*
929 * If we are loading ET_EXEC or we have already performed
930 * the ET_DYN load_addr calculations, proceed normally.
931 */
932 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
933 elf_flags |= elf_fixed;
934 } else if (loc->elf_ex.e_type == ET_DYN) {
935 /*
936 * This logic is run once for the first LOAD Program
937 * Header for ET_DYN binaries to calculate the
938 * randomization (load_bias) for all the LOAD
939 * Program Headers, and to calculate the entire
940 * size of the ELF mapping (total_size). (Note that
941 * load_addr_set is set to true later once the
942 * initial mapping is performed.)
943 *
944 * There are effectively two types of ET_DYN
945 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
946 * and loaders (ET_DYN without INTERP, since they
947 * _are_ the ELF interpreter). The loaders must
948 * be loaded away from programs since the program
949 * may otherwise collide with the loader (especially
950 * for ET_EXEC which does not have a randomized
951 * position). For example to handle invocations of
952 * "./ld.so someprog" to test out a new version of
953 * the loader, the subsequent program that the
954 * loader loads must avoid the loader itself, so
955 * they cannot share the same load range. Sufficient
956 * room for the brk must be allocated with the
957 * loader as well, since brk must be available with
958 * the loader.
959 *
960 * Therefore, programs are loaded offset from
961 * ELF_ET_DYN_BASE and loaders are loaded into the
962 * independently randomized mmap region (0 load_bias
963 * without MAP_FIXED).
964 */
965 if (interpreter) {
966 load_bias = ELF_ET_DYN_BASE;
967 if (current->flags & PF_RANDOMIZE)
968 load_bias += arch_mmap_rnd();
969 elf_flags |= elf_fixed;
970 } else
971 load_bias = 0;
972
973 /*
974 * Since load_bias is used for all subsequent loading
975 * calculations, we must lower it by the first vaddr
976 * so that the remaining calculations based on the
977 * ELF vaddrs will be correctly offset. The result
978 * is then page aligned.
979 */
980 load_bias = ELF_PAGESTART(load_bias - vaddr);
981
982 total_size = total_mapping_size(elf_phdata,
983 loc->elf_ex.e_phnum);
984 if (!total_size) {
985 retval = -EINVAL;
986 goto out_free_dentry;
987 }
988 }
989
990 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
991 elf_prot, elf_flags, total_size);
992 if (BAD_ADDR(error)) {
993 retval = IS_ERR((void *)error) ?
994 PTR_ERR((void*)error) : -EINVAL;
995 goto out_free_dentry;
996 }
997
998 if (!load_addr_set) {
999 load_addr_set = 1;
1000 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1001 if (loc->elf_ex.e_type == ET_DYN) {
1002 load_bias += error -
1003 ELF_PAGESTART(load_bias + vaddr);
1004 load_addr += load_bias;
1005 reloc_func_desc = load_bias;
1006 }
1007 }
1008 k = elf_ppnt->p_vaddr;
1009 if (k < start_code)
1010 start_code = k;
1011 if (start_data < k)
1012 start_data = k;
1013
1014 /*
1015 * Check to see if the section's size will overflow the
1016 * allowed task size. Note that p_filesz must always be
1017 * <= p_memsz so it is only necessary to check p_memsz.
1018 */
1019 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1020 elf_ppnt->p_memsz > TASK_SIZE ||
1021 TASK_SIZE - elf_ppnt->p_memsz < k) {
1022 /* set_brk can never work. Avoid overflows. */
1023 retval = -EINVAL;
1024 goto out_free_dentry;
1025 }
1026
1027 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1028
1029 if (k > elf_bss)
1030 elf_bss = k;
1031 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1032 end_code = k;
1033 if (end_data < k)
1034 end_data = k;
1035 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1036 if (k > elf_brk) {
1037 bss_prot = elf_prot;
1038 elf_brk = k;
1039 }
1040 }
1041
1042 loc->elf_ex.e_entry += load_bias;
1043 elf_bss += load_bias;
1044 elf_brk += load_bias;
1045 start_code += load_bias;
1046 end_code += load_bias;
1047 start_data += load_bias;
1048 end_data += load_bias;
1049
1050 /* Calling set_brk effectively mmaps the pages that we need
1051 * for the bss and break sections. We must do this before
1052 * mapping in the interpreter, to make sure it doesn't wind
1053 * up getting placed where the bss needs to go.
1054 */
1055 retval = set_brk(elf_bss, elf_brk, bss_prot);
1056 if (retval)
1057 goto out_free_dentry;
1058 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1059 retval = -EFAULT; /* Nobody gets to see this, but.. */
1060 goto out_free_dentry;
1061 }
1062
1063 if (interpreter) {
1064 unsigned long interp_map_addr = 0;
1065
1066 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1067 interpreter,
1068 &interp_map_addr,
1069 load_bias, interp_elf_phdata);
1070 if (!IS_ERR((void *)elf_entry)) {
1071 /*
1072 * load_elf_interp() returns relocation
1073 * adjustment
1074 */
1075 interp_load_addr = elf_entry;
1076 elf_entry += loc->interp_elf_ex.e_entry;
1077 }
1078 if (BAD_ADDR(elf_entry)) {
1079 retval = IS_ERR((void *)elf_entry) ?
1080 (int)elf_entry : -EINVAL;
1081 goto out_free_dentry;
1082 }
1083 reloc_func_desc = interp_load_addr;
1084
1085 allow_write_access(interpreter);
1086 fput(interpreter);
1087 } else {
1088 elf_entry = loc->elf_ex.e_entry;
1089 if (BAD_ADDR(elf_entry)) {
1090 retval = -EINVAL;
1091 goto out_free_dentry;
1092 }
1093 }
1094
1095 kfree(interp_elf_phdata);
1096 kfree(elf_phdata);
1097
1098 set_binfmt(&elf_format);
1099
1100 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1101 retval = arch_setup_additional_pages(bprm, !!interpreter);
1102 if (retval < 0)
1103 goto out;
1104 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1105
1106 retval = create_elf_tables(bprm, &loc->elf_ex,
1107 load_addr, interp_load_addr);
1108 if (retval < 0)
1109 goto out;
1110 current->mm->end_code = end_code;
1111 current->mm->start_code = start_code;
1112 current->mm->start_data = start_data;
1113 current->mm->end_data = end_data;
1114 current->mm->start_stack = bprm->p;
1115
1116 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1117 /*
1118 * For architectures with ELF randomization, when executing
1119 * a loader directly (i.e. no interpreter listed in ELF
1120 * headers), move the brk area out of the mmap region
1121 * (since it grows up, and may collide early with the stack
1122 * growing down), and into the unused ELF_ET_DYN_BASE region.
1123 */
1124 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1125 loc->elf_ex.e_type == ET_DYN && !interpreter)
1126 current->mm->brk = current->mm->start_brk =
1127 ELF_ET_DYN_BASE;
1128
1129 current->mm->brk = current->mm->start_brk =
1130 arch_randomize_brk(current->mm);
1131 #ifdef compat_brk_randomized
1132 current->brk_randomized = 1;
1133 #endif
1134 }
1135
1136 if (current->personality & MMAP_PAGE_ZERO) {
1137 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1138 and some applications "depend" upon this behavior.
1139 Since we do not have the power to recompile these, we
1140 emulate the SVr4 behavior. Sigh. */
1141 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1142 MAP_FIXED | MAP_PRIVATE, 0);
1143 }
1144
1145 regs = current_pt_regs();
1146 #ifdef ELF_PLAT_INIT
1147 /*
1148 * The ABI may specify that certain registers be set up in special
1149 * ways (on i386 %edx is the address of a DT_FINI function, for
1150 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1151 * that the e_entry field is the address of the function descriptor
1152 * for the startup routine, rather than the address of the startup
1153 * routine itself. This macro performs whatever initialization to
1154 * the regs structure is required as well as any relocations to the
1155 * function descriptor entries when executing dynamically links apps.
1156 */
1157 ELF_PLAT_INIT(regs, reloc_func_desc);
1158 #endif
1159
1160 finalize_exec(bprm);
1161 start_thread(regs, elf_entry, bprm->p);
1162 retval = 0;
1163 out:
1164 kfree(loc);
1165 out_ret:
1166 return retval;
1167
1168 /* error cleanup */
1169 out_free_dentry:
1170 kfree(interp_elf_phdata);
1171 allow_write_access(interpreter);
1172 if (interpreter)
1173 fput(interpreter);
1174 out_free_ph:
1175 kfree(elf_phdata);
1176 goto out;
1177 }
1178
1179 #ifdef CONFIG_USELIB
1180 /* This is really simpleminded and specialized - we are loading an
1181 a.out library that is given an ELF header. */
1182 static int load_elf_library(struct file *file)
1183 {
1184 struct elf_phdr *elf_phdata;
1185 struct elf_phdr *eppnt;
1186 unsigned long elf_bss, bss, len;
1187 int retval, error, i, j;
1188 struct elfhdr elf_ex;
1189 loff_t pos = 0;
1190
1191 error = -ENOEXEC;
1192 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1193 if (retval != sizeof(elf_ex))
1194 goto out;
1195
1196 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1197 goto out;
1198
1199 /* First of all, some simple consistency checks */
1200 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1201 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1202 goto out;
1203 if (elf_check_fdpic(&elf_ex))
1204 goto out;
1205
1206 /* Now read in all of the header information */
1207
1208 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1209 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1210
1211 error = -ENOMEM;
1212 elf_phdata = kmalloc(j, GFP_KERNEL);
1213 if (!elf_phdata)
1214 goto out;
1215
1216 eppnt = elf_phdata;
1217 error = -ENOEXEC;
1218 pos = elf_ex.e_phoff;
1219 retval = kernel_read(file, eppnt, j, &pos);
1220 if (retval != j)
1221 goto out_free_ph;
1222
1223 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1224 if ((eppnt + i)->p_type == PT_LOAD)
1225 j++;
1226 if (j != 1)
1227 goto out_free_ph;
1228
1229 while (eppnt->p_type != PT_LOAD)
1230 eppnt++;
1231
1232 /* Now use mmap to map the library into memory. */
1233 error = vm_mmap(file,
1234 ELF_PAGESTART(eppnt->p_vaddr),
1235 (eppnt->p_filesz +
1236 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1237 PROT_READ | PROT_WRITE | PROT_EXEC,
1238 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1239 (eppnt->p_offset -
1240 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1241 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1242 goto out_free_ph;
1243
1244 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1245 if (padzero(elf_bss)) {
1246 error = -EFAULT;
1247 goto out_free_ph;
1248 }
1249
1250 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1251 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1252 if (bss > len) {
1253 error = vm_brk(len, bss - len);
1254 if (error)
1255 goto out_free_ph;
1256 }
1257 error = 0;
1258
1259 out_free_ph:
1260 kfree(elf_phdata);
1261 out:
1262 return error;
1263 }
1264 #endif /* #ifdef CONFIG_USELIB */
1265
1266 #ifdef CONFIG_ELF_CORE
1267 /*
1268 * ELF core dumper
1269 *
1270 * Modelled on fs/exec.c:aout_core_dump()
1271 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1272 */
1273
1274 /*
1275 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1276 * that are useful for post-mortem analysis are included in every core dump.
1277 * In that way we ensure that the core dump is fully interpretable later
1278 * without matching up the same kernel and hardware config to see what PC values
1279 * meant. These special mappings include - vDSO, vsyscall, and other
1280 * architecture specific mappings
1281 */
1282 static bool always_dump_vma(struct vm_area_struct *vma)
1283 {
1284 /* Any vsyscall mappings? */
1285 if (vma == get_gate_vma(vma->vm_mm))
1286 return true;
1287
1288 /*
1289 * Assume that all vmas with a .name op should always be dumped.
1290 * If this changes, a new vm_ops field can easily be added.
1291 */
1292 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1293 return true;
1294
1295 /*
1296 * arch_vma_name() returns non-NULL for special architecture mappings,
1297 * such as vDSO sections.
1298 */
1299 if (arch_vma_name(vma))
1300 return true;
1301
1302 return false;
1303 }
1304
1305 /*
1306 * Decide what to dump of a segment, part, all or none.
1307 */
1308 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1309 unsigned long mm_flags)
1310 {
1311 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1312
1313 /* always dump the vdso and vsyscall sections */
1314 if (always_dump_vma(vma))
1315 goto whole;
1316
1317 if (vma->vm_flags & VM_DONTDUMP)
1318 return 0;
1319
1320 /* support for DAX */
1321 if (vma_is_dax(vma)) {
1322 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1323 goto whole;
1324 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1325 goto whole;
1326 return 0;
1327 }
1328
1329 /* Hugetlb memory check */
1330 if (vma->vm_flags & VM_HUGETLB) {
1331 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1332 goto whole;
1333 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1334 goto whole;
1335 return 0;
1336 }
1337
1338 /* Do not dump I/O mapped devices or special mappings */
1339 if (vma->vm_flags & VM_IO)
1340 return 0;
1341
1342 /* By default, dump shared memory if mapped from an anonymous file. */
1343 if (vma->vm_flags & VM_SHARED) {
1344 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1345 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1346 goto whole;
1347 return 0;
1348 }
1349
1350 /* Dump segments that have been written to. */
1351 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1352 goto whole;
1353 if (vma->vm_file == NULL)
1354 return 0;
1355
1356 if (FILTER(MAPPED_PRIVATE))
1357 goto whole;
1358
1359 /*
1360 * If this looks like the beginning of a DSO or executable mapping,
1361 * check for an ELF header. If we find one, dump the first page to
1362 * aid in determining what was mapped here.
1363 */
1364 if (FILTER(ELF_HEADERS) &&
1365 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1366 u32 __user *header = (u32 __user *) vma->vm_start;
1367 u32 word;
1368 mm_segment_t fs = get_fs();
1369 /*
1370 * Doing it this way gets the constant folded by GCC.
1371 */
1372 union {
1373 u32 cmp;
1374 char elfmag[SELFMAG];
1375 } magic;
1376 BUILD_BUG_ON(SELFMAG != sizeof word);
1377 magic.elfmag[EI_MAG0] = ELFMAG0;
1378 magic.elfmag[EI_MAG1] = ELFMAG1;
1379 magic.elfmag[EI_MAG2] = ELFMAG2;
1380 magic.elfmag[EI_MAG3] = ELFMAG3;
1381 /*
1382 * Switch to the user "segment" for get_user(),
1383 * then put back what elf_core_dump() had in place.
1384 */
1385 set_fs(USER_DS);
1386 if (unlikely(get_user(word, header)))
1387 word = 0;
1388 set_fs(fs);
1389 if (word == magic.cmp)
1390 return PAGE_SIZE;
1391 }
1392
1393 #undef FILTER
1394
1395 return 0;
1396
1397 whole:
1398 return vma->vm_end - vma->vm_start;
1399 }
1400
1401 /* An ELF note in memory */
1402 struct memelfnote
1403 {
1404 const char *name;
1405 int type;
1406 unsigned int datasz;
1407 void *data;
1408 };
1409
1410 static int notesize(struct memelfnote *en)
1411 {
1412 int sz;
1413
1414 sz = sizeof(struct elf_note);
1415 sz += roundup(strlen(en->name) + 1, 4);
1416 sz += roundup(en->datasz, 4);
1417
1418 return sz;
1419 }
1420
1421 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1422 {
1423 struct elf_note en;
1424 en.n_namesz = strlen(men->name) + 1;
1425 en.n_descsz = men->datasz;
1426 en.n_type = men->type;
1427
1428 return dump_emit(cprm, &en, sizeof(en)) &&
1429 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1430 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1431 }
1432
1433 static void fill_elf_header(struct elfhdr *elf, int segs,
1434 u16 machine, u32 flags)
1435 {
1436 memset(elf, 0, sizeof(*elf));
1437
1438 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1439 elf->e_ident[EI_CLASS] = ELF_CLASS;
1440 elf->e_ident[EI_DATA] = ELF_DATA;
1441 elf->e_ident[EI_VERSION] = EV_CURRENT;
1442 elf->e_ident[EI_OSABI] = ELF_OSABI;
1443
1444 elf->e_type = ET_CORE;
1445 elf->e_machine = machine;
1446 elf->e_version = EV_CURRENT;
1447 elf->e_phoff = sizeof(struct elfhdr);
1448 elf->e_flags = flags;
1449 elf->e_ehsize = sizeof(struct elfhdr);
1450 elf->e_phentsize = sizeof(struct elf_phdr);
1451 elf->e_phnum = segs;
1452 }
1453
1454 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1455 {
1456 phdr->p_type = PT_NOTE;
1457 phdr->p_offset = offset;
1458 phdr->p_vaddr = 0;
1459 phdr->p_paddr = 0;
1460 phdr->p_filesz = sz;
1461 phdr->p_memsz = 0;
1462 phdr->p_flags = 0;
1463 phdr->p_align = 0;
1464 }
1465
1466 static void fill_note(struct memelfnote *note, const char *name, int type,
1467 unsigned int sz, void *data)
1468 {
1469 note->name = name;
1470 note->type = type;
1471 note->datasz = sz;
1472 note->data = data;
1473 }
1474
1475 /*
1476 * fill up all the fields in prstatus from the given task struct, except
1477 * registers which need to be filled up separately.
1478 */
1479 static void fill_prstatus(struct elf_prstatus *prstatus,
1480 struct task_struct *p, long signr)
1481 {
1482 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1483 prstatus->pr_sigpend = p->pending.signal.sig[0];
1484 prstatus->pr_sighold = p->blocked.sig[0];
1485 rcu_read_lock();
1486 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1487 rcu_read_unlock();
1488 prstatus->pr_pid = task_pid_vnr(p);
1489 prstatus->pr_pgrp = task_pgrp_vnr(p);
1490 prstatus->pr_sid = task_session_vnr(p);
1491 if (thread_group_leader(p)) {
1492 struct task_cputime cputime;
1493
1494 /*
1495 * This is the record for the group leader. It shows the
1496 * group-wide total, not its individual thread total.
1497 */
1498 thread_group_cputime(p, &cputime);
1499 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1500 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1501 } else {
1502 u64 utime, stime;
1503
1504 task_cputime(p, &utime, &stime);
1505 prstatus->pr_utime = ns_to_timeval(utime);
1506 prstatus->pr_stime = ns_to_timeval(stime);
1507 }
1508
1509 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1510 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1511 }
1512
1513 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1514 struct mm_struct *mm)
1515 {
1516 const struct cred *cred;
1517 unsigned int i, len;
1518
1519 /* first copy the parameters from user space */
1520 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1521
1522 len = mm->arg_end - mm->arg_start;
1523 if (len >= ELF_PRARGSZ)
1524 len = ELF_PRARGSZ-1;
1525 if (copy_from_user(&psinfo->pr_psargs,
1526 (const char __user *)mm->arg_start, len))
1527 return -EFAULT;
1528 for(i = 0; i < len; i++)
1529 if (psinfo->pr_psargs[i] == 0)
1530 psinfo->pr_psargs[i] = ' ';
1531 psinfo->pr_psargs[len] = 0;
1532
1533 rcu_read_lock();
1534 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1535 rcu_read_unlock();
1536 psinfo->pr_pid = task_pid_vnr(p);
1537 psinfo->pr_pgrp = task_pgrp_vnr(p);
1538 psinfo->pr_sid = task_session_vnr(p);
1539
1540 i = p->state ? ffz(~p->state) + 1 : 0;
1541 psinfo->pr_state = i;
1542 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1543 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1544 psinfo->pr_nice = task_nice(p);
1545 psinfo->pr_flag = p->flags;
1546 rcu_read_lock();
1547 cred = __task_cred(p);
1548 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1549 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1550 rcu_read_unlock();
1551 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1552
1553 return 0;
1554 }
1555
1556 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1557 {
1558 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1559 int i = 0;
1560 do
1561 i += 2;
1562 while (auxv[i - 2] != AT_NULL);
1563 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1564 }
1565
1566 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1567 const kernel_siginfo_t *siginfo)
1568 {
1569 mm_segment_t old_fs = get_fs();
1570 set_fs(KERNEL_DS);
1571 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1572 set_fs(old_fs);
1573 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1574 }
1575
1576 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1577 /*
1578 * Format of NT_FILE note:
1579 *
1580 * long count -- how many files are mapped
1581 * long page_size -- units for file_ofs
1582 * array of [COUNT] elements of
1583 * long start
1584 * long end
1585 * long file_ofs
1586 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1587 */
1588 static int fill_files_note(struct memelfnote *note)
1589 {
1590 struct vm_area_struct *vma;
1591 unsigned count, size, names_ofs, remaining, n;
1592 user_long_t *data;
1593 user_long_t *start_end_ofs;
1594 char *name_base, *name_curpos;
1595
1596 /* *Estimated* file count and total data size needed */
1597 count = current->mm->map_count;
1598 if (count > UINT_MAX / 64)
1599 return -EINVAL;
1600 size = count * 64;
1601
1602 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1603 alloc:
1604 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1605 return -EINVAL;
1606 size = round_up(size, PAGE_SIZE);
1607 data = kvmalloc(size, GFP_KERNEL);
1608 if (ZERO_OR_NULL_PTR(data))
1609 return -ENOMEM;
1610
1611 start_end_ofs = data + 2;
1612 name_base = name_curpos = ((char *)data) + names_ofs;
1613 remaining = size - names_ofs;
1614 count = 0;
1615 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1616 struct file *file;
1617 const char *filename;
1618
1619 file = vma->vm_file;
1620 if (!file)
1621 continue;
1622 filename = file_path(file, name_curpos, remaining);
1623 if (IS_ERR(filename)) {
1624 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1625 kvfree(data);
1626 size = size * 5 / 4;
1627 goto alloc;
1628 }
1629 continue;
1630 }
1631
1632 /* file_path() fills at the end, move name down */
1633 /* n = strlen(filename) + 1: */
1634 n = (name_curpos + remaining) - filename;
1635 remaining = filename - name_curpos;
1636 memmove(name_curpos, filename, n);
1637 name_curpos += n;
1638
1639 *start_end_ofs++ = vma->vm_start;
1640 *start_end_ofs++ = vma->vm_end;
1641 *start_end_ofs++ = vma->vm_pgoff;
1642 count++;
1643 }
1644
1645 /* Now we know exact count of files, can store it */
1646 data[0] = count;
1647 data[1] = PAGE_SIZE;
1648 /*
1649 * Count usually is less than current->mm->map_count,
1650 * we need to move filenames down.
1651 */
1652 n = current->mm->map_count - count;
1653 if (n != 0) {
1654 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1655 memmove(name_base - shift_bytes, name_base,
1656 name_curpos - name_base);
1657 name_curpos -= shift_bytes;
1658 }
1659
1660 size = name_curpos - (char *)data;
1661 fill_note(note, "CORE", NT_FILE, size, data);
1662 return 0;
1663 }
1664
1665 #ifdef CORE_DUMP_USE_REGSET
1666 #include <linux/regset.h>
1667
1668 struct elf_thread_core_info {
1669 struct elf_thread_core_info *next;
1670 struct task_struct *task;
1671 struct elf_prstatus prstatus;
1672 struct memelfnote notes[0];
1673 };
1674
1675 struct elf_note_info {
1676 struct elf_thread_core_info *thread;
1677 struct memelfnote psinfo;
1678 struct memelfnote signote;
1679 struct memelfnote auxv;
1680 struct memelfnote files;
1681 user_siginfo_t csigdata;
1682 size_t size;
1683 int thread_notes;
1684 };
1685
1686 /*
1687 * When a regset has a writeback hook, we call it on each thread before
1688 * dumping user memory. On register window machines, this makes sure the
1689 * user memory backing the register data is up to date before we read it.
1690 */
1691 static void do_thread_regset_writeback(struct task_struct *task,
1692 const struct user_regset *regset)
1693 {
1694 if (regset->writeback)
1695 regset->writeback(task, regset, 1);
1696 }
1697
1698 #ifndef PRSTATUS_SIZE
1699 #define PRSTATUS_SIZE(S, R) sizeof(S)
1700 #endif
1701
1702 #ifndef SET_PR_FPVALID
1703 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1704 #endif
1705
1706 static int fill_thread_core_info(struct elf_thread_core_info *t,
1707 const struct user_regset_view *view,
1708 long signr, size_t *total)
1709 {
1710 unsigned int i;
1711 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1712
1713 /*
1714 * NT_PRSTATUS is the one special case, because the regset data
1715 * goes into the pr_reg field inside the note contents, rather
1716 * than being the whole note contents. We fill the reset in here.
1717 * We assume that regset 0 is NT_PRSTATUS.
1718 */
1719 fill_prstatus(&t->prstatus, t->task, signr);
1720 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1721 &t->prstatus.pr_reg, NULL);
1722
1723 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1724 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1725 *total += notesize(&t->notes[0]);
1726
1727 do_thread_regset_writeback(t->task, &view->regsets[0]);
1728
1729 /*
1730 * Each other regset might generate a note too. For each regset
1731 * that has no core_note_type or is inactive, we leave t->notes[i]
1732 * all zero and we'll know to skip writing it later.
1733 */
1734 for (i = 1; i < view->n; ++i) {
1735 const struct user_regset *regset = &view->regsets[i];
1736 do_thread_regset_writeback(t->task, regset);
1737 if (regset->core_note_type && regset->get &&
1738 (!regset->active || regset->active(t->task, regset) > 0)) {
1739 int ret;
1740 size_t size = regset_size(t->task, regset);
1741 void *data = kmalloc(size, GFP_KERNEL);
1742 if (unlikely(!data))
1743 return 0;
1744 ret = regset->get(t->task, regset,
1745 0, size, data, NULL);
1746 if (unlikely(ret))
1747 kfree(data);
1748 else {
1749 if (regset->core_note_type != NT_PRFPREG)
1750 fill_note(&t->notes[i], "LINUX",
1751 regset->core_note_type,
1752 size, data);
1753 else {
1754 SET_PR_FPVALID(&t->prstatus,
1755 1, regset0_size);
1756 fill_note(&t->notes[i], "CORE",
1757 NT_PRFPREG, size, data);
1758 }
1759 *total += notesize(&t->notes[i]);
1760 }
1761 }
1762 }
1763
1764 return 1;
1765 }
1766
1767 static int fill_note_info(struct elfhdr *elf, int phdrs,
1768 struct elf_note_info *info,
1769 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1770 {
1771 struct task_struct *dump_task = current;
1772 const struct user_regset_view *view = task_user_regset_view(dump_task);
1773 struct elf_thread_core_info *t;
1774 struct elf_prpsinfo *psinfo;
1775 struct core_thread *ct;
1776 unsigned int i;
1777
1778 info->size = 0;
1779 info->thread = NULL;
1780
1781 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1782 if (psinfo == NULL) {
1783 info->psinfo.data = NULL; /* So we don't free this wrongly */
1784 return 0;
1785 }
1786
1787 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1788
1789 /*
1790 * Figure out how many notes we're going to need for each thread.
1791 */
1792 info->thread_notes = 0;
1793 for (i = 0; i < view->n; ++i)
1794 if (view->regsets[i].core_note_type != 0)
1795 ++info->thread_notes;
1796
1797 /*
1798 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1799 * since it is our one special case.
1800 */
1801 if (unlikely(info->thread_notes == 0) ||
1802 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1803 WARN_ON(1);
1804 return 0;
1805 }
1806
1807 /*
1808 * Initialize the ELF file header.
1809 */
1810 fill_elf_header(elf, phdrs,
1811 view->e_machine, view->e_flags);
1812
1813 /*
1814 * Allocate a structure for each thread.
1815 */
1816 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1817 t = kzalloc(offsetof(struct elf_thread_core_info,
1818 notes[info->thread_notes]),
1819 GFP_KERNEL);
1820 if (unlikely(!t))
1821 return 0;
1822
1823 t->task = ct->task;
1824 if (ct->task == dump_task || !info->thread) {
1825 t->next = info->thread;
1826 info->thread = t;
1827 } else {
1828 /*
1829 * Make sure to keep the original task at
1830 * the head of the list.
1831 */
1832 t->next = info->thread->next;
1833 info->thread->next = t;
1834 }
1835 }
1836
1837 /*
1838 * Now fill in each thread's information.
1839 */
1840 for (t = info->thread; t != NULL; t = t->next)
1841 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1842 return 0;
1843
1844 /*
1845 * Fill in the two process-wide notes.
1846 */
1847 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1848 info->size += notesize(&info->psinfo);
1849
1850 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1851 info->size += notesize(&info->signote);
1852
1853 fill_auxv_note(&info->auxv, current->mm);
1854 info->size += notesize(&info->auxv);
1855
1856 if (fill_files_note(&info->files) == 0)
1857 info->size += notesize(&info->files);
1858
1859 return 1;
1860 }
1861
1862 static size_t get_note_info_size(struct elf_note_info *info)
1863 {
1864 return info->size;
1865 }
1866
1867 /*
1868 * Write all the notes for each thread. When writing the first thread, the
1869 * process-wide notes are interleaved after the first thread-specific note.
1870 */
1871 static int write_note_info(struct elf_note_info *info,
1872 struct coredump_params *cprm)
1873 {
1874 bool first = true;
1875 struct elf_thread_core_info *t = info->thread;
1876
1877 do {
1878 int i;
1879
1880 if (!writenote(&t->notes[0], cprm))
1881 return 0;
1882
1883 if (first && !writenote(&info->psinfo, cprm))
1884 return 0;
1885 if (first && !writenote(&info->signote, cprm))
1886 return 0;
1887 if (first && !writenote(&info->auxv, cprm))
1888 return 0;
1889 if (first && info->files.data &&
1890 !writenote(&info->files, cprm))
1891 return 0;
1892
1893 for (i = 1; i < info->thread_notes; ++i)
1894 if (t->notes[i].data &&
1895 !writenote(&t->notes[i], cprm))
1896 return 0;
1897
1898 first = false;
1899 t = t->next;
1900 } while (t);
1901
1902 return 1;
1903 }
1904
1905 static void free_note_info(struct elf_note_info *info)
1906 {
1907 struct elf_thread_core_info *threads = info->thread;
1908 while (threads) {
1909 unsigned int i;
1910 struct elf_thread_core_info *t = threads;
1911 threads = t->next;
1912 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1913 for (i = 1; i < info->thread_notes; ++i)
1914 kfree(t->notes[i].data);
1915 kfree(t);
1916 }
1917 kfree(info->psinfo.data);
1918 kvfree(info->files.data);
1919 }
1920
1921 #else
1922
1923 /* Here is the structure in which status of each thread is captured. */
1924 struct elf_thread_status
1925 {
1926 struct list_head list;
1927 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1928 elf_fpregset_t fpu; /* NT_PRFPREG */
1929 struct task_struct *thread;
1930 #ifdef ELF_CORE_COPY_XFPREGS
1931 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1932 #endif
1933 struct memelfnote notes[3];
1934 int num_notes;
1935 };
1936
1937 /*
1938 * In order to add the specific thread information for the elf file format,
1939 * we need to keep a linked list of every threads pr_status and then create
1940 * a single section for them in the final core file.
1941 */
1942 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1943 {
1944 int sz = 0;
1945 struct task_struct *p = t->thread;
1946 t->num_notes = 0;
1947
1948 fill_prstatus(&t->prstatus, p, signr);
1949 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1950
1951 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1952 &(t->prstatus));
1953 t->num_notes++;
1954 sz += notesize(&t->notes[0]);
1955
1956 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1957 &t->fpu))) {
1958 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1959 &(t->fpu));
1960 t->num_notes++;
1961 sz += notesize(&t->notes[1]);
1962 }
1963
1964 #ifdef ELF_CORE_COPY_XFPREGS
1965 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1966 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1967 sizeof(t->xfpu), &t->xfpu);
1968 t->num_notes++;
1969 sz += notesize(&t->notes[2]);
1970 }
1971 #endif
1972 return sz;
1973 }
1974
1975 struct elf_note_info {
1976 struct memelfnote *notes;
1977 struct memelfnote *notes_files;
1978 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1979 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1980 struct list_head thread_list;
1981 elf_fpregset_t *fpu;
1982 #ifdef ELF_CORE_COPY_XFPREGS
1983 elf_fpxregset_t *xfpu;
1984 #endif
1985 user_siginfo_t csigdata;
1986 int thread_status_size;
1987 int numnote;
1988 };
1989
1990 static int elf_note_info_init(struct elf_note_info *info)
1991 {
1992 memset(info, 0, sizeof(*info));
1993 INIT_LIST_HEAD(&info->thread_list);
1994
1995 /* Allocate space for ELF notes */
1996 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
1997 if (!info->notes)
1998 return 0;
1999 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2000 if (!info->psinfo)
2001 return 0;
2002 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2003 if (!info->prstatus)
2004 return 0;
2005 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2006 if (!info->fpu)
2007 return 0;
2008 #ifdef ELF_CORE_COPY_XFPREGS
2009 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2010 if (!info->xfpu)
2011 return 0;
2012 #endif
2013 return 1;
2014 }
2015
2016 static int fill_note_info(struct elfhdr *elf, int phdrs,
2017 struct elf_note_info *info,
2018 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2019 {
2020 struct core_thread *ct;
2021 struct elf_thread_status *ets;
2022
2023 if (!elf_note_info_init(info))
2024 return 0;
2025
2026 for (ct = current->mm->core_state->dumper.next;
2027 ct; ct = ct->next) {
2028 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2029 if (!ets)
2030 return 0;
2031
2032 ets->thread = ct->task;
2033 list_add(&ets->list, &info->thread_list);
2034 }
2035
2036 list_for_each_entry(ets, &info->thread_list, list) {
2037 int sz;
2038
2039 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2040 info->thread_status_size += sz;
2041 }
2042 /* now collect the dump for the current */
2043 memset(info->prstatus, 0, sizeof(*info->prstatus));
2044 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2045 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2046
2047 /* Set up header */
2048 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2049
2050 /*
2051 * Set up the notes in similar form to SVR4 core dumps made
2052 * with info from their /proc.
2053 */
2054
2055 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2056 sizeof(*info->prstatus), info->prstatus);
2057 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2058 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2059 sizeof(*info->psinfo), info->psinfo);
2060
2061 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2062 fill_auxv_note(info->notes + 3, current->mm);
2063 info->numnote = 4;
2064
2065 if (fill_files_note(info->notes + info->numnote) == 0) {
2066 info->notes_files = info->notes + info->numnote;
2067 info->numnote++;
2068 }
2069
2070 /* Try to dump the FPU. */
2071 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2072 info->fpu);
2073 if (info->prstatus->pr_fpvalid)
2074 fill_note(info->notes + info->numnote++,
2075 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2076 #ifdef ELF_CORE_COPY_XFPREGS
2077 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2078 fill_note(info->notes + info->numnote++,
2079 "LINUX", ELF_CORE_XFPREG_TYPE,
2080 sizeof(*info->xfpu), info->xfpu);
2081 #endif
2082
2083 return 1;
2084 }
2085
2086 static size_t get_note_info_size(struct elf_note_info *info)
2087 {
2088 int sz = 0;
2089 int i;
2090
2091 for (i = 0; i < info->numnote; i++)
2092 sz += notesize(info->notes + i);
2093
2094 sz += info->thread_status_size;
2095
2096 return sz;
2097 }
2098
2099 static int write_note_info(struct elf_note_info *info,
2100 struct coredump_params *cprm)
2101 {
2102 struct elf_thread_status *ets;
2103 int i;
2104
2105 for (i = 0; i < info->numnote; i++)
2106 if (!writenote(info->notes + i, cprm))
2107 return 0;
2108
2109 /* write out the thread status notes section */
2110 list_for_each_entry(ets, &info->thread_list, list) {
2111 for (i = 0; i < ets->num_notes; i++)
2112 if (!writenote(&ets->notes[i], cprm))
2113 return 0;
2114 }
2115
2116 return 1;
2117 }
2118
2119 static void free_note_info(struct elf_note_info *info)
2120 {
2121 while (!list_empty(&info->thread_list)) {
2122 struct list_head *tmp = info->thread_list.next;
2123 list_del(tmp);
2124 kfree(list_entry(tmp, struct elf_thread_status, list));
2125 }
2126
2127 /* Free data possibly allocated by fill_files_note(): */
2128 if (info->notes_files)
2129 kvfree(info->notes_files->data);
2130
2131 kfree(info->prstatus);
2132 kfree(info->psinfo);
2133 kfree(info->notes);
2134 kfree(info->fpu);
2135 #ifdef ELF_CORE_COPY_XFPREGS
2136 kfree(info->xfpu);
2137 #endif
2138 }
2139
2140 #endif
2141
2142 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2143 struct vm_area_struct *gate_vma)
2144 {
2145 struct vm_area_struct *ret = tsk->mm->mmap;
2146
2147 if (ret)
2148 return ret;
2149 return gate_vma;
2150 }
2151 /*
2152 * Helper function for iterating across a vma list. It ensures that the caller
2153 * will visit `gate_vma' prior to terminating the search.
2154 */
2155 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2156 struct vm_area_struct *gate_vma)
2157 {
2158 struct vm_area_struct *ret;
2159
2160 ret = this_vma->vm_next;
2161 if (ret)
2162 return ret;
2163 if (this_vma == gate_vma)
2164 return NULL;
2165 return gate_vma;
2166 }
2167
2168 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2169 elf_addr_t e_shoff, int segs)
2170 {
2171 elf->e_shoff = e_shoff;
2172 elf->e_shentsize = sizeof(*shdr4extnum);
2173 elf->e_shnum = 1;
2174 elf->e_shstrndx = SHN_UNDEF;
2175
2176 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2177
2178 shdr4extnum->sh_type = SHT_NULL;
2179 shdr4extnum->sh_size = elf->e_shnum;
2180 shdr4extnum->sh_link = elf->e_shstrndx;
2181 shdr4extnum->sh_info = segs;
2182 }
2183
2184 /*
2185 * Actual dumper
2186 *
2187 * This is a two-pass process; first we find the offsets of the bits,
2188 * and then they are actually written out. If we run out of core limit
2189 * we just truncate.
2190 */
2191 static int elf_core_dump(struct coredump_params *cprm)
2192 {
2193 int has_dumped = 0;
2194 mm_segment_t fs;
2195 int segs, i;
2196 size_t vma_data_size = 0;
2197 struct vm_area_struct *vma, *gate_vma;
2198 struct elfhdr *elf = NULL;
2199 loff_t offset = 0, dataoff;
2200 struct elf_note_info info = { };
2201 struct elf_phdr *phdr4note = NULL;
2202 struct elf_shdr *shdr4extnum = NULL;
2203 Elf_Half e_phnum;
2204 elf_addr_t e_shoff;
2205 elf_addr_t *vma_filesz = NULL;
2206
2207 /*
2208 * We no longer stop all VM operations.
2209 *
2210 * This is because those proceses that could possibly change map_count
2211 * or the mmap / vma pages are now blocked in do_exit on current
2212 * finishing this core dump.
2213 *
2214 * Only ptrace can touch these memory addresses, but it doesn't change
2215 * the map_count or the pages allocated. So no possibility of crashing
2216 * exists while dumping the mm->vm_next areas to the core file.
2217 */
2218
2219 /* alloc memory for large data structures: too large to be on stack */
2220 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2221 if (!elf)
2222 goto out;
2223 /*
2224 * The number of segs are recored into ELF header as 16bit value.
2225 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2226 */
2227 segs = current->mm->map_count;
2228 segs += elf_core_extra_phdrs();
2229
2230 gate_vma = get_gate_vma(current->mm);
2231 if (gate_vma != NULL)
2232 segs++;
2233
2234 /* for notes section */
2235 segs++;
2236
2237 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2238 * this, kernel supports extended numbering. Have a look at
2239 * include/linux/elf.h for further information. */
2240 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2241
2242 /*
2243 * Collect all the non-memory information about the process for the
2244 * notes. This also sets up the file header.
2245 */
2246 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2247 goto cleanup;
2248
2249 has_dumped = 1;
2250
2251 fs = get_fs();
2252 set_fs(KERNEL_DS);
2253
2254 offset += sizeof(*elf); /* Elf header */
2255 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2256
2257 /* Write notes phdr entry */
2258 {
2259 size_t sz = get_note_info_size(&info);
2260
2261 sz += elf_coredump_extra_notes_size();
2262
2263 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2264 if (!phdr4note)
2265 goto end_coredump;
2266
2267 fill_elf_note_phdr(phdr4note, sz, offset);
2268 offset += sz;
2269 }
2270
2271 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2272
2273 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2274 goto end_coredump;
2275 vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2276 GFP_KERNEL);
2277 if (ZERO_OR_NULL_PTR(vma_filesz))
2278 goto end_coredump;
2279
2280 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2281 vma = next_vma(vma, gate_vma)) {
2282 unsigned long dump_size;
2283
2284 dump_size = vma_dump_size(vma, cprm->mm_flags);
2285 vma_filesz[i++] = dump_size;
2286 vma_data_size += dump_size;
2287 }
2288
2289 offset += vma_data_size;
2290 offset += elf_core_extra_data_size();
2291 e_shoff = offset;
2292
2293 if (e_phnum == PN_XNUM) {
2294 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2295 if (!shdr4extnum)
2296 goto end_coredump;
2297 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2298 }
2299
2300 offset = dataoff;
2301
2302 if (!dump_emit(cprm, elf, sizeof(*elf)))
2303 goto end_coredump;
2304
2305 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2306 goto end_coredump;
2307
2308 /* Write program headers for segments dump */
2309 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2310 vma = next_vma(vma, gate_vma)) {
2311 struct elf_phdr phdr;
2312
2313 phdr.p_type = PT_LOAD;
2314 phdr.p_offset = offset;
2315 phdr.p_vaddr = vma->vm_start;
2316 phdr.p_paddr = 0;
2317 phdr.p_filesz = vma_filesz[i++];
2318 phdr.p_memsz = vma->vm_end - vma->vm_start;
2319 offset += phdr.p_filesz;
2320 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2321 if (vma->vm_flags & VM_WRITE)
2322 phdr.p_flags |= PF_W;
2323 if (vma->vm_flags & VM_EXEC)
2324 phdr.p_flags |= PF_X;
2325 phdr.p_align = ELF_EXEC_PAGESIZE;
2326
2327 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2328 goto end_coredump;
2329 }
2330
2331 if (!elf_core_write_extra_phdrs(cprm, offset))
2332 goto end_coredump;
2333
2334 /* write out the notes section */
2335 if (!write_note_info(&info, cprm))
2336 goto end_coredump;
2337
2338 if (elf_coredump_extra_notes_write(cprm))
2339 goto end_coredump;
2340
2341 /* Align to page */
2342 if (!dump_skip(cprm, dataoff - cprm->pos))
2343 goto end_coredump;
2344
2345 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2346 vma = next_vma(vma, gate_vma)) {
2347 unsigned long addr;
2348 unsigned long end;
2349
2350 end = vma->vm_start + vma_filesz[i++];
2351
2352 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2353 struct page *page;
2354 int stop;
2355
2356 page = get_dump_page(addr);
2357 if (page) {
2358 void *kaddr = kmap(page);
2359 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2360 kunmap(page);
2361 put_page(page);
2362 } else
2363 stop = !dump_skip(cprm, PAGE_SIZE);
2364 if (stop)
2365 goto end_coredump;
2366 }
2367 }
2368 dump_truncate(cprm);
2369
2370 if (!elf_core_write_extra_data(cprm))
2371 goto end_coredump;
2372
2373 if (e_phnum == PN_XNUM) {
2374 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2375 goto end_coredump;
2376 }
2377
2378 end_coredump:
2379 set_fs(fs);
2380
2381 cleanup:
2382 free_note_info(&info);
2383 kfree(shdr4extnum);
2384 kvfree(vma_filesz);
2385 kfree(phdr4note);
2386 kfree(elf);
2387 out:
2388 return has_dumped;
2389 }
2390
2391 #endif /* CONFIG_ELF_CORE */
2392
2393 static int __init init_elf_binfmt(void)
2394 {
2395 register_binfmt(&elf_format);
2396 return 0;
2397 }
2398
2399 static void __exit exit_elf_binfmt(void)
2400 {
2401 /* Remove the COFF and ELF loaders. */
2402 unregister_binfmt(&elf_format);
2403 }
2404
2405 core_initcall(init_elf_binfmt);
2406 module_exit(exit_elf_binfmt);
2407 MODULE_LICENSE("GPL");