]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/binfmt_elf.c
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
[mirror_ubuntu-jammy-kernel.git] / fs / binfmt_elf.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
50 #include <asm/page.h>
51
52 #ifndef ELF_COMPAT
53 #define ELF_COMPAT 0
54 #endif
55
56 #ifndef user_long_t
57 #define user_long_t long
58 #endif
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
61 #endif
62
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
66 #endif
67
68 static int load_elf_binary(struct linux_binprm *bprm);
69
70 #ifdef CONFIG_USELIB
71 static int load_elf_library(struct file *);
72 #else
73 #define load_elf_library NULL
74 #endif
75
76 /*
77 * If we don't support core dumping, then supply a NULL so we
78 * don't even try.
79 */
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
82 #else
83 #define elf_core_dump NULL
84 #endif
85
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
88 #else
89 #define ELF_MIN_ALIGN PAGE_SIZE
90 #endif
91
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS 0
94 #endif
95
96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
99
100 static struct linux_binfmt elf_format = {
101 .module = THIS_MODULE,
102 .load_binary = load_elf_binary,
103 .load_shlib = load_elf_library,
104 .core_dump = elf_core_dump,
105 .min_coredump = ELF_EXEC_PAGESIZE,
106 };
107
108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
109
110 static int set_brk(unsigned long start, unsigned long end, int prot)
111 {
112 start = ELF_PAGEALIGN(start);
113 end = ELF_PAGEALIGN(end);
114 if (end > start) {
115 /*
116 * Map the last of the bss segment.
117 * If the header is requesting these pages to be
118 * executable, honour that (ppc32 needs this).
119 */
120 int error = vm_brk_flags(start, end - start,
121 prot & PROT_EXEC ? VM_EXEC : 0);
122 if (error)
123 return error;
124 }
125 current->mm->start_brk = current->mm->brk = end;
126 return 0;
127 }
128
129 /* We need to explicitly zero any fractional pages
130 after the data section (i.e. bss). This would
131 contain the junk from the file that should not
132 be in memory
133 */
134 static int padzero(unsigned long elf_bss)
135 {
136 unsigned long nbyte;
137
138 nbyte = ELF_PAGEOFFSET(elf_bss);
139 if (nbyte) {
140 nbyte = ELF_MIN_ALIGN - nbyte;
141 if (clear_user((void __user *) elf_bss, nbyte))
142 return -EFAULT;
143 }
144 return 0;
145 }
146
147 /* Let's use some macros to make this stack manipulation a little clearer */
148 #ifdef CONFIG_STACK_GROWSUP
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
150 #define STACK_ROUND(sp, items) \
151 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ \
153 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
154 old_sp; })
155 #else
156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
157 #define STACK_ROUND(sp, items) \
158 (((unsigned long) (sp - items)) &~ 15UL)
159 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
160 #endif
161
162 #ifndef ELF_BASE_PLATFORM
163 /*
164 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
165 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
166 * will be copied to the user stack in the same manner as AT_PLATFORM.
167 */
168 #define ELF_BASE_PLATFORM NULL
169 #endif
170
171 static int
172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
173 unsigned long interp_load_addr,
174 unsigned long e_entry, unsigned long phdr_addr)
175 {
176 struct mm_struct *mm = current->mm;
177 unsigned long p = bprm->p;
178 int argc = bprm->argc;
179 int envc = bprm->envc;
180 elf_addr_t __user *sp;
181 elf_addr_t __user *u_platform;
182 elf_addr_t __user *u_base_platform;
183 elf_addr_t __user *u_rand_bytes;
184 const char *k_platform = ELF_PLATFORM;
185 const char *k_base_platform = ELF_BASE_PLATFORM;
186 unsigned char k_rand_bytes[16];
187 int items;
188 elf_addr_t *elf_info;
189 elf_addr_t flags = 0;
190 int ei_index;
191 const struct cred *cred = current_cred();
192 struct vm_area_struct *vma;
193
194 /*
195 * In some cases (e.g. Hyper-Threading), we want to avoid L1
196 * evictions by the processes running on the same package. One
197 * thing we can do is to shuffle the initial stack for them.
198 */
199
200 p = arch_align_stack(p);
201
202 /*
203 * If this architecture has a platform capability string, copy it
204 * to userspace. In some cases (Sparc), this info is impossible
205 * for userspace to get any other way, in others (i386) it is
206 * merely difficult.
207 */
208 u_platform = NULL;
209 if (k_platform) {
210 size_t len = strlen(k_platform) + 1;
211
212 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
213 if (copy_to_user(u_platform, k_platform, len))
214 return -EFAULT;
215 }
216
217 /*
218 * If this architecture has a "base" platform capability
219 * string, copy it to userspace.
220 */
221 u_base_platform = NULL;
222 if (k_base_platform) {
223 size_t len = strlen(k_base_platform) + 1;
224
225 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
226 if (copy_to_user(u_base_platform, k_base_platform, len))
227 return -EFAULT;
228 }
229
230 /*
231 * Generate 16 random bytes for userspace PRNG seeding.
232 */
233 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
234 u_rand_bytes = (elf_addr_t __user *)
235 STACK_ALLOC(p, sizeof(k_rand_bytes));
236 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
237 return -EFAULT;
238
239 /* Create the ELF interpreter info */
240 elf_info = (elf_addr_t *)mm->saved_auxv;
241 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
242 #define NEW_AUX_ENT(id, val) \
243 do { \
244 *elf_info++ = id; \
245 *elf_info++ = val; \
246 } while (0)
247
248 #ifdef ARCH_DLINFO
249 /*
250 * ARCH_DLINFO must come first so PPC can do its special alignment of
251 * AUXV.
252 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
253 * ARCH_DLINFO changes
254 */
255 ARCH_DLINFO;
256 #endif
257 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
258 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
259 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
260 NEW_AUX_ENT(AT_PHDR, phdr_addr);
261 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
262 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
263 NEW_AUX_ENT(AT_BASE, interp_load_addr);
264 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
265 flags |= AT_FLAGS_PRESERVE_ARGV0;
266 NEW_AUX_ENT(AT_FLAGS, flags);
267 NEW_AUX_ENT(AT_ENTRY, e_entry);
268 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
269 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
270 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
271 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
272 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
273 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
274 #ifdef ELF_HWCAP2
275 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
276 #endif
277 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
278 if (k_platform) {
279 NEW_AUX_ENT(AT_PLATFORM,
280 (elf_addr_t)(unsigned long)u_platform);
281 }
282 if (k_base_platform) {
283 NEW_AUX_ENT(AT_BASE_PLATFORM,
284 (elf_addr_t)(unsigned long)u_base_platform);
285 }
286 if (bprm->have_execfd) {
287 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
288 }
289 #undef NEW_AUX_ENT
290 /* AT_NULL is zero; clear the rest too */
291 memset(elf_info, 0, (char *)mm->saved_auxv +
292 sizeof(mm->saved_auxv) - (char *)elf_info);
293
294 /* And advance past the AT_NULL entry. */
295 elf_info += 2;
296
297 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
298 sp = STACK_ADD(p, ei_index);
299
300 items = (argc + 1) + (envc + 1) + 1;
301 bprm->p = STACK_ROUND(sp, items);
302
303 /* Point sp at the lowest address on the stack */
304 #ifdef CONFIG_STACK_GROWSUP
305 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
306 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
307 #else
308 sp = (elf_addr_t __user *)bprm->p;
309 #endif
310
311
312 /*
313 * Grow the stack manually; some architectures have a limit on how
314 * far ahead a user-space access may be in order to grow the stack.
315 */
316 if (mmap_read_lock_killable(mm))
317 return -EINTR;
318 vma = find_extend_vma(mm, bprm->p);
319 mmap_read_unlock(mm);
320 if (!vma)
321 return -EFAULT;
322
323 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
324 if (put_user(argc, sp++))
325 return -EFAULT;
326
327 /* Populate list of argv pointers back to argv strings. */
328 p = mm->arg_end = mm->arg_start;
329 while (argc-- > 0) {
330 size_t len;
331 if (put_user((elf_addr_t)p, sp++))
332 return -EFAULT;
333 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
334 if (!len || len > MAX_ARG_STRLEN)
335 return -EINVAL;
336 p += len;
337 }
338 if (put_user(0, sp++))
339 return -EFAULT;
340 mm->arg_end = p;
341
342 /* Populate list of envp pointers back to envp strings. */
343 mm->env_end = mm->env_start = p;
344 while (envc-- > 0) {
345 size_t len;
346 if (put_user((elf_addr_t)p, sp++))
347 return -EFAULT;
348 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
349 if (!len || len > MAX_ARG_STRLEN)
350 return -EINVAL;
351 p += len;
352 }
353 if (put_user(0, sp++))
354 return -EFAULT;
355 mm->env_end = p;
356
357 /* Put the elf_info on the stack in the right place. */
358 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
359 return -EFAULT;
360 return 0;
361 }
362
363 static unsigned long elf_map(struct file *filep, unsigned long addr,
364 const struct elf_phdr *eppnt, int prot, int type,
365 unsigned long total_size)
366 {
367 unsigned long map_addr;
368 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
369 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
370 addr = ELF_PAGESTART(addr);
371 size = ELF_PAGEALIGN(size);
372
373 /* mmap() will return -EINVAL if given a zero size, but a
374 * segment with zero filesize is perfectly valid */
375 if (!size)
376 return addr;
377
378 /*
379 * total_size is the size of the ELF (interpreter) image.
380 * The _first_ mmap needs to know the full size, otherwise
381 * randomization might put this image into an overlapping
382 * position with the ELF binary image. (since size < total_size)
383 * So we first map the 'big' image - and unmap the remainder at
384 * the end. (which unmap is needed for ELF images with holes.)
385 */
386 if (total_size) {
387 total_size = ELF_PAGEALIGN(total_size);
388 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
389 if (!BAD_ADDR(map_addr))
390 vm_munmap(map_addr+size, total_size-size);
391 } else
392 map_addr = vm_mmap(filep, addr, size, prot, type, off);
393
394 if ((type & MAP_FIXED_NOREPLACE) &&
395 PTR_ERR((void *)map_addr) == -EEXIST)
396 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
397 task_pid_nr(current), current->comm, (void *)addr);
398
399 return(map_addr);
400 }
401
402 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
403 {
404 int i, first_idx = -1, last_idx = -1;
405
406 for (i = 0; i < nr; i++) {
407 if (cmds[i].p_type == PT_LOAD) {
408 last_idx = i;
409 if (first_idx == -1)
410 first_idx = i;
411 }
412 }
413 if (first_idx == -1)
414 return 0;
415
416 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
417 ELF_PAGESTART(cmds[first_idx].p_vaddr);
418 }
419
420 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
421 {
422 ssize_t rv;
423
424 rv = kernel_read(file, buf, len, &pos);
425 if (unlikely(rv != len)) {
426 return (rv < 0) ? rv : -EIO;
427 }
428 return 0;
429 }
430
431 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
432 {
433 unsigned long alignment = 0;
434 int i;
435
436 for (i = 0; i < nr; i++) {
437 if (cmds[i].p_type == PT_LOAD) {
438 unsigned long p_align = cmds[i].p_align;
439
440 /* skip non-power of two alignments as invalid */
441 if (!is_power_of_2(p_align))
442 continue;
443 alignment = max(alignment, p_align);
444 }
445 }
446
447 /* ensure we align to at least one page */
448 return ELF_PAGEALIGN(alignment);
449 }
450
451 /**
452 * load_elf_phdrs() - load ELF program headers
453 * @elf_ex: ELF header of the binary whose program headers should be loaded
454 * @elf_file: the opened ELF binary file
455 *
456 * Loads ELF program headers from the binary file elf_file, which has the ELF
457 * header pointed to by elf_ex, into a newly allocated array. The caller is
458 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
459 */
460 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
461 struct file *elf_file)
462 {
463 struct elf_phdr *elf_phdata = NULL;
464 int retval, err = -1;
465 unsigned int size;
466
467 /*
468 * If the size of this structure has changed, then punt, since
469 * we will be doing the wrong thing.
470 */
471 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
472 goto out;
473
474 /* Sanity check the number of program headers... */
475 /* ...and their total size. */
476 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
477 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
478 goto out;
479
480 elf_phdata = kmalloc(size, GFP_KERNEL);
481 if (!elf_phdata)
482 goto out;
483
484 /* Read in the program headers */
485 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
486 if (retval < 0) {
487 err = retval;
488 goto out;
489 }
490
491 /* Success! */
492 err = 0;
493 out:
494 if (err) {
495 kfree(elf_phdata);
496 elf_phdata = NULL;
497 }
498 return elf_phdata;
499 }
500
501 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
502
503 /**
504 * struct arch_elf_state - arch-specific ELF loading state
505 *
506 * This structure is used to preserve architecture specific data during
507 * the loading of an ELF file, throughout the checking of architecture
508 * specific ELF headers & through to the point where the ELF load is
509 * known to be proceeding (ie. SET_PERSONALITY).
510 *
511 * This implementation is a dummy for architectures which require no
512 * specific state.
513 */
514 struct arch_elf_state {
515 };
516
517 #define INIT_ARCH_ELF_STATE {}
518
519 /**
520 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
521 * @ehdr: The main ELF header
522 * @phdr: The program header to check
523 * @elf: The open ELF file
524 * @is_interp: True if the phdr is from the interpreter of the ELF being
525 * loaded, else false.
526 * @state: Architecture-specific state preserved throughout the process
527 * of loading the ELF.
528 *
529 * Inspects the program header phdr to validate its correctness and/or
530 * suitability for the system. Called once per ELF program header in the
531 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
532 * interpreter.
533 *
534 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
535 * with that return code.
536 */
537 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
538 struct elf_phdr *phdr,
539 struct file *elf, bool is_interp,
540 struct arch_elf_state *state)
541 {
542 /* Dummy implementation, always proceed */
543 return 0;
544 }
545
546 /**
547 * arch_check_elf() - check an ELF executable
548 * @ehdr: The main ELF header
549 * @has_interp: True if the ELF has an interpreter, else false.
550 * @interp_ehdr: The interpreter's ELF header
551 * @state: Architecture-specific state preserved throughout the process
552 * of loading the ELF.
553 *
554 * Provides a final opportunity for architecture code to reject the loading
555 * of the ELF & cause an exec syscall to return an error. This is called after
556 * all program headers to be checked by arch_elf_pt_proc have been.
557 *
558 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
559 * with that return code.
560 */
561 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
562 struct elfhdr *interp_ehdr,
563 struct arch_elf_state *state)
564 {
565 /* Dummy implementation, always proceed */
566 return 0;
567 }
568
569 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
570
571 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
572 bool has_interp, bool is_interp)
573 {
574 int prot = 0;
575
576 if (p_flags & PF_R)
577 prot |= PROT_READ;
578 if (p_flags & PF_W)
579 prot |= PROT_WRITE;
580 if (p_flags & PF_X)
581 prot |= PROT_EXEC;
582
583 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
584 }
585
586 /* This is much more generalized than the library routine read function,
587 so we keep this separate. Technically the library read function
588 is only provided so that we can read a.out libraries that have
589 an ELF header */
590
591 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
592 struct file *interpreter,
593 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
594 struct arch_elf_state *arch_state)
595 {
596 struct elf_phdr *eppnt;
597 unsigned long load_addr = 0;
598 int load_addr_set = 0;
599 unsigned long last_bss = 0, elf_bss = 0;
600 int bss_prot = 0;
601 unsigned long error = ~0UL;
602 unsigned long total_size;
603 int i;
604
605 /* First of all, some simple consistency checks */
606 if (interp_elf_ex->e_type != ET_EXEC &&
607 interp_elf_ex->e_type != ET_DYN)
608 goto out;
609 if (!elf_check_arch(interp_elf_ex) ||
610 elf_check_fdpic(interp_elf_ex))
611 goto out;
612 if (!interpreter->f_op->mmap)
613 goto out;
614
615 total_size = total_mapping_size(interp_elf_phdata,
616 interp_elf_ex->e_phnum);
617 if (!total_size) {
618 error = -EINVAL;
619 goto out;
620 }
621
622 eppnt = interp_elf_phdata;
623 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
624 if (eppnt->p_type == PT_LOAD) {
625 int elf_type = MAP_PRIVATE;
626 int elf_prot = make_prot(eppnt->p_flags, arch_state,
627 true, true);
628 unsigned long vaddr = 0;
629 unsigned long k, map_addr;
630
631 vaddr = eppnt->p_vaddr;
632 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
633 elf_type |= MAP_FIXED;
634 else if (no_base && interp_elf_ex->e_type == ET_DYN)
635 load_addr = -vaddr;
636
637 map_addr = elf_map(interpreter, load_addr + vaddr,
638 eppnt, elf_prot, elf_type, total_size);
639 total_size = 0;
640 error = map_addr;
641 if (BAD_ADDR(map_addr))
642 goto out;
643
644 if (!load_addr_set &&
645 interp_elf_ex->e_type == ET_DYN) {
646 load_addr = map_addr - ELF_PAGESTART(vaddr);
647 load_addr_set = 1;
648 }
649
650 /*
651 * Check to see if the section's size will overflow the
652 * allowed task size. Note that p_filesz must always be
653 * <= p_memsize so it's only necessary to check p_memsz.
654 */
655 k = load_addr + eppnt->p_vaddr;
656 if (BAD_ADDR(k) ||
657 eppnt->p_filesz > eppnt->p_memsz ||
658 eppnt->p_memsz > TASK_SIZE ||
659 TASK_SIZE - eppnt->p_memsz < k) {
660 error = -ENOMEM;
661 goto out;
662 }
663
664 /*
665 * Find the end of the file mapping for this phdr, and
666 * keep track of the largest address we see for this.
667 */
668 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
669 if (k > elf_bss)
670 elf_bss = k;
671
672 /*
673 * Do the same thing for the memory mapping - between
674 * elf_bss and last_bss is the bss section.
675 */
676 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
677 if (k > last_bss) {
678 last_bss = k;
679 bss_prot = elf_prot;
680 }
681 }
682 }
683
684 /*
685 * Now fill out the bss section: first pad the last page from
686 * the file up to the page boundary, and zero it from elf_bss
687 * up to the end of the page.
688 */
689 if (padzero(elf_bss)) {
690 error = -EFAULT;
691 goto out;
692 }
693 /*
694 * Next, align both the file and mem bss up to the page size,
695 * since this is where elf_bss was just zeroed up to, and where
696 * last_bss will end after the vm_brk_flags() below.
697 */
698 elf_bss = ELF_PAGEALIGN(elf_bss);
699 last_bss = ELF_PAGEALIGN(last_bss);
700 /* Finally, if there is still more bss to allocate, do it. */
701 if (last_bss > elf_bss) {
702 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
703 bss_prot & PROT_EXEC ? VM_EXEC : 0);
704 if (error)
705 goto out;
706 }
707
708 error = load_addr;
709 out:
710 return error;
711 }
712
713 /*
714 * These are the functions used to load ELF style executables and shared
715 * libraries. There is no binary dependent code anywhere else.
716 */
717
718 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
719 struct arch_elf_state *arch,
720 bool have_prev_type, u32 *prev_type)
721 {
722 size_t o, step;
723 const struct gnu_property *pr;
724 int ret;
725
726 if (*off == datasz)
727 return -ENOENT;
728
729 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
730 return -EIO;
731 o = *off;
732 datasz -= *off;
733
734 if (datasz < sizeof(*pr))
735 return -ENOEXEC;
736 pr = (const struct gnu_property *)(data + o);
737 o += sizeof(*pr);
738 datasz -= sizeof(*pr);
739
740 if (pr->pr_datasz > datasz)
741 return -ENOEXEC;
742
743 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
744 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
745 if (step > datasz)
746 return -ENOEXEC;
747
748 /* Properties are supposed to be unique and sorted on pr_type: */
749 if (have_prev_type && pr->pr_type <= *prev_type)
750 return -ENOEXEC;
751 *prev_type = pr->pr_type;
752
753 ret = arch_parse_elf_property(pr->pr_type, data + o,
754 pr->pr_datasz, ELF_COMPAT, arch);
755 if (ret)
756 return ret;
757
758 *off = o + step;
759 return 0;
760 }
761
762 #define NOTE_DATA_SZ SZ_1K
763 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
764 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
765
766 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
767 struct arch_elf_state *arch)
768 {
769 union {
770 struct elf_note nhdr;
771 char data[NOTE_DATA_SZ];
772 } note;
773 loff_t pos;
774 ssize_t n;
775 size_t off, datasz;
776 int ret;
777 bool have_prev_type;
778 u32 prev_type;
779
780 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
781 return 0;
782
783 /* load_elf_binary() shouldn't call us unless this is true... */
784 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
785 return -ENOEXEC;
786
787 /* If the properties are crazy large, that's too bad (for now): */
788 if (phdr->p_filesz > sizeof(note))
789 return -ENOEXEC;
790
791 pos = phdr->p_offset;
792 n = kernel_read(f, &note, phdr->p_filesz, &pos);
793
794 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
795 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
796 return -EIO;
797
798 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
799 note.nhdr.n_namesz != NOTE_NAME_SZ ||
800 strncmp(note.data + sizeof(note.nhdr),
801 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
802 return -ENOEXEC;
803
804 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
805 ELF_GNU_PROPERTY_ALIGN);
806 if (off > n)
807 return -ENOEXEC;
808
809 if (note.nhdr.n_descsz > n - off)
810 return -ENOEXEC;
811 datasz = off + note.nhdr.n_descsz;
812
813 have_prev_type = false;
814 do {
815 ret = parse_elf_property(note.data, &off, datasz, arch,
816 have_prev_type, &prev_type);
817 have_prev_type = true;
818 } while (!ret);
819
820 return ret == -ENOENT ? 0 : ret;
821 }
822
823 static int load_elf_binary(struct linux_binprm *bprm)
824 {
825 struct file *interpreter = NULL; /* to shut gcc up */
826 unsigned long load_addr, load_bias = 0, phdr_addr = 0;
827 int load_addr_set = 0;
828 unsigned long error;
829 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
830 struct elf_phdr *elf_property_phdata = NULL;
831 unsigned long elf_bss, elf_brk;
832 int bss_prot = 0;
833 int retval, i;
834 unsigned long elf_entry;
835 unsigned long e_entry;
836 unsigned long interp_load_addr = 0;
837 unsigned long start_code, end_code, start_data, end_data;
838 unsigned long reloc_func_desc __maybe_unused = 0;
839 int executable_stack = EXSTACK_DEFAULT;
840 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
841 struct elfhdr *interp_elf_ex = NULL;
842 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
843 struct mm_struct *mm;
844 struct pt_regs *regs;
845
846 retval = -ENOEXEC;
847 /* First of all, some simple consistency checks */
848 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
849 goto out;
850
851 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
852 goto out;
853 if (!elf_check_arch(elf_ex))
854 goto out;
855 if (elf_check_fdpic(elf_ex))
856 goto out;
857 if (!bprm->file->f_op->mmap)
858 goto out;
859
860 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
861 if (!elf_phdata)
862 goto out;
863
864 elf_ppnt = elf_phdata;
865 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
866 char *elf_interpreter;
867
868 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
869 elf_property_phdata = elf_ppnt;
870 continue;
871 }
872
873 if (elf_ppnt->p_type != PT_INTERP)
874 continue;
875
876 /*
877 * This is the program interpreter used for shared libraries -
878 * for now assume that this is an a.out format binary.
879 */
880 retval = -ENOEXEC;
881 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
882 goto out_free_ph;
883
884 retval = -ENOMEM;
885 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
886 if (!elf_interpreter)
887 goto out_free_ph;
888
889 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
890 elf_ppnt->p_offset);
891 if (retval < 0)
892 goto out_free_interp;
893 /* make sure path is NULL terminated */
894 retval = -ENOEXEC;
895 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
896 goto out_free_interp;
897
898 interpreter = open_exec(elf_interpreter);
899 kfree(elf_interpreter);
900 retval = PTR_ERR(interpreter);
901 if (IS_ERR(interpreter))
902 goto out_free_ph;
903
904 /*
905 * If the binary is not readable then enforce mm->dumpable = 0
906 * regardless of the interpreter's permissions.
907 */
908 would_dump(bprm, interpreter);
909
910 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
911 if (!interp_elf_ex) {
912 retval = -ENOMEM;
913 goto out_free_ph;
914 }
915
916 /* Get the exec headers */
917 retval = elf_read(interpreter, interp_elf_ex,
918 sizeof(*interp_elf_ex), 0);
919 if (retval < 0)
920 goto out_free_dentry;
921
922 break;
923
924 out_free_interp:
925 kfree(elf_interpreter);
926 goto out_free_ph;
927 }
928
929 elf_ppnt = elf_phdata;
930 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
931 switch (elf_ppnt->p_type) {
932 case PT_GNU_STACK:
933 if (elf_ppnt->p_flags & PF_X)
934 executable_stack = EXSTACK_ENABLE_X;
935 else
936 executable_stack = EXSTACK_DISABLE_X;
937 break;
938
939 case PT_LOPROC ... PT_HIPROC:
940 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
941 bprm->file, false,
942 &arch_state);
943 if (retval)
944 goto out_free_dentry;
945 break;
946 }
947
948 /* Some simple consistency checks for the interpreter */
949 if (interpreter) {
950 retval = -ELIBBAD;
951 /* Not an ELF interpreter */
952 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
953 goto out_free_dentry;
954 /* Verify the interpreter has a valid arch */
955 if (!elf_check_arch(interp_elf_ex) ||
956 elf_check_fdpic(interp_elf_ex))
957 goto out_free_dentry;
958
959 /* Load the interpreter program headers */
960 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
961 interpreter);
962 if (!interp_elf_phdata)
963 goto out_free_dentry;
964
965 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
966 elf_property_phdata = NULL;
967 elf_ppnt = interp_elf_phdata;
968 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
969 switch (elf_ppnt->p_type) {
970 case PT_GNU_PROPERTY:
971 elf_property_phdata = elf_ppnt;
972 break;
973
974 case PT_LOPROC ... PT_HIPROC:
975 retval = arch_elf_pt_proc(interp_elf_ex,
976 elf_ppnt, interpreter,
977 true, &arch_state);
978 if (retval)
979 goto out_free_dentry;
980 break;
981 }
982 }
983
984 retval = parse_elf_properties(interpreter ?: bprm->file,
985 elf_property_phdata, &arch_state);
986 if (retval)
987 goto out_free_dentry;
988
989 /*
990 * Allow arch code to reject the ELF at this point, whilst it's
991 * still possible to return an error to the code that invoked
992 * the exec syscall.
993 */
994 retval = arch_check_elf(elf_ex,
995 !!interpreter, interp_elf_ex,
996 &arch_state);
997 if (retval)
998 goto out_free_dentry;
999
1000 /* Flush all traces of the currently running executable */
1001 retval = begin_new_exec(bprm);
1002 if (retval)
1003 goto out_free_dentry;
1004
1005 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1006 may depend on the personality. */
1007 SET_PERSONALITY2(*elf_ex, &arch_state);
1008 if (elf_read_implies_exec(*elf_ex, executable_stack))
1009 current->personality |= READ_IMPLIES_EXEC;
1010
1011 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1012 current->flags |= PF_RANDOMIZE;
1013
1014 setup_new_exec(bprm);
1015
1016 /* Do this so that we can load the interpreter, if need be. We will
1017 change some of these later */
1018 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1019 executable_stack);
1020 if (retval < 0)
1021 goto out_free_dentry;
1022
1023 elf_bss = 0;
1024 elf_brk = 0;
1025
1026 start_code = ~0UL;
1027 end_code = 0;
1028 start_data = 0;
1029 end_data = 0;
1030
1031 /* Now we do a little grungy work by mmapping the ELF image into
1032 the correct location in memory. */
1033 for(i = 0, elf_ppnt = elf_phdata;
1034 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1035 int elf_prot, elf_flags;
1036 unsigned long k, vaddr;
1037 unsigned long total_size = 0;
1038 unsigned long alignment;
1039
1040 if (elf_ppnt->p_type != PT_LOAD)
1041 continue;
1042
1043 if (unlikely (elf_brk > elf_bss)) {
1044 unsigned long nbyte;
1045
1046 /* There was a PT_LOAD segment with p_memsz > p_filesz
1047 before this one. Map anonymous pages, if needed,
1048 and clear the area. */
1049 retval = set_brk(elf_bss + load_bias,
1050 elf_brk + load_bias,
1051 bss_prot);
1052 if (retval)
1053 goto out_free_dentry;
1054 nbyte = ELF_PAGEOFFSET(elf_bss);
1055 if (nbyte) {
1056 nbyte = ELF_MIN_ALIGN - nbyte;
1057 if (nbyte > elf_brk - elf_bss)
1058 nbyte = elf_brk - elf_bss;
1059 if (clear_user((void __user *)elf_bss +
1060 load_bias, nbyte)) {
1061 /*
1062 * This bss-zeroing can fail if the ELF
1063 * file specifies odd protections. So
1064 * we don't check the return value
1065 */
1066 }
1067 }
1068 }
1069
1070 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1071 !!interpreter, false);
1072
1073 elf_flags = MAP_PRIVATE;
1074
1075 vaddr = elf_ppnt->p_vaddr;
1076 /*
1077 * If we are loading ET_EXEC or we have already performed
1078 * the ET_DYN load_addr calculations, proceed normally.
1079 */
1080 if (elf_ex->e_type == ET_EXEC || load_addr_set) {
1081 elf_flags |= MAP_FIXED;
1082 } else if (elf_ex->e_type == ET_DYN) {
1083 /*
1084 * This logic is run once for the first LOAD Program
1085 * Header for ET_DYN binaries to calculate the
1086 * randomization (load_bias) for all the LOAD
1087 * Program Headers, and to calculate the entire
1088 * size of the ELF mapping (total_size). (Note that
1089 * load_addr_set is set to true later once the
1090 * initial mapping is performed.)
1091 *
1092 * There are effectively two types of ET_DYN
1093 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1094 * and loaders (ET_DYN without INTERP, since they
1095 * _are_ the ELF interpreter). The loaders must
1096 * be loaded away from programs since the program
1097 * may otherwise collide with the loader (especially
1098 * for ET_EXEC which does not have a randomized
1099 * position). For example to handle invocations of
1100 * "./ld.so someprog" to test out a new version of
1101 * the loader, the subsequent program that the
1102 * loader loads must avoid the loader itself, so
1103 * they cannot share the same load range. Sufficient
1104 * room for the brk must be allocated with the
1105 * loader as well, since brk must be available with
1106 * the loader.
1107 *
1108 * Therefore, programs are loaded offset from
1109 * ELF_ET_DYN_BASE and loaders are loaded into the
1110 * independently randomized mmap region (0 load_bias
1111 * without MAP_FIXED).
1112 */
1113 if (interpreter) {
1114 load_bias = ELF_ET_DYN_BASE;
1115 if (current->flags & PF_RANDOMIZE)
1116 load_bias += arch_mmap_rnd();
1117 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1118 if (alignment)
1119 load_bias &= ~(alignment - 1);
1120 elf_flags |= MAP_FIXED;
1121 } else
1122 load_bias = 0;
1123
1124 /*
1125 * Since load_bias is used for all subsequent loading
1126 * calculations, we must lower it by the first vaddr
1127 * so that the remaining calculations based on the
1128 * ELF vaddrs will be correctly offset. The result
1129 * is then page aligned.
1130 */
1131 load_bias = ELF_PAGESTART(load_bias - vaddr);
1132
1133 total_size = total_mapping_size(elf_phdata,
1134 elf_ex->e_phnum);
1135 if (!total_size) {
1136 retval = -EINVAL;
1137 goto out_free_dentry;
1138 }
1139 }
1140
1141 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1142 elf_prot, elf_flags, total_size);
1143 if (BAD_ADDR(error)) {
1144 retval = IS_ERR((void *)error) ?
1145 PTR_ERR((void*)error) : -EINVAL;
1146 goto out_free_dentry;
1147 }
1148
1149 if (!load_addr_set) {
1150 load_addr_set = 1;
1151 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1152 if (elf_ex->e_type == ET_DYN) {
1153 load_bias += error -
1154 ELF_PAGESTART(load_bias + vaddr);
1155 load_addr += load_bias;
1156 reloc_func_desc = load_bias;
1157 }
1158 }
1159
1160 /*
1161 * Figure out which segment in the file contains the Program
1162 * Header table, and map to the associated memory address.
1163 */
1164 if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1165 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1166 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1167 elf_ppnt->p_vaddr;
1168 }
1169
1170 k = elf_ppnt->p_vaddr;
1171 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1172 start_code = k;
1173 if (start_data < k)
1174 start_data = k;
1175
1176 /*
1177 * Check to see if the section's size will overflow the
1178 * allowed task size. Note that p_filesz must always be
1179 * <= p_memsz so it is only necessary to check p_memsz.
1180 */
1181 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1182 elf_ppnt->p_memsz > TASK_SIZE ||
1183 TASK_SIZE - elf_ppnt->p_memsz < k) {
1184 /* set_brk can never work. Avoid overflows. */
1185 retval = -EINVAL;
1186 goto out_free_dentry;
1187 }
1188
1189 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1190
1191 if (k > elf_bss)
1192 elf_bss = k;
1193 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1194 end_code = k;
1195 if (end_data < k)
1196 end_data = k;
1197 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1198 if (k > elf_brk) {
1199 bss_prot = elf_prot;
1200 elf_brk = k;
1201 }
1202 }
1203
1204 e_entry = elf_ex->e_entry + load_bias;
1205 phdr_addr += load_bias;
1206 elf_bss += load_bias;
1207 elf_brk += load_bias;
1208 start_code += load_bias;
1209 end_code += load_bias;
1210 start_data += load_bias;
1211 end_data += load_bias;
1212
1213 /* Calling set_brk effectively mmaps the pages that we need
1214 * for the bss and break sections. We must do this before
1215 * mapping in the interpreter, to make sure it doesn't wind
1216 * up getting placed where the bss needs to go.
1217 */
1218 retval = set_brk(elf_bss, elf_brk, bss_prot);
1219 if (retval)
1220 goto out_free_dentry;
1221 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1222 retval = -EFAULT; /* Nobody gets to see this, but.. */
1223 goto out_free_dentry;
1224 }
1225
1226 if (interpreter) {
1227 elf_entry = load_elf_interp(interp_elf_ex,
1228 interpreter,
1229 load_bias, interp_elf_phdata,
1230 &arch_state);
1231 if (!IS_ERR((void *)elf_entry)) {
1232 /*
1233 * load_elf_interp() returns relocation
1234 * adjustment
1235 */
1236 interp_load_addr = elf_entry;
1237 elf_entry += interp_elf_ex->e_entry;
1238 }
1239 if (BAD_ADDR(elf_entry)) {
1240 retval = IS_ERR((void *)elf_entry) ?
1241 (int)elf_entry : -EINVAL;
1242 goto out_free_dentry;
1243 }
1244 reloc_func_desc = interp_load_addr;
1245
1246 allow_write_access(interpreter);
1247 fput(interpreter);
1248
1249 kfree(interp_elf_ex);
1250 kfree(interp_elf_phdata);
1251 } else {
1252 elf_entry = e_entry;
1253 if (BAD_ADDR(elf_entry)) {
1254 retval = -EINVAL;
1255 goto out_free_dentry;
1256 }
1257 }
1258
1259 kfree(elf_phdata);
1260
1261 set_binfmt(&elf_format);
1262
1263 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1264 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1265 if (retval < 0)
1266 goto out;
1267 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1268
1269 retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1270 e_entry, phdr_addr);
1271 if (retval < 0)
1272 goto out;
1273
1274 mm = current->mm;
1275 mm->end_code = end_code;
1276 mm->start_code = start_code;
1277 mm->start_data = start_data;
1278 mm->end_data = end_data;
1279 mm->start_stack = bprm->p;
1280
1281 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1282 /*
1283 * For architectures with ELF randomization, when executing
1284 * a loader directly (i.e. no interpreter listed in ELF
1285 * headers), move the brk area out of the mmap region
1286 * (since it grows up, and may collide early with the stack
1287 * growing down), and into the unused ELF_ET_DYN_BASE region.
1288 */
1289 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1290 elf_ex->e_type == ET_DYN && !interpreter) {
1291 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1292 }
1293
1294 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1295 #ifdef compat_brk_randomized
1296 current->brk_randomized = 1;
1297 #endif
1298 }
1299
1300 if (current->personality & MMAP_PAGE_ZERO) {
1301 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1302 and some applications "depend" upon this behavior.
1303 Since we do not have the power to recompile these, we
1304 emulate the SVr4 behavior. Sigh. */
1305 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1306 MAP_FIXED | MAP_PRIVATE, 0);
1307 }
1308
1309 regs = current_pt_regs();
1310 #ifdef ELF_PLAT_INIT
1311 /*
1312 * The ABI may specify that certain registers be set up in special
1313 * ways (on i386 %edx is the address of a DT_FINI function, for
1314 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1315 * that the e_entry field is the address of the function descriptor
1316 * for the startup routine, rather than the address of the startup
1317 * routine itself. This macro performs whatever initialization to
1318 * the regs structure is required as well as any relocations to the
1319 * function descriptor entries when executing dynamically links apps.
1320 */
1321 ELF_PLAT_INIT(regs, reloc_func_desc);
1322 #endif
1323
1324 finalize_exec(bprm);
1325 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1326 retval = 0;
1327 out:
1328 return retval;
1329
1330 /* error cleanup */
1331 out_free_dentry:
1332 kfree(interp_elf_ex);
1333 kfree(interp_elf_phdata);
1334 allow_write_access(interpreter);
1335 if (interpreter)
1336 fput(interpreter);
1337 out_free_ph:
1338 kfree(elf_phdata);
1339 goto out;
1340 }
1341
1342 #ifdef CONFIG_USELIB
1343 /* This is really simpleminded and specialized - we are loading an
1344 a.out library that is given an ELF header. */
1345 static int load_elf_library(struct file *file)
1346 {
1347 struct elf_phdr *elf_phdata;
1348 struct elf_phdr *eppnt;
1349 unsigned long elf_bss, bss, len;
1350 int retval, error, i, j;
1351 struct elfhdr elf_ex;
1352
1353 error = -ENOEXEC;
1354 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1355 if (retval < 0)
1356 goto out;
1357
1358 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1359 goto out;
1360
1361 /* First of all, some simple consistency checks */
1362 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1363 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1364 goto out;
1365 if (elf_check_fdpic(&elf_ex))
1366 goto out;
1367
1368 /* Now read in all of the header information */
1369
1370 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1371 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1372
1373 error = -ENOMEM;
1374 elf_phdata = kmalloc(j, GFP_KERNEL);
1375 if (!elf_phdata)
1376 goto out;
1377
1378 eppnt = elf_phdata;
1379 error = -ENOEXEC;
1380 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1381 if (retval < 0)
1382 goto out_free_ph;
1383
1384 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1385 if ((eppnt + i)->p_type == PT_LOAD)
1386 j++;
1387 if (j != 1)
1388 goto out_free_ph;
1389
1390 while (eppnt->p_type != PT_LOAD)
1391 eppnt++;
1392
1393 /* Now use mmap to map the library into memory. */
1394 error = vm_mmap(file,
1395 ELF_PAGESTART(eppnt->p_vaddr),
1396 (eppnt->p_filesz +
1397 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1398 PROT_READ | PROT_WRITE | PROT_EXEC,
1399 MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1400 (eppnt->p_offset -
1401 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1402 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1403 goto out_free_ph;
1404
1405 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1406 if (padzero(elf_bss)) {
1407 error = -EFAULT;
1408 goto out_free_ph;
1409 }
1410
1411 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1412 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1413 if (bss > len) {
1414 error = vm_brk(len, bss - len);
1415 if (error)
1416 goto out_free_ph;
1417 }
1418 error = 0;
1419
1420 out_free_ph:
1421 kfree(elf_phdata);
1422 out:
1423 return error;
1424 }
1425 #endif /* #ifdef CONFIG_USELIB */
1426
1427 #ifdef CONFIG_ELF_CORE
1428 /*
1429 * ELF core dumper
1430 *
1431 * Modelled on fs/exec.c:aout_core_dump()
1432 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1433 */
1434
1435 /* An ELF note in memory */
1436 struct memelfnote
1437 {
1438 const char *name;
1439 int type;
1440 unsigned int datasz;
1441 void *data;
1442 };
1443
1444 static int notesize(struct memelfnote *en)
1445 {
1446 int sz;
1447
1448 sz = sizeof(struct elf_note);
1449 sz += roundup(strlen(en->name) + 1, 4);
1450 sz += roundup(en->datasz, 4);
1451
1452 return sz;
1453 }
1454
1455 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1456 {
1457 struct elf_note en;
1458 en.n_namesz = strlen(men->name) + 1;
1459 en.n_descsz = men->datasz;
1460 en.n_type = men->type;
1461
1462 return dump_emit(cprm, &en, sizeof(en)) &&
1463 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1464 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1465 }
1466
1467 static void fill_elf_header(struct elfhdr *elf, int segs,
1468 u16 machine, u32 flags)
1469 {
1470 memset(elf, 0, sizeof(*elf));
1471
1472 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1473 elf->e_ident[EI_CLASS] = ELF_CLASS;
1474 elf->e_ident[EI_DATA] = ELF_DATA;
1475 elf->e_ident[EI_VERSION] = EV_CURRENT;
1476 elf->e_ident[EI_OSABI] = ELF_OSABI;
1477
1478 elf->e_type = ET_CORE;
1479 elf->e_machine = machine;
1480 elf->e_version = EV_CURRENT;
1481 elf->e_phoff = sizeof(struct elfhdr);
1482 elf->e_flags = flags;
1483 elf->e_ehsize = sizeof(struct elfhdr);
1484 elf->e_phentsize = sizeof(struct elf_phdr);
1485 elf->e_phnum = segs;
1486 }
1487
1488 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1489 {
1490 phdr->p_type = PT_NOTE;
1491 phdr->p_offset = offset;
1492 phdr->p_vaddr = 0;
1493 phdr->p_paddr = 0;
1494 phdr->p_filesz = sz;
1495 phdr->p_memsz = 0;
1496 phdr->p_flags = 0;
1497 phdr->p_align = 0;
1498 }
1499
1500 static void fill_note(struct memelfnote *note, const char *name, int type,
1501 unsigned int sz, void *data)
1502 {
1503 note->name = name;
1504 note->type = type;
1505 note->datasz = sz;
1506 note->data = data;
1507 }
1508
1509 /*
1510 * fill up all the fields in prstatus from the given task struct, except
1511 * registers which need to be filled up separately.
1512 */
1513 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1514 struct task_struct *p, long signr)
1515 {
1516 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1517 prstatus->pr_sigpend = p->pending.signal.sig[0];
1518 prstatus->pr_sighold = p->blocked.sig[0];
1519 rcu_read_lock();
1520 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1521 rcu_read_unlock();
1522 prstatus->pr_pid = task_pid_vnr(p);
1523 prstatus->pr_pgrp = task_pgrp_vnr(p);
1524 prstatus->pr_sid = task_session_vnr(p);
1525 if (thread_group_leader(p)) {
1526 struct task_cputime cputime;
1527
1528 /*
1529 * This is the record for the group leader. It shows the
1530 * group-wide total, not its individual thread total.
1531 */
1532 thread_group_cputime(p, &cputime);
1533 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1534 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1535 } else {
1536 u64 utime, stime;
1537
1538 task_cputime(p, &utime, &stime);
1539 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1540 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1541 }
1542
1543 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1544 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1545 }
1546
1547 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1548 struct mm_struct *mm)
1549 {
1550 const struct cred *cred;
1551 unsigned int i, len;
1552 unsigned int state;
1553
1554 /* first copy the parameters from user space */
1555 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1556
1557 len = mm->arg_end - mm->arg_start;
1558 if (len >= ELF_PRARGSZ)
1559 len = ELF_PRARGSZ-1;
1560 if (copy_from_user(&psinfo->pr_psargs,
1561 (const char __user *)mm->arg_start, len))
1562 return -EFAULT;
1563 for(i = 0; i < len; i++)
1564 if (psinfo->pr_psargs[i] == 0)
1565 psinfo->pr_psargs[i] = ' ';
1566 psinfo->pr_psargs[len] = 0;
1567
1568 rcu_read_lock();
1569 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1570 rcu_read_unlock();
1571 psinfo->pr_pid = task_pid_vnr(p);
1572 psinfo->pr_pgrp = task_pgrp_vnr(p);
1573 psinfo->pr_sid = task_session_vnr(p);
1574
1575 state = READ_ONCE(p->__state);
1576 i = state ? ffz(~state) + 1 : 0;
1577 psinfo->pr_state = i;
1578 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1579 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1580 psinfo->pr_nice = task_nice(p);
1581 psinfo->pr_flag = p->flags;
1582 rcu_read_lock();
1583 cred = __task_cred(p);
1584 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1585 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1586 rcu_read_unlock();
1587 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1588
1589 return 0;
1590 }
1591
1592 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1593 {
1594 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1595 int i = 0;
1596 do
1597 i += 2;
1598 while (auxv[i - 2] != AT_NULL);
1599 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1600 }
1601
1602 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1603 const kernel_siginfo_t *siginfo)
1604 {
1605 copy_siginfo_to_external(csigdata, siginfo);
1606 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1607 }
1608
1609 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1610 /*
1611 * Format of NT_FILE note:
1612 *
1613 * long count -- how many files are mapped
1614 * long page_size -- units for file_ofs
1615 * array of [COUNT] elements of
1616 * long start
1617 * long end
1618 * long file_ofs
1619 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1620 */
1621 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1622 {
1623 unsigned count, size, names_ofs, remaining, n;
1624 user_long_t *data;
1625 user_long_t *start_end_ofs;
1626 char *name_base, *name_curpos;
1627 int i;
1628
1629 /* *Estimated* file count and total data size needed */
1630 count = cprm->vma_count;
1631 if (count > UINT_MAX / 64)
1632 return -EINVAL;
1633 size = count * 64;
1634
1635 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1636 alloc:
1637 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1638 return -EINVAL;
1639 size = round_up(size, PAGE_SIZE);
1640 /*
1641 * "size" can be 0 here legitimately.
1642 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1643 */
1644 data = kvmalloc(size, GFP_KERNEL);
1645 if (ZERO_OR_NULL_PTR(data))
1646 return -ENOMEM;
1647
1648 start_end_ofs = data + 2;
1649 name_base = name_curpos = ((char *)data) + names_ofs;
1650 remaining = size - names_ofs;
1651 count = 0;
1652 for (i = 0; i < cprm->vma_count; i++) {
1653 struct core_vma_metadata *m = &cprm->vma_meta[i];
1654 struct file *file;
1655 const char *filename;
1656
1657 file = m->file;
1658 if (!file)
1659 continue;
1660 filename = file_path(file, name_curpos, remaining);
1661 if (IS_ERR(filename)) {
1662 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1663 kvfree(data);
1664 size = size * 5 / 4;
1665 goto alloc;
1666 }
1667 continue;
1668 }
1669
1670 /* file_path() fills at the end, move name down */
1671 /* n = strlen(filename) + 1: */
1672 n = (name_curpos + remaining) - filename;
1673 remaining = filename - name_curpos;
1674 memmove(name_curpos, filename, n);
1675 name_curpos += n;
1676
1677 *start_end_ofs++ = m->start;
1678 *start_end_ofs++ = m->end;
1679 *start_end_ofs++ = m->pgoff;
1680 count++;
1681 }
1682
1683 /* Now we know exact count of files, can store it */
1684 data[0] = count;
1685 data[1] = PAGE_SIZE;
1686 /*
1687 * Count usually is less than mm->map_count,
1688 * we need to move filenames down.
1689 */
1690 n = cprm->vma_count - count;
1691 if (n != 0) {
1692 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1693 memmove(name_base - shift_bytes, name_base,
1694 name_curpos - name_base);
1695 name_curpos -= shift_bytes;
1696 }
1697
1698 size = name_curpos - (char *)data;
1699 fill_note(note, "CORE", NT_FILE, size, data);
1700 return 0;
1701 }
1702
1703 #ifdef CORE_DUMP_USE_REGSET
1704 #include <linux/regset.h>
1705
1706 struct elf_thread_core_info {
1707 struct elf_thread_core_info *next;
1708 struct task_struct *task;
1709 struct elf_prstatus prstatus;
1710 struct memelfnote notes[];
1711 };
1712
1713 struct elf_note_info {
1714 struct elf_thread_core_info *thread;
1715 struct memelfnote psinfo;
1716 struct memelfnote signote;
1717 struct memelfnote auxv;
1718 struct memelfnote files;
1719 user_siginfo_t csigdata;
1720 size_t size;
1721 int thread_notes;
1722 };
1723
1724 /*
1725 * When a regset has a writeback hook, we call it on each thread before
1726 * dumping user memory. On register window machines, this makes sure the
1727 * user memory backing the register data is up to date before we read it.
1728 */
1729 static void do_thread_regset_writeback(struct task_struct *task,
1730 const struct user_regset *regset)
1731 {
1732 if (regset->writeback)
1733 regset->writeback(task, regset, 1);
1734 }
1735
1736 #ifndef PRSTATUS_SIZE
1737 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1738 #endif
1739
1740 #ifndef SET_PR_FPVALID
1741 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1742 #endif
1743
1744 static int fill_thread_core_info(struct elf_thread_core_info *t,
1745 const struct user_regset_view *view,
1746 long signr, size_t *total)
1747 {
1748 unsigned int i;
1749
1750 /*
1751 * NT_PRSTATUS is the one special case, because the regset data
1752 * goes into the pr_reg field inside the note contents, rather
1753 * than being the whole note contents. We fill the reset in here.
1754 * We assume that regset 0 is NT_PRSTATUS.
1755 */
1756 fill_prstatus(&t->prstatus.common, t->task, signr);
1757 regset_get(t->task, &view->regsets[0],
1758 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1759
1760 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1761 PRSTATUS_SIZE, &t->prstatus);
1762 *total += notesize(&t->notes[0]);
1763
1764 do_thread_regset_writeback(t->task, &view->regsets[0]);
1765
1766 /*
1767 * Each other regset might generate a note too. For each regset
1768 * that has no core_note_type or is inactive, we leave t->notes[i]
1769 * all zero and we'll know to skip writing it later.
1770 */
1771 for (i = 1; i < view->n; ++i) {
1772 const struct user_regset *regset = &view->regsets[i];
1773 int note_type = regset->core_note_type;
1774 bool is_fpreg = note_type == NT_PRFPREG;
1775 void *data;
1776 int ret;
1777
1778 do_thread_regset_writeback(t->task, regset);
1779 if (!note_type) // not for coredumps
1780 continue;
1781 if (regset->active && regset->active(t->task, regset) <= 0)
1782 continue;
1783
1784 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1785 if (ret < 0)
1786 continue;
1787
1788 if (is_fpreg)
1789 SET_PR_FPVALID(&t->prstatus);
1790
1791 fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX",
1792 note_type, ret, data);
1793
1794 *total += notesize(&t->notes[i]);
1795 }
1796
1797 return 1;
1798 }
1799
1800 static int fill_note_info(struct elfhdr *elf, int phdrs,
1801 struct elf_note_info *info,
1802 struct coredump_params *cprm)
1803 {
1804 struct task_struct *dump_task = current;
1805 const struct user_regset_view *view = task_user_regset_view(dump_task);
1806 struct elf_thread_core_info *t;
1807 struct elf_prpsinfo *psinfo;
1808 struct core_thread *ct;
1809 unsigned int i;
1810
1811 info->size = 0;
1812 info->thread = NULL;
1813
1814 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1815 if (psinfo == NULL) {
1816 info->psinfo.data = NULL; /* So we don't free this wrongly */
1817 return 0;
1818 }
1819
1820 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1821
1822 /*
1823 * Figure out how many notes we're going to need for each thread.
1824 */
1825 info->thread_notes = 0;
1826 for (i = 0; i < view->n; ++i)
1827 if (view->regsets[i].core_note_type != 0)
1828 ++info->thread_notes;
1829
1830 /*
1831 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1832 * since it is our one special case.
1833 */
1834 if (unlikely(info->thread_notes == 0) ||
1835 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1836 WARN_ON(1);
1837 return 0;
1838 }
1839
1840 /*
1841 * Initialize the ELF file header.
1842 */
1843 fill_elf_header(elf, phdrs,
1844 view->e_machine, view->e_flags);
1845
1846 /*
1847 * Allocate a structure for each thread.
1848 */
1849 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1850 t = kzalloc(offsetof(struct elf_thread_core_info,
1851 notes[info->thread_notes]),
1852 GFP_KERNEL);
1853 if (unlikely(!t))
1854 return 0;
1855
1856 t->task = ct->task;
1857 if (ct->task == dump_task || !info->thread) {
1858 t->next = info->thread;
1859 info->thread = t;
1860 } else {
1861 /*
1862 * Make sure to keep the original task at
1863 * the head of the list.
1864 */
1865 t->next = info->thread->next;
1866 info->thread->next = t;
1867 }
1868 }
1869
1870 /*
1871 * Now fill in each thread's information.
1872 */
1873 for (t = info->thread; t != NULL; t = t->next)
1874 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, &info->size))
1875 return 0;
1876
1877 /*
1878 * Fill in the two process-wide notes.
1879 */
1880 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1881 info->size += notesize(&info->psinfo);
1882
1883 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1884 info->size += notesize(&info->signote);
1885
1886 fill_auxv_note(&info->auxv, current->mm);
1887 info->size += notesize(&info->auxv);
1888
1889 if (fill_files_note(&info->files, cprm) == 0)
1890 info->size += notesize(&info->files);
1891
1892 return 1;
1893 }
1894
1895 static size_t get_note_info_size(struct elf_note_info *info)
1896 {
1897 return info->size;
1898 }
1899
1900 /*
1901 * Write all the notes for each thread. When writing the first thread, the
1902 * process-wide notes are interleaved after the first thread-specific note.
1903 */
1904 static int write_note_info(struct elf_note_info *info,
1905 struct coredump_params *cprm)
1906 {
1907 bool first = true;
1908 struct elf_thread_core_info *t = info->thread;
1909
1910 do {
1911 int i;
1912
1913 if (!writenote(&t->notes[0], cprm))
1914 return 0;
1915
1916 if (first && !writenote(&info->psinfo, cprm))
1917 return 0;
1918 if (first && !writenote(&info->signote, cprm))
1919 return 0;
1920 if (first && !writenote(&info->auxv, cprm))
1921 return 0;
1922 if (first && info->files.data &&
1923 !writenote(&info->files, cprm))
1924 return 0;
1925
1926 for (i = 1; i < info->thread_notes; ++i)
1927 if (t->notes[i].data &&
1928 !writenote(&t->notes[i], cprm))
1929 return 0;
1930
1931 first = false;
1932 t = t->next;
1933 } while (t);
1934
1935 return 1;
1936 }
1937
1938 static void free_note_info(struct elf_note_info *info)
1939 {
1940 struct elf_thread_core_info *threads = info->thread;
1941 while (threads) {
1942 unsigned int i;
1943 struct elf_thread_core_info *t = threads;
1944 threads = t->next;
1945 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1946 for (i = 1; i < info->thread_notes; ++i)
1947 kfree(t->notes[i].data);
1948 kfree(t);
1949 }
1950 kfree(info->psinfo.data);
1951 kvfree(info->files.data);
1952 }
1953
1954 #else
1955
1956 /* Here is the structure in which status of each thread is captured. */
1957 struct elf_thread_status
1958 {
1959 struct list_head list;
1960 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1961 elf_fpregset_t fpu; /* NT_PRFPREG */
1962 struct task_struct *thread;
1963 struct memelfnote notes[3];
1964 int num_notes;
1965 };
1966
1967 /*
1968 * In order to add the specific thread information for the elf file format,
1969 * we need to keep a linked list of every threads pr_status and then create
1970 * a single section for them in the final core file.
1971 */
1972 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1973 {
1974 int sz = 0;
1975 struct task_struct *p = t->thread;
1976 t->num_notes = 0;
1977
1978 fill_prstatus(&t->prstatus.common, p, signr);
1979 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1980
1981 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1982 &(t->prstatus));
1983 t->num_notes++;
1984 sz += notesize(&t->notes[0]);
1985
1986 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1987 &t->fpu))) {
1988 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1989 &(t->fpu));
1990 t->num_notes++;
1991 sz += notesize(&t->notes[1]);
1992 }
1993 return sz;
1994 }
1995
1996 struct elf_note_info {
1997 struct memelfnote *notes;
1998 struct memelfnote *notes_files;
1999 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
2000 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2001 struct list_head thread_list;
2002 elf_fpregset_t *fpu;
2003 user_siginfo_t csigdata;
2004 int thread_status_size;
2005 int numnote;
2006 };
2007
2008 static int elf_note_info_init(struct elf_note_info *info)
2009 {
2010 memset(info, 0, sizeof(*info));
2011 INIT_LIST_HEAD(&info->thread_list);
2012
2013 /* Allocate space for ELF notes */
2014 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2015 if (!info->notes)
2016 return 0;
2017 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2018 if (!info->psinfo)
2019 return 0;
2020 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2021 if (!info->prstatus)
2022 return 0;
2023 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2024 if (!info->fpu)
2025 return 0;
2026 return 1;
2027 }
2028
2029 static int fill_note_info(struct elfhdr *elf, int phdrs,
2030 struct elf_note_info *info,
2031 struct coredump_params *cprm)
2032 {
2033 struct core_thread *ct;
2034 struct elf_thread_status *ets;
2035
2036 if (!elf_note_info_init(info))
2037 return 0;
2038
2039 for (ct = current->mm->core_state->dumper.next;
2040 ct; ct = ct->next) {
2041 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2042 if (!ets)
2043 return 0;
2044
2045 ets->thread = ct->task;
2046 list_add(&ets->list, &info->thread_list);
2047 }
2048
2049 list_for_each_entry(ets, &info->thread_list, list) {
2050 int sz;
2051
2052 sz = elf_dump_thread_status(cprm->siginfo->si_signo, ets);
2053 info->thread_status_size += sz;
2054 }
2055 /* now collect the dump for the current */
2056 memset(info->prstatus, 0, sizeof(*info->prstatus));
2057 fill_prstatus(&info->prstatus->common, current, cprm->siginfo->si_signo);
2058 elf_core_copy_regs(&info->prstatus->pr_reg, cprm->regs);
2059
2060 /* Set up header */
2061 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2062
2063 /*
2064 * Set up the notes in similar form to SVR4 core dumps made
2065 * with info from their /proc.
2066 */
2067
2068 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2069 sizeof(*info->prstatus), info->prstatus);
2070 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2071 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2072 sizeof(*info->psinfo), info->psinfo);
2073
2074 fill_siginfo_note(info->notes + 2, &info->csigdata, cprm->siginfo);
2075 fill_auxv_note(info->notes + 3, current->mm);
2076 info->numnote = 4;
2077
2078 if (fill_files_note(info->notes + info->numnote, cprm) == 0) {
2079 info->notes_files = info->notes + info->numnote;
2080 info->numnote++;
2081 }
2082
2083 /* Try to dump the FPU. */
2084 info->prstatus->pr_fpvalid =
2085 elf_core_copy_task_fpregs(current, cprm->regs, info->fpu);
2086 if (info->prstatus->pr_fpvalid)
2087 fill_note(info->notes + info->numnote++,
2088 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2089 return 1;
2090 }
2091
2092 static size_t get_note_info_size(struct elf_note_info *info)
2093 {
2094 int sz = 0;
2095 int i;
2096
2097 for (i = 0; i < info->numnote; i++)
2098 sz += notesize(info->notes + i);
2099
2100 sz += info->thread_status_size;
2101
2102 return sz;
2103 }
2104
2105 static int write_note_info(struct elf_note_info *info,
2106 struct coredump_params *cprm)
2107 {
2108 struct elf_thread_status *ets;
2109 int i;
2110
2111 for (i = 0; i < info->numnote; i++)
2112 if (!writenote(info->notes + i, cprm))
2113 return 0;
2114
2115 /* write out the thread status notes section */
2116 list_for_each_entry(ets, &info->thread_list, list) {
2117 for (i = 0; i < ets->num_notes; i++)
2118 if (!writenote(&ets->notes[i], cprm))
2119 return 0;
2120 }
2121
2122 return 1;
2123 }
2124
2125 static void free_note_info(struct elf_note_info *info)
2126 {
2127 while (!list_empty(&info->thread_list)) {
2128 struct list_head *tmp = info->thread_list.next;
2129 list_del(tmp);
2130 kfree(list_entry(tmp, struct elf_thread_status, list));
2131 }
2132
2133 /* Free data possibly allocated by fill_files_note(): */
2134 if (info->notes_files)
2135 kvfree(info->notes_files->data);
2136
2137 kfree(info->prstatus);
2138 kfree(info->psinfo);
2139 kfree(info->notes);
2140 kfree(info->fpu);
2141 }
2142
2143 #endif
2144
2145 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2146 elf_addr_t e_shoff, int segs)
2147 {
2148 elf->e_shoff = e_shoff;
2149 elf->e_shentsize = sizeof(*shdr4extnum);
2150 elf->e_shnum = 1;
2151 elf->e_shstrndx = SHN_UNDEF;
2152
2153 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2154
2155 shdr4extnum->sh_type = SHT_NULL;
2156 shdr4extnum->sh_size = elf->e_shnum;
2157 shdr4extnum->sh_link = elf->e_shstrndx;
2158 shdr4extnum->sh_info = segs;
2159 }
2160
2161 /*
2162 * Actual dumper
2163 *
2164 * This is a two-pass process; first we find the offsets of the bits,
2165 * and then they are actually written out. If we run out of core limit
2166 * we just truncate.
2167 */
2168 static int elf_core_dump(struct coredump_params *cprm)
2169 {
2170 int has_dumped = 0;
2171 int segs, i;
2172 struct elfhdr elf;
2173 loff_t offset = 0, dataoff;
2174 struct elf_note_info info = { };
2175 struct elf_phdr *phdr4note = NULL;
2176 struct elf_shdr *shdr4extnum = NULL;
2177 Elf_Half e_phnum;
2178 elf_addr_t e_shoff;
2179
2180 /*
2181 * The number of segs are recored into ELF header as 16bit value.
2182 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2183 */
2184 segs = cprm->vma_count + elf_core_extra_phdrs();
2185
2186 /* for notes section */
2187 segs++;
2188
2189 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2190 * this, kernel supports extended numbering. Have a look at
2191 * include/linux/elf.h for further information. */
2192 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2193
2194 /*
2195 * Collect all the non-memory information about the process for the
2196 * notes. This also sets up the file header.
2197 */
2198 if (!fill_note_info(&elf, e_phnum, &info, cprm))
2199 goto end_coredump;
2200
2201 has_dumped = 1;
2202
2203 offset += sizeof(elf); /* Elf header */
2204 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2205
2206 /* Write notes phdr entry */
2207 {
2208 size_t sz = get_note_info_size(&info);
2209
2210 /* For cell spufs */
2211 sz += elf_coredump_extra_notes_size();
2212
2213 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2214 if (!phdr4note)
2215 goto end_coredump;
2216
2217 fill_elf_note_phdr(phdr4note, sz, offset);
2218 offset += sz;
2219 }
2220
2221 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2222
2223 offset += cprm->vma_data_size;
2224 offset += elf_core_extra_data_size();
2225 e_shoff = offset;
2226
2227 if (e_phnum == PN_XNUM) {
2228 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2229 if (!shdr4extnum)
2230 goto end_coredump;
2231 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2232 }
2233
2234 offset = dataoff;
2235
2236 if (!dump_emit(cprm, &elf, sizeof(elf)))
2237 goto end_coredump;
2238
2239 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2240 goto end_coredump;
2241
2242 /* Write program headers for segments dump */
2243 for (i = 0; i < cprm->vma_count; i++) {
2244 struct core_vma_metadata *meta = cprm->vma_meta + i;
2245 struct elf_phdr phdr;
2246
2247 phdr.p_type = PT_LOAD;
2248 phdr.p_offset = offset;
2249 phdr.p_vaddr = meta->start;
2250 phdr.p_paddr = 0;
2251 phdr.p_filesz = meta->dump_size;
2252 phdr.p_memsz = meta->end - meta->start;
2253 offset += phdr.p_filesz;
2254 phdr.p_flags = 0;
2255 if (meta->flags & VM_READ)
2256 phdr.p_flags |= PF_R;
2257 if (meta->flags & VM_WRITE)
2258 phdr.p_flags |= PF_W;
2259 if (meta->flags & VM_EXEC)
2260 phdr.p_flags |= PF_X;
2261 phdr.p_align = ELF_EXEC_PAGESIZE;
2262
2263 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2264 goto end_coredump;
2265 }
2266
2267 if (!elf_core_write_extra_phdrs(cprm, offset))
2268 goto end_coredump;
2269
2270 /* write out the notes section */
2271 if (!write_note_info(&info, cprm))
2272 goto end_coredump;
2273
2274 /* For cell spufs */
2275 if (elf_coredump_extra_notes_write(cprm))
2276 goto end_coredump;
2277
2278 /* Align to page */
2279 dump_skip_to(cprm, dataoff);
2280
2281 for (i = 0; i < cprm->vma_count; i++) {
2282 struct core_vma_metadata *meta = cprm->vma_meta + i;
2283
2284 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2285 goto end_coredump;
2286 }
2287
2288 if (!elf_core_write_extra_data(cprm))
2289 goto end_coredump;
2290
2291 if (e_phnum == PN_XNUM) {
2292 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2293 goto end_coredump;
2294 }
2295
2296 end_coredump:
2297 free_note_info(&info);
2298 kfree(shdr4extnum);
2299 kfree(phdr4note);
2300 return has_dumped;
2301 }
2302
2303 #endif /* CONFIG_ELF_CORE */
2304
2305 static int __init init_elf_binfmt(void)
2306 {
2307 register_binfmt(&elf_format);
2308 return 0;
2309 }
2310
2311 static void __exit exit_elf_binfmt(void)
2312 {
2313 /* Remove the COFF and ELF loaders. */
2314 unregister_binfmt(&elf_format);
2315 }
2316
2317 core_initcall(init_elf_binfmt);
2318 module_exit(exit_elf_binfmt);
2319 MODULE_LICENSE("GPL");